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Dynamics of viscoplastic deformation in amorphous solids

M. L. Falk and J. S. Langer
Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106

~Received 11 December 1997!

We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is
based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These
numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically,
reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a
stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system
on the history of past deformations. Microscopic observations suggest that a dynamically complete description
of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain
average features of a population of two-state shear transformation zones. Our introduction of these state
variables into the constitutive equations for this system is an extension of earlier models of creep in metallic
glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and
postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transfor-
mation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenom-
ena seen in the simulations.@S1063-651X~98!01306-3#

PACS number~s!: 83.50.Nj, 62.20.Fe, 61.43.2j, 81.05.Kf
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I. INTRODUCTION

This paper is a preliminary report on a molecula
dynamics investigation of viscoplastic deformation in a no
crystalline solid. It is preliminary in the sense that we ha
completed only the initial stages of our planned simulat
project. The results, however, have led us to a theoret
interpretation that we believe is potentially useful as a gu
for further investigations along these lines. In what follow
we describe both the simulations and the theory.

Our original motivation for this project was an interest
the physics of deformations near the tips of rapidly adva
ing cracks, where materials are subject to very large stre
and experience very high strain rates. Understanding the
sipative dynamics that occur in the vicinity of the crack tip
necessary to construct a satisfactory theory of dynamic f
ture @1#. Indeed, we believe that the problem of dynam
fracture cannot be separated from the problem of underst
ing the conditions under which a solid behaves in a brittle
ductile manner@2–6#. To undertake such a project we eve
tually shall need sharper definitions of the terms ‘‘brittle
and ‘‘ductile’’ than are presently available; but we lea
such questions to future investigations while we focus on
specifics of deformation in the absence of a crack.

We have chosen to study amorphous materials bec
the best experiments on dynamic instabilities in fracture h
been carried out in silica glasses and polymers@7,8#. We
know that amorphous materials exhibit both brittle and d
tile behavior, often in ways that, on a macroscopic lev
look very similar to deformation in crystals@9#. More gener-
ally, we are looking for fundamental principles that mig
point us toward theories of deformation and failure in bro
classes of macroscopically isotropic solids where thinking
deformation in terms of the dynamics of individual disloc
tions @2,3# is either suspect, due to the absence of underly
crystalline order, or simply intractable, due to the extre
complexity of such an undertaking. In this way we hope t
the ideas presented here will be generalizable perhap
571063-651X/98/57~6!/7192~14!/$15.00
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some polycrystalline materials or even single crystals w
large numbers of randomly distributed dislocations.

We describe our numerical experiments in Sec. II. O
working material is a two-dimensional, two-component, no
crystalline solid in which the molecules interact via Lenna
Jones forces. We purposely maintain our system at a t
perature very far below the glass transition. In t
experiments, we subject this material to various sequence
pure shear stresses, during which we measure the mecha
response. The simulations reveal a rich variety of behav
typical of metallic glasses@10–13# and other viscoplastic
solids @14#, specifically, reversible elastic deformation
small applied stresses, irreversible plastic deformation
somewhat larger stresses, a stress threshold above whic
bounded plastic flow occurs, and a strong dependence o
state of the system on the history of past deformations
addition, the molecular-dynamics method permits us to
what each molecule is doing at all times; thus we can id
tify the places where irreversible molecular rearrangeme
are occurring.

Our microscopic observations suggest that a dynamic
complete description of the macroscopic state of this defo
ing body requires specifying, in addition to stress and stra
certain average features of a population of what we shall
‘‘shear transformation zones.’’ These zones are small
gions, perhaps consisting of only five or ten molecules,
special configurations that are particularly susceptible to
elastic rearrangements in response to shear stresses. W
gue that the constitutive relations for a system of this k
must include equations of motion for the density and inter
states of these zones; that is, we must add new ti
dependent state variables to the dynamical description of
system@15,16#. Our picture of shear transformation zones
based on earlier versions of the same idea due to Arg
Spaepen, and others who described creep in metallic al
in terms of activated transitions in intrinsically heterog
neous materials@17–22#. These theories, in turn, drew o
previous free-volume formulations of the glass transition
7192 © 1998 The American Physical Society
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57 7193DYNAMICS OF VISCOPLASTIC DEFORMATION IN . . .
Turnbull, Cohen, and others in relating the transition rate
local free-volume fluctuations@20,23–25#. None of those
theories, however, were meant to describe the lo
temperature behavior seen here, especially the different k
of irreversible deformations that occur below and abov
stress threshold, and the history dependence of the resp
of the system to applied loads.

We present the theory of the dynamics of shear trans
mation zones in Sec. III. This theory contains four cruc
features that are not, so far as we know, in any previ
analysis. First, once a zone has transformed and reliev
certain amount of shear stress, it cannot transform agai
the same direction. Thus the system saturates and, in
language of granular materials, it becomes ‘‘jammed.’’ S
ond, zones can be created and destroyed at rates propor
to the rate of irreversible plastic work being done on t
system. This is the ingredient that produces a threshold
plastic flow; the system can become ‘‘unjammed’’ when n
zones are being created as fast as existing zones are
transformed. Third, the attempt frequency is tied to the no
in the system, which is driven by the strain rate. The stoch
tic nature of these fluctuations is assumed to arise from
dom motions associated with the disorder in the syst
Fourth, the transition rates are strongly sensitive to the
plied stress. It is this sensitivity that produces memory
fects.

The resulting theory accounts for many of the features
the deformation dynamics seen in our simulations. Howe
it is a mean-field theory that fails to take into account a
spatial correlations induced by interactions between zo
and therefore it cannot explain all aspects of the beha
that we observe. In particular, the mean-field nature of
theory precludes, at least for the moment, any analysis
strain localization or shear banding.

II. MOLECULAR-DYNAMICS EXPERIMENTS

A. Algorithm

Our numerical simulations have been performed in
spirit of previous investigations of deformation in amorpho
solids @26–29#. We have examined the response to an
plied shear of a noncrystalline, two-dimensional, tw
component solid composed of either 10 000 or 20 000 m
ecules interacting via Lennard-Jones forces. Our molecu
dynamics algorithm is derived from a standard NP
~number, pressure, temperature! dynamics scheme@30#, i.e.,
a pressure-temperature ensemble, with a Nose-Hoover
mostat @31–33# and a Parinello-Rahman barostat@34,35#
modified to allow imposition of an arbitrary two-dimension
stress tensor. The system obeys periodic boundary condi
and both the thermostat and barostat act uniformly throu
out the sample.

Our equations of motion are

ṙn5
pn

mn
1@ «̇#•~rn2R0!, ~2.1!

ṗn5Fn2~@ «̇#1j@ I # !pn , ~2.2!

j̇5
1

tT
2S Tkin

T
21D , ~2.3!
o

-
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1

tP
2

V

NkBT
~@sav#2@s#!, ~2.4!

L̇5@ «̇#•L . ~2.5!

Here rn and pn are the position and momentum of thenth
molecule andFn is the force exerted on that molecule by i
neighbors via the Lennard-Jones interactions. The quant
in square brackets, e.g.,@ «̇# or @s#, are two-dimensional
tensors.T is the temperature of the thermal reservoir,V is
the volume of the system~in this case, the area!, andN is the
number of molecules.Tkin is the average kinetic energy pe
molecule divided by Boltzmann’s constantkB . @s# is the
externally applied stress and@sav# is the average stres
throughout the system computed to be

@sav# i j 5
1

4V(
n

(
m

Fnm
i r nm

j , ~2.6!

whereFnm
i is the i th component of the force between pa

ticles n and m, r nm
j is the j th component of the vector dis

placement between those particles, andV is the volume of
the system.L is the locus of points that describe the boun
ary of the simulation cell. While Eq.~2.5! is not directly
relevant to the dynamics of the particles, keeping track of
boundary is necessary in order to properly calculate interm
lecular distances in the periodic cell.

