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Polymer release out of a spherical vesicle through a pore

Pyeong Jun Park and Wokyung Sung
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

~Received 16 June 1997!

Translocation of a polymer out of a curved surface or membrane is studied via the mean first passage time
approach. Membrane curvature gives rise to a constraint on polymer conformation, which effectively drives the
polymer to the outside of confinement, where the available volume of the polymer conformational fluctuation
is larger. Considering a polymer release out of a spherical vesicle, the polymer translocation timet is changed
to the scaling behaviort;L2 for R,RG , from t;L3 for R@RG , whereL is the polymer contour length, and
R andRG are the vesicle radius and polymer radius of gyration, respectively. Also, the polymer capture into a
spherical bud is studied, and a possible apparatus for easy capture is suggested.@S1063-651X~97!08012-4#

PACS number~s!: 36.20.Ey, 83.10.Nn, 05.40.1j
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I. INTRODUCTION

Membrane and polymer flexibility is the major intrins
physical property of biological organisms. A typical value
the biomembrane bending rigidityk is of the order of
1;100kBT, which determines membrane persistence len
j.a exp(4pk/3kBT), wherea is the molecular length scale
Below the length scalej, which is usually much larger tha
molecular scales, the membrane can be regarded as fla
though there exist small-scale thermal undulations.

Consider a polymer interacting with a curved surface
membrane with a fixed radius of curvatureR. The effective
interaction between the polymer and membrane is sign
cantly modified due to the curvature. For instance,
adsorption-desorption transition of a polymer on a curv
surface is known to occur at a lower transition temperat
@1#. This is because the entropy of a polymer increases n
a convex surface, compared with that near a planar surf
In this case, the criteria that determines the importance
membrane curvature are given byR&RG , whereRG is the
radius of gyration of the polymer.

In this paper we examine the dynamics of polymer tra
location out of a spherical vesicle, as shown in Fig. 1 with
the context of ideal chain theory. To highlight the curvatu
effect, we neglect the effect of the small-scale fluctuation
the membrane. We take into account only the steric inte
tion between the polymer and membrane, from which
derive the entropic free-energy barrier of polymer translo
tion through a curved membrane. For the translocation
namics, we use our previous model@2# in terms of the
Fokker-Planck equation, where a mean first passage tim
obtained as a measure of polymer translocation time. As
sults of our study, we present the effects of the chain len
and membrane geometry on translocation time. Two spe
examples of different membrane geometries are consid
to exemplify the curvature effect on translocation dynami
The first one is a release of a polymer out of a spher
vesicle, and the second one is a polymer translocation cr
ing two joined vesicles through a small bottleneck. The m
results of this paper are the following:~1! Membrane curva-
ture drives the polymer out of a spherical vesicle due
polymer entropy effect.~2! Polymer capture into a small bu
takes very long time proportional to exp(L), which can be
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reduced toL3 and further toL2 (L is the polymer contour
length! if there is segmentwise energetic bias larger th
critical values. The problem we consider here has some
evance to drug delivery as well as biological processes s
as endocytosis or extocytosis by which a vesicle contain
certain macromolecular entities is incorporated to the ins
or outside cell@3#.

In Sec. II, the equilibrium conformation and entropic fre
energy of a translocating polymer are determined as a fu
tion of membrane curvature. The dynamics of a polym
translocation is examined, and the mean first passage tim
calculated in Sec. III. In Sec. IV, a summary and conclus
are given.

II. FREE ENERGY FUNCTION OF POLYMER RELEASE
OUT OF A SPHERE

Suppose there is a polymer located either inside or out
of a sphere. The polymer inside is confined in a sphere
radiusR, and the outside one is excluded by the same sph
We consider an ideal flexible polymer, which is composed
n segments with Kuhn lengthb either inside or outside a
sphere, whose one end position is fixed atr05(r 0 ,u0 ,f0) in
spherical coordinates. Then the Green’s function of t

FIG. 1. Polymer release out of a spherical vesicle of radiusR.
The translocating polymer can be identified with two end ancho
polymers composed ofn andN2n segments outside and inside o
the vesicle, respectively.
730 © 1998 The American Physical Society
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57 731POLYMER RELEASE OUT OF A SPHERICAL VESICLE . . .
polymer satisfies Edwards’ equation@4#

F ]

]n
2

b2

6
¹2GG6~r ur0 ;n!5d~3!~r2r0!d~n!, ~1!

where r5(r ,u,f), and G6(r ur0 ;n) denotes the Green’
function for the polymer inside and outside the sphere,
spectively. The impenetrability condition due to the sph
can be represented by the boundary conditions

G6~r ur0 ;n!50 atr 5R. ~2!

