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Universal features of the off-equilibrium fragmentation with Gaussian dissipation
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We investigate universal features of the off-equilibrium sequential and conservative fragmentation processes
with the dissipative effects that are simulated by the Gaussian random inactivation process. The relation
between the fragment multiplicity scaling law and the fragment size distribution is studied and a dependence
of scaling exponents on the parameters of fragmentation and inactivation rate functions is established.
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Fragmentation is a universal process that can be found dbe fragmentation processes, which on the one hand are
all scales in nature. The most general sequential binary andriven by the homogeneous scale-invariant fragmentation
conservative fragmentation processes with scale-invariarrate function and on the other hand are inactivated at a cer-
fragmentation and inactivation rate functions have been studain fixed scale by the random inactivation process, may de-
ied previously in much detafl1-3]. The phase diagram of velop scale-invariant and universal features in both the frag-
these off-equilibrium processes has been established and theent mass distributiom(k) and the fragment multiplicity
universal aspects of both the fragment size distribution andistribution P(m). This question is important in view of the
the total number of fragment distributiofise., the multiplic-  widespread occurrence of scale-invariant fragment mass dis-
ity distribution) have been determined3,4]. In this tributionsn(k)~k~" and the lack of convincing arguments
fragmentation-inactivation binaryFIB) model [1,2], one  for using homogeneous dissipation functions in many pro-
deals with fragments characterized by some conserved scalegsses including parton cascading in perturbative quantum
quantity that is called the fragment mass. An ancestor fragehromodynamic$PQCD) [5] or the fragmentation of highly
ment of massN fragments via an ordered and irreversible excited atomic nuclei, atomic clusters, or polymers. In this
sequence of steps. The first step is either a binary fragmenvork, we address this fundamental question using the FIB
tation (N)—(j)+(N—j) or an inactivation {)— (N*). process with the homogeneous fragmentation rate function
Once inactive, the cluster cannot be reactivated anymores; ,_;=[j(k—]j)]* and with the dissipation at small scales,
The fragmentation leads to two fragments, with the massvhich are modeled by the Gaussian inactivation rate function
partition probability ~F; ;. In the following steps, the

process continues independently for each active descendant ;{ 1 (k—l 2
Ik: C ex

< M

fragment until either the low mass cutoff for further indivis- T 552
ible particles(monomergis reached or all fragments are in- o

active. For any event, the fragmentation and inactivation oc- An asymptotic {—) fragment mass distribution in the

cur with the probabilities per unit of time-Fy_j and~ly, 00" o region of the FIB model with scale-
respectively. The fragmenting system and its evolution are

completely specified by the rate functions and the initialmv"’m"’mtdlss'p"’ltlon phenomeiR 2] is a power law with an

- i
state. It is also useful to consider the fragmentation probabiI?XponemT 2. In the shattering phase, the fragment mass

. . e distribution is also a power law, but with an exponent2.
ity pg without specifying masses of descendamis(k) g C .
:Eik:_:l:.l-l:i,kfi(l k+§::<:_f|:i,k7i)_l- If the instability of Another characteristic observable is the fragment multiplic

smaller fragments is smaller than the instability of IargerIty distribution P(m) = 2 Py(m) wherePy(m) is the prob-

¢ i K | ; ing funcii » i ability distribution of the number of fragments of malss
ragments pe(k) is an increasing function of fragment mass This quantity has been intensely studied in the strong inter-

and the total mass is converted into finite size fragments(,chtion physicg6]. Of particular importance is the possibility

This is the shattered phase. The fragment mass independe ; ; L S
of pe(K) at any stage of the process until the cutoff scale for:&easymptonc scaling of multiplicity probability distributions

monomers characterizes the critical transition region. The

C . . . m—(m
multiplicity anomalous dimensiog=d(In(m))/d(In N) is the (MYPP(M)=B(25), Z5= _<5>, )
order parameter in the FIB model. It equals 1 in the shatter- (m)
ing phase and takes the intermediate value between 0 and 1
in the critical transition region. where the asymptotic behavior is defined (@s)— and