The additional dynamical degrees of freedom in E
~2.1!–~2.5! are a viscosityj, which couples the system to th
thermal reservoir, and a strain rate@ «̇#, via which the exter-
nally applied stress is transmitted to the system. Note

@ «̇# induces an affine transformation about a reference p
R0, which, without loss of generality, we choose to be t
origin of our coordinate system. In a conventional formu
tion, @s# would be equal to2P @ I #, whereP is the pressure
and @ I # is the unit tensor. In that case, these equations
motion are known to produce the same time-averaged e
tions of state as an equilibrium NPT ensemble@30#. By in-
stead controlling the tensor@s#, including its off-diagonal
terms, it is possible to apply a shear stress to the sys
without creating any preferred surfaces that might enha
system-size effects and interfere with observations of b
properties. The applied stress and the strain-rate tenso
constrained to be symmetric in order to avoid physically u
interesting rotations of the cell. Except where otherw
noted, all of our numerical experiments are carried out
constant temperature, withP 5 0, and with the sample
loaded in uniform, pure shear.

We have chosen the artificial time constantstT andtP to
represent physical aspects of the system. As suggeste
Nose @31#, tT is the time for a sound wave to travel a
interatomic distance and, as suggested by Anderson@36#, tP
is the time for sound to travel the size of the system.

B. Model solid

The special two-component system that we have cho
to study here has been the subject of other investigat
@37–39# primarily because it has a quasicrystalline grou
state. The important point for our purposes, however, is t
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7194 57M. L. FALK AND J. S. LANGER
this system can be quenched easily into an apparently s
glassy state. Whether this is actually a thermodynamic
stable glass phase is of no special interest here. We care
that the noncrystalline state has a lifetime that is very m
longer than the duration of our experiments.

Our system consists of molecules of two different siz
which we call ‘‘small’’ (S) and ‘‘large’’ (L). The interac-
tions between these molecules are standard 6-12 Lenn
Jones potentials

Uab~r !54eabF S aab

r D 12

2S aab

r D 6G , ~2.7!

where the subscriptsa,b denoteS or L. We choose the
zero-energy interatomic distancesaab to be

aSS52sinS p

10D , aLL52sinS p

5 D , aSL51, ~2.8!

with bond strengths

eSL51, eSS5eLL5
1

2
. ~2.9!

For computational efficiency, we impose a finite-range cut
on the potentials in Eq.~2.7! by setting them equal to zer
for separation distancesr greater than 2.5aSL . The masses
are all taken to be equal. The ratio of the number of la
molecules to the number of small molecules is half
golden mean

NL

NS
5

11A5

4
. ~2.10!

In the resulting system, it is energetically favorable for t
small molecules to surround one large molecule or for fi
large molecules to surround one small molecule. The hig
frustrated nature of this system avoids problems of lo
crystallization that often occur in two dimensions where
nucleation of single-component crystalline regions is di
cult to avoid. As shown by Lanc¸on et al. @37#, this system
goes through something like a glass transition upon coo
from its liquid state. The glass transition temperature
0.3T0, wherekBT05eSL . All the simulations reported her
have been carried out at a temperatureT50.001T0, that is, at
0.3% of the glass transition temperature. Thus all of the p
nomena to be discussed here take place at a temperature
much lower than the energies associated with the molec
interactions.

In order to start with a densely packed material, we ha
created our experimental systems by equilibrating a rand
distribution of particles under high pressure at the low te
perature mentioned above. After allowing the system to re
at high pressure, we have reduced the pressure to zero
again allowed the sample to relax. Our molecular-dynam
procedure permits us to relax the system only for times
the order of nanoseconds, which are not long enough for
material to experience any significant amount of anneal
especially at such a low temperature.

We have performed numerical experiments on two diff
ent samples, containing 10 000 and 20 000 molecules,
spectively. All of the simulation results shown are from t
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larger of the two samples; the smaller sample has been
primarily to check the reliablility of our procedures. We ha
created each of these samples only once; thus each ex
ment using either of them starts with precisely the same
of molecules in precisely the same positions. As will beco
clear, there are both advantages and uncertainties assoc
with this procedure. On the one hand, we have a very c
fully controlled starting point for each experiment. On th
other hand, we do not know how sensitive the mechan
properties of our system might be to details of the prepa
tion process, nor do we know whether to expect signific
sample-to-sample variations in the molecular configuratio
To illustrate these uncertainties, we show the elastic c
stants of the samples in Table I. The moduli are expres
there in units ofeSL /aSL

2 . @Note that the Poisson ratio for
two-dimensional~2D! system has an upper bound of 1 rath
than 0.5 as in the three-dimensional case.# The appreciable
differences between the moduli of supposedly identical m
terials tell us that we must be very careful in drawing d
tailed conclusions from these preliminary results.

C. Simulation results

1. Macroscopic observations

In all of our numerical experiments, we have tried simp
to mimic conventional laboratory measurements of vis
plastic properties of real materials. The first of these is
measurement of stress at constant strain rate. As we shal
this supposedly simplest of the experiments is especially
teresting and problematic for us because it necessarily pro
time-dependent behavior near the plastic yield stress.

Our results for two different strain rates are shown in F
1. The strain rates are expressed in units proportional to
frequency of oscillation about the minimum in the Lennar
Jones potential, specifically, in units ofv0[(eSL /maSL

2 )1/2,
wherem is the particle mass.@The actual frequency for the
SL potential, in cycles per second, is (3321/3/p)v0
>1.2v0.# As usual, the sample has been kept at cons
temperature and at pressureP50. At low strain, the material
behaves in a linearly elastic manner. As the strain increa
the response becomes nonlinear and the material begin
deform plastically. Plastic yielding, that is, the onset of pla
tic flow, occurs when the strain reaches approximately 0.7
Note that the stress does not rise smoothly and monot
cally in these experiments. We presume that most of
irregularity would average out in larger systems. As we sh
see, however, there may also be more interesting dynam
effects at work here.

In all of the other experiments to be reported here,
have controlled the stress on the sample and measured
strain. In the first of these, shown in Fig. 2, we have
creased the stress to various different values and then he
constant.

TABLE I. Sample sizes and elastic constants.

Sample Molecules
Shear

modulus
Bulk

modulus
2D Poisson

ratio
Young’s
modulus

1 10 000 9.9 31 0.51 30
2 20 000 16 58 0.57 50
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57 7195DYNAMICS OF VISCOPLASTIC DEFORMATION IN . . .
In each of these experimental runs, the stress starts at
and increases at the same constant rate until the desired
stress is reached. The graphs show both this applied s
~solid symbols! and the resulting strain~open symbols!, as
functions of time, for three different cases. Time is measu
in the same molecular-vibration units used in the previo
experiments, i.e., in units of (maSL

2 /eSL)
1/2. The stresses an

strain axes are related by twice the shear modulus so th
the response is linearly elastic, the two curves lie on top
one another. In the case labeled by triangles, the final st
is small and the response is nearly elastic. For the ca
labeled by circles and squares, the sample deforms pl

FIG. 1. Shear stress vs strain for strain rates of 1024 ~solid lines!
and 231024 ~dotted lines!. The thicker lines that denote the simu
lation results exhibit both linear elastic behavior at low strain a
nonlinear response leading to yield at approximatelyss50.35. The
thinner curves are predictions of the theory for the two strain ra
Strain rate is measured in units of (eSL /m aSL

2 )1/2; stress is mea-
sured in units ofeSL /aSL

2 .

