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Maxwell’s equations and accelerated frames
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Institut Henri Poincare´, 86 Bis Route de Croissy, 78110 Le Ve´sinet, France

~Received 2 September 1997; revised manuscript received 11 February 1998!

To analyze electromagnetism in spinning media, we use, differently than previous works, a relativistic
description of rotations. We give the form of Maxwell’s equations in the laboratory and corotating frames in
terms of cylindrical coordinates. Possible applications are discussed.@S1063-651X~98!08106-9#

PACS number~s!: 03.50.2z
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I. INTRODUCTION

It has been known for a long time that Maxwell’s equ
tions are covariant under relativistic transformations, but
form of the constitutive relations necessary to get a deter
nate system of equations still seems to be controversial,
ticularly in accelerated media@1–6#. We discuss here this
question for uniformly rotating media, which have been t
subject of many works@4,7–9#.

For accelerated media, one has to deal with three diffe
frames: the laboratory frameKL , the corotating frameKC ,
and the instantaneous inertial frameK8 in which the material
medium is at rest. We use the cylindrical coordina
Xm(R,F,Z,X05cT) in KL , xm(r ,f,z,x0) in KC , andX8m

in K8. The greek~latin! indices take the values 0,1,2,
~1,2,3! and we use the summation convention.

Previous works on electromagnetism in rotating me
@4,7–9# describe the rotation by the Galilean transformati

r 5R, f5F2Vc21X0, z5Z, x05X0, ~1!

As a consequence the relativistic covariance is broken;
failure is interpreted wrongly as a noninertial local effect
rotation. It was proved recently@10# that the relativistic
Trocheris-Takeno transformation@11,12#

r 5R, f5~coshb!F2R21~sinh b!X0, z5Z,

x052R~sinh b!F1~coshb!X0, ~2!

with b5VR/c, restores the full Lorentz covariance of ele
tromagnetism. As noticed in@10#, the transformation~2! ‘‘re-
spects the relativity of simultaneity at a distance, the rela
istic law of composition of velocities, and the additive law
angular velocities.’’ The speed-distance law is nonlinear
the three-velocity, which is now

vR5vZ50, vF5c tanhb. ~3!

We work in this paper with the transformation~2! and inci-
dentally the Sagnac phase shiftDT becomes, with Eq.~2!,

DT54pc21r tanhb~12tanh2b!2152pc21r sinh 2b,
~4!

which reduces forb!1 to the expression obtained with E
~1! @9#.

We consider in this work a linear, scalar medium, in u
form rotation with angular velocityv and assume that in th
571063-651X/98/57~6!/7239~5!/$15.00
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inertial frameK8 where this material medium is at rest, th
constitutive relations have their more general forms@1,13,14#

D85«E81aH8, B85mH81lE8. ~5!

E8,D8,H8,B8 are the usual components of the electroma
netic field,«,m the permittivity and permeability, anda,l the
chiral parameters. It is assumed that rotation does not cha
the physical properties of this medium. Using Eqs.~2! and
~5!, we now have to get the constitutive relations in theKL
andKC frames.

II. FRENET-SERRET AND LABORATORY FRAMES

As just said, the constitutive relations~5! remain valid in
the instantaneous inertial frameK8 in which the material
medium is at rest and it is known@4,10# thatK8 is the Frenet-
Serret tetrad made of four unit vectorsem8 defined in the
following way @15#. The four-velocityum is taken as a time-
like unit vectore08 and the spacelike vectorsek8 are obtained
from the relations

]/]se085ae18 , ]/]se185be281ae08 ,
~6!

]/]se285ce382be18 , ]/]se3852ce28 .

The coefficientsa,b,c are non-negative,]/]s is the absolute
derivative, and for a four-vectorAm

]/]sAm5ub]bAm1Gab
m Aaub. ~7!

]m5]/]xm and the parametersGab
m are the Christoffel sym-

bols deduced here from the metric of Minkowski space-ti
in cylindrical coordinates

ds25~dX0!22~dR!22R2~dF!22~dZ!2. ~8!

According to Eq.~3!, the components of the four-velocityum

are

u05coshb, u25R21sinh b, u15u350. ~9!

Let em
b5dm

b denote the coordinate covariant basis vectors
the laboratory frame anddm

b the Kronecker symbol. Then a
simple calculation gives@10# e185e1 , e385e3 , and

e085~coshb!e01R21~sinh b!e2 ,
~10!
7239 © 1998 The American Physical Society
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e285~sinh b!e01R21~coshb!e2 .

