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Maxwell's equations and accelerated frames
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To analyze electromagnetism in spinning media, we use, differently than previous works, a relativistic
description of rotations. We give the form of Maxwell's equations in the laboratory and corotating frames in
terms of cylindrical coordinates. Possible applications are discugS&663-651X98)08106-9

PACS numbd(s): 03.50-z

[. INTRODUCTION inertial frameK’ where this material medium is at rest, the
constitutive relations have their more general fofthd 3,14
It has been known for a long time that Maxwell’'s equa- , ) , ) , )
tions are covariant under relativistic transformations, but the D'=eE'+aH’, B'=uH’+AE". )
form of the constitutive relations necessary to get a determi-_, _, ., _,
nate system of equations still seems to be controversial, pal’:= ,D’,H’,B are the usual components of the electromag-

ticularly in accelerated medifl—6]. We discuss here this Netc field.e,u the permittivity and permeability, ane\ the

question for uniformly rotating media, which have been thechiral parameters. It is assumed that rotation does not change

subject of many workg4, 7—9. the physical properties of this medium. Using E{®. and

For accelerated media, one has to deal with three differen@' we now have to get the constitutive relations in K

frames: the laboratory frami€, , the corotating framé, andKc frames.

and the instantaneous inertial fraié in which the material
medium is at rest. We use the cylindrical coordinates !l FRENET-SERRET AND LABORATORY FRAMES

0_ H 0y ; ’
_X#(R;(D’Z'x =cT) in K, x*(r,¢,2,x°) in K¢, andX"* As just said, the constitutive relatiois) remain valid in
in K'. The greek(latin) indices take the values 0,1,2,3 yho instantaneous inertial fram€’ in which the material
(1,2,3 and we use the summation convention. medium is at rest and it is knowd, 10] thatK’ is the Frenet-

Previous works on electromagnetism in rotating mediage ot tetrad made of four unit vectoeg defined in the
[4,7-9 describe the rotation by the Galilean transsformatlonfollowing way [15]. The four-velocityu” is taken as a time-

r=R, ¢=0-0c 'X° z=7, x°=X°, (1)  like unit vectore, and the spacelike vectoeg are obtained
from the relations
As a consequence the relativistic covariance is broken; this
failure is interpreted wrongly as a noninertial local effect of dlosej=ae;, dlise=be,+ae],
rotation. It was proved recentlyl0] that the relativistic (6)
Trocheris-Takeno transformatigal,12] dlose,=ce,—bel, olose,=—ce).
r=R, ¢=(coshB)®—R (sinhpB)X°, z=2, o _ _
The coefficients,b,c are non-negativej/ Js is the absolute
x%= —R(sinh 8)® + (cosh8)X°, (2)  derivative, and for a four-vectok*

with B=QR/c, restores the full Lorentz covariance of elec- alas A =UuPd gA*+T 4 AP, (7)
tromagnetism. As noticed {10], the transformatioi2) “re-
spects the relativity of simultaneity at a distance, the relativd, = d/dx* and the parameteis;,; are the Christoffel sym-
istic law of composition of velocities, and the additive law of bols deduced here from the metric of Minkowski space-time
angular velocities.” The speed-distance law is nonlinear adh cylindrical coordinates
the three-velocity, which is now
ds?=(dX%)?—(dR)2— R?*(d®)%—(dZz)>. 8
UR:UZZO, vp=C tanhﬁ. (3) . .
According to Eq(3), the components of the four-velocity*
We work in this paper with the transformati¢®) and inci- are
dentally the Sagnac phase shiff becomes, with Eq(2),
u’=coshB, u?=R Isinhg, ul=ud=0. (9
AT=4mc r tanhB(1—tanifB) 1=2mc™1r sinh 28,
4 Let eﬁz Eﬁ denote the coordinate covariant basis vectors in
the laboratory frame andfi the Kronecker symbol. Then a

which reduces foB<1 to the expression obtained with Eq. simple calculation giveB10] e|=e,, e,=e;, and

D [9].
We consider in this work a linear, scalar medium, in uni- e, = (coshp)ey+R™1(sinh B)e,,
form rotation with angular velocity and assume that in the (10)
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e,=(sinh B)ey,+R ™ (coshp)e,.