FIG. 2. Shear strain~open symbols! vs time for several applied
shear stresses~solid symbols!. The stresses have been ramped up
a constant rate until reaching a maximum value and then have
held constant. The strain and stress axes are related by twic
shear modulus so that, for linear elastic response, the open
closed symbols would be coincident. For low stresses the sam
responds in an almost entirely elastic manner. For intermed
stresses the sample undergoes some plastic deformation pri
jamming. In the case where the stress is brought above the
stress, the sample deforms indefinitely. Time is measured in uni
(maSL

2 /eSL)
1/2; stress is measured in units ofeSL /aSL

2 .
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cally until it reaches some final strain, at which it ceases
undergo further deformation on observable time scales.~We
cannot rule out the possibility of slow creep at much long
times.! In the case labeled by diamonds, for which the fin
stress is the largest of the three cases shown, the sa
continues to deform plastically at constant stress through
the duration of the experiment. We conclude from these
a number of similar experimental runs that there exist
well-defined critical stress for this material, below which
reaches a limit of plastic deformation, that is, it ‘‘jams,’’ an
above which it flows plastically. Because the stress
ramped up quickly, we can see in curves with squares
diamonds of Fig. 2 that there is a separation of time sca
between the elastic and plastic responses. The elastic
sponse is instantaneous, while the plastic response deve
over a few hundred molecular vibrational periods. To see
distinction between these behaviors more clearly, we h
performed experiments in which we load the system to
fixed, subcritical stress, hold it there, and then unload it
ramping the stress back down to zero. In Fig. 3, we show
stress and the resulting total shear strain, as functions
time, for one of those experiments. If we define the elas
strain to be the stress divided by twice the previously m
sured, as-quenched, shear modulus, then we can comput
inelastic strain by subtracting the elastic from the total. T
result is shown in Fig. 4. Note that most, but not quite all,
the inelastic strain consists of nonrecoverable plastic de
mation that persists after unloading to zero stress. Note a
as shown in Fig. 3, that the system undergoes a small dila
during this process and that this dilation appears to have b
elastic and inelastic components.

Using the simple prescription outlined above, we ha
measured the final inelastic shear strain as a function of s
stress. That is, we have measured the shear strain onc
system has ceased to deform as in the subcritical case
Fig. 2, and then subtracted the elastic part. The results
shown in Fig. 5. As expected, we see only very sm
amounts of inelastic strain at low stress. As the stress
proaches the yield stress, the inelastic strain appears to
verge approximately logarithmically.

d

s.

t
en
the
nd
le
te
to
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of

FIG. 3. Stress and strain vs time for one particular load
where the stress has been ramped up toss50.25, held for a time,
and then released. Note that, in addition to the shear response
material undergoes a small amount of dilation. Time is measure
units of (maSL

2 /eSL)
1/2; stress is measured in units ofeSL /aSL

2 .
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7196 57M. L. FALK AND J. S. LANGER
The final test that we have performed is to cycle the s
tem through loading, reloading, and reverse loading.
shown in Fig. 6, the sample is first loaded on the curve fr
a to b. The initial response is linearly elastic, but, eventua
deviation from linearity occurs as the material begins to
form inelastically. Fromb to c, the stress is constant and th
sample continues to deform inelastically until reaching a
nal strain atc. Upon unloading, fromc to d, the system does
not behave in a purely elastic manner but rather recov
some portion of the strain inelastically. While held at ze
stress, the sample continues to undergo inelastic strain re
ery from d to e.

When the sample is then reloaded frome to f , it under-
goes much less inelastic deformation than during the in
loading. Fromf to g the sample again deforms inelasticall
but by an amount only slightly more than the previous
recovered strain, returning approximately to pointc. Upon
unloading again fromg to h to i , less strain is recovered tha

FIG. 4. Elastic and inelastic strain vs time for the same simu
tion as that shown in Fig. 3. The inelastic strain is found by s
tracting the linearly elastic strain from the total strain. Note t
partial recovery of the inelastic portion of the strain that occ
during and after unloading. Time is measured in units
(maSL

2 /eSL)
1/2.

FIG. 5. Final inelastic strain vs applied stress for stresses be
yield. The simulation data~squares! have been obtained by runnin
the simulations until all deformation apparently had stopped. T
comparison to the theory~line! was obtained by numerically inte
grating the equations of motion for a period of 800 time units,
duration of the longest simulation runs. Stress is measured in u
of eSL /aSL

2 .
-
s

,
-

-

rs

v-

l
in the previous unloading fromc throughe.

It is during reverse loading fromi to k that it becomes
apparent that the deformation history has rendered the am
phous sample highly anisotropic in its response to furt
applied shear. The inelastic strain fromi to k is much greater
than that frome to g, demonstrating a very significan
Bauschinger effect. The plastic deformation in the initial d
rection apparently has biased the sample in such a way a
inhibit further inelastic yield in the same direction, but the
is no such inhibition in the reverse direction. The mater
therefore, must in some way have microstructurally encod
i.e., partially ‘‘memorized,’’ its loading history.

2. Microscopic observations

Our numerical methods allow us to examine what is h
pening at the molecular level during these deformations.
do this systematically, we need to identify where irreversi
plastic rearrangements are occurring. More precisely,
must identify places where the molecular displacements
nonaffine, that is, where they deviate substantially from d
placements that can be described by a linear strain field

We start with a set of molecular positions and subsequ
displacements and compute the closest possible approx
tion to a local strain tensor in the neighborhood of any p
ticular molecule. To define that neighborhood, we defin

-
-

s
f

w

e

e
its

FIG. 6. Stress-strain trajectory for a molecular-dynamics exp
ment in which the sample has been loaded, unloaded, reloa
unloaded again, and then reverse loaded, all at stresses belo
yield stress. The smaller graph above shows the history of app
shear stress with letters indicating identical times in the two grap
The dashed line in the main graph is the theoretical prediction
the same sequence of stresses. Note that a small amount of ine
strain recovery occurs after the first unloading in the simulation,
that no such behavior occurs in the theory. Thus the theore
curve from c through h unloads, reloads, and unloads again
along the same line. Time is measured in units of (maSL

2 /eSL)
1/2;

stress is measured in units ofeSL /aSL
2 .
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57 7197DYNAMICS OF VISCOPLASTIC DEFORMATION IN . . .
sampling radius, which we choose to be the interaction ra
2.5aSL . The local strain is then determined by minimizin
the mean-square difference between the actual displacem
of the neighboring molecules relative to the central one
the relative displacements that they would have if they w
in a region of uniform strain« i j . That is, we define

D2~ t,Dt !5(
n

(
i

S r n
i ~ t !2r 0

i ~ t !2(
j

~d i j 1« i j !

3@r n
j ~ t2Dt !2r 0

j ~ t2Dt !# D 2

, ~2.11!

where the indicesi and j denote spatial coordinates and t
indexn runs over the molecules within the interaction ran
of the reference molecule,n50 being the reference mol
ecule.r n

i (t) is the i th component of the position of thenth
molecule at timet. We then find the« i j that minimizesD2

by calculating

Xi j 5(
n

@r n
i ~ t !2r 0

i ~ t !#3@r n
j ~ t2Dt !2r 0

j ~ t2Dt !#,

~2.12!

Yi j 5(
n

@r n
i ~ t2Dt !2r 0

i ~ t2Dt !#

3@r n
j ~ t2Dt !2r 0

j ~ t2Dt !#, ~2.13!

« i j 5(
k

XikYjk
212d i j . ~2.14!