It is easy to check that the transformations~10! allow the
metric ~8! to remain invariant, restoring, as previously me
tioned, the full Lorentz covariance so that Maxwell’s equ
tions have the same form in both framesKL andK8. How-
ever, one has the same relations between the electromag
componentsE,D,H,B in theKL frame and the correspondin
primed components in the instantaneous inertial corota
frame K8 as one would have between two inertial frame
except of course that the velocityv is no longer constant. So
we have@9,16#, with g5(12v2c22)21/2,

E85Ei1g~E'1c21v∧B!,

B85Bi1g~B'2c21v∧E!,
~11!

D85D i1g~D'1c21v∧H!,

H85H i1g~H'2c21v∧D!.

The subscriptsi and' refer to components parallel and pe
pendicular tov, respectively. From Eqs.~5! and~11! we get

D1c21v∧H5«~E1c21v∧B!1a~H2c21v∧D!,
~12!

B2c21v∧E5m~H2c21v∧D!1l~E1c21v∧B!.

Substituting the velocity~3! into Eq.~12! and rearranging the
terms, a simple calculation gives, withs5tanhb,

DF5«EF1aHF , BF5mHF1lEF ; ~13!

DR1asDZ2«sBZ5FR5«ER1aHR2sHZ ,

DZ2asDR1«sBR5FZ5«EZ1aHZ1sHR ,
~14!

BR2lsBZ1msDZ5GR5mHR1lER1sEZ ,

BZ1lsBR2msDR5GZ5mHZ1lEZ2sER .

We introduce the matrices

M5UM1

M3

M2

M4
U, N5U M4

2M3

2M2

M1
U,

I 5U10 0
1U, J5U 0

21
1
0U ~15!

such that

M15I 1asJ, M252«sJ, M35msJ, M45I 2lsJ.
~158!

We write Eq.~14! in the matrix form

MA5P, A5uDR ,DZ ,BR ,BZu t, P5uFR ,FZ ,GR ,GZu t,
~16!

in which the superscriptt denotes transposition. Then, mu
tiplying Eq. ~16! by the matrixN and noting that the subma
tricesM j ( j 51,2,3,4) commute, we get

~M1M42M2M3! ^ IA5NP, ~17!
-
-

etic

g
,

with (n25«m)

M1M42M2M35U11~al2n2!s
~12a!s

~a2l!s
11~al2n2!s2U.

~178!

Note that this matrix is diagonal forl5a. Since the inver-
sion of Eq.~178! is trivial, we get finally from Eq.~17! the
constitutive relations in the laboratory frame

A5~M1M42M2M3!21
^ INP. ~18!

For an isotropic medium (a5l50), we get easily from Eq.
~14!

~12n2s2!DR5«~12s2!ER2s~12n2!HZ ,

~12n2s2!DZ5«~12s2!EZ1s~12n2!HR ,
~19!

~12n2s2!BR5m~12s2!HR1s~12n2!EZ ,

~12n2s2!BZ5m~12s2!HZ2s~12n2!ER .

For b!1 so thats5b1O(b2), these expressions becom
the constitutive relations obtained with the Galilean transf
mation ~2! @9#.

III. ELECTROMAGNETIC FIELD
IN THE COROTATING FRAME

The situation is a bit more intricate in the corotating fram
since one has in fact to use the general covariant forma
of electromagnetism. From the Trocheris-Takeno trans
mation ~2! we getdR5dr, dZ5dz, and

dX05~coshb!dx01~sinh b!rdf1a0dr,
~20!

RdF5~coshb!rdf1~sinh b!dx01a2dr;

a05~sinh b!~f1bx0/r !1~coshb!~bf!,
~208!

a25~sinh b!~bf2x0/r !1~coshb!~bx0/r !.

Substituting Eq.~20! into Eq. ~8!, a simple calculation gives
the metricds2 in the corotating frameKC ,

ds25~dx0!22l1
2~dr !22r 2~df!22~dz!212l0drdx0

12l2rdrdf, ~21!

l1
2511a2

22a0
2,

l05a0~coshb!2a2~sinh b!, l25a0~sinh b!

2a2~coshb!. ~218!

So the metric tensorgmn is

gmn5U 1
l0

0
0

l0

2l1
2

rl2

0

0
rl2

2r 2

0

0
0
0

21
U ~22!

and we get easilyugu52detgmn5r2.
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We may now use the general covariant formalism of el
tromagnetism@9#. Let Fmn(e,b) and Gmn(d,h) be the two
antisymmetric tensors characterizing the electromagn
field and satisfying the covariant Maxwell equations

ugu21/2]b~ ugu1/2Gmb!50,
~23!

]gFab1]aFbg1]bFga50.

If we further impose that the componentsG0i ,Gkl,F0i ,Fkl

are three-vectors~a discussion of this condition is given i
@9#! we have

G0 j5dj , Gjk5ugu21/2« jklhl ,
~24!

