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Polymer release out of a spherical vesicle through a pore
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Translocation of a polymer out of a curved surface or membrane is studied via the mean first passage time
approach. Membrane curvature gives rise to a constraint on polymer conformation, which effectively drives the
polymer to the outside of confinement, where the available volume of the polymer conformational fluctuation
is larger. Considering a polymer release out of a spherical vesicle, the polymer translocatierigiomanged
to the scaling behavior~L? for R<Rg, from 7~ L2 for R>Rg, whereL is the polymer contour length, and
R andRg are the vesicle radius and polymer radius of gyration, respectively. Also, the polymer capture into a
spherical bud is studied, and a possible apparatus for easy capture is sudg€68-651X97)08012-4

PACS numbgs): 36.20.Ey, 83.10.Nn, 05.48j

l. INTRODUCTION reduced toL® and further toL? (L is the polymer contour
S ... length if there is segmentwise energetic bias larger than
Mgmbrane and po_lyme_r erX|b|I|ty s the major Intrinsic critical values. The problem we consider here has some rel-
physical property of biological organisms. A typical value of ¢, /5c6 1o drug delivery as well as biological processes such
the biomembrane bending rigidity is of the order of 54 engocytosis or extocytosis by which a vesicle containing
1~100kgT, which determines membrane persistence lengthertain macromolecular entities is incorporated to the inside
é=a exp(4rx/3kgT), wherea is the molecular length scale. or gutside cell3].
Below the length scalé, which is usually much larger than  |n Sec. II, the equilibrium conformation and entropic free
molecular scales, the membrane can be regarded as flat, @hnergy of a translocating polymer are determined as a func-
though there exist small-scale thermal undulations. tion of membrane curvature. The dynamics of a polymer
Consider a polymer interacting with a curved surface ortranslocation is examined, and the mean first passage time is
membrane with a fixed radius of curvatuRe The effective calculated in Sec. Ill. In Sec. IV, a summary and conclusion
interaction between the polymer and membrane is signifiare given.
cantly modified due to the curvature. For instance, the
adsorpti(_)n-desorption transition of a polym_er on a curved”. FREE ENERGY FUNCTION OF POLYMER RELEASE
surface is known to occur at a lower transition temperature OUT OF A SPHERE
[1]. This is because the entropy of a polymer increases near
a convex surface, compared with that near a planar surface. Suppose there is a polymer located either inside or outside
In this case, the criteria that determines the importance obéf a sphere. The polymer inside is confined in a sphere of
membrane curvature are given BysRg, whereRg is the  radiusR, and the outside one is excluded by the same sphere.
radius of gyration of the polymer. We consider an ideal flexible polymer, which is composed of
In this paper we examine the dynamics of polymer transn segments with Kuhn length either inside or outside a
location out of a spherical vesicle, as shown in Fig. 1 withinsphere, whose one end position is fixed @t (g, 0y, ¢g) in
the context of ideal chain theory. To highlight the curvaturespherical coordinates. Then the Green's function of this
effect, we neglect the effect of the small-scale fluctuation of
the membrane. We take into account only the steric interac-
tion between the polymer and membrane, from which we
derive the entropic free-energy barrier of polymer transloca-
tion through a curved membrane. For the translocation dy-
namics, we use our previous mode] in terms of the
Fokker-Planck equation, where a mean first passage time is
obtained as a measure of polymer translocation time. As re-
sults of our study, we present the effects of the chain length
and membrane geometry on translocation time. Two specific
examples of different membrane geometries are considered
to exemplify the curvature effect on translocation dynamics.
The first one is a release of a polymer out of a spherical
vesicle, and the second one is a polymer translocation cross-
ing two joined vesicles through a small bottleneck. The main
results of this paper are the followingt) Membrane curva- FIG. 1. Polymer release out of a spherical vesicle of raéius
ture drives the polymer out of a spherical vesicle due torhe translocating polymer can be identified with two end anchored
polymer entropy effect2) Polymer capture into a small bud polymers composed af andN—n segments outside and inside of
takes very long time proportional to exp( which can be the vesicle, respectively.
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polymer satisfies Edwards’ equatipf ing a sufficiently small anchorage size which is used to