It is easy to check that the transformatiofi®) allow the

metric (8) to remain invariant, restoring, as previously men-
tioned, the full Lorentz covariance so that Maxwell's equa-

tions have the same form in both framés andK'. How-
ever, one has the same relations between the electromagn
component&,D,H,B in theK, frame and the corresponding

primed components in the instantaneous inertial corotatin
frame K’ as one would have between two inertial frames,

except of course that the velocityis no longer constant. So
we have[9,16], with y=(1—v?c~?) "2,

E'=E,+ y(E, +c 1vOB),

B'=B,+ y(B, —c¢ VOE),

i+ y(By ) (11
D'=D,+y(D, +c~vOH),
'=H;+y(H,—c 'vOD).

The subscript§ and L refer to components parallel and per-
pendicular tov, respectively. From Eg$5) and(11) we get

D+c WOH=¢(E+c vOB)+ a(H—c tvOD),
(12
B—c WOE=pu(H—c vOD)+\(E+c~ lvOB).

Substituting the velocity3) into Eq.(12) and rearranging the
terms, a simple calculation gives, wit¥tanhg,

D(DZSE(I)+CEH(I,, B(I::,U«H<1>+7\E<ba (13)
DR+QSDZ_SSBZZFRZSER+C¥HR_SH2,
D,—asDr+esBg=F,=¢E,+ aHz+sHg,
(14
BR_)\SBZ+MSDZ:GR:MHR+)\ER+SE21
BZ+)\SBR_MSDR:GZ:/*LHZ_l_)\EZ_SER'
We introduce the matrices
M1 M, I Mg =M,
M_‘Ms M)’ N__Ms My |’
_1 0 B 0 1
=lo 1 I5-1 o0 (9
such that
M;=1+asd, My,=—esJ, Mz=usd, Myu=I1—-2Asd
(15)

We write Eq.(14) in the matrix form

P:|FR1FZaGRvGZ|ta
(16)

MA=P, A=|Dg,Dz,Bgr,B;|",

in which the superscript denotes transposition. Then, mul-

tiplying Eq. (16) by the matrixN and noting that the subma-
tricesM; (j=1,2,3,4) commute, we get

(M1M4_M2M3)®IA=NP, (17)
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with (n2=eu)

1+ (ak—n?)s
(1-a)s

(a—N\)s
1+ (ax—n?)s?|"
(7)

M1M4_M2M3:

chiete that this matrix is diagonal for=«a. Since the inver-
sion of Eqg.(17') is trivial, we get finally from Eq(17) the
gonstitutive relations in the laboratory frame

A=(M;M;—M,M3) 1&INP. (18

For an isotropic mediumdg=\=0), we get easily from Eq.
(14

(1-n?s?)Dr=g(1—s?)Egr—s(1—n?)H,,
1-n%s?)D,=&(1—-S?)E,+s(1—n?)Hg,
( ) z g( ) z ( ) R (19)
(1-n?s%)Bg=u(1—s?)Hr+s(1—n?)E,
(1-n?s?)B;= u(1—s?)H,—s(1—n?)Eg.

For B<1 so thats=8+0(3?), these expressions become

the constitutive relations obtained with the Galilean transfor-

mation (2) [9].
IIl. ELECTROMAGNETIC FIELD
IN THE COROTATING FRAME

The situation is a bit more intricate in the corotating frame
since one has in fact to use the general covariant formalism
of electromagnetism. From the Trocheris-Takeno transfor-
mation (2) we getdR=dr, dZ=dz, and

dX%=(coshB)dx°+ (sinh B)rd ¢+ a,dr, 20
Rd® = (coshB)rd ¢+ (sinh 8)dx°+ a,dr;
ap=(sinh B)(¢+ Bx%r)+(coshB)(B¢),

a,=(sinh B)(B¢p—x%r)+(coshB)(Bx°Ir).

Substituting Eq(20) into Eqg. (8), a simple calculation gives
the metricds? in the corotating framé,

(20)

ds?= (dx%)2—\2(dr)2—r2(d¢)?— (d2)2+ 2\ odrdx°

+2\,rdrd ¢, (21
N2=1+a3—aj3,
No=ap(coshB)—a,(sinh B), A,=ag(sinhB)

—ay(coshp). (21)
So the metric tensag,,, is
1 )\02 0 0
e O @2
0 0 0o -1

and we get easilyg| = — detg,,, =2
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We may now use the general covariant formalism of elec-

tromagnetism9]. Let F#”(e,b) and G**(d,h) be the two

antisymmetric tensors characterizing the electromagnetic

field and satisfying the covariant Maxwell equations
-1 U -
9 G+P)=0,
|9l 04(]g ) 23
ﬂyFaﬁ+ (9aFm,+ &ﬁFyazo

If we further impose that the componer®,GX' FO FK!
are three-vectorga discussion of this condition is given in
[9]) we have