F0 j52ej , F jk5~ ugu/g00!
1/2« jklb

l .

« jkl5« jkl is the permutation tensor. Sinceg0051 and ugu
5r 2, for the metric tensor~22! these relations become

DR5dr , DF5df, DZ5dz;

HR5r 21hr , HF5r 21hf , HZ5r 21hZ ;
~25!

ER5er , EF5ef , EZ5ez ;

BR5rbr , BF5rbf, BZ5rbz.

Substituting Eqs.~25! into Eqs.~13! and~14! yields the con-
stitutive relations in the corotating frame. For instance, us
the contravariant components of the fields on the left-h
side of Eqs.~14! the first equation of this system become

DR1asDZ1«sBZ52~«ER1aHR2sHZ!. ~26!

Substituting Eqs.~25! into Eq. ~26! gives

dr1asdz1«srbz52~«er1ar 21hR2sr21hz!. ~27!

We have similar relations for the other three equations~14!
and to eliminateb or d from the corresponding equations w
would proceed as in Sec. II.

Inserting Eqs.~25! into Eqs. ~23!, the first set of Max-
well’s equations in the corotating frame is

r 21~]fez2]zef!52]x0br ,

]zer2] rez52]x0~rbf!, ~28!

r 21~] ref2]fer !52]x0bz,

r 21@] r~rbr !1]fbf#1]zb
z50. ~288!

Changinge andb, respectively, intoh and2d in Eqs.~28!
and ~288! yields the second set of Maxwell’s equations.

It should be noted that the components of the electrom
netic field defined by relations~25! do not have their usua
form in cylindrical coordinates. To get these usual comp
nents one has@9# to use the metric tensorg ik5g0ig0kg00

21

2gik of the three-dimensional space of the corotating fram
Let ai (ai) denote any component~25!. Then the ordinary
componenta( i ) is given by the relation@9#
-

ic

g
d

g-

-

.

a~ i !5~g i i !
1/2ai5~g i i !

1/2(
k51

3

g ikak . ~29!

From Eq.~22! we get

g ik5U11l2
2

2rl2

0

2rl2

r 2

0

0
0
1
U , ~30!

so that, for instance,

d~r !5~11l2
2!1/2dr , d~f!5rdf, d~z!5dz, ~31!

with similar expressions for the other components. We co
of course write the constitutive relations and Maxwel
equations in terms of the usual componentsa( i ) of the elec-
tromagnetic field.

IV. DISCUSSION

First note that with the relativistic transformation~2! all
the results to be obtained are valid for any value of the
rameterb5VR/c, while with the Galilean transformation
~1! one has to assumeb<1. However, ifb!1 so that one
may neglect the terms inb2 and higher, then both transfor
mations~1! and ~2! give similar results.

Concerning electromagnetism in the corotating and
stantaneous inertial frames, the situation is different for
transformations~1! and~2!. One has to use in the corotatin
frame the general covariant formalism of electromagnet
so that constitutive relations as well as Maxwell’s equatio
depend on the metric tensorgmb in the corotating frame and
expression~22! cannot be reduced for any value of the p
rameterb to the metric tensor obtained with the rotation~1!
@see, for instance, the Eq.~7.23! in @9##.

More importantly, for the Galilean transformation~1!, the
corotating frame is also the instantaneous inertial frame@4,9#
so its metric tensor has also to be compared with the me
tensor of the Minkowski space-time valid for the Frene
Serret tetrad~10!. This remark has far-reaching cons
quences since several problems involving accelerated bo
are more easily solved in the instantaneous inertial frame
instance, for fields associated with rotating charges~instead
of the Lienard-Wiechert potentials!. It is clear that using the
Frenet-Serret tetrad as the instantaneous inertial frame
give results different from those published in the literatur

V. APPLICATION

As an application of the relativistic description of rot
tions, we consider the scattering of a harmonic plane w
by a rotating circular cylinder, a problem previously an
lyzed @17–24# in the frame of Galilean rotations. For an in
cidentE wave

Ei~R,F!5E exp$2 iv~T1X/c!%uZ , ~32!

in which uZ is a unit vector in theZ direction and for a
dielectric cylinder Maxwell’s equations are
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R21]FEZ52 ivc21BR ,

]REZ5 ivc21BF , ~33!

R21]R~RHF!2R21]FHR5 ivc21DZ .

The constitutive relations of the dielectric cylinder in th
instantaneous inertial frame areD85«E8 andB85mH8, so
that the corresponding constitutive relations in the laborat
frame are given by Eqs.~13! ~with a5l50! and~19!. Sub-
stituting these expressions into Eqs.~33! gives

R21]FEZ5 ivc21@ma~s!HR2b~s!EZ#, ~34a!

