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Influence of aspect ratio in convection due to nonuniform heating
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The influence of fluid depth in a convection problem in which heating is nonuniform is studied. We consider
a vessel that has at the bottom a temperature distribution which has Gaussian shape in the transversal direction
and whose surface is open to the atmosphere. Coupled buoyancy and thermocapillary effects are taken into
account. The results confirm a stationary bifurcation and a prelude of an oscillatory one as has been observed
recently in convection with quasi-one-dimensional hea{&8%063-651X98)09506-3

PACS numbefs): 47.11+j, 47.20.Dr, 47.20.Bp

In convection there are situations in which localized ef-of the fluid in such a way that while depth increases the
fects are able to generate differences in a large scale. In themperature gradient required decreases. Experimental mea-
general problem of turbulence it is important to know howsures show us that for increasing depths and high values in
proceses which involve different scales interact since it ighe applied temperature gradient traveling waves are pos-
thought that effects in a small scale are responsible for besible. We determine the basic state numerically and we per-
haviors in a larger scale. In our problem we see how arform a linear stability analysis on this solution. We find that
effect in a small scalélocalized heatinginfluences the be- the basic rolls suffer a stationary bifurcation and we obtain
havior of a fluid in a larger scale and we compare this localthat theoretically the temperature gradient required depends
ized effect with the global one. We think that the study ofon the depth in the same way as the experiments show. The
localized effects can help the understanding of turbulencehreshold also depends on the geometry of the wire heater,
Along these lines the works of Kazarinoff and Wilkow§kj  on the vessel, and on the environment and fluid properties.
study thermocapillary flows in axially symmetric float zones. By increasing depth it appears a complex eigenvalue branch
They discuss localized heating that corresponds to the exor the appropriate wave numbleybut at the reported depths
perimental results in Ref$2—7], in which the heaters have it does not destabilize.
low “heat capacity” and, therefore, it is conceivable that a  Starting from the general hydrodynamic problem our ap-
coupling between the temperature distributions of the heatgsroximations follow[8].
and the fluid exists. This coupling has been avoided in Ref. (1) The Oberbeck-Boussinesq approximation usual in
[9] and the situation described here would be more closelgonvective problems.
related to this experiment. In RdB] the primary stationary (2) The variation of the surface tension as a function of
bifurcation that appears in convection due to nonuniformthe temperature is approximated bYT)=o0¢— y(T—Ty),
heating is studied in a vessel for a fixed aspect ratio betweewhere o is the surface tension at temperatdig vy is the
the depth and the width of the cell. In this paper we extendconstant rate of change of surface tension with temperature
the study to several aspect ratios and we look at the influendgy is positive for most current liquids
of this parameter in the problem. The physical situation that (3) The length in they direction is considered infinite.
we consider is shown in Fig. 1. There is a horizontal fluid (4) The free surface is assumed to be undeformable.
layer of depthd (z coordinatg¢ in a container of lengtih. (y (5) The Prandtl number is considered infinite. This allows
coordinate and widthl (x coordinatg. As shown in the fig- some simplifications in the velocity potential and in the
ureL>1 and for this reason it can be considered to be infin-equations. A very useful approach is to express the velocity
ity. The container has a rigid bottom plate and an uppefield u in terms of a potential as followsiI=VXVX ¢ e,
surface open to the atmosphere. A heater is located in the VX ¢ e,, where VXV X ¢ e, is the poloidal part and
middle of the bottom plate at=1/2, along they direction. VX ¢ e, is the toroidal part, but if the fluid has an infinite
The width of this heater is much smaller than the width ofPrandtl number, the equation fdrhas only the solutiorg
the container. The heater isB§, and the temperature of the
environment isT; (<Tg). ThenAT=Ty—T; is the local :
difference of temperatures in the liquid layer just over the
heater. When the heater is switched on a temperature distri-
bution which is Gaussian iR direction appears at the bot-
tom.

