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Dynamics of viscoplastic deformation in amorphous solids
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We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is
based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These
numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically,
reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a
stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system
on the history of past deformations. Microscopic observations suggest that a dynamically complete description
of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain
average features of a population of two-state shear transformation zones. Our introduction of these state
variables into the constitutive equations for this system is an extension of earlier models of creep in metallic
glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and
postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transfor-
mation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenom-
ena seen in the simulations$$1063-651X98)01306-3

PACS numbe(s): 83.50.Nj, 62.20.Fe, 61.43j, 81.05.Kf

[. INTRODUCTION some polycrystalline materials or even single crystals with
large numbers of randomly distributed dislocations.

This paper is a preliminary report on a molecular- We describe our numerical experiments in Sec. Il. Our
dynamics investigation of viscoplastic deformation in a non-working material is a two-dimensional, two-component, non-
crystalline solid. It is preliminary in the sense that we havecrystalline solid in which the molecules interact via Lennard-
completed only the initial stages of our planned simulationJones forces. We purposely maintain our system at a tem-
project. The results, however, have led us to a theoreticgberature very far below the glass transition. In the
interpretation that we believe is potentially useful as a guideexperiments, we subject this material to various sequences of
for further investigations along these lines. In what follows,pure shear stresses, during which we measure the mechanical
we describe both the simulations and the theory. response. The simulations reveal a rich variety of behaviors

Our original motivation for this project was an interest in typical of metallic glasse$10—13 and other viscoplastic
the physics of deformations near the tips of rapidly advancsolids [14], specifically, reversible elastic deformation at
ing cracks, where materials are subject to very large stressasnall applied stresses, irreversible plastic deformation at
and experience very high strain rates. Understanding the disomewhat larger stresses, a stress threshold above which un-
sipative dynamics that occur in the vicinity of the crack tip is bounded plastic flow occurs, and a strong dependence of the
necessary to construct a satisfactory theory of dynamic fracstate of the system on the history of past deformations. In
ture [1]. Indeed, we believe that the problem of dynamicaddition, the molecular-dynamics method permits us to see
fracture cannot be separated from the problem of understanghat each molecule is doing at all times; thus we can iden-
ing the conditions under which a solid behaves in a brittle ottify the places where irreversible molecular rearrangements
ductile mannef2-6]. To undertake such a project we even- are occurring.
tually shall need sharper definitions of the terms “brittle”  Our microscopic observations suggest that a dynamically
and “ductile” than are presently available; but we leave complete description of the macroscopic state of this deform-
such questions to future investigations while we focus on théng body requires specifying, in addition to stress and strain,
specifics of deformation in the absence of a crack. certain average features of a population of what we shall call

We have chosen to study amorphous materials becausshear transformation zones.” These zones are small re-
the best experiments on dynamic instabilities in fracture havgions, perhaps consisting of only five or ten molecules, in
been carried out in silica glasses and polymgt$8]. We  special configurations that are particularly susceptible to in-
know that amorphous materials exhibit both brittle and duc-elastic rearrangements in response to shear stresses. We ar-
tile behavior, often in ways that, on a macroscopic level,gue that the constitutive relations for a system of this kind
look very similar to deformation in crystal9]. More gener-  must include equations of motion for the density and internal
ally, we are looking for fundamental principles that might states of these zones; that is, we must add new time-
point us toward theories of deformation and failure in broaddependent state variables to the dynamical description of this
classes of macroscopically isotropic solids where thinking oystem[15,16]. Our picture of shear transformation zones is
deformation in terms of the dynamics of individual disloca- based on earlier versions of the same idea due to Argon,
tions[2,3] is either suspect, due to the absence of underlyingpaepen, and others who described creep in metallic alloys
crystalline order, or simply intractable, due to the extremen terms of activated transitions in intrinsically heteroge-
complexity of such an undertaking. In this way we hope thaneous material§17—-22. These theories, in turn, drew on
the ideas presented here will be generalizable perhaps fwrevious free-volume formulations of the glass transition by
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Turnbull, Cohen, and others in relating the transition rates to ) 1V

local free-volume fluctuation$20,23—253. None of those [e]=— 5 qo=[0a]-[o]), (2.9
theories, however, were meant to describe the low- Tp NkgT

temperature behavior seen here, especially the different kinds

of irreversible deformations that occur below and above a L=[e]-L. (2.5
stress threshold, and the history dependence of the response
of the system to applied loads. Herer, and p, are the position and momentum of théh