The minimum value ofD2(t,Dt) is then the local deviation
from affine deformation during the time interval@ t2Dt, t#.
We shall refer to this quantity asDmin

2 .
We have found thatDmin

2 is an excellent diagnostic fo
identifying local irreversible shear transformations. Figure
contains four different intensity plots ofDmin

2 for a particular
system as it is undergoing plastic deformation. The stress
been ramped up toussu50.12 in the time interval@0,12# and
then held constant in an experiment analogous to that sh
in Fig. 2. Figure 7~a! showsDmin

2 for t510, Dt510. It dem-
onstrates that the nonaffine deformations occur as isol
small events. In Fig. 7~b! we observe the same simulatio
but for t530, Dt530; that is, we are looking at a later tim
but again we consider rearrangements relative to the in
configuration. Now it appears that the regions of rearran
ment have a larger scale structure. The pattern seen
looks like an incipient shear band. However, in Fig. 7~c!,
where t530, Dt51, we again consider this later time b
look only at rearrangements that have occurred in the
ceding short time interval. The events shown in this figu
are small, demonstrating that the pattern shown in Fig. 7~b!
is, in fact, an aggregation of many local events. Finally,
Fig. 7~d!, we show an experiment similar in all respects
Fig. 7~a! except that the sign of the stress has been rever
As in Fig. 7~a!, t510, Dt510, and again we observe sma
e
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isolated events. However, these events occur in different
cations, implying a direction dependence of the local tra
formation mechanism.

Next we look at these processes in yet more detail. Fig
8 is a closeup of the molecular configurations in the low
left-hand part of the largest dark cluster seen in Fig. 7~c!,
shown just before and just after a shear transformation. D
ing this event, the cluster of one large and three small m
ecules has compressed along the top-left to bottom-right
and extended along the bottom-left to top-right axis. T
deformation is consistent with the orientation of the appl
shear, which is in the direction shown by the arrows on

FIG. 7. Intensity plots ofDmin
2 , the deviation from affine defor-

mation, for various intervals during two simulations.~a!–~c! show
deformation during one simulation in which the stress has b
ramped up quickly to a value less than the yield stress and then
constant.~a! shows deformations over the first 10 time units and~b!
over the first 30 time units.~c! shows the same state as in~b!, but
with Dmin

2 computed only for deformations that took place duri
the preceding 1 time unit. In~d!, the initial system and the time
interval ~10 units! are the same as in~a!, but the stress has bee
applied in the opposite direction. The gray scale in these figures
been selected so that the darkest spots identify molecules for w
uDminu'0.5aSL .

FIG. 8. Closeup picture of a shear transformation zone be
and after undergoing transformation. Molecules after transform
tion are shaded according to their values ofDmin

2 using the same
gray scale as in Fig. 7. The direction of the externally applied sh
stress is shown by the arrows. The ovals are included solely
guides for the eye.
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outside of the figure. Note that this rearrangement ta
place without significantly affecting the relative positions
molecules in the immediate environment of the transform
region. This is the type of rearrangement that Spaepen id
tifies as a ‘‘flow defect’’@20#. As mentioned in the Introduc
tion, we shall call these regions shear transformation zon

III. THEORETICAL INTERPRETATION OF THE
MOLECULAR-DYNAMICS EXPERIMENTS

A. Basic hypotheses

We turn now to our attempts to develop a theoretical
terpretation of the phenomena seen in the simulations.
shall not insist that our theory reproduce every detail of th
results. In fact, the simulations are not yet complete eno
to tell us whether some of our observations are truly gen
properties of the model or are artifacts of the ways in wh
we have prepared the system and carried out the nume
experiments. Our strategy will be first to specify what w
believe to be the basic framework of a theory and then
determine which specific assumptions within this framew
are consistent with the numerical experiments.

There are several features of our numerical experime
that we shall assume are fundamentally correct and wh
therefore, must be outcomes of our theory. These are
following. ~i! At a sufficiently small, fixed load, i.e., under
constant shear stress less than some value that we ident
a yield stress, the system undergoes a finite plastic defor
tion. The amount of this deformation diverges as the load
stress approaches the yield stress.~ii ! At loading stresses
above the yield stress, the system flows viscoplastically.~iii !
The response of the system to loading is history depend
If it is loaded, unloaded, and then reloaded to the sa
stress, it behaves almost elastically during the reloading,
it does not undergo additional plastic deformation. On
other hand, if it is loaded, unloaded, and then reloaded w
a stress of the opposite sign, it deforms substantially in
opposite direction.

Our theory consists of a set of rate equations describ
plastic deformation. These include an equation for the ine
tic strain rate as a function of the stress plus other varia
that describe the internal state of the system. We also po
late equations of motion for these state variables. Defor
tion theories of this type are in the spirit of investigations
Hart @15#, who, to the best of our knowledge, was the first
argue in a mathematically systematic way that any satis
tory theory of plasticity must include dynamical state va
ables, beyond just stress and strain. A similar point of vi
has been stressed by Rice@16#. Our analysis is also influ-
enced by the use of state variables in theories of frict
proposed recently by Ruina, Dieterich, Carlson, and oth
@40–45#.

Our picture of what is happening at the molecular leve
these systems is an extension of the ideas of Turnbull,
hen, Argon, Spaepen, and others@17–21,23–25#. These au-
thors postulated that deformation in amorphous materials
curs at special sites where the molecules are able to rearr
themselves in response to applied stresses. As describ
Sec. II, we do see such sites in our simulations and shall
these shear transformation zones as the basis for our ana
However, we must be careful to state as precisely as pos
s
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our definition of these zones because we shall use them
ways that were not considered by the previous authors.

One of the most fundamental differences between pre
ous work and ours is the fact that our system is effectively
zero temperature. When it is in mechanical equilibrium,
changes occur in its internal state because there is no the
noise to drive such changes. Thus the shear transforma
zones can undergo transitions only when the system i
motion. Because the system is strongly disordered, the fo
induced by large-scale motions at the position of any in
vidual molecule may be noisy. These fluctuating forces m
even look as if they have a thermal component@46#. The
thermodynamic analogy~thermal activation of shear trans
formations with temperature being some function of t
shear rate! may be an alternative to~or an equivalent of! the
theory to be discussed here. However, it is beyond the sc
of the present investigation.

Our next hypothesis is that shear transformation zones
geometrically identifiable regions in an amorphous so
That is, we assume that we could, at least in principle, lo
at a picture of any one of the computer-generated state
our system and identify small regions that are particula
susceptible to inelastic rearrangement. As suggested by
8, these zones might consist of groups of four or more re
tively loosely bound molecules surrounded by more rig
‘‘cages,’’ but that specific picture is not necessary. The m
idea is that some such irregularities are locked in on ti
scales that are very much longer than molecular collis
times. That is not to say that these zones are permanent
tures of the system on experimental time scales. On the c
trary, the tendency of these zones to appear and disap
during plastic deformation will be an essential ingredient
our theory.

We suppose further that these shear transformation zo
are two-state systems. That is, in the absence of any de
mation of the cage of molecules that surrounds them, t
are equally stable in either of two configurations. Ve
roughly speaking, the molecular arrangements in these
configurations are elongated along one or the other of
perpendicular directions, which, shortly, we shall take to
coincident with the principal axes of the applied shear stre
The transition between one such state and the other co
tutes an elementary increment of shear strain. Note tha
stability is the natural assumption here. More than two sta
of comparable stability might be possible but would ha
relatively low probability. A crucial feature of these bistab
systems is that they can transform back and forth betw
their two states but cannot make repeated transformation
one direction. Thus there is a natural limit to how mu
shear can take place at one of these zones so long as the
remains intact.

We now consider an ensemble of shear transforma
zones and estimate the probability that any one of them
undergo a transition at an applied shear stressss . Because
the temperatures at which we are working are so low t
ordinary thermal activation is irrelevant, we focus our atte
tion on entropic variations of the local free volume. O
basic assumption is that the transition probability is prop
tional to the probability that the molecules in a zone hav
sufficiently large excess free volume, say,DV* , in which to
rearrange themselves. This critical free volume must dep
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on the magnitude and orientation of the elastic deforma
of the zone that is caused by the externally applied stressss .