5 2 define the anchored end position of the polymergsR¥ e

7 P oA ey — s(3) inside and outside, respectively. Substituting this into the

an 6 v }G (rlroim)=6*(r—ro)8(n), @ partition function, we have the following explicit expressions
for partition functions of end anchored polymers:

where r=(r,6,¢), and G*(r|ry;n) denotes the Green’s

function for the polymer inside and outside the sphere, re- 2¢1 % 2nb?
spectively. The impenetrability condition due to the sphere Zy = R > exp( -— kz), 9)
can be represented by the boundary conditions k=1 6R
G*(rlrg;n)=0 atr=R. 2 € 3Rr2 \?
N . Z, = R 1+2 > , (10
Then the partition functions of polymers aof segments lo- 2m7nb

cated at the inner and outer space of a sphere are given by ) .
up to leading order ire. Note that Eqs(9) and (10) are the

N m i 27 - . statistical weights of polymers anchored on a curved surface
Zy(ro)= 0 dr o dé sing 0 dé r°G=(r.ro;n), (3  relative to that in free space. The relative statistical weight,
- due only to the curvature effect, can be obtained as follows:

where (). represents the radial integration range given by

(O,R) and R,x) for Z, , respectively. Now that the physics Z,(R) T v Rs o Rs 2 11
should be invariant under rotation of the coordinate around Z (RIRg—®) B 2 R R/’
the origin,Z,, is independent of, and ¢, and should be a
function only ofry,. 77 (R 12/ R R.\2
Integrating Eq(1) over  and ¢ yields the radial equation AR TV ey ol 28 . (12
Z, (RIRg— 2 R R
n ( G )

. 1
Z,(r,rg)=—6(r—rg)o(n), (4)  which is identical to the result of Hiergeist and Lipows6}

r valid in the small curvature limit. Using Eq$9) and (10),
the free energy of the polymer whose one end anchored on a

whereZ, (r,ro) are the radial Green’s functions defined by surface can be obtained as

T 27 - +
Zﬁ(r,ro)zf désing| d¢ G(r,ro;n). 5) F(n;R)=—kgT InZy (13
0 0
*° 212
T.h.e soI.ution of this radia! equation with the boundary con- —KgT |nz exd — 7b"n K2 (inside
ditions in Eq.(2) is then given by[5] k=1 2
= 2\ 12
2 7°b°n { 6R } :
+ _ _ 2 —kgT In| 1+ (outside
Zn (1:To) rroRE, ex;{ 6R2 K ) mnb?
(14
C(kmr\ [k N
X sin R sin = (6) apart from additive constants. Note that these free energy
expressions are valid for all curvature values. In the limit of
12 R>Rg=N%b/3, both inside and outside free energy expres-
Z-(r ro):i 3 sions converge to
ne Mol 27nb?
. kgT
F~(n;R)~ Tlnn+ const, (15

X

p( 3(r—rp)?
exp — ———
2nb?

3(r+ro—2R)?
2nb?

which is the conformational free energy of a polymer whose
one end is anchored on a planar membrigtie

(7) For the transmembrane chain Nf segments wittiN—n
segments inside and with segments outsidérig. 1), the

free energy function is given by
Using these results, we can finally arrive at the partition

function of a polymer whose one end is fixed at radial posi-F(n)=F " (n;R)+F*(N—n;R) (16)
tionry as
6R2 112
* * =—kgTIn| 1+
Za(ro)=fﬂ dr Z5(r,ro). ® ° wnbz) 1
. o . - 72b2(N—n)
Let us now consider the partition function of a polymer —kgTInD, exp — —2k2 _ (17)
whose one end is anchored on a spherical surface. Introduc- k=1 6R
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FIG. 2. Free energy functio(n), in units ofkgT, of polymer FIG. 3. Time r for polymer releasgtranslocatioh out of a
release out of a sphere as a function of translocation coordmate sphere, in units ofy=b?/(2D,), with Do=kgT/7, vs chain length
[N=1000;(A) R=10Rg, (B) R=Rg, and(C) R=0.5R; ] N. (A) R=300. (B) R=30b. (C) R=15b. Crossover fromr~ L3

to 7~L? occurs near th& corresponding tdR=Rg.