Then the partition functions of polymers ofn segments lo-
cated at the inner and outer space of a sphere are given

Zn
6~r0!5E

V6

drE
0

p

du sinuE
0

2p

df r 2G6~r ,r0 ;n!, ~3!

whereV6 represents the radial integration range given
(0,R) and (R,`) for Zn

6 , respectively. Now that the physic
should be invariant under rotation of the coordinate arou
the origin,Zn

6 is independent ofu0 andf0, and should be a
function only of r 0.

Integrating Eq.~1! overu andf yields the radial equation

F ]

]n
2

b2

6

1

r 2

]

]r
r 2

]

]r GZn
6~r ,r 0!5

1

r 2
d~r 2r 0!d~n!, ~4!

whereZn
6(r ,r 0) are the radial Green’s functions defined b

Zn
6~r ,r 0![E

0

p

du sinuE
0

2p

df G6~r ,r0 ;n!. ~5!

The solution of this radial equation with the boundary co
ditions in Eq.~2! is then given by@5#

Zn
1~r ,r 0!5

2

rr 0R(
k51

`

expS 2
p2b2n

6R2
k2D

3sinS kpr

R D sinS kpr 0

R D ~6!

Zn
2~r ,r 0!5

1

rr 0
F 3

2pnb2G 1/2

3FexpS 2
3~r 2r 0!2

2nb2 D
2expS 2

3~r 1r 022R!2

2nb2 D G . ~7!

Using these results, we can finally arrive at the partit
function of a polymer whose one end is fixed at radial po
tion r 0 as

Zn
6~r 0!5E

V6

dr Zn
6~r ,r 0!. ~8!

Let us now consider the partition function of a polym
whose one end is anchored on a spherical surface. Intro
-
e

y

y

d

-

n
i-

c-

ing a sufficiently small anchorage sizee, which is used to
define the anchored end position of the polymer asr 05R7e
inside and outside, respectively. Substituting this into
partition function, we have the following explicit expressio
for partition functions of end anchored polymers:

Zn
15F2e

R G (
k51

`

expS 2
p2nb2

6R2
k2D , ~9!

Zn
25F e

RGF112S 3R2

2pnb2D 1/2G , ~10!

up to leading order ine. Note that Eqs.~9! and ~10! are the
statistical weights of polymers anchored on a curved surf
relative to that in free space. The relative statistical weig
due only to the curvature effect, can be obtained as follo

Zn
1~R!

Zn
1~R/RG→`!

512S p

2 D 1/2S RG

R D1OS RG

R D 2

, ~11!

Zn
2~R!

Zn
2~R/RG→`!

511S p

2 D 1/2S RG

R D1OS RG

R D 2

, ~12!

which is identical to the result of Hiergeist and Lipowsky@6#
valid in the small curvature limit. Using Eqs.~9! and ~10!,
the free energy of the polymer whose one end anchored
surface can be obtained as

F6~n;R!52kBT lnZn
6 ~13!

55 2kBT ln(
k51

`

expS 2
p2b2n

6R2
k2D ~inside!

2kBT lnF11H 6R2

pnb2J 1/2G ~outside!

~14!

apart from additive constants. Note that these free ene
expressions are valid for all curvature values. In the limit
R@RG[N1/2b/3, both inside and outside free energy expre
sions converge to

F6~n;R!'
kBT

2
lnn1 const, ~15!

which is the conformational free energy of a polymer who
one end is anchored on a planar membrane@2#.

For the transmembrane chain ofN segments withN2n
segments inside and withn segments outside~Fig. 1!, the
free energy function is given by

F~n!5F2~n;R!1F1~N2n;R! ~16!

52kBTlnF11S 6R2

pnb2D 1/2G
2kBTln(

k51

`

expS 2
p2b2~N2n!

6R2
k2D . ~17!
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As depicted in Fig. 2 for different values ofR, F(n) exhibits
a nearly symmetric barrier like that of the translocati
across the planar membrane forR@RG . If R becomes com-
parable to or less thanRG , F(n) becomes slanted down t
the right, which indicate that the polymer release is favora
for R&RG .

III. DYNAMICS OF POLYMER TRANSLOCATION

As shown in Ref.@2#, the translocation of a polymer ca
be thought of as a one-dimensional diffusion process
translocation coordinaten, defined by the number of polyme
segments on the target side, under the effective pote
field F(n). The probability density ofn(t), given the initial
valuen0, is described by the Fokker-Planck equation

]

]t
P~n,tun0!5LFP~n!P~n,tun0!, ~18!

whereLFP(n) is the Fokker-Planck operator given by

LFP~n![
1

b2

]

]n
D~n!exp@2bF~n!#

]

]n
exp@bF~n!#,

~19!

with D(n) defined as the diffusion coefficient of the who
chain. The translocation time of a polymer can be defined
terms of the mean first passage timet(n;n0), time taken for
diffusion from n0 to n, which satisfies@7#

LFP
† ~n0!t~n;n0!521, ~20!

whereLFP
† (n0) is the backward Fokker-Planck operator d

fined by

LFP
† ~n0![

1

b2
exp@bF~n0!#

]

]n0
D~n0!exp@2bF~n0!#

]

]n0
.