At this point, our analysis borrows in its general a
proach, but not in its specifics, from recent development
the theory of granular materials@47# where the only exten-
sive state variable is the volumeV. What follows is a very
simple approximation, which, at great loss of general
leads us quickly to the result that we need. The free volu
i.e., the volume in excess of close packing that the partic
have available for motion, is roughly

V2Nv0[Nv f , ~3.1!

whereN is the total number of particles,v f is the average
free volume per particle, andv0 is the volume per particle in
an ideal state of random dense packing. In the dense solid
interest to us herev f!v0 and thereforev0 is approximately
the average volume per particle even when the system
slightly dilated. The number of states available to this syst
is roughly proportional to (v f /h)N, whereh is an arbitrary
constant with dimensions of volume~the analog of Planck’s
constant in classical statistical mechanics! that plays no role
other than to provide dimensional consistency. Thus the
tropy, defined here to be a dimensionless quantity, is

S~V,N!>N lnS v f

h D>N lnS V2Nv0

N h D . ~3.2!

The intensive variable analogous to temperature isx:

1

x
[

]S

]V
>

1

v f
. ~3.3!

Our activation factor, analogous to the Boltzmann factor
thermally activated processes, is therefore

e2~DV* /x!>e2~DV* /v f !. ~3.4!

A formula like Eq.~3.4! appears in various places in th
earlier literature@17,23–25#. There is an important differenc
between its earlier use and the way in which we are usin
here. In earlier interpretations, Eq.~3.4! is an estimate of the
probability that any given molecule has a large enough f
volume near it to be the site at which a thermally activa
irreversible transition might occur. In our interpretation, E
~3.4! plays more nearly the role of the thermal activati
factor itself. It tells us something about the configuration
probability for a zone, not just for a single molecule. Wh
multiplied by the density of zones and a rate factor, ab
which we shall have more to say shortly, it becomes
transformation rate per unit volume.

Note what is happening here. Our system is extrem
nonergodic and, even when it is undergoing apprecia
strain, does not explore more than a very small part of
configuration space. Apart from the molecular rearran
ments that take place during plastic deformation, the o
chance that the system has for coming close to any stat
equilibrium occurs during the quench by which it is form
initially. Because we control only the temperature and pr
sure during that quench, we must use entropic considerat
to compute the relative probabilities of various molecu
configurations that result from it.
n
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The transitions occurring within shear transformati
zones are strains and therefore they must, in principle,
described by tensors. For present purposes, however, we
make some simplifying assumptions. As described in Sec
our molecular-dynamics model is subject only to a unifor
pure shear stress of magnitudess and a hydrostatic pressur
P ~usually zero!. Therefore, in the principal-axis system o
coordinates, the stress tensor is

@s#5F2P ss

ss 2PG . ~3.5!

Our assumption is that the shear transformation zones ar
oriented along the same pair of principal axes and there
that the strain tensor has the form

@«#5F«d «s

«s «d
G , ~3.6!

where«s and«d are the shear and dilational strains, resp
tively. The total shear strain is the sum of elastic and inel
tic components

«s5«s
el1«s

in . ~3.7!

By definition, the elastic component is the linear response
the stress

«s
el5

ss

2m
, ~3.8!

wherem is the shear modulus.
In a more general formulation, we shall have to conside

distribution of orientations of the shear transformation zon
That distribution will not necessarily be isotropic when pla
tic deformations are occurring and very likely the distrib
tion itself will be a dynamical entity with its own equation
of motion. Our present analysis, however, is too crude
justify any such level of sophistication.

The last of our main hypotheses is an equation of mot
for the densities of the shear transformation zones. Den
the two states of the shear transformation zones by the s
bols1 and2 and letn6 be the number densities of zones
those states. We then write

ṅ65R7n72R6n62C1~ss«̇s
in!n61C2~ss«̇s

in!.
~3.9!

Here theR6 are the rates at which6 states transform to7
states. These must be consistent with the transition proba
ties described in the previous paragraphs.

The last two terms in Eq.~3.9! describe the way in which
the population of shear transformation zones changes as
system undergoes plastic deformation. The zones can be
nihilated and created, as shown by the terms with coe
cientsC1 and C2, respectively, at rates proportional to th
rate ss«̇s

in at which irreversible work is being done on th
system. This last assumption is simple and plausible, but
not strictly dictated by the physics in any way that we c
see. As a caveat we mention that in certain circumstan
when the sample does work on its environment,ss«̇s

in could
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be negative, in which case the annihilation and creat
terms in Eq.~3.9! could produce results that would not b
physically plausible. We believe that such states in
theory are dynamically accessible only from unphysi
starting configurations. In related theories, however, t
may not be the case.

It is important to recognize that the annihilation and c
ation terms in Eq.~3.9! are interaction terms and that the
have been introduced here in a mean-field approximat
That is, we implicitly assume that the rates at which sh
transformation zones are annihilated and created depend
on the rate at which irreversible work is being done on
system as a whole and that there is no correlation betw
the position at which the work is being done and the pla
where the annihilation or creation is occurring. This is,
fact, not the case as shown by Fig. 7~b! and is possibly the
weakest aspect of our theory. With the preceding definitio
the time rate of change of the inelastic shear strain«̇s

in has
the form

«̇s
in5VzD«@R1n12R2n2#, ~3.10!

where Vz is the typical volume of a zone andD« is the
increment of local shear strain.

B. Specific assumptions

We turn now to the more detailed assumptions and an
ses that we need in order to develop our general hypoth
into a testable theory. According to our hypothesis about
probabilities of volume fluctuations, we should write th
transition rates in Eq.~3.9! in the form

R65R0 expF2
DV* ~6ss!

v f
G . ~3.11!

The prefactorR0 is an as-yet unspecified attempt frequen
for these transformations. In writing Eq.~3.11! we have used
the assumed symmetry of the system to note that ifDV* (ss)
is the required excess free volume for a1→2 transition,
then the appropriate free volume for the reverse transi
must beDV* (2ss). We adopt the convention that a positiv
shear stress deforms a zone in such a way that it enhance
probability of a1→2 transition and decreases the probab
ity of a 2→1 transition. ThenDV* (ss) is a decreasing
function of ss .

Before going any further in specifying the ingredients
R0, DV* , etc., it is useful to recast the equations of motion
the following form. Define

ntot[n11n2 , nD[n22n1 , ~3.12!

and

C~ss![
1

2FexpS 2
DV* ~ss!

v f
D1 expS 2

DV* ~2ss!

v f
D G ,

S~ss![
1

2FexpS 2
DV* ~ss!

v f
D2 expS 2

DV* ~2ss!

v f
D G .
~3.13!
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@For convenience, and in order to be consistent with la
assumptions, we have suppressed other possible argum
of the functionsC(ss) andS(ss).# Then Eq.~3.11! becomes

«̇s
in5R0VzD«@ntotS~ss!2nDC~ss!#. ~3.14!

The equations of motion fornD andntot are

ṅD5
2«̇s

in

VzD«S 12
ssnD

s̄n`
D ~3.15!

and

ṅtot5
2ss«̇s

in

VzD«s̄
S 12

ntot

n`
D , ~3.16!

wheres̄ andn` are defined by

C1[
2

VzD«n`s̄
, C2[

1

VzD«s̄
. ~3.17!

From Eq. ~3.16! we see thatn` is the stable equilibrium
value ofntot so long asss«̇s

in remains positive.s̄ is a char-
acteristic stress that, in certain cases, turns out to be
plastic yield stress. As we shall see, we need only the ab
form of the equations of motion to deduce the existence
the plastic yield stress and to compute some elemen
properties of the system.

