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Random matrix elements and eigenfunctions in chaotic systems
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The expected root-mean-square value of a matrix eledgpin a classically chaotic system, whekeis a
smooth,f-independent function of the coordinates and momenta,caadd 8 label different energy eigen-
states, has been evaluated in the literature in two different ways: by treating the energy eigenfunctions as
Gaussian random variables and averadig,|? over them; and by relatingA,,4|? to the classical time-
correlation function ofA. We show that these two methods give the same answer only if Berry’s formula for
the spatial correlations in the energy eigenfuncti@mhich is based on a microcanonical density in phase
space is modified at large separations in a manner that we previously prop&Ea63-651X98)06906-2

PACS numbdss): 05.45:+b, 03.65.Sq

Hamiltonian systems that are classically chaotic havesmall#, the expectation value of an operaf®rin an energy
guantum energy eigenvalues, eigenfunctions, and transitiogigenstate is equal to its classical, microcanonical average at
matrix elements that can be profitably analyzed statisticallfthe corresponding energy,

[1,2]. Our focus in this paper will be on matrix elemefits

the energy-eigenstate basid operators whose Weyl sym-
bols are smooth; -independent functions of the classical co-
ordinates and momenta. Two different methods have been .
proposed in the literature for calculating the root-mean-WhereOy(p,q) is the Weyl symbol of the operat®, and
square statistical average of these matrix elements in théue denotes the Liouville measure on the surface in phase
limit of small %. One method is to compute this average bysPace with energiz,
treating the energy eigenfunctions as Gaussian random vari-

ables; the other relates the average to the operator’s classical _L
power spectrum. Our goal is to see whether or not these two '“E_;( E)
methods give the same result, a question that was first raised

by Austin and Wilkinsor[3]. We find that the methods do Heref is the number of degrees of freedohiy(p,q) is the
agree, but only if our recently proposed modification of Ber-yey| symbol of the Hamiltonian operatet, andp(E) is the
ry’s formula[4] for the spatial correlations in energy eigen- semijclassical density of states,

functions of chaotic systems is invoked when the spatial
separation is large compared to any relevant classical dis-
tance scales in the problefs].

We begin by reviewing the power-spectrum method, es-
sentially following the original arguments of Feingold and Note thatdug is a purely classical object; the factors fof
Peres[6]; more rigorous treatments leading to the same recancel between Eq¢3) and(4). Also, Shnirelman’s theorem

<C¥|O|a’>:J'd,LLEa OW(p!Q)! (2)

dp dfg

@)’ S(E—Hw(p,q)). (3

dp df
p )q @

;(E)IJW S(E—Hw(p,q)).

sult have been given by Wilkinsd7] and Prosen8]. To

is proved for principal symbols instead of Weyl symbols, but

simplify the discussion, we will consider Hermitian opera- there is no difference in th&—0 limit, which the theorem

tors that are functions of only the coordinatggand not the
momentap). Given a suitable operatdk of this type, we
begin by defining

+ o0 2,52 .
st dt e 27cel ol o| AA| ), (1)

whereA,=e"" Ae~ MU ig the relevant operator at tintén

the Heisenberg picturéq) is an energy eigenstate with en-

ergyE,, o is a parameter, and, is a time cutoff that may
be needed for convergence of the integral.

We now evaluatd- in two different ways. First, we use
Shnirelman’s theorerf®-13], which says that, in the limit of
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also requires; sefl4] for a thorough discussion.
We now apply Eq(2) in Eq. (1), making the approxima-
tion (valid in the/—0 limit) that

f due (AtA)sz due Aw(G)Aw(D), 5)
whereAy,(q) is the Weyl symbol of the operatdx (which,
by assumption, depends only gnand notp), andg is the
classical coordinate at time assuming an initial pointg,q)

on the surface with energl in phase space. We therefore
obtain

+o )
Fo | Tate Pelen [ duc AuaAa.  ©

— oo

We now evaluatd- in a different manner: we insert a
complete set of energy eigenstates to get
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+o0 21 it where the angular brackets denote averaging over the prob-
F=> f_m dt e "#ree' Y a| A B)(BIA| @) ability distribution for /(q) given the energyE. Averaging
b Eq. (10) over this probability distribution yields