For most fragmenting systems, the off-equilibrium relax-m—o for a fixed m:(m) ratio. (m) is the multiplicity of
ation process ceases due to a dissipation. The dissipation figments averaged over an ensemble of events. The scaling
not always scale invariant as considered in R&f, on the law (2) means, for example, that data for differing energies
contrary, it is often characterized by a definite and usuallyhence differing(m)) should fall on the same curve when
small length scale. It is then an open question to what extertm)°P(m) is plotted against the scaled variatdg,=(m
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—(my){m)°. Some time ago Koba, Nielsen, and Olesen sug-®(zs)
gested an asymptotic scalif@) with §=1 in the strong
interaction physic§7]. The same scaling has been found also
in the critical transition region of the scale-invariant FIB
process forpg>1/2 and a=—1 [3]. Recently, Botet,
Ptoszajczak, and Latora reported another scaling limit in Eq.
(2) with §=1/2, which holds in the percolation and in the
shattering phase of scale-invariant FIB procg$k 5=1/2
and 1 are the two limiting values sineg&>1 or 6<1/2 are
incompatible with the scaling hypothesi).

The study presented in this paper correspond to the do
main «=—1 of fragmentation rate functiorfs; ;. Many
known homogeneous fragmentation kernels correspond tc
this domain. These include the singular keraei —1 in the
PQCD gluodynamic$8], o= — 2/3 for the spinodal volume
instabilities in three dimension2], a=+1 in the scalar ’ ) - 7 k -
)\¢>§ field theory in six dimensions, and many othg2$ For o S ) ) )
a<—1, the fragmentation process is dominated by the split- FIG. 1. Multiplicity probability d|5tr|but|0n§ in the_ scaling vari-
ting k—(k—1)+1 at each step in the cascade and leads tables[see Eq(2)], and the fragment mass distribution for two ho-

T ) e ogeneous fragmentation kernels and two Gaussian inactivation
the finite limiting value of(m) independently of the initial 516 functions. Each set of data corresponds t® ibdependent

sizeN [3]. In this evaporation phase, the scaling solui@n  eyents of Monte Carlo simulation§) Upper left part: the fragmen-
does not hold and the multiplicity anomalous dimension isgation kernel witha= —1 and the inactivation rate functid) for
equal to zero wheiN— co. This phase is not relevant for the c¢=1 and two typical values of. Two sets of data are plotted for
problem we want to address in this paper. two different total massN=1024 (crossesandN= 4096 (circles.

Without restricting the generality of our discussion, we These data are plotted in the KNO form, i.85 1 [see Eq(2)]. (ii)
will present below results for fragmentation kernels with Upper right part: the fragment mass distributions in a double-
a=—1 and+1. The upper part of Fig. 1 shows multiplicity logarithmic scale shown for the same parameters, o as in (i).
distributions fora=—1 in the scaling variable§2) for & The total mass i&N=4096. Big asterisks represent results obtained
=1 (the upper left pajtand fragment mass distributions for for the same values of parameters and for a much larger value
the same parametershe upper right pajt The cascade Of o (¢=10) to show the independence of the scaling part of the
equations of the Gaussian FIB model have been solved bf\ya_gme_nt mass distrib_ution with th_(_a value®f The line in betwee_n
Monte Carlo simulationg1,2] for different initial system Points is shown to guide the eyesi) Lower left part: Same as in
sizes (N\=1024,4096) and for the exemplary parameters (i), but )‘or the fragmentgtlon kernel with=+1. .These datfi are
=1 and ¢=0.1,1 of the inactivation rate functiorn, plott.ed in the BPL form, i.e.0=1/2[see Eq(2)]. (iv) Lower right
=1,(c,0). We have made an exhaustive analysisP¢im) part: the fragr_ne_nt mass distributions far=+1. The parameters