Gl=di, Gik=|g|"Y2%iKh,,

(29)

Foi=—¢. Fi=(9l/go0"%euib".

ejn=¢ is the permutation tensor. Singg=1 and|g|
=r?, for the metric tensof22) these relations become

DR=d", D%=d?, D?=d%
Hr=r"th,, He=r"thy, Hy=rthy;
R r q P z z 25
ER:er, Eq,=e¢, EZ:eZ;
BR=rb", B®=rb? B?=rbZ

Substituting Eqs(25) into Egs.(13) and(14) yields the con-
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3
a(i):(?’ii)llza'z(Yii)llzgl y¥a. (29
From Eq.(22) we get
14N\ -1\, O
yu=|—Thy 17 0|, (30
0 0 1
so that, for instance,
din=1+AD)¥d", d4=rd?, d,=d’ (3D

with similar expressions for the other components. We could
of course write the constitutive relations and Maxwell's
equations in terms of the usual componesyts of the elec-
tromagnetic field.

IV. DISCUSSION

First note that with the relativistic transformati@®) all
the results to be obtained are valid for any value of the pa-
rameter 3=QR/c, while with the Galilean transformation
(1) one has to assum@g<1. However, if3<1 so that one
may neglect the terms iB? and higher, then both transfor-
mations(1) and (2) give similar results.

Concerning electromagnetism in the corotating and in-

stitutive relations in the corotating frame. For instance, usinGtantaneous inertial frames, the situation is different for the
the contravariant components of the fields on the 'eﬁ'ha”‘{’ransformations{l) and(2). One has to use in the corotating

side of Eqgs.(14) the first equation of this system becomes
DR+ asD?*+esB?=— (eEgr+ aHr—sHy).  (26)

Substituting Eqs(25) into Eq. (26) gives
d"+ asd?+esrb?=—(ee,+ ar *hg—sr th,). (27)

We have similar relations for the other three equatitivg
and to eliminaté or d from the corresponding equations we
would proceed as in Sec. Il

Inserting Eqgs.(25) into Egs.(23), the first set of Max-
well’s equations in the corotating frame is

=1 (d48,— d,84) = — dyxob',

3,8, — d,8,= — dyo(rb?), (29
r=H(dres—d4e) = — dxob?,
r 13 (rb") + 341+ a0*=0, (28')

Changinge andb, respectively, intdh and —d in Egs.(28)
and (28') yields the second set of Maxwell’s equations.

frame the general covariant formalism of electromagnetism
so that constitutive relations as well as Maxwell's equations
depend on the metric tensgy, ; in the corotating frame and
expression22) cannot be reduced for any value of the pa-
rameter to the metric tensor obtained with the rotatidin
[see, for instance, the E¢7.23 in [9]].

More importantly, for the Galilean transformati¢b), the
corotating frame is also the instantaneous inertial frin@
S0 its metric tensor has also to be compared with the metric
tensor of the Minkowski space-time valid for the Frenet-
Serret tetrad(10). This remark has far-reaching conse-
guences since several problems involving accelerated bodies
are more easily solved in the instantaneous inertial frame, for
instance, for fields associated with rotating char@estead
of the Lienard-Wiechert potentialdt is clear that using the
Frenet-Serret tetrad as the instantaneous inertial frame will
give results different from those published in the literature.

V. APPLICATION

As an application of the relativistic description of rota-
tions, we consider the scattering of a harmonic plane wave
by a rotating circular cylinder, a problem previously ana-

It should be noted that the components of the electromad¥2e€d[17—24 in the frame of Galilean rotations. For an in-

netic field defined by relation&5) do not have their usual

cidentE wave

form in cylindrical coordinates. To get these usual compo-

nents one ha§9] to use the metric tensoy;,=goiJoxJog

Ei(R,®)=E exp{—iw(T+X/c)}ug, (32

—gix of the three-dimensional space of the corotating frame.

Let a; (a') denote any componef®5). Then the ordinary
component; is given by the relatior9]

in which u; is a unit vector in theZ direction and for a
dielectric cylinder Maxwell’'s equations are



7242 PIERRE HILLION 57

R 194E,=—iwc 'Bg, (1-s?)R™19x(RIREZ) + (1—n’s?)R™ 243 E,
—2i[m?ws/cR]dgEz+ w?c ?(n>—s?)E,=0,

(39

aREZ:i(DC_lB(I), (33)

-1 _p-1 _io-1
R™70r(RHe) =R “deHg=1wC "Dz which is the equation satisfied by ti; component of the