]REZ5 ivc21mHF , ~34b!

R21]R~RHF!2R21]FHR5 ivc21@«a~s!EZ2b~s!HR#,
~34c!

with

a~s!5~12s2!~12n2s2!21, b~s!5m2s~12n2s2!21,

m25n221. ~35!

The derivative with respect toF of Eq. ~34a! gives

R22]F
2 EZ2 iv~cR!21b~s!]FEZ

52 ivm~cR!21a~s!]FHR , ~36a!

while from Eqs.~34b! and ~34c! we get

R21]FHR

52 ivc21$c2/mR]R~R]REZ!1«a~s!EZ2b~s!HR%.

~36b!

Substituting into Eq.~36b! the expression ofHR taken out
from Eq. ~34a! gives

R21]FHR52 iv$@c/vmR#]R~R]REZ!1«vc21a~s!EZ%

2b~s!@ma~s!R#21]FEZ

1 iv@cma~s!#21b2~s!EZ ~36c!

and finally substituting Eq.~36c! into Eq. ~36a! we get

a~s!R21]R~R]REZ!1R22]F
2 EZ22i @vb~s!/cR#]FEZ

1v2c22@n2a2~s!2b2~s!#EZ50. ~37!

Now using Eq.~35!, a simple calculation gives

n2a2~s!2b2~s!5~n22s2!~12n2s2!21. ~38!

Substituting Eqs.~35! and~38! into Eq.~37! and multiplying
by 12n2s2, we get
y

~12s2!R21]R~R]REZ!1~12n2s2!R22]F
2 EZ

22i @m2vs/cR#]FEZ1v2c22~n22s2!EZ50,

~39!

which is the equation satisfied by theEZ component of the
electromagnetic field inside the rotating cylinder.

Then, to analyze the scattering of the plane wave~32!, we
use the Fourier series expansions ofEZ(R,F) and of the
incident and diffracted fieldsEi ,Z(R,F),Es,Z(R,F),

EZ~R,F!5( AkEk~R!exp~ ikF!, ~40a!

Ei ,Z~R,F!5E( i 2kJk~R!exp~ ikF!,

Es,Z~R,F!5( BkHk
~2!~R!exp~ ikF!, ~40b!

in which Jk andHk
(2) are the usual Bessel and Hankel fun

tions. The boundary conditions requiring thatEZ and ]REZ
are continuous at the surfaceR5a of the cylinder give two
sets of equations supplying the unknown coefficientsAk and
Bk . Substituting Eq.~40a! into Eq.~39! gives, forEk(R), the
differential equation

~12s2!R21]R~R]REk!1@v2c22~n22s2!12vm2ks/cR

2~12n2s2!k2R22#Ek50 ~41!

to be compared@see Eq.~10.71! in @9## with the equation
supplied by Galilean rotations

R21]R~R]REk!1@v2c22«12vVc22k~«21!2k2R22#Ek

50. ~42!

The rotation of the cylinder breaks the symmetry of t
scattering pattern and generates a distortion that can be
to probe the structure of the cylinder~it could be, for in-
stance, a plasma column!, so it is important to get a reliable
approximation forEk(R). Since the relativistic covariance o
Maxwell’s equations is not satisfied with Galilean rotation
it is not sure that the Bessel equation~42! supplies such an
approximation. So we are left with Eq.~41!, which is diffi-
cult to solve sinces5tanh(VR/c) is a function of R and
particular methods of approximations have to be used.
previous analysis can be extended toH waves and to waves
impinging at oblique incidence. We get slightly more intr
cate equations for conducting cylinders, especially in
case ofH waves for which the boundary conditions requi
some attention. In the future we plan to discuss these p
lems as well as the electromagnetic analog of the Mag
effect @25,26# with a comparison of the results obtained
previous works for cylinders rotating with a small angul
velocity @18,24#.

There is an interesting situation with which Galilean r
tations do not cope. Consider a good conducting cylin
such as the electromagnetic field, which is concentrated
side a thin skin sheet bounded by the classical skin de
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Suppose that this cylinder is spinning with a large angu
velocity so that the azimuthal velocity in the skin sheet
nearly equal to the velocity of lightc. What happens when
this velocity tends toc? We plan to prove that the cylinde
behaves like a mirror@27#.

It should be mentioned that it has been claimed@28# that
64
rlinear, nonreciprocal biisotropic media@that is, media with
constitutive relations~5!# are forbidden and that one shou
havea1l50. However, this statement is still controversi
@29–31#. Of course, whena1l50 some of the previous
results simplify. For recent works on electrodynamics
moving chiral media, see@32,33#.
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