The behavior of the system is as follows: a basic convec-
tive state appears without threshold if a temperature gradient
with horizontal component different from zero is applied. It
consists of two big rolls parallel to the heater and filling the
convective cell. The basic rolls suffer a stationary bifurca-
tion. The threshold for the bifurcation changes with the depth FIG. 1. Problem setup.
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FIG. 2. Isotherms of the basic state before the instabilitydor where —1<x<1, —1<z<1. In these equationg is the
=200 and differentl, h numbers and temperature differencek, , width of the temperature distribution amdis the aspect ratio
the axes are andz. () d=1mm, h=20 W/ (nf °C) andAT  which is defined a¥ =1/2d. The boundary conditions at the
=1°C (R=16.614, M=150.654, and B=0.161). (b) d  surface involve the Biot numbd and the Marangoni num-
=1mm, h=124 W/ (nf °C), and AT=1°C (R=16.614, M perM. The Biot number i8=hd/K, whereh is the thermal
=150.654, an3=1.000).(c) d=1 mm, h=20 W/ (n? °C), and  gyrface conductance aridl is the thermal conductivity. It
AT=4.66°C R=77.420, M=702.056, andB=0.161). (d) d  Gagcribes the heat interchange at the surface. The Marangoni
=2.5mm, h=20 W/ (7 °C), and AT=1°C (R=259.589,M  mper is defined a =(yATd)/(kvp,) wherey is the
=376.640, and3=0.403). constant rate of change of surface tension with temperature,
k is the thermal diffusivity v is the kinematic viscosity, and

=0 and it is sufficient to consider the poloidal part. There-pO is the mean density of the liquid. This number takes ac-

fore the final expression for the velocity field is count of the thermocapillarity effects.

— _ — 92 2 _ ) . .
= (9x9,¢,0y9;¢,~ A1), where A =7, +3,. The transla We have solved numerically these equations with a

tional symmetry in they direction for the basic state implies Chebyshev-collocation methd@]. The fields are approxi-
that all the derivatives in this coordinate are zero. So it ismated by the expansions:

possible in this case to obtain a simpler expression for the

velocity field. If we call y=4d,¢, we have u=(4,#,0, _ N-1M-1

— ). $(x2)=2 X AnmTn(X)Tn(2), (19)
With these approximations the equations and boundary n=0 m=0

conditions for the basic state are

N-1M-1

2 2 O(x2)= 2 2 BomTo(x)Tn(2), (12)
F&Zzan@—fawa@:A@, (1) n=0 m=

whereT,, T, are the Chebyshev polynomials.

) 1 The solution obtained for the basic state can be seen in
Ac— FR07X®=O, (2) Fig. 2.
In order to perform a linear stability analysis of the basic
WheI’EA=(1/F2)o7)2(+4(9§. state (1,, ®,) we perturb it with a vector field depending
on thex, y, andz coordinates, in a fully three-dimensional
O=exp[—(3X)%/(B)] at z=-1, (3)  (3D) analysis:

TABLE |. Critical AT, andk, for different orders of expansions fgr= 200.

h=1240 W/ (nf °C) h=124 W/(n? °C) h=20 W/(n? °C)
d NX M AT, ke AT, ke AT, K¢
1.5 23X 7 2.51 2.85 1.01 2.40 2.45 2.25
25X 7 2.51 2.90 1.01 2.40 2.47 2.25
27X 7 2,51 2.85 1.01 2.45 2.49 2.25
2.0 23X 7 211 2.85 0.75 2.50 1.66 2.40
25X 7 211 2.90 0.75 2.45 1.68 2.35
27X 7 2.11 2.90 0.75 2.45 1.70 2.40
25 23%x 7 1.72 2.85 0.61 2.50 1.34 2.25
25X 7 1.71 2.90 0.60 2.60 1.37 2.50
21X 7 1.71 3.00 0.60 2.60 1.39 2.50
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FIG. 3. Critical temperature thresholdsT. as a function of

depth for different values di [h=20, 124, and 1240 W/(f*C)]

and 8. The solid line is forB=« and the dashed line is fq8
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FIG. 4. Critical Marangoni number as a function of Rayleigh
number for different values of h [h=20, 124, and

=200. The circles correspond to the points calculated numerically1240 W/(nf °C)] and 8. The solid line is for8= and the dashed

Up(X,2) +U(x,z)eM kY, (13

0,(x,2)+ O(x,z)eM kY, (14)
The expression€l3) and(14) are replaced in the basic equa-
tions (1)—(10). After eliminating the second order terms we
obtain the following eigenvalue problem:

2 -
—0,0d,3,— 3,0A, | $=0,

®+F

Ix
)\_A+UXF+2UZ&Z

(15

~A%A p+RA;0=0. (16)
—402p—MO=0 at z=1, 17
$=0 atz=-11, (18)
9,6=0 at z=-1, (19
-20,0-BO=0 at z=1, (20)
®=0 atz=-1, (2D
$=0 atx=-1.1, (22)
9,0=0 atx=-1,1, (23)
=0 atx=-1,1, (24)
2$p=0 at x=-1,1, (25

where the Laplacians arA=(1/2)32+49>—k? and A,
=(1T?)92—k?. We solve the problem posed numerically

with a Chebyshev-collocation method in which convergence, , ,

line is for 8=200. The circles correspond to the points calculated
numerically.

and for this reason we only consider the increasing order in
the x direction expansionsN). The results can be seen in
Table I. From them we see that convergence improves by
increasingh or B and decreasing. The influence of depth
and other parameters, such as the width of the distribygion
or the thermal surface conductarteein the stability of the
basic state is studied by taking different values for them.