We present the theory of the dynamics of shear transformolecule and=, is the force exerted on that molecule by its
mation zones in Sec. lll. This theory contains four crucialneighbors via the Lennard-Jones interactions. The quantities
features that are not, so far as we know, in any previousn square brackets, e.g.g] or [o], are two-dimensional
analysis. First, once a zone has transformed and relievedtgnsors.T is the temperature of the thermal reservairjs
certain amount of shear stress, it cannot transform again ithe volume of the systertin this case, the argaandN is the
the same direction. Thus the system saturates and, in th&umber of moleculesT,;, is the average kinetic energy per
language of granular materials, it becomes “jammed.” Secmolecule divided by Boltzmann’s constakg. [o] is the
ond, zones can be created and destroyed at rates proportioraternally applied stress andr,,] is the average stress
to the rate of irreversible plastic work being done on thethroughout the system computed to be
system. This is the ingredient that produces a threshold for
plastic flow; the system can become “unjammed” when new 1 P
zones are being created as fast as existing zones are being [%ﬂifﬂ% % Fomfam: (2.6)
transformed. Third, the attempt frequency is tied to the noise

in the system, which is driven by the strain rate. The stochasyhere F! is theith component of the force between par-
tic nature of these fluctuations is assumed to arise from ranicles n andm. ri. is the jth component of the vector dis-
1 nm

dom motions associated with the disorder in the SyStemplacement between those particles, ahds the volume of

Fourth, the transition rates are strongly sensitive to the apye systemL is the locus of points that describe the bound-
plied stress. It is this sensitivity that produces memory ef-ary of the simulation cell. While Eq(2.5) is not directly

fects. relevant to the dynamics of the particles, keeping track of the

The resulting theory accounts for many of the features ofqnqary is necessary in order to properly calculate intermo-
the deformation dynamics seen in our simulations. Howevelia.yiar distances in the periodic cell.

it is a mean-field theory that fails to take into account any The additional dynamical degrees of freedom in Egs.

spatial correlations induced by interactions between ZONe® 1)_(2.5) are a viscosity, which couples the system to the
and therefore it cannot explain all aspects of the behavio :

that we observe. In particular, the mean-field nature of Oufhermal reservoir, and a strain rdte], via which the exter-

theory precludes, at least for the moment, any analysis O@glly applied stress is transmitted to the system. Note that

strain localization or shear banding. [e] induces an affine transformation about a reference point
Ry, which, without loss of generality, we choose to be the
Il. MOLECULAR-DYNAMICS EXPERIMENTS origin of our coordinate system. In a conventional formula-

) tion, [ o] would be equal to- P [I], whereP is the pressure
A. Algorithm and[1] is the unit tensor. In that case, these equations of
Our numerical simulations have been performed in themotion are known to produce the same time-averaged equa-
spirit of previous investigations of deformation in amorphoustions of state as an equilibrium NPT ensemf86]. By in-
solids [26—29. We have examined the response to an apstead controlling the tensdrr], including its off-diagonal
plied shear of a noncrystalline, two-dimensional, two-terms, it is possible to apply a shear stress to the system
component solid composed of either 10 000 or 20 000 molwithout creating any preferred surfaces that might enhance
ecules interacting via Lennard-Jones forces. Our moleculassystem-size effects and interfere with observations of bulk
dynamics algorithm is derived from a standard NPTproperties. The applied stress and the strain-rate tensor are
(number, pressure, temperatudgnamics schemg30], i.e.,  constrained to be symmetric in order to avoid physically un-
a pressure-temperature ensemble, with a Nose-Hoover thdnteresting rotations of the cell. Except where otherwise
mostat [31-33 and a Parinello-Rahman baros{&@4,35 noted, all of our numerical experiments are carried out at
modified to allow imposition of an arbitrary two-dimensional constant temperature, wit = 0, and with the sample
stress tensor. The system obeys periodic boundary conditiotmsaded in uniform, pure shear.
and both the thermostat and barostat act uniformly through- We have chosen the artificial time constantsand 7p to

out the sample. represent physical aspects of the system. As suggested by
Our equations of motion are Nose [31], 71 is the time for a sound wave to travel an
interatomic distance and, as suggested by Ander36}h 7p
.p . ; . ;
rn=—n+[8]~(rn—Ro), 2.1) is the time for sound to travel the size of the system.
n
. . B. Model solid
Pn=Fn—([e]+&[1])Pn, (2.2