L c,o,N are as in(ii).
for a broad range of,s parameters, finding in all cases the
Koba-Nielsen-Olese(KNO) scaling (¢=1). We have found
the KNO scalinguniquely for «=—1. The shape of the
KNO scaling function®(z(;)) depends on the precise values
of bothc and o

In the lower left part of Fig. 1 we show typical multiplic-
ity distributions fora=+1 which are plotted for different
system sizes in the Botet-Ploszajczak-Lat(B&L) scaling
variables ¢=1/2). The corresponding fragment mass distri-
butions are shown in the lower right part of Fig. 1. Again, the
precise form of the BPL scaling functich(z,,,) depends
on the chosen set of parameterando. In contrast to these
results of the Gaussian FIB model, the fragmentation procesg
in the scale-invariant FIB model for any value of exponent
may be found either in the critical transition region or in the
shattering phase depending on the homogeneity inglex
the inactivation rate function,=1,k? [1,2]. This means,
e.g., that for bothwa=—1 and +1 one may see either the
KNO scaling or the BPL scaling of multiplicity distributions
depgndin_g on the precise value of the homogeneity index of y=7—1 (0=<y=<1). 3
the inactivation term.

Concerning the fragment mass distributions, Fig. 1 show$Ve have verified the validity of this relation in the Gaussian
the distributions fora=—1,+1 and different parameters of FIB model for a broad range af,o values. In the exponen-
the Gaussian inactivation rate functibf{c,o). Foroc =0.5 tial regionvy is alwaysequal to 1 independently of the value
one finds the power-law distribution of fragment masses foof the parametec, i.e., this region is in the shattering phase.

10 100

any value of the parameter. In the case studied=1, c
=1, and the exponent=1.8 and 2.8 fora=—1 and +1,
respectively. For a givem the value of the exponent is
remarkably independent af but depends strongly on the
value of the parameter in |, (c,o). For a smaller value of

o (0=0.1 is shown in Fig. Lthe fragment mass distribu-
tion decreases exponentially and the shape of the scaling
function resembles the Gaussian distribution. The form of
this exponential distribution depends on botAndo param-
eters.

As a generic case fot=—1 we have found, the scale-
variant region of power-law fragment mass distributions
with 7<2 for ¢=0.5 and the exponential region of mass
distributions foro<0.5. The power-law region is completely
analogous to the critical transition region of the scale-
invariant FIB model fora>—1 andpg>1/2[1-3] because
the multiplicity anomalous dimension in both models is
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Y, v, are extremely small in the exponential region fer
20 N =<0.5. The change of, when passing from the power law to
c=5 the exponential region is continuous, but the largest varia-