~21!

Using the boundary conditions

]

]n0
t~n;n051!50, ~22!

FIG. 2. Free energy functionF(n), in units ofkBT, of polymer
release out of a sphere as a function of translocation coordinan.
@N51000; ~A! R510RG , ~B! R5RG , and~C! R50.5RG .#
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t~n;n05N21!50, ~23!

the solution of the above backward equation@Eq. ~21!# can
be formally obtained as

t[t~N21,1!5
b2

D E
1

N21

dn ebF~n!E
1

n

dn8e2bF~n8!.

~24!

Here, using the Rouse model, we set the diffusion coeffic
D(n)5D5kBT/(Ng);N21, whereg is hydrodynamic fric-
tion coefficient for a single segment. Equation~24! measures
the diffusion time of the polymer starting from the fron
segment located on the target side, and ending up with o
the last segment remaining on the incipient side. The refl
ing boundary condition atn51 means the front segmen
cannot cross the pore via backward diffusion, and hence
allowed to be located only on the target side.

As a first example with a curved membrane, let us co
sider polymer release out of a spherical vesicle, as show
Fig. 1. The translocation time@Eq. ~24!#, using the free en-
ergy function Eq.~17!, is calculated for the caseR@RG :

t5F L2

2DGFp2

8
1Aa1O~a2!G , ~25!

where A5(8p/152448/225).20.3156, L5Nb, and
a[(p/2)1/2(RG /R) with RG5Nb2/3. The a50 limit,
t.(p2/8)L2/(2D);L3, is just the planar membrane tran
location time@Fig. 3~A!#, which is the same as in Ref.@2#.
As R decreases,t decreases, because the confinement f
energy of inside polymer drives the translocation outwar
This effect becomes more prominent whenR&RG . In the
limit of a→`, i.e., R!RG , the translocation time is given
by

t5F L2

2DGF 2

pa2
1O~a24!G . ~26!

Note that the leading term scales ast;L2, sincea;L1/2 and
D;L21. This reflects the fact that confined polymer

FIG. 3. Time t for polymer release~translocation! out of a
sphere, in units oft0[b2/(2D0), with D05kBT/g, vs chain length
N. ~A! R5300b. ~B! R530b. ~C! R515b. Crossover fromt;L3

to t;L2 occurs near theN corresponding toR5RG .
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57 733POLYMER RELEASE OUT OF A SPHERICAL VESICLE . . .
squeezed outto the outside, because confinement costs m
free energy than outward release.

The chain length dependence of translocation time
shown in Fig. 3 for different values ofR. It is remarkable
that the translocation time exhibits a crossover fromt;L3 to
t;L2 nearR5RG @Fig. 3~B! and 3~C!#. Also interesting is
the fact that this crossover of length scaling behavior is
same as that by chemical potential bias studied by us pr
ously @2#. In both cases, crossovers are consequence
membrane asymmetry, which adds a linear term to the
energy function.

In fact, as the polymer segmental concentration is h
enough whenR!RG , the excluded volume effect~EVE! be-
comes non-negligible, and affects the translocation dynam
significantly. A simple scaling argument gives the confin
ment free energy expression with EVE@8#,

F in~N!.kBTFRG

R G1/n

;N, ~27!

where n.3/5 is the swelling exponent of a self-avoidin
polymer in three dimension. Now that this free energy
larger than that without EVE, it would definitely enhance t
outward translocation. Since the free energyF in(N) is pro-
portional toN just like the ideal polymer free energy expre
sion for theR!RG limit, however, the scaling behavior o
the translocation time discussed above will not be chan
due to EVE. Only the prefactor is modified to reduce t
translocation time.

As a second example, we consider two joined vesicle
different radiiR1 andR2 between which a small bottlenec
is opened, as shown in Fig. 4~A!. In the limiting situation in
which bothR1 andR2 are much larger thanRG , the problem
is reduced to that of the planar membrane. The free ene
function of the polymer translocation for arbitraryR1 andR2
is given by

F~n!5F1~n;R2!1F1~N2n;R1!, ~28!