The special two-component system that we have chosen

L 1T to study here has been the subject of other investigations
&= —2( T'n - ) (2.3  [37-39 primarily because it has a quasicrystalline ground
T state. The important point for our purposes, however, is that
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this system can be quenched easily into an apparently stable TABLE I. Sample sizes and elastic constants.
glassy state. Whether this is actually a thermodynamically _
stable glass phase is of no special interest here. We care only Shear  Bulk 2D Poisson Young's
that the noncrystalline state has a lifetime that is very muctpample Molecules modulus modulus  ratio modulus
longer than the durqtlon of our experiments. _ _ 1 10 000 99 31 051 30
Our system consists of molecules of two different sizes,
. B > » B . 2 20 000 16 58 0.57 50
which we call “small” (S) and “large” (L). The interac-
tions between these molecules are standard 6-12 Lennard-
Jones potentials larger of the two samples; the smaller sample has been used
» 6 primarily to check the reliablility of our procedures. We have
a a . ;
U, 4(r)=4e Gap| | ZaB } 2.7) created each of these samples only once; thus each experi-
h “Bl\ r ’ ment using either of them starts with precisely the same set

_ of molecules in precisely the same positions. As will become
where the subscripta, 8 denoteS or L. We choose the  ¢jeqr, there are both advantages and uncertainties associated
zero-energy interatomic distancagy to be with this procedure. On the one hand, we have a very care-
fully controlled starting point for each experiment. On the
aw a .. .
aSSZZSi,—(_ , aLLzzsi,—<_ , ag =1, (2.9 other hand, we do not know how sensitive the mechanical
10 5 properties of our system might be to details of the prepara-
. tion process, nor do we know whether to expect significant
with bond strengths o . ; .
sample-to-sample variations in the molecular configurations.
To illustrate these uncertainties, we show the elastic con-
es =1, esgs eLL=5- (2.9  stants of the samples in Table I. The moduli are expressed
there in units ofeg, /a3, . [Note that the Poisson ratio for a
For computational efficiency, we impose a finite-range cutoffwo-dimensional2D) system has an upper bound of 1 rather
on the potentials in Eq2.7) by setting them equal to zero than 0.5 as in the three-dimensional caSéhe appreciable
for Separation distances greater than 255L The masses d|ﬂferences betWeen the mOdu|I Of Supposed.ly Ident!Cal ma-
are all taken to be equal. The ratio of the number of largderials tell us that we must be very careful in drawing de-
molecules to the number of small molecules is half thetailed conclusions from these preliminary results.
golden mean

C. Simulation results
N, 1+.5

. (2.10 1. Macroscopic observations
Ng 4

In all of our numerical experiments, we have tried simply

In the resulting system, it is energetically favorable for tento mimic conventional laboratory measurements of visco-
small molecules to surround one large molecule or for fiveplastic properties of real materials. The first of these is a
large molecules to surround one small molecule. The highlyneasurement of stress at constant strain rate. As we shall see,
frustrated nature of this system avoids problems of locathis supposedly simplest of the experiments is especially in-
crystallization that often occur in two dimensions where theteresting and problematic for us because it necessarily probes
nucleation of single-component crystalline regions is diffi-time-dependent behavior near the plastic yield stress.
cult to avoid. As shown by Lamm et al. [37], this system Our results for two different strain rates are shown in Fig.
goes through something like a glass transition upon coolind. The strain rates are expressed in units proportional to the
from its liquid state. The glass transition temperature isfrequency of oscillation about the minimum in the Lennard-
0.3T,, wherekgTo=es, . All the simulations reported here Jones potential, specifically, in units @f=(es /ma3,)*?,
have been carried out at a temperaflire0.001T, that is, at wherem is the particle masg§The actual frequency for the
0.3% of the glass transition temperature. Thus all of the pheSL potential, in cycles per second, is X2 ) w,
nomena to be discussed here take place at a temperature vesl.2w,.] As usual, the sample has been kept at constant
much lower than the energies associated with the moleculaemperature and at pressie- 0. At low strain, the material
interactions. behaves in a linearly elastic manner. As the strain increases,

In order to start with a densely packed material, we havehe response becomes nonlinear and the material begins to
created our experimental systems by equilibrating a randordeform plastically. Plastic yielding, that is, the onset of plas-
distribution of particles under high pressure at the low tem+ic flow, occurs when the strain reaches approximately 0.7%.
perature mentioned above. After allowing the system to relatNote that the stress does not rise smoothly and monotoni-
at high pressure, we have reduced the pressure to zero andlly in these experiments. We presume that most of this
again allowed the sample to relax. Our molecular-dynamicéregularity would average out in larger systems. As we shall
procedure permits us to relax the system only for times orsee, however, there may also be more interesting dynamical
the order of nhanoseconds, which are not long enough for theffects at work here.
material to experience any significant amount of annealing, In all of the other experiments to be reported here, we
especially at such a low temperature. have controlled the stress on the sample and measured the