tions of v,(o) appear ab~0.5. For large values of, the
cumulant factorial moment approaches a limiting value that
depends on the value of parameter
The experimental information abouyt, is not extensive
and concerns mainly charged particle multiplicities at rela-
c=1 tivistic and ultrarelativistic energies. The DELPHI Collabo-
=05 1 ration reported the data on hadron productiomire™ anni-
hilations for the center of mass energy ofs=91
L GeV, finding y,=0.04 [10]. In hadron-hadron collisions
6 7 8 9 10 m*-p, K*-p, p-p, andp-p for c.m. energies ranging up to
1000 GeV[6,11], values ofy, increase from about 0.05 to
FIG. 2. Cumulant factorial momeng, of the fragment multi- 0.3 as energies increase to collider values. The distribution of
plicity distribution is plotted vs the width parameterof the Gauss-  galaxy counts in the regions of sky covered by the Zwicky
ian inactivation function(1) with ¢=0.5,1,5. The homogeneous catalog[12] yields y,=0.3[13]. Independently of the ques-
fragmentation kernel is taken witlh= — 1. Each point corresponds tion whether the KNO scaling holds in all those different
to a system of siz&l=2"® and the values of, are calculated by physical systems, the measured valuesptlearly exclude
solving exact recurrent equations. The line joining points is shownhe exponential region of the Gaussian FIB process. Much
to guide the eyes. more information could be extracted if in addition to the
moments of the multiplicity distribution also the mass distri-
bution would be available. In high-energy lepton and/or had-
One should call that shattering in the scale-invariant FIBron collisions, for example, this would require measuring the
model is related exclusively to the BPL scaling, whereas irhadron mass distribution.
the Gaussian FIB model far=—1 the KNO scaling holds. In conclusion, we have demonstrated that the off-
The fragment size distributions fer=+1 and different  equilibrium binary fragmentation with the scale-invariant
values ofo behave similarly to thee=—1 case, except that fragmentation kernel and the scale-dependent inactivation
now for =0.5 the power-law exponent>2. For allg, i.e.,  simulating the dissipation at small scales yields the fragment
in both exponential and power-law regions of mass distribumass and fragment multiplicity distributions that are scale
tion, the multiplicity anomalous dimension 5=1 and the invariant for a broad range of parameters. This is an impor-
BPL scaling holds. This generic situation is completelytant finding because most fragmentation processes in nature
analogous to the multiplicity behavior found in the shatteringthat have these scale-invariant features are probably not as-
phase of the scale-invariant FIB modé|2]. sociated with the dissipative processes acting at all scales.
Whenever the fragment size distribution is a power law,The scale-dependent fragmentation processes may also de-
the KNO scaling of multiplicity distributions is associated velop strong scale-invariant fluctuatioftte KNO scaling,
with 72 and the BPL scaling of multiplicity distributions though the region of their appearance is restricted to the par-
with 7>2 in both scale-invariant and scale-dependent reticular value of the exponent=—1 of the homogeneous
gimes of dissipation. This clearly indicates a direct relationfragmentation function. The region at=—1 andoc=0.5 is
between the multiplicity scaling law and the fragment masshe critical transition region of the Gaussian FIB process. For
distribution scaling regimes in the FIB model. In view of the other values ofr the fragment multiplicity distributions obey
generality of the FIB process, it would be very interesting tothe BPL scaling, i.e., the small amplitude limit of scaling
test this relation experimentally. A different aspect of themultiplicity fluctuations. Another transition zone of the
Gaussian FIB model is associated with properties of multi-Gaussian FIB model is defined by the widthof the inacti-
plicity scaling in the new region of exponential fragment vation rate function. Atoc=0.5, the fragment size distribu-
mass distributions. In this region, BPL scaling holds éor tion changes from exponentiébr << 0.5) into a power law

=+1, whereas KNO scaling is seen far= —1. (for ¢>0.5). The form of the scaling functiop(z;), to-
In Fig. 2 we plot for different values of the parameter gether with the form of the fragment mass distributit(k),
the normalized cumulant factorial moment of ordef®,  imposes strong constraints on the choice of basic functions

yo=[(m(m—1))—(m)2]/{m)?, vs the widtho of inactiva-  of the FIB kinetic equations: the fragmentation and inactiva-
tion rate functionl,(c,o). The exponent of homogeneous tion functions. This has been demonstrated on the example
fragmentation kernel isv=—1. For this choice ofe, the  of hadron production data ie*e~ annihilation[14]. The
KNO scaling holds andy, becomes the second moment of results of this paper show that the closing of the gap between
the scaling function®(z)), which is independent of the experimental observables related to the fragment mass distri-
initial massN [6,3]. For each point¢, o), cascade equations bution and/or the fragment multiplicity distribution and the
of the FIB model have been solved exactly by the recurrenbasic ingredients of the kinetic theory, i.e., the rates of acti-
formula[3] up to the initial system siz8l=2'8, As can be vation Fj k- and inactivatiorl,, can be achieved for many
seen in Fig. 2, the multiplicity fluctuations as measured byphysical systems in nature.
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