I . . . . . electromagnetic field inside the rotating cylinder.
The constitutive relations of the dielectric cylinder in the Then, to analyze the scattering of the plane w2, we

instantaneous inertial frame alE =¢E’ andB’=uH’, SO o0 yhe Fourier series expansionsBi(R,®) and of the
that the corresponding constitutive relations in the IaboratorYncident and diffracted fields, ,(R,®).E, 5(R,®)
I, ’ 1 =g, ] ]

frame are given by Eq$13) (with a=X=0) and(19). Sub-
stituting these expressions into E¢33) gives

R 194E;=iwc Y ua(s)Hr—b(S)E;], (343
drEz=iwc tuHg, (34b)

R 19x(RHg) — R 9gHr=iwc Y ea(s)E;—b(s)Hg],
(349

with

a(s)=(1-s?)(1-n%s?) "1, b(s)=m?s(1—n?s?) "1,

m?=n?—1. (35
The derivative with respect t® of Eq. (343 gives
R™203E;—iw(cR) " 1b(s)deE;
=—iou(cR) ta(s)dpHg, (363

while from Eqgs.(34b) and (340 we get

R™9gHg
=—i U)Cil{CZ/MRﬁR( R(?REZ) + Sa(s) EZ_ b(S) H R}'
(36b

Substituting into Eq(36b) the expression oHg taken out
from Eq. (349 gives

R 19pHr= —iw{[c/ouR]dr(RIREZ) + cwc la(s)EL}
—b(s)[na(s)R] dgE;

+io[cua(s)] b%(s)E, (360

and finally substituting Eq(360¢) into Eq. (363 we get

a(s)R™ 9r(RIREZ) + R™295E,— 2i[ wb(s)/cR]d4E;

+ w?c™?[n%a%(s)—b?(s)]E,=0. 37
Now using Eq.(35), a simple calculation gives
n2a?(s)—b?(s)=(n?—s?)(1—n?s?) "1, (39

Substituting Eqs(35) and(38) into Eq.(37) and multiplying
by 1—n?s?, we get

E,(R,®)=2> AE(R)expik®), (403
Ei 2(R®)=E>, i I (R)expik®),
Esz(R®)=2>, BHP(R)expikd), (40b)

in which J, andH{? are the usual Bessel and Hankel func-
tions. The boundary conditions requiring tHa¢ and dgE,
are continuous at the surfaé=a of the cylinder give two
sets of equations supplying the unknown coefficiegitsand
By . Substituting Eq(403 into Eq.(39) gives, forE,(R), the
differential equation

(1— )R 9x(RIRE,) + [ w?c™3(n?—s?)+ 2wm?ks/cR
—(1-n%s?)k?R ?]E,=0 (41)

to be comparedsee Eq.(10.72 in [9]] with the equation
supplied by Galilean rotations

R™9x(RIRE)) +[w?c %e + 200 c %k(e — 1) — k?R™2]E,

=0. (42

The rotation of the cylinder breaks the symmetry of the
scattering pattern and generates a distortion that can be used
to probe the structure of the cylindéit could be, for in-
stance, a plasma columrso it is important to get a reliable
approximation folg,(R). Since the relativistic covariance of
Maxwell’'s equations is not satisfied with Galilean rotations,
it is not sure that the Bessel equati@®) supplies such an
approximation. So we are left with E¢41), which is diffi-
cult to solve sinces=tanh{lR/c) is a function ofR and
particular methods of approximations have to be used. The
previous analysis can be extendedHovaves and to waves
impinging at oblique incidence. We get slightly more intri-
cate equations for conducting cylinders, especially in the
case ofH waves for which the boundary conditions require
some attention. In the future we plan to discuss these prob-
lems as well as the electromagnetic analog of the Magnus
effect [25,26 with a comparison of the results obtained in
previous works for cylinders rotating with a small angular
velocity [18,24].

There is an interesting situation with which Galilean ro-
tations do not cope. Consider a good conducting cylinder
such as the electromagnetic field, which is concentrated in-
side a thin skin sheet bounded by the classical skin depth.
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Suppose that this cylinder is spinning with a large angulatinear, nonreciprocal biisotropic medj#at is, media with
velocity so that the azimuthal velocity in the skin sheet isconstitutive relationg5)] are forbidden and that one should
nearly equal to the velocity of light. What happens when havea+\=0. However, this statement is still controversial
this velocity tends ta? We plan to prove that the cylinder [29-31. Of course, wherw+X=0 some of the previous

behaves like a mirrof27].
It should be mentioned that it has been clain2§] that

results simplify. For recent works on electrodynamics of
moving chiral media, seg32,33.
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