We have performed numerical experiments on two differ-strain. In the first of these, shown in Fig. 2, we have in-
ent samples, containing 10 000 and 20 000 molecules, resreased the stress to various different values and then held it
spectively. All of the simulation results shown are from the constant.
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0.0 10 % g;’l S:;.o . 40 50 FIG. 3. Stress and strain vs time for one particular loading
e €ar strain where the stress has been ramped up-de 0.25, held for a time,

FIG. 1.jhear stress vs strain for strain rates of'1Golid lineS  and then released. Note that, in addition to the shear response, the
and 2<10"" (dotted lines. The thicker lines that denote the simu- material undergoes a small amount of dilation. Time is measured in
lation results exhibit both linear elastic behavior at low strain andpits of (mad /es) V2 stress is measured in units ef, /a2, .
nonlinear response leading to yield at approximately: 0.35. The

thinner curves are predictions of the theory for the two strain rates. . ] ) o
Strain rate is measured in units oé(/m a2)Y2 stress is mea- cally until it reaches some final strain, at which it ceases to

sured in units okg, /a3, . undergo further deformation on observable time scdl&®
cannot rule out the possibility of slow creep at much longer

In each of these experimental runs, the stress starts at zef§'es) In the case labeled by diamonds, for which the final
and increases at the same constant rate until the desired firf[€ss is the largest of the three cases shown, the sample
stress is reached. The graphs ShOW both th|s app“ed Streggntinues to deform plastically at constant stress thrOUghOUt
(solid symbol$ and the resulting straifopen symbols as  the duration of the experiment. We conclude from these and
functions of time, for three different cases. Time is measure@ number of similar experimental runs that there exists a
in the same molecular-vibration units used in the previougvell-defined critical stress for this material, below which it
experiments, i.e., in units omagL/eSL)lf% The stresses and reaches a limit of plastic deformation, that is, it “jams,” and
strain axes are related by twice the shear modulus so that, #ove which it flows plastically. Because the stress is
the response is linearly elastic, the two curves lie on top ofamped up quickly, we can see in curves with squares and
one another. In the case labeled by triangles, the final stregBamonds of Fig. 2 that there is a separation of time scales
is small and the response is nearly elastic. For the casdsetween the elastic and plastic responses. The elastic re-
labeled by circles and squares, the sample deforms plastéponse is instantaneous, while the plastic response develops
over a few hundred molecular vibrational periods. To see the
distinction between these behaviors more clearly, we have
performed experiments in which we load the system to a
fixed, subcritical stress, hold it there, and then unload it by
ramping the stress back down to zero. In Fig. 3, we show this
stress and the resulting total shear strain, as functions of
time, for one of those experiments. If we define the elastic
strain to be the stress divided by twice the previously mea-
sured, as-quenched, shear modulus, then we can compute the
inelastic strain by subtracting the elastic from the total. The
result is shown in Fig. 4. Note that most, but not quite all, of
the inelastic strain consists of nonrecoverable plastic defor-
mation that persists after unloading to zero stress. Note also,
as shown in Fig. 3, that the system undergoes a small dilation

FIG. 2. Shear straifopen symbolsvs time for several applied durm_g this process and that this dilation appears to have both
elastic and inelastic components.

shear stressdsolid symbol$. The stresses have been ramped up at ) . L .
d y > pec i Using the simple prescription outlined above, we have

a constant rate until reaching a maximum value and then have been : ) A . .
held constant. The strain and stress axes are related by twice faeasured the final inelastic shear strain as a function of shear

shear modulus so that, for linear elastic response, the open ariir€Ss. That is, we have measured the shear strain once the
closed symbols would be coincident. For low stresses the sampfystem has ceased to deform as in the subcritical cases in
responds in an almost entirely elastic manner. For intermediat&ig. 2, and then subtracted the elastic part. The results are
stresses the sample undergoes some plastic deformation prior &0wWn in Fig. 5. As expected, we see only very small
jamming. In the case where the stress is brought above the yieldmounts of inelastic strain at low stress. As the stress ap-
stress, the sample deforms indefinitely. Time is measured in units gproaches the yield stress, the inelastic strain appears to di-
(mad,/es)*? stress is measured in units @f, /a3, . verge approximately logarithmically.