FIG. 4. Polymer transfer between two joining vesicles with d
ferent radii R1 and R2. Translocation is considered from theR1

vesicle to theR2 vesicle.~A! R1 is larger thanR2. ~B! R1@R2 .
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which is depicted in Fig. 5 for various values ofR1 andR2.
For R1@R2, as shown in Fig. 4~B!, the problem is reduced to
polymer capture~delivery! dynamics into a finite size bud
from the planar membrane side. As the capture proceeds
polymer free energy increases, which prohibits the capt
process, and translocation will take longer time than ot
cases. On the other hand, in the opposite limit ofR1!R2, the
problem becomes polymer release to the planar memb
side out of spherical confinement. This is qualitatively sim
lar to the previous example, where the main driving mec
nism is confinement free energy due to the vesicle.

The translocation time as a function of arbitraryR1 and
R2 has the following form:

t5FL2

D G E
0

1

dxE
0

x

dy

3

(
k51

`

exp„2pa1
2~12y!k2

…(
k51

`

exp~2pa2
2yk2!

(
k51

`

exp„2pa1
2~12x!k2

…(
k51

`

exp~2pa2
2xk2!

,

~29!

where a15(p/2)1/2(RG /R1) and a25(p/2)1/2(RG /R2),
with RG5Nb2/3. In Fig. 6, the translocation time is show
for various values ofa1 anda2. For polymers of short length
such asRG!R1 ,R2, the translocating chain does not ‘‘feel
the membrane curvature. In this case, the translocation
is given byt;L3, the result of the planar membrane tran
location. If a1.a2 for a long chain, the effective potentia
exhibits a symmetric barrier and the translocation time
comest;L3 @Fig. 6~B!# again. No dramatic driving mecha
nism can be seen in this case, because there is no asymm
across the bottleneck.

For a1@a2, the translocation time is changed tot;L2,
provided thatRG*R1 @Fig. 6~C!#. The confinement of theR1
radius vesicle squeezes out the polymer in this regime.
the other hand, fora1!a2, the translocation time rapidly
increases ifRG*R2. This signifies that spontaneous captu
by a small bud (R2&RG) rarely occurs because the free e

FIG. 5. Free energyF(n), in units of kBT, of a polymer trans-
locating two spheres as a function of translocation coordinaten.
@N51000;~A! a150.5 anda252, ~B! a15a251, and~C! a152
anda250.5.#
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734 57PYEONG JUN PARK AND WOKYUNG SUNG
ergy barrier height increases linearly as the chain length
creases@Fig. 5~A!#, which finally results in an exponentia
increase of the translocation time as the chain length
creases@Fig. 6~A!#. To overcome this difficulty of the cap
ture process, segmental energetic bias@2# or its fluctuation
@9# can be used as an apparatus to make the capture ac
ate. Let us consider here the segmental chemical pote
differenceDm between the two sides, which will add a ne
contribution to the free energy function in Eq.~28! of

DF~n!5nDm, ~30!

which is identical to that introduced in Ref.@2#. For Dm,0,
the capture process will be accelerated and this effect ca
dominant over the oppositely directed entropic bias due
membrane curvature, provided that

ubDmu*ubDmcu[
p2b2

6R2
2

, ~31!

FIG. 6. Translocation timet, in units of t0[b2/(2D0), with
D05kBT/g, between two spheres vs chain lengthN. @R2530b; ~A!
R1560b, ~B! R1530b, and~C! R1515b.#
s
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ler-
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where ubDmcu!1. If Eq. ~31! is fulfilled, the chemical po-
tential bias reduces the entropic free energy barrier due to
confinement, and the translocation time scales ast;L3. Fur-
ther, the chemical potential becomes dominant over the
rier to yield t;L2, if ubDmu*ubDmcu11/N, which is also
much smaller than unity. In addition, as is shown in Ref.@9#
for translocation across a planar membrane, the chemica
tential fluctuation can also enhance the translocation dram
cally. These signify that a minute segmental chemical pot
tial bias or its fluctuation can be used to make the capt
occur easily.

IV. SUMMARY AND CONCLUSION

The membrane curvature effect on polymer translocat
is explored within our stochastic barrier crossing model. T
geometrical constraint determines the entropic free ene
barrier to a translocating polymer, and the asymmetries gi
by the membrane curvature are found to be a possible d
ing mechanism of polymer translocation. There occurs
crossover in the chain length dependence of the transloca
time depending upon the membrane curvature. Further,
excluded volume effect is found to be irrelevant to the ch
length scaling behavior of the translocation time, althoug
affects the polymer conformation and translocation dynam
significantly. Finally, entropically prohibited polymer cap
ture into a bud can be accomplished if a minute chem
potential bias larger than a critical value is introduced.
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