+o0 >
:2 f dt e—tZ/ZTCeI(Ea—Eﬁ-%—fiw)t/hAa A ,
RS re <|Aa3|2>=deq’ d'q C(a,q'|E,)

=271, Sy (Ea—Eptho)|Ayl? 7) XAw(a")C(q’",a|Eg) An(Q)- (12
B c

This is the second formula fQ¢Aaﬁ|2>, which can be found

where A BE<a|A|B>1 and 8,(E) denotes a smeared delta in the literature. The question is whether or not it is the same
function with a width ofe. We now assume that each eigen- &S the first formula, Eq(9). , _

state has a random character, so that, \Eithand E; each Of course, in order to answer this question we need an
varied over a small range, there is a smooth distribution ofXPlicit expression forC(q,q'|E). Berry [4] conjectured
values for|A,,g|2. Let this distribution be characterized by an that, in the smalk limit,

expected value, which we will caf|A,4|%). If we also take

the width 7/ 7. of the smeared delta functions to be some- C(q',q|E)=f dug P @ -9t 5Q-1(q' +q)),

what larger than the mean level spacing, equal EEL) in (13
the limit of small%, we can replace the sum ovgrin Eq. (7)
by an integral oveE(EB)dEﬁ. Thus we have where the Liouville integral is overR, Q). However 3], this

formula for C(q’,q|E) appears to be too simple to be able

% _ reproduce the classical power spectrumAgfwhich appears
Fzzwhf dEg p(Ep) d1jp(En—Ep+hiw){|A4l?) in Eq. (9).

0 In a separate papé¢b], we have argued that, in fact, Eq.
(13) must be modified whenever the separatjgh—q| is
large, in the sense that the shortest classical path with energy
E, which connectgy to q’ is not well approximated by a
linear function of time. This will be generically true in Eq.
(9), since bothg andq’ are integrated, and since the factors
of Aw(q) and Ay(qg’) do not forceq andq’ to be close
together. Wherg andq’ are far apart, Eq(13) should be
replaced with

=27h p(E,+ho) (|ALLl). 8)

Equating the right-hand sides of E¢%) and(8) gives us the
desired formula foK|A,4|?); however, its accuracy to sub-
leading order ik can be improved by symmetrizing ),
andEg [8] to get

P (RPTPRXP S
([Aapl)=—-] dte He' | dug Aw(a)Aw(Q),
(9) C(q',qlE)=

— D 1/2
p(E)(ZWﬁ)(f+l)/2;mzﬂ15| p|

whereE=3(E,+Ep) is the mean energyw=Ez—E, is XCos[Sy/h—(2vpt+f—1)m/4], (14)
the energy difference, ant;=2x#p(E) is the Heisenberg

time. If we holdE and w fixed in the limit of small#, the
right-hand side of Eq(9) is simply 1/ times the classical
power spectrum of the observabdeat energyE, with any
structure on frequency scales less thaw 2, smeared out aZSp )
by the time cutoff. Equation9) is the first of two formulas P ;
for (|A,4|?), that can be found in the literature. 9999"  JEdq

We get the second formuld5-17 by first writing the Dp=de ,923p (925p . (15
squared matrix element in terms of the eigenfunctions as JqIE P

where the sum is over all classical paths connecgrig g’

with energy E; each path has actioszfg'p-dq, focal
point numbery,, and fluctuation determinant

3°S

|Aaﬂ|2:f d'q’ ¢ (a)AwWA) ¥e(q’) Equation(14) actually holds only if the system is invariant
under time reversal; otherwise a more cumbersome formula
is needed5]. The final formula for(|A,,4|?) turns out to be
the same in either case, and so to simplify the notation we
will use Eg. (14). Equation(14), or its replacement for a
In a chaotic system, the individual eigenfunctions can besystem that is not time-reversal invariant, is valid as long as
treated as independent random variables with a Gaussidhe contributing path of least action h&s/#>1. This is of
probability distribution[4,18—24. Because it is Gaussian, course true generically in the limit of smail
this distribution is completely specified by the two-point cor- ~ We now show that if we use E¢14) for C(q’,q|E), Eq.
relation function (12) gives the same result fdfA,z|?) as Eq.(9).
We begin by substituting E¢14) into Eq.(12). Since we
C(q',9|E)=((d") ¢*(q)), (11 are interested in the limit of small with E andw held fixed,