1.00

Stress

uleng 183YS %,

Time
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FIG. 4. Elastic and inelastic strain vs time for the same simula-
tion as that shown in Fig. 3. The inelastic strain is found by sub-
tracting the linearly elastic strain from the total strain. Note the -0z
partial recovery of the inelastic portion of the strain that occurs

during and after unloading. Time is measured in units of 0 00 1‘0

(mag /es) "> %Shear Strain

. . FIG. 6. Stress-strain trajectory for a molecular-dynamics experi-
The final test that we have performed is to cycle the SYStent in which the sample has been loaded, unloaded, reloaded,

tem through loading, reloading, and reverse loading. Aginjoaded again, and then reverse loaded, all at stresses below the
shown in Fig. 6, the sample is first loaded on the curve fromie|q stress. The smaller graph above shows the history of applied
a tob. The initial response is linearly elastic, but, eventually,shear stress with letters indicating identical times in the two graphs.
deviation from linearity occurs as the material begins to deThe dashed line in the main graph is the theoretical prediction for
form inelastically. Fronb to c, the stress is constant and the the same sequence of stresses. Note that a small amount of inelastic
sample continues to deform inelastically until reaching a fi-strain recovery occurs after the first unloading in the simulation, but
nal strain at. Upon unloading, front to d, the system does that no such behavior occurs in the theory. Thus the theoretical
not behave in a purely elastic manner but rather recoversurve fromc throughh unloads, reloads, and unloads again all
some portion of the strain inelastically. While held at zeroalong the same line. Time is measured in units wfa§, /es )%
stress, the sample continues to undergo inelastic strain recostress is measured in units ef /a5, .
ery fromd to e.

When the sample is then reloaded fr@mo f, it under- iy the previous unloading frora throughe.
goes much less inelastic deformation than during the initial
loading. Fromf to g the sample again deforms inelastically,
but by an amount only slightly more than the previously
recovered strain, returning approximately to paintUpon
unloading again frong to h to i, less strain is recovered than

It is during reverse loading from to k that it becomes
apparent that the deformation history has rendered the amor-
phous sample highly anisotropic in its response to further
applied shear. The inelastic strain frérto k is much greater
than that frome to g, demonstrating a very significant
Bauschinger effect. The plastic deformation in the initial di-
rection apparently has biased the sample in such a way as to
inhibit further inelastic yield in the same direction, but there
is no such inhibition in the reverse direction. The material,
therefore, must in some way have microstructurally encoded,
i.e., partially “memorized,” its loading history.

6.0

4.0

20 2. Microscopic observations

%Final Inelastic Shear Strain

Our numerical methods allow us to examine what is hap-
pening at the molecular level during these deformations. To
, , do this systematically, we need to identify where irreversible
0.0 6.10 Shea"r‘zg’tress 0.30 040 plastic rearrangements are occurring. More precisely, we

Jnust identify places where the molecular displacements are

FIG. 5. Final inelastic strain vs applied stress for stresses belo ) . . . .
yield. The simulation datésquareshave been obtained by running nonaffine, that is, where they deviate substantially from dis-

the simulations until all deformation apparently had stopped. Thé?lacements that can be described by a linear strain field.
comparison to the theorgline) was obtained by numerically inte- We start with a set of molecular positions and subsequent
grating the equations of motion for a period of 800 time units, thedisplacements and compute the closest possible approxima-
duration of the longest simulation runs. Stress is measured in unitgon to a local strain tensor in the neighborhood of any par-
of eg /a3, . ticular molecule. To define that neighborhood, we define a
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sampling radius, which we choose to be the interaction range ; 8 7 4@ &
2.5ag,. The local strain is then determined by minimizing > . 7
the mean-square difference between the actual displacements 3

of the neighboring molecules relative to the central one and : . i

the relative displacements that they would have if they were e ‘s

in a region of uniform strair;; . That is, we define

DA(tAD=2 X (rL(t)—r‘oa)—; (8j+eij) ”

2 %
x[rin(t—At)—r{,(t—At)]) , (2.12) W

where the indices andj denote spatial coordinates and the A i :
indexn runs over the molecules within the interaction range R 3 B -
of the reference moleculey=0 being the reference mol- 5 =
ecule.r(t) is theith component of the position of theth ; : ."-,
molecule at timet. We then find thes;; that minimizesD?
by calculating © @
FIG. 7. Intensity plots 0D2.., the deviation from affine defor-
mation, for various intervals during two simulatior{g)—(c) show
_ i i i i deformation during one simulation in which the stress has been
Xij = En: [ra(D) —ro(O]X[rp(t=At) —rg(t—At)], ramped up quickly to a value less than the yield stress and then held
(2.12 constant(a) shows deformations over the first 10 time units &nd
over the first 30 time unitqc) shows the same state as(ls), but
with D2min computed only for deformations that took place during
the preceding 1 time unit. Ifd), the initial system and the time

Yij => [ri(t—At)—rh(t—At)] interval (10 unit9 are the same as ifa), but the stress has been
n applied in the opposite direction. The gray scale in these figures has
% [rL(t— At)— r{)(t—At)], (2.13 been selected so that the darkest spots identify molecules for which
|Dmin|%0-5aSL-
£ij => XikYJfkl_ 5 - (2.14 isolated events. However, these events occur in different lo-
K cations, implying a direction dependence of the local trans-

formation mechanism.