The interesting time-dependent behavior of the syste
however, depends sensitively on the as-yet unspecified in
dients of these equations. Consider first the rate factorR0.
Our zero-temperature hypothesis implies thatR0 should be
zero whenever the inelastic shear rate«̇s

in and the elastic

shear rate«̇s
el5ṡs/2m both vanish. Accordingly, we assum

that

R0>n1/2@~ «̇s
el!21~ «̇s

in!2#1/4, ~3.18!

wheren is a constant that we must determine from the n
merical data. Note thatn contains both an attempt frequenc
and a statistical factor associated with the multiplicity
trajectories leading from one state to the other in an ac
zone@48#.

We can offer only a speculative justification for the righ
hand side of Eq.~3.18!. The rearrangements that occur du
ing irreversible shear transformations are those in wh
molecules deviate from the trajectories that they would f
low if the system were a continuous medium undergo
affine strain. If we assume that these deviations are diffus
and that the affine deformation over some time inter
scales like the strain rate, then the nonaffine transforma
rate must scale like the square root of the affine rate.~Diffu-
sive deviations from smooth trajectories have been obse
directly in numerical simulations of sheared foams@46#, but
only in the equivalent of our plastic flow regime.! In Eq.
~3.18! we further assume that the elastic and inelastic str
rates are incoherent and thus write the sum of squares w
the square brackets. In what follows, we shall not be able
test the validity of Eq.~3.18! with any precision. Most prob-
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ably, the only properties of importance to us for the pres
purposes are the magnitude ofR0 and the fact that it vanishe
when the shear rates vanish.

Finally, we need to specify the ingredients ofDV* and
v f . For DV* we choose the simple form

DV* ~ss!5V0* exp~2ss /m̄ !, ~3.19!

whereV0* is a volume, perhaps of order the average mole

lar volumev0, andm̄ has the dimensions of a shear modulu
The right-hand side of Eq.~3.19! simply reflects the fact tha
the free volume needed for an activated transition will d
crease if the zone in question is loaded with a stress
coincides with the direction of the resulting strain. W
choose the exponential rather than a linear dependence
cause it makes no sense for the incremental free volumeV0*
to be negative, even for very large values of the appl
stresses.

Irreversibility enters the theory via a simple switching b
havior that occurs when thess dependence ofDV* in Eq.
~3.19! is so strong that it converts a negligibly small rate
ss50 to a large rate at relevant, nonzero values ofss . If
this happens, then zones that have switched in one direc
under the influence of the stress will remain in that st
when the stress is removed.

In the formulation presented here, we considerv f to be
constant. This is certainly an approximation; in fact, as s
in Fig. 3, the system dilates during shear deformation.
have experimented with versions of this theory in which
dilation plays a controlling role in the dynamics via vari
tions in v f . We shall not discuss these versions further
cause they behaved in ways that were qualitatively differ
from what we observed in our simulations. The differenc
arise from feedback between inelastic dilation and flow t
occur in these dilational models and apparently not in
simulations. A simple comparison of the quantities involv
demonstrates that the assumption thatv f is approximately
constant is consistent with our other assumptions. If we
sume that the increment in free volume at zero stress mus
of order the volume of a small particleV0* 'v0'0.3 and
then look ahead and use our best-fit value for the ra
V0* /v f'14.0 ~see Sec. III D, Table II!, we find v f'0.02.
Since the change in free volume due to a dilational strain«d
is Dv f5«d /r, where r is the number density and«d
,0.2% for all shear stresses except those very close to y
it appears that, generally,Dv f'«dv0!v f . Even when«d
51%, the value observed in our simulations at yield,

TABLE II. Values of parameters for comparison to simulatio
data.

Parameter Value

s̄ 0.32

VzD«n` 5.7%
n 50.0
V0* /v f 14.0

m̄ 0.25

ntot(0)/n` 2.0
t
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dilational free volume is only about the same as the ini
free volume estimated by this analysis.

As a final step in examining the underlying structure
these equations of motion, we make the scaling transfor
tions

2m«s
in

s̄
[E,

nD

n`
[D,

ntot

n`
[L,

ss

s̄
[S. ~3.20!

Then we find

Ė5 ĒF~S,L,D!, ~3.21!

Ḋ52F~S,L,D!~12SD!, ~3.22!

L̇52F~S,L,D!S~12L!, ~3.23!

where

F~S,L,D!5R0@LS~S!2DC~S!# ~3.24!

and

C~S!5
1

2FexpS 2
V0*

v f
e2ASD 1expS 2

V0*

v f
eASD G ,

S~S!5
1

2FexpS 2
V0*

v f
e2ASD 2expS 2

V0*

v f
eASD G .

~3.25!

Here,

A[
s̄

m̄
, Ē[

2mVzD«n`

s̄
. ~3.26!

The rate factor in Eq.~3.18! can be rewritten

R05 ñ1/2~Ṡ21 Ė2!1/4, ~3.27!

where

ñ[
s̄

2m
n. ~3.28!

C. Special steady-state solutions

Although, in general, we must use numerical methods
solve the fully time-dependent equations of motion, we c
solve them analytically for special cases in which the str
S is held constant. Note that none of the results presente
this subsection, apart from Eq.~3.35!, depend on our specific
choice of the rate factorR0.

There are two specially important steady-state solution
constantS. The first of these is a jammed solution in whic
Ė50, that is,F(S,L,D) vanishes and therefore

D5L
S~S!

C~S!
5LT~S!, ~3.29!

where

T~S![122F11expS 2
V0*

v f
sinh~AS! D G21

. ~3.30!
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Now suppose that instead of increasing the stress
finite rate, as we have done in our numerical experiments
let it jump discontinuously, from zero, perhaps, to its val
S at time t50. While S is constant, Eqs.~3.22! and ~3.23!
can be solved to yield

12L~ t !

12L~0!
5

12SD~ t !

12SD~0!
, ~3.31!

whereL(0) andD(0) denote the initial values ofL(t) and
D(t), respectively. Similarly, we can solve Eqs.~3.21! and
~3.22! for E(t) in terms of D(t) and obtain a relationship
between the bias in the population of defects and the cha
in strain,

E~ t !5E~0!1
Ē

2S
lnS 12SD~0!

12SD~ t ! D . ~3.32!

Combining Eqs.~3.29!, ~3.31!, and~3.32!, we can determine
the change in strain prior to jamming. That is, forS suffi-
ciently small that the following limit exists, we can compu
a final inelastic strainEf :

Ef[ lim
t→`

E~ t !5E~0!1
Ē

2S
lnS 11S

T~S!L~0!2D~0!

12ST~S! D .

~3.33!

The right-hand side of Eq.~3.33!, for E(0)5D(0)50,
should be at least a rough approximation for the inela
strain as a function of stress as shown in Fig. 5.

The preceding analysis is our mathematical description
how the system jams due to the two-state nature of the s
transformation zones. Each increment of plastic deforma
corresponds to the transformation of zones aligned favora
with the applied shear stress. As the zones transform, the
in their population, i.e.,D, grows. Eventually, all of the fa-
vorably aligned zones that can transform at the given m
nitude and direction of the stress have undergone their
allowed transformation,D has become large enough to cau
F in Eq. ~3.24! to vanish, and plastic deformation comes to
halt.

The second steady state is a plastically flowing solution
which ĖÞ0 but Ḋ5L̇50. From Eq.~3.22! and ~3.23! we
see that this condition requires

D5
1

S
, L51. ~3.34!

This leads us directly to an equation for the strain rate
constant applied stress,

Ė5 ñ Ē2FS~S!2
1

S
C~S!G2

. ~3.35!