As depicted in Fig. 2 for different values & F(n) exhibits
a nearly symmetric barrier like that of the translocation 7(n;ng=N—1)=0, (23)
across the planar membrane ®% R; . If R becomes com-
parable to or less thaRg, F(n) becomes slanted down to the solution of the above backward equatf@y. (21)] can
the right, which indicate that the polymer release is favorableye formally obtained as
for R<Rg.

b2 (N-1 n ,
=7(N-1,1)= —L dn eﬁf(”)fl dn’e BFIM),

[ll. DYNAMICS OF POLYMER TRANSLOCATION D

As shown in Ref[2], the translocation of a polymer can (24

be thought of as a one-dimensional diffusion process o
translocation coordinate, defined by the number of polymer
segments on the target side, under the effective potenti
field F(n). The probability density oh(t), given the initial
valuen,, is described by the Fokker-Planck equation

I—|ere, using the Rouse model, we set the diffusion coefficient

(n)=D=KkgT/(Ny)~N~1, wherey is hydrodynamic fric-
ion coefficient for a single segment. Equati@#) measures
the diffusion time of the polymer starting from the front
segment located on the target side, and ending up with only
9 the last segment remaining on the incipient side. The reflect-
EP(n,t|nO)ZEFP(n)P(n,t|n0), (18 ing boundary condition ah=1 means the front segment

cannot cross the pore via backward diffusion, and hence it is

allowed to be located only on the target side.

As a first example with a curved membrane, let us con-
1 9 P si.der polymer reIease_out _of a spherical v.esicle, as shown in
Lep(n)= — —D(n)exd — BF(N)]—exd BF(n)], Fig. 1. Thg translocatl_on timgEq. (24)], using the free en-

b? Jn an ergy function Eq(17), is calculated for the case>Rg:

where Lp(n) is the Fokker-Planck operator given by

(19
L2 ][ 72
with D(n) defined as the diffusion coefficient of the whole T= 2—} F+Aa+ O(a?)|, (25
chain. The translocation time of a polymer can be defined in D

terms of the mean first passage tir(@;ng), time taken for

diffusion fromng to n, which satisfieg7] where A=(8w/15—448/225%=—-0.3156, L=Nb, and

a=(m2)"¥Rg/R) with Rg=Nb?3. The a=0 limit,
Ling)r(ning)=—1, (20) 7-2(7'72/8).L2/(2_D)~L3, is just the planar membrane trans-
location time[Fig. 3(A)], which is the same as in RdR].
whereﬁlp(no) is the backward Fokker-Planck operator de-As R decreasesr decreases, because the confinement free
fined by energy of inside polymer drives the translocation outwards.
This effect becomes more prominent whReER . In the
; 1 9 9 limit of a—=, i.e., R<Rg, the translocation time is given
LedNg)= QGXQE]:(”O)]&_%D(no)exq_ﬁf(no)]ﬁ_no- by

2D

T=

2
—-I—(’)(cf“)l. (26)

Using the boundary conditions o

7 7(nine=1)=0 (220  Note that the leading term scalesas L?, sincea~LY?and
ng 7 ’ D~L"1 This reflects the fact that confined polymer is
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FIG. 5. Free energyr(n), in units ofkgT, of a polymer trans-
locating two spheres as a function of translocation coordinate
[N=1000;(A) a;=0.5 ande,=2, (B) a;=a,=1, and(C) a;=2
and @,=0.5

FIG. 4. Polymer transfer between two joining vesicles with dif- \shich is depicted in Fig. 5 for various values Rf andR,.
fere_nt radiiR; and Rz. Translopation is considered from th, ForR;>R,, as shown in Fig. @), the problem is reduced to
vesicle to theR, vesicle.(A) Ry is larger tharR,. (B) R;>R,. polymer capturgdelivery) dynamics into a finite size bud
from the planar membrane side. As the capture proceeds, the
‘f)olymer free energy increases, which prohibits the capture
free energy than outward release.

The chain length dependence of translocation time I{)rocess, and translocation will take longer time than other
e . ; ases. On the other hand, in the opposite limiRpkR,, the
shown in Fig. 3 for different values dR. It is remarkable Pb PR,

S L 3 problem becomes polymer release to the planar membrane
that the translocation time exhibits a crossover frorl ° to

side out of spherical confinement. This is qualitatively simi-
7~L? nearR=Rg [Fig. 3B) and 3C)]. Also interesting is P d y

. . L9 lar to the previous example, where the main driving mecha-
the fact that this crossover of length scaling behavior is th‘?]ism is confinement free energy due to the vesicle.

same as that by chemical potential bias studied by us previ- ta translocation time as a function of arbitra®y and
ously [2]. In both cases, crossovers are consequences f nas the following form:

; ; 2 g form:
membrane asymmetry, which adds a linear term to the free

squeezed oub the outside, because confinement costs mor

energy function. L2] (1 M
In fact, as the polymer segmental concentration is high 7= ) f dxf dy
enough wherR<Rg, the excluded volume effg@&VE) be- 0 0
comes non-negligible, and affects the translocation dynamics o o
significantly. A simple scaling argument gives the confine- 2 exp(— wai(l—y)kz)z exp(—wa%ykz)
ment free energy expression with EVE], szl k=1
1lv 2 2 2y 1,2
Fin(N)=kgT % ~N, (27) gl exp(— mai(1—x)k )kzl exp(— masxk)

(29)
where v=3/5 is the swelling exponent of a self-avoiding
polymer in three dimension. Now that this free energy iswhere a;=(m/2)YARg/R;) and a,=(m/2)"(Rs/Ry),
larger than that without EVE, it would definitely enhance thewith Rg=NDb%3. In Fig. 6, the translocation time is shown
outward translocation. Since the free enefy(N) is pro-  for various values of; anda,. For polymers of short length
portional toN just like the ideal polymer free energy expres- such aRg<R1,R;, the translocating chain does not “feel”
sion for theR<Rg limit, however, the scaling behavior of the membrane curvature. In this case, the translocation time
the translocation time discussed above will not be changet$ given by7~L3, the result of the planar membrane trans-
due to EVE. Only the prefactor is modified to reduce thelocation. If «;=a, for a long chain, the effective potential
translocation time. exhibits a symmetric barrier and the translocation time be-
As a second example, we consider two joined vesicles otomesr~ L3 [Fig. 6(B)] again. No dramatic driving mecha-
different radiiR, andR, between which a small bottleneck nism can be seen in this case, because there is no asymmetry
is opened, as shown in Fig(A). In the limiting situation in ~ across the bottleneck.
which bothR; andR, are much larger thaRg , the problem For a;> a,, the translocation time is changed to-L?,
is reduced to that of the planar membrane. The free energgrovided thaRg=R; [Fig. 6C)]. The confinement of thR;
function of the polymer translocation for arbitrary andR, radius vesicle squeezes out the polymer in this regime. On
is given by the other hand, fow;<«,, the translocation time rapidly
increases iRg=R,. This signifies that spontaneous capture
Fn)=F"(n;R)+F"(N—n;Ry), (28) by a small bud R,=<Rg) rarely occurs because the free en-
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FIG. 6. Translocation timer, in units of 7y=b?/(2D,), with
Dy=kgT/y, between two spheres vs chain lenithf R,=30b; (A)
R;=60b, (B) R;=30b, and(C) R;=15h.]

where|BA u|<1. If Eq. (3)) is fulfilled, the chemical po-
tential bias reduces the entropic free energy barrier due to the
confinement, and the translocation time scales-ak®. Fur-

ther, the chemical potential becomes dominant over the bar-
rier to yield 7~L2, if |BAu|=|BAu+ 1IN, which is also
much smaller than unity. In addition, as is shown in Ref.

for translocation across a planar membrane, the chemical po-
tential fluctuation can also enhance the translocation dramati-
cally. These signify that a minute segmental chemical poten-
tial bias or its fluctuation can be used to make the capture
occur easily.

IV. SUMMARY AND CONCLUSION

The membrane curvature effect on polymer translocation

is explored within our stochastic barrier crossing model. The
geometrical constraint determines the entropic free energy

ergy barrier height increases linearly as the chain length inp,rier to a translocating polymer, and the asymmetries given
creaseqFig. S(A)], which finally results in an exponential .y the membrane curvature are found to be a possible driv-

increase of the translocation time as the chain length in

creasegFig. 6(A)]. To overcome this difficulty of the cap-
ture process, segmental energetic Hi2kor its fluctuation

[9] can be used as an apparatus to make the capture accel
ate. Let us consider here the segmental chemical potenti
differenceA u between the two sides, which will add a new

contribution to the free energy function in E@8) of
AF(N)=nAu, (30)

which is identical to that introduced in R¢2]. For A u<0,

the capture process will be accelerated and this effect can be
dominant over the oppositely directed entropic bias due to

membrane curvature, provided that

212

m
|BA|=|BA pel= (3D

6R3

ing mechanism of polymer translocation. There occurs a
crossover in the chain length dependence of the translocation
grrwje depending upon the membrane curvature. Further, the
cluded volume effect is found to be irrelevant to the chain
ngth scaling behavior of the translocation time, although it
affects the polymer conformation and translocation dynamics
significantly. Finally, entropically prohibited polymer cap-
ture into a bud can be accomplished if a minute chemical
potential bias larger than a critical value is introduced.
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