The minimum value oD?(t,At) is then the local deviation ~ Next we look at these processes in yet more detail. Figure

from affine deformation during the time interfal—At, t]. 8 is a closeup of the molecular configurations in the lower
We shall refer to this quantity a32 left-hand part of the largest dark cluster seen in Fig),7

min - . . .
We have found thab2,  is an excellent diagnostic for §howrj just before and just after a shear transformation. Dur-
-+ing this event, the cluster of one large and three small mol-

min
identifying local irreversible shear transformations. Figure ) .

fying 9 ecules has compressed along the top-left to bottom-right axis
and extended along the bottom-left to top-right axis. This

contains four different intensity plots &2, for a particular
system as it is undergoing plastic deformation. The stress h‘fjlcfeformation is consistent with the orientation of the applied
shear, which is in the direction shown by the arrows on the

been ramped up targ|=0.12 in the time interval0,12] and
then held constant in an experiment analogous to that shown
in Fig. 2. Figure 7a) showsD?Z,, for t=10, At=10. It dem-
onstrates that the nonaffine deformations occur as isolated JOQ‘(’)\_/\/ N
small events. In Fig. (b) we observe the same simulation, o0 o)
but fort= 30, At=30; that is, we are looking at a later time, )OOO O
but again we consider rearrangements relative to the inital ?O O@g
@,

C d
configuration. Now it appears that the regions of rearrange- C O ..
C

O
@

OO
N

Q
O

Q
O
O
ment have a larger scale structure. The pattern seen here OOO O . a
looks like an incipient shear band. However, in Figc)7 OOO OOQ :)OO o
wheret=30, At=1, we again consider this later time but ) OOQO Qo' jQOOOO OOO'
look only at rearrangements that have occurred in the pre- 'Omgf Y=/~ 0 el
ceding short time interval. The events shown in this figure . 8. Closeup picture of a shear transformation zone before