This flowing solution arises from the nonlinear annihilati
and creation terms in Eq.~3.9!. In the flowing state, stresse
are high enough that shear transformation zones are con
ously created. A balance between the rate of zone crea
and the rate of transformation determines the rate of de
mation.
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Examination of Eqs.~3.22! and ~3.23! reveals that the
jammed solution~3.29! is stable for low stresses, while th
flowing solution~3.34! is stable for high stresses. The cros
over between the two solutions occurs when both Eqs.~3.29!
and ~3.34! are satisfied. This crossover defines the yie
stressSy , which satisfies the condition

1

Sy
5T~Sy!. ~3.36!

Note that the argument of the logarithm in Eq.~3.33! di-
verges at S5Sy . Note also that, so long a
(2V0* /v f)sinh(ASy)@1, Eq. ~3.36! implies thatSy>1. This
inequality is easily satisfied for the parameters discusse
the following subsection. Thus the dimensional yield stre
sy is approximated accurately bys̄ in our original units
defined in Eq.~3.20!.

D. Parameters of the theory

There are five adjustable system parameters in our the
s̄, VzD«n` , n, V0* /v f , andm̄. In addition, we must specify
initial conditions forE, D, and L. For all cases of interes
here, E(0)5D(0)50. However, L(0)5ntot(0)/n` is an
important parameter that characterizes the as-quenched
tial state of the system and remains to be determined.

To test the validity of this theory, we now must find o
whether there exists a set of physically reasonable value
these parameters for which the theory accounts for all~or
almost all! of the wide variety of time-dependent phenome
seen in the molecular-dynamics experiments. Our strat
has been to start with rough guesses based on our un
standing of what these parameters mean and then to a
these values by trial and error to fit what we believe to be
crucial features of the experiments. We then have used th
values of the parameters in the equations of motion to ch
agreement with other numerical experiments. In adjust
parameters, we have looked for accurate agreement betw
theory and experiment in low-stress situations where we
pect the concentration of active shear transformation zone
be low and we have allowed larger discrepancies near
above the yield stress where we suspect that interactions
tween the zones may invalidate our mean-field approxim
tion. Our best-fit parameters are shown in Table II.

The easiest parameter to fit should bes̄ because it should
be very nearly equal to the yield stress. That is, it should
somewhere in the range 0.30–0.35 according to the d
shown in Fig. 5. Note that we cannot use Eq.~3.33! to fit the
experimental data near the yield point because both the
merical simulations and the theory tell us that the syst
approaches its stationary state infinitely slowly there. Mo
over, we expect interaction effects to be important here. T
solid curve in Fig. 5 is the theoretically predicted stra
found by integrating the equations of motion for 800 tim
units, the duration of the longest of the simulation runs. T
downward adjustment ofs̄, from its apparent value of abou
0.35 to its best-fit value of 0.32, has been made on the b
of the latter time-dependent calculations plus evidence ab
the effect of this parameter in other parts of the theory.

Next we considerVzD«n` , a dimensionless paramete
that corresponds to the amount of strain that would occu
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the density of zones were equal to the equilibrium conc
tration (ntot5n`) and if all the zones transformed in th
same direction in unison. Alternatively, if the local stra
incrementD« is about unity, then this parameter is the fra
tion of the volume of the system that is occupied by sh
transformation zones. In either way of looking at this qua
tity, our best-fit value of 5.7% seems sensible.

The parametern is a rate that is roughly the product of a
attempt frequency and a statistical factor. The only syste
dependent quantity with the dimensions of inverse time is
molecular vibrational frequency, which we have seen is
order unity. Our best-fit value of 50 seems to imply that t
statistical factor is moderately large, which, in turn, impli
that the shear transformation zones are fairly complex, m
timolecule structures. Lacking any first-principles theory
this rate factor, however, we cannot be confident about
observation.

Our first rough guess for a value ofV0* /v f comes from the
assumption thatDV* must be about one molecular volum
in the absence of an external stress and thatv f is likely to be
about a tenth of this. Thus our best-fit value of 14.0 is re
suringly close to what we expected.

The parameterm̄, a modulus that characterizes the sen
tivity of DV* to the applied stress, is especially interestin
Our best-fit value of 0.25 is almost two orders of magnitu
smaller than a typical shear modulus for these systems.
means that the shear transformations are induced by
tively small stresses or, equivalently, the internal elas
modes within the zones are very soft. This conclusion
supported quite robustly by our fitting procedure. Alternat
assumptions, such as control by variations in the average
volume v f discussed earlier, produce qualitatively wro
pictures of the time-dependent onset of plastic deformati

Finally, we considerL(0)5ntot(0)/n` , the ratio of the
inital zone density to the equilibrium zone density. This p
rameter characterizes the transient behavior associated
the initial quench; that is, it determines the as-quenched
tem’s first response to an applied stress. We can learn so
thing about this parameter by looking at later behavior, i
the next few segments of a hysteresis loop such as
shown in Fig. 6. If, as is observed there, the loop narro
after the first leg, then we know that there was an exces
shear transformation zones in the as-quenched system
that this excess was reduced in the initial deformation.
initial excess meansL(0).1, consistent with our best-fi
value of 2.0.

E. Comparisons between theory and simulations

We now illustrate the degree to which this theory can a
cannot account for the phenomena observed in the nume
experiments.

Figure 9 summarizes one of the principal successes o
theory, specifically, its ability to predict the time-depende
onset of plastic deformation over a range of applied stres
below the yield stress. The solid lines in the figure show
shear strains in three different simulations as functions
time. In each simulation the stress is ramped up at the s
controlled rate, held constant for a period of time, and th
ramped down, again at the same rate. In the lowest curve
stress reaches a maximum of 0.1 in our dimensionless s
-
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2 ), in the middle curve 0.2, and in the highe

0.3. The dashed lines show the predictions of the theory.
excellent agreement during and after the ramp up is our m
direct evidence for the small value ofm̄ quoted above. The
detailed shapes of these curves at the tops of the ram
where ṡs drops abruptly to zero, provide some qualitati
support for our choice of the rate dependence ofR0 in Eq.
~3.18!. As shown in Fig. 5 and discussed in Sec. III D, t
final inelastic strains in these ramp-up experiments are
predicted adequately by the theory.

The situation is different for the unloading phases of the
experiments, that is, during and after the periods when
stresses are ramped back down to zero. The theoretical s
rates shown in Fig. 9 vanish abruptly at the bottoms of
ramps because our transformation rates become neglig
small at zero stress. In the two experimental curves for
higher stresses, however, the strain continues to decreas
a short while after the stresses have stopped changing.
theory seems to rule out any such recovery of inelastic st
at zero stress; thus we cannot account for this phenome
except to remark that it must have something to do with
initial state of the as-quenched system. As seen in Fig. 6
such recovery occurs when the system is loaded and
loaded a second time.

In Fig. 6, we compare the stress-strain hysteresis loo
the simulation~solid line! with that predicted by the theory
~dashed line!. Apart from the inelastic strain recovery afte
the first unloading in the simulation, the theory and the e
periment agree well with one another at least through
reverse loading to pointk. The agreement becomes less go
in subsequent cycles of the hysteresis loop, possibly bec
shear bands are forming during repeated plastic defor
tions.

In the last of the tests of theory to be reported here,
have added in Fig. 1 two theoretical curves for stresses
functions of strain at the two different constant strain ra
used in the simulations. The agreement between theory
experiment is better than we probably should expect for s
ations in which the stresses necessarily rise to values a

FIG. 9. Strain vs time for simulations in which the stress h
been ramped up at a controlled rate to stresses of 0.1, 0.2, and
held constant, and then ramped down to zero~solid lines!. The
dashed lines are the corresponding theoretical predictions. Tim
measured in units of (maSL

2 /eSL)
1/2.
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above the yield stress. Moreover, the validity of the comp
son is obscured by the large fluctuations in the data, wh
we believe to be due primarily to small sample size.