In Fig. 3 the solid line shows foB=«~ and different
values ofh, the critical threshold T, depending ord. It
can be appreciated that dsincreasesAT. decreases. The
dependence of the critical threshold on the thermal surface
conductance is not monotonous; it is minimum far
=124 W/ (n? °C) (i.e., ford=2, B=2) and the maximum
changes betweerh=20 W/ (n? °C) (i.e., for d=2, B
=0.3226) anch=1240 W/ (nt °C) (i.e., ford=2, B=20).
We can say the same f@=200. The results are shown by
the dashed line. The difference between both situations is
that the critical temperature difference increases widile
decreases. The same information as in Fig. 3 but with the
classical dimensionless numbé&sandM as can be seen in
Fig. 4.

The value ofd affects not only the value of the critical
temperature but also the value of the critical wave number.

TABLE II. Critical wave numbersk, depending ord for the
two values of the width of the distributiof and different values of
the thermal surface conductanice

has been tested. In order to do this we consider that it is
reached if differences of consecutive approximations de-

crease for increasing order of the expansions and the differ-
ences between th&T, calculated with consecutive approxi- 20
mations are less than 0.05 °C. The influence of increasing

h [W/(m?°C)] d ke (8=200) ke(B=)
1.5 2.90 2.80

1240 20 2.90 2.80
25 2.90 2.75
1.5 2.40 2.40
2.0 2.45 2.40
2.5 2.60 2.45
1.5 2.25 2.05
2.0 2.35 2.10
25 2.50 2.15

the order in thez direction expansionsM) is very small,
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FIG. 5. Eigenvalue curves as a function of the wave number for different temperatlirandd=2.5 mm.(a) The heating is uniform
(B=); (b) the heating is nonuniformg=200). In this case a complex branch appears that is plotted with a thick dotted line.

The main influence irk. is due toh, k. increases wheh lower value ofh would fit better with the experimental re-
increases, but for some fixed values of the thermal surfacsults. However, some qualitative features are recovered. In
conductance, the values kf increase for large depths. The the experiments described in Rg®] the decreasing depen-
lack of homogeneity of the heating also affects the criticaldence of the temperature thresholds while the depth increases
wave number since fg= 200,k has larger values than the is qualitatively the same as ours. On the other hand, in the
ones obtained fop=c (see Table . experimental results traveling waves are possible for a wave
An important feature of the eigenvalue curve rises fornymber half the stationary one. This happens for high depths.
increasing depths. It consists of the appearance of Comple,l(lthough we do not prove such a bifurcation we find a com-

eigenvalues fok which is one-half_ (_)f that of the stationary plex branch in the eigenvalue curve for the appropriate wave
patterns but that does not destabilize at the reported depths,mpers.

We find that if 8 is not infinite and depth takes larger values
this effect is favored. In Fig. 5, for uniform heating complex
eigenvalues do not appear even after the primary bifurcatio
However, if B=200 for depth d=25mm, h
=20 W/ (n? °C), andAT=3 °C a complex branch appears
in the maximum eigenvalue curve. Although a primary bi-
furcation to traveling waves has not been proven it could be We would like to thank M. Bestehorn and I. Mercader for
possible that the complex branch of the eigenvalue curvéheir help in the numerical analysis, and J. Burguete, C.
makes them appear as secondary ones. Paez-Garca, A. Garcimari, D. Maza, and H. Mancini for

It is not possible to make a direct quantitative comparisoruseful comments and discussions. H. H. thanks the Depart-
with experiments because in them several parameters are ument of Applied Mathematics of the University Complutense
known, i.e., theh and 8 numbers. In Ref[9] for d=2 a  of Madrid, where a part of this work was done. This work
transition to longitudinal rolls appears f&eT,~17 °C and was partially supported by a Research Project PIUNi-
we obtain this transition atAT.=1.68 °C, 0.75°C, and versity of Navarra and DGICYT (Spanish Government
2.11 °C for =200 andh=20, 124, and 1240 W/ (f*C),  Grant Nos. PB95-0578 and PB96-0534 and by the University
respectively. AR\ T, increases wheh decreases, probably a of Castilla-La Mancha.

Our results indicate that the stationary patterns are not
interface motions which are excluded from the beginning,
'but bulk motions. The mechanisms of instability are buoy-
ancy and thermocapillarity, but the patterns are not produced
only on the surface, but influence the whole layer of fluid.
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