are small, demonstrating that the pattern shown in FilQ} 7 and after undergoing transformation. Molecules after transforma-
is, in fact, an aggregation of many local events. Finally, intion are shaded according to their valuesDd;, using the same
Fig. 7(d), we show an experiment similar in all respects togray scale as in Fig. 7. The direction of the externally applied shear
Fig. 7(a) except that the sign of the stress has been reverseslress is shown by the arrows. The ovals are included solely as
As in Fig. 7a), t=10, At=10, and again we observe small guides for the eye.
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outside of the figure. Note that this rearrangement takesur definition of these zones because we shall use them in
place without significantly affecting the relative positions of ways that were not considered by the previous authors.
molecules in the immediate environment of the transforming One of the most fundamental differences between previ-
region. This is the type of rearrangement that Spaepen idemus work and ours is the fact that our system is effectively at
tifies as a “flow defect”[20]. As mentioned in the Introduc- zero temperature. When it is in mechanical equilibrium, no
tion, we shall call these regions shear transformation zoneghanges occur in its internal state because there is no thermal
noise to drive such changes. Thus the shear transformation
IIl. THEORETICAL INTERPRETATION OF THE zones can undergo transitions only when the system is in
MOLECULAR-DYNAMICS EXPERIMENTS motion. Because the system is strongly disordered, the forces
induced by large-scale motions at the position of any indi-
vidual molecule may be noisy. These fluctuating forces may
We turn now to our attempts to develop a theoretical in-even look as if they have a thermal componpif]. The
terpretation of the phenomena seen in the simulations. Wthermodynamic analogythermal activation of shear trans-
shall not insist that our theory reproduce every detail of theséormations with temperature being some function of the
results. In fact, the simulations are not yet complete enougkhear ratemay be an alternative t@r an equivalent gfthe
to tell us whether some of our observations are truly generaheory to be discussed here. However, it is beyond the scope
properties of the model or are artifacts of the ways in whichof the present investigation.
we have prepared the system and carried out the numerical Our next hypothesis is that shear transformation zones are
experiments. Our strategy will be first to specify what wegeometrically identifiable regions in an amorphous solid.
believe to be the basic framework of a theory and then tdlhat is, we assume that we could, at least in principle, look
determine which specific assumptions within this frameworkat a picture of any one of the computer-generated states of
are consistent with the numerical experiments. our system and identify small regions that are particularly
There are several features of our numerical experimentsusceptible to inelastic rearrangement. As suggested by Fig.
that we shall assume are fundamentally correct and whictg, these zones might consist of groups of four or more rela-
therefore, must be outcomes of our theory. These are thively loosely bound molecules surrounded by more rigid
following. (i) At a sufficiently small, fixed load, i.e., under a *“cages,” but that specific picture is not necessary. The main
constant shear stress less than some value that we identify @lea is that some such irregularities are locked in on time
a yield stress, the system undergoes a finite plastic deformacales that are very much longer than molecular collision
tion. The amount of this deformation diverges as the loadingimes. That is not to say that these zones are permanent fea-
stress approaches the yield stre@i. At loading stresses tures of the system on experimental time scales. On the con-
above the yield stress, the system flows viscoplastic@ily. trary, the tendency of these zones to appear and disappear
The response of the system to loading is history dependenduring plastic deformation will be an essential ingredient of
If it is loaded, unloaded, and then reloaded to the sameur theory.
stress, it behaves almost elastically during the reloading, i.e., We suppose further that these shear transformation zones
it does not undergo additional plastic deformation. On theare two-state systems. That is, in the absence of any defor-
other hand, if it is loaded, unloaded, and then reloaded withmation of the cage of molecules that surrounds them, they
a stress of the opposite sign, it deforms substantially in there equally stable in either of two configurations. Very
opposite direction. roughly speaking, the molecular arrangements in these two
Our theory consists of a set of rate equations describingonfigurations are elongated along one or the other of two
plastic deformation. These include an equation for the inelasperpendicular directions, which, shortly, we shall take to be
tic strain rate as a function of the stress plus other variablesoincident with the principal axes of the applied shear stress.
that describe the internal state of the system. We also postd+e transition between one such state and the other consti-
late equations of motion for these state variables. Deformatutes an elementary increment of shear strain. Note that bi-
tion theories of this type are in the spirit of investigations bystability is the natural assumption here. More than two states
Hart[15], who, to the best of our knowledge, was the first toof comparable stability might be possible but would have
argue in a mathematically systematic way that any satisfacelatively low probability. A crucial feature of these bistable
tory theory of plasticity must include dynamical state vari- systems is that they can transform back and forth between
ables, beyond just stress and strain. A similar point of viewtheir two states but cannot make repeated transformations in
has been stressed by RiEE6]. Our analysis is also influ- one direction. Thus there is a natural limit to how much
enced by the use of state variables in theories of frictiorshear can take place at one of these zones so long as the zone
proposed recently by Ruina, Dieterich, Carlson, and othergemains intact.
[40-45. We now consider an ensemble of shear transformation
Our picture of what is happening at the molecular level inzones and estimate the probability that any one of them will
these systems is an extension of the ideas of Turnbull, Caindergo a transition at an applied shear stressBecause
hen, Argon, Spaepen, and oth¢tg¥—-21,23—-2h These au- the temperatures at which we are working are so low that
thors postulated that deformation in amorphous materials omrdinary thermal activation is irrelevant, we focus our atten-
curs at special sites where the molecules are able to rearrangjen on entropic variations of the local free volume. Our
themselves in response to applied stresses. As described hiasic assumption is that the transition probability is propor-
Sec. Il, we do see such sites in our simulations and shall ug#onal to the probability that the molecules in a zone have a
these shear transformation zones as the basis for our analysssifficiently large excess free volume, s&y/*, in which to
However, we must be careful to state as precisely as possibtearrange themselves. This critical free volume must depend

A. Basic hypotheses
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on the magnitude and orientation of the elastic deformation The transitions occurring within shear transformation
of the zone that is caused by the externally applied strgss zones are strains and therefore they must, in principle, be
At this point, our analysis borrows in its general ap-described by tensors. For present purposes, however, we can
proach, but not in its specifics, from recent developments inrmake some simplifying assumptions. As described in Sec. I,
the theory of granular materialg7] where the only exten- our molecular-dynamics model is subject only to a uniform,
sive state variable is the voluni®¢. What follows is a very pure shear stress of magnituag and a hydrostatic pressure
simple approximation, which, at great loss of generality,P (usually zerg. Therefore, in the principal-axis system of
leads us quickly to the result that we need. The free volumegoordinates, the stress tensor is
i.e., the volume in excess of close packing that the particles
have available for motion, is roughly —-P o