X J d'q () Aw(a) (). (10



57 BRIEF REPORTS 7315

we can usually replacg, andEz with E. We then make use The sum is over all paths that begin a1,§) and have
of the “diagonal approximation’{25] in which the double €lapsed timer. However, there is only one such path, and so
sum over paths is collapsed to a single sum. In related cathe sum over paths may be dropped. Algbis the position
culations[25,16], this can be justified by the rapidly oscillat- at timer, and it is now more properly denoted. Using Eq.
ing phases of the off-diagonal terms as long as the singl€3) and ry=2=#%p(E), we see that Eq19) can be rewritten
sum includes only those paths whose elapsed times are leas

than the Heisenberg time. We assume the same condition

holds here. The product of cosines in each diagonal term a2 (™

then yields a single cosine, which is slowly oscillating, and ~ {|Aagl®) = Efo dr COS(wT)J due Aw(d,)Aw(a).

we get (20)

2
<|Aaﬁ|2>:ﬁf d'q’ d'q Using the fact that time-translation invariance implies that
p(E)*(2mh) Jdug Aw(a,)Aw(q) is an even function of (even if the
, system is not time-reversal invarightve see immediately
X Aw(q )AW(q)%JDP'Coi“’TP)' 18 that Eq.(20) is equivalent to Eq(9), up to the issue of the
) ) — detailed treatment of the large-time cutoff. This is our main
The sum is over paths from to g’ with energyE, and | oq it
elapsed time Another quantity of interest is the size of the fluctuations
IS in the diagonal matrix element,, . If we first shift A (if
:o’!_Ep B (17 necessaryso thatA,,)=[due  Aw(q)=0, then the object
E=E we wish to evaluate i$|A,,|?). This has been done previ-
ously [27,28,16 by making use of the trace formula

less than the Heisenberg timg,. We have implicitly as- ; . ) .
: ; [26,29,3Q and properties of periodic orbits. Here we will
sumed that the topological quantiy, does not change as compute(|A,,|?) by averaging over the Gaussian probabil-

the energy of the path is varied frof— ;%o to E+ 3ho. ity distribution for energy eigenfunctiongl5-17. In the

: To make' further progress we need to rewrite the fluctuagage of o system that is not invariant under time reversal, the

tion determinant as energy eigenfunctions are generically complex, and the rel-
evant formula i 24]

Tp

p IJr
aq" aq’' (WL ol ha) = (Y7 o) 3 Pra) + 1 )3 2,
Dp=de o o (18 (21
~JE OE where ;= ¢,(q;). If the system is invariant under time re-

versal, the energy eigenfunctions are real, and we have in-

Herep=—S,/dq is the momentum at the beginning of the Stead[24]
path, andr= 7, is the elapsed time along the path, given by
Eq. (17). With these definitions, Eq(18) follows immedi- (Urbopatpa) = (Prtho)(Patha) +{r1tha)(oths)

ately from Eq.(15). Equation(18) shows us thalD ,| can be n 29
thought of as a Jacobian for a change of variables from the (Yaths)atha)- 22

final positiong’ and total energ to the initial momentum  Combined with the previous results A, 52), we find that
p and elapsed time [26]. To make use of this, we insert

1=[dE 8(E—Hw(p,q)) into Eq.(16) and change variables. g (™
We now have (|Azal?)= P dr | dug, Aw(a,)Aw(G). (23
.

fry of
2\ _ ; H d'pdq Hereg=2 for a system that is invariant under time reversal,
(|Awpl)=—==| dr| 57 ; Jneer tr
whp(E)?Jo (27h) andg=1 for a system that is not. Equatié®3) is in agree-
ment with the results of27,28,14.

X’x%sé(E—HW(p,q)) cog wr) We thank Michael Wilkinson for bringing the issue
treated in this paper to our attention. This work was sup-
X AW )AW(Q). (199  ported in part by NSF Grant No. PHY-97-22022.
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