Among the interesting features of the theoretical result
Fig. 1 are the peaks in the stresses that occur just prior to
establishment of steady states at constant stresses. T
peaks occur because the internal degrees of freedom o
system, specificallyD(t) and L(t), cannot initially equili-
brate fast enough to accommodate the rapidly increasing
elastic strain. Thus there is a transient stiffening of the m
terial and a momentary increase in the stress neede
maintain the constant strain rate. This kind of effect may
part be the explanation for some of the oscillations in
stress seen in the experiments. In a more speculative vein
note that this is our first direct hint of the kind of dynam
plastic stiffening that is needed in order to transmit hi
stresses to crack tips in brittle fracture. The strain rates n
the tips of brittle cracks are at least of the same order
magnitude as the strain rates imposed here and may in
be substantially higher.

IV. CONCLUDING REMARKS

The most striking and robust conclusion to emerge fr
this investigation, in our opinion, is that a wide range
realistic, irreversible, viscoplastic phenomena occur in an
tremely simple molecular-dynamics model a tw
dimensional, two-component, Lennard-Jones amorph
solid at essentially zero temperature. An almost equally st
ing conclusion is that a theory based on the dynamics
two-state shear transformation zones is in substantial ag
ment with the observed behavior of this model. This the
has survived several quantitative tests of its applicability

We stated in our Introduction that this is a prelimina
report. Both the numerical simulations and the theoret
analysis require careful evaluation and improvements. M
importantly, the work so far raises many important questio
that need to be addressed in future investigations.

The first kind of question pertains to our molecula
dynamics simulations: Are they accurate and repeatable?
believe that they are good enough for present purposes
we recognize that there are potentially important difficulti
The most obvious of these is that our simulations have b
performed with very small systems; thus size effects may
important. For example, the fact that only a few shear tra
forming regions are active at any time may account
abrupt jumps and other irregularities sometimes seen in
simulations, e.g., in Fig. 1. We have performed the simu
tions in a periodic cell to eliminate edge effects. We a
have tried to compare results from two systems of differ
sizes, although only the results from the larger system
presented here. Unfortunately, comparisons between any
different initial configurations are difficult because of o
inability, as yet, to create reproducible glassy starting c
figurations~a problem that we shall discuss next!. However,
we have seen qualitatively the same behavior in both syst
and assume that phenomena that are common to both
tems can be used as a guide for theoretical investigation

As noted in Sec. II B and in Table I, our two systems h
quite different elastic moduli.~Remarkably, their yield
stresses were nearly identical. It would be interesting to le
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whether this is a repeatable and/or physically important p
nomenon.! The discrepancy between the elastic properties
the two systems leads us to believe that, in future work,
shall have to learn how to control the initial configuratio
more carefully, perhaps by annealing the systems after
initial quenches. Unfortunately, straightforward annealing
temperatures well below the glass transition is not yet p
sible with standard molecular-dynamics algorithms, wh
can simulate times only up to about 1ms for systems of this
size even with today’s fastest computers. Monte Carlo te
niques or accelerated molecular-dynamics algorithms m
eventually be useful in this effort@49–51#. An alternative
strategy may be simply to look at larger numbers of simu
tions.

By far the most difficult and interesting questions, ho
ever, pertain to our theoretical analysis. Although Figs. 7 a
8 provide strong evidence that irreversible shear transfor
tions are localized events, we have no sharp definition o
‘‘shear transformation zone.’’ So far, we have identifie
these zones only after the fact, that is, only by observ
where the transformations are taking place. Is it possible
least in principle, to identify zones before they become
tive?

One ingredient of a better definition of shear transform
tion zones will be a generalization to isotropic amorpho
systems in both two and three dimensions. As we noted
Sec. III, our functionsn6(t) should be tensor quantities tha
describe distributions over the ways in which the individu
zones are aligned with respect to the orientation of the
plied shear stress. We believe that this is a relatively e
generalization; one of us~M.L.F.! expects to report on work
along these lines in the future.

Our more urgent reason for needing a better understa
ing of shear transformation zones is that, without such
understanding, we shall not be able to find first-princip
derivations of several, as-yet purely phenomenological,
gredients of our theory. It might be useful, for example, to
able to start from the molecular force constants and calcu
the parametersV0* and m̄ that occur in the activation facto
~3.19!. These parameters, however, seem to have clear ph
cal interpretations; thus we might be satisfied to deduce th
from experiment. In contrast, the conceptually most ch
lenging and important terms are the rate factor in Eq.~3.18!
and the annihilation and creation terms in Eq.~3.9!, where
we do not even know what the functional forms ought to b

Calculating the rate factor in Eq.~3.18!, or a correct ver-
sion of that equation, is clearly a very fundamental probl
in nonequilibrium statistical physics. So far as we kno
there are no studies in the literature that might help us co
pute the force fluctuations induced at some site by extern
driven deformations of an amorphous material. Nor do
know how to compute a statistical prefactor analogous, p
haps, to the entropic factor that converts an activation ene
to an activation free energy.@48# We do know, however, tha
that entropic factor will depend strongly on the size a
structure of the zone that is undergoing the transformatio

As emphasized in Sec. III, the annihilation and creat
terms in Eq.~3.9! describe interaction effects. Even withi
the framework of our mean-field approximation, we do n
know with any certainty what these terms should be. O
assumption that they are proportional to the rate of irreve
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ible work is by no means unique.~Indeed, we have tried
other possibilities in related investigations and have arri
at qualitatively similar conclusions.! Without knowing more
about the nature of the shear transformation zones, it wil
difficult to derive such interaction terms from first principle

A better understanding of these interaction terms is es
cially important because these are the terms that will hav
be modified when we go beyond the mean-field theory
account for correlations between regions undergoing pla
deformations. We know from our simulations that the act
zones cluster even at stresses far below the plastic y
stress and we know that plastic yield in real amorphous
terials is dominated by shear banding. Thus, generalizing
present mean-field theory to one that takes into account
tial variations in the densities of shear transformation zo
must be a high priority in this research program.

Finally, we return briefly to the question that motivate
this investigation: How might the dynamical effects d
scribed here, which must occur in the vicinity of a crack t
control crack stability and brittle or ductile behavior? As w
e
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have seen, our theoretical picture of viscoplasticity does
low large stresses to be transmitted, at least for short tim
through plastically deforming materials. It should be intere
ing to see what happens if we incorporate this picture i
theories of dynamic fracture.
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@38# F. Lançon and L. Billard, J. Phys.~France! 49, 249 ~1988!.
@39# R. Mikulla, J. Roth, and H.-R. Trebin, Philos. Mag. B71, 981

~1995!.
@40# J. Dieterich, Pure Appl. Geophys.116, 790 ~1978!.
@41# J. Dieterich, J. Geophys. Res.84, 2161~1979!.
@42# J. Rice and A. Ruina, J. Appl. Mech.105, 343 ~1983!.
@43# A. Ruina, J. Geophys. Res.88, 10 359~1983!.
@44# J. Dieterich,PAGEOPH143, 283 ~1994!.
@45# J. Carlson and A. Batista, Phys. Rev. E53, 4153~1996!.
@46# S. Langer and A. Liu~unpublished!.
@47# A. Mehta and S. F. Edwards, Physica A157, 1091~1990!.
@48# J. Langer, Ann. Phys.~N.Y.! 54, 258 ~1969!.
@49# G. Barkema and N. Mousseau, Phys. Rev. Lett.77, 4358

~1996!.
@50# A. Voter, J. Chem. Phys.106, 4665~1997!.
@51# A. Voter, Phys. Rev. Lett.78, 3908~1997!.