[o]= g -P

. (3.5

Q—Nvo=Nuoy, (3.1

Our assumption is that the shear transformation zones are all
oriented along the same pair of principal axes and therefore
Bl}at the strain tensor has the form

whereN is the total number of particles, is the average
free volume per particle, ang, is the volume per particle in
an ideal state of random dense packing. In the dense solids
interest to us here;<v, and therefore, is approximately
the average volume per particle even when the system is [s]={
slightly dilated. The number of states available to this system

is roughly proportional to«;/h)N, whereh is an arbitrary
constant with dimensions of volunithe analog of Planck’s
constant in classical statistical mechanittsat plays no role
other than to provide dimensional consistency. Thus the e
tropy, defined here to be a dimensionless quantity, is

€q €Eg
, 3.6
. 3.6

s €d

whereeg andey are the shear and dilational strains, respec-
tively. The total shear strain is the sum of elastic and inelas-
(ic components

es=el+ell, (3.7

Q—-N - . . .
S(Q,N)=N In %) =N In(N—hvo . (3.2 By definition, the elastic component is the linear response to
the stress
The intensive variable analogous to temperaturg:is o
=5, (3.9
1 9S 1 M

—_—=—=— 3.3
X 00 v 59 where . is the shear modulus.

" In a more general formulation, we shall have to consider a
distribution of orientations of the shear transformation zones.
That distribution will not necessarily be isotropic when plas-
tic deformations are occurring and very likely the distribu-
tion itself will be a dynamical entity with its own equations
of motion. Our present analysis, however, is too crude to

justify any such level of sophistication.

Our activation factor, analogous to the Boltzmann factor fo
thermally activated processes, is therefore

e (AV*IxX) = o= (AV*/uyg). (3.4)

A formula like Eq.(3.4) appears in various places in the
earlier literaturd 17,23—23. There is an important difference . ; . .
The last of our main hypotheses is an equation of motion

between its earlier use and the way in which we are using i " .
y g ¥or the densities of the shear transformation zones. Denote

here. In earlier interpretations, E@.4) is an estimate of the ;
probability that any given molecule has a large enough fre he two states of the shear transformation zones by the sym-
ols+ and— and letn.. be the number densities of zones in

volume near it to be the site at which a thermally activate .
irreversible transition might occur. In our interpretation, Eq.those states. We then write
(3.4 plays more nearly the role of the thermal activation i i
factor itself. It tells us something about the configurational N:=R:nz—R.n.—Cy(oses )N+ Colases).
probability for a zone, not just for a single molecule. When 3.9

multiplied by the density of zones and a rate factor, abouhere theR.. are the rates at whick states transform te

which we §hal| have more to say shortly, it becomes thestates. These must be consistent with the transition probabili-
transformation rate per unit volume.

Note what is happening here. Our system is ex’[remelties described in the previous paragraphs.
. PP g here. yste MEY" The last two terms in Eq3.9) describe the way in which
nonergodic and, even when it is undergoing appreciabl

strain, does not explore more than a very small part of itsz]/ itg?npﬂlﬁélg%ggsgfsszitéagsgg:rr:;'g: %I'Ohneeio%heasnggr? g: ;hne_
configuration space. Apart from the molecular rearrange t o4 and created, as shown by the terms with coeffi-

ments that take place during plastic deformation, the only ientsC. and C.. respectivelv. at rates proportional to the
chance that the system has for coming close to any state } 1 2 P Y, prop

equilibrium occurs during the quench by which it is formed fate oses’ at which irreversible work is being done on the
initially. Because we control only the temperature and presSystem. This last assumption is simple and plausible, but it is
sure during that quench, we must use entropic consideratiort strictly dictated by the physics in any way that we can
to compute the relative probabilities of various molecularSee- As a caveat we mention that in certain circumstances,

configurations that result from it. when the sample does work on its environm@;mv,isn could
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be negative, in which case the annihilation and creatioriFor convenience, and in order to be consistent with later
terms in Eq.(3.9) could produce results that would not be assumptions, we have suppressed other possible arguments
physically plausible. We believe that such states in ourof the function<(o) andS(o).] Then Eq.(3.11) becomes
theory are dynamically accessible only from unphysical N
starting configurations. In related theories, however, that ed' =RyV,Ae[NioS(os) —NpCog)]. (3.19
may not be the case.

It is important to recognize that the annihilation and cre-The equations of motion fan, andn,,; are
ation terms in Eq(3.9) are interaction terms and that they

have been introduced here in a mean-field approximation. . 2¢!" osNy
That is, we implicitly assume that the rates at which shear =y agl 1= (3.19
transformation zones are annihilated and created depend only z oN=
on the rate at which irreversible work is being done on the
system as a whole and that there is no correlation between
the position at which the work is being done and the place “in
e . ) ) L . 20.& n
where the annihilation or creation is occurring. This is, in Nigr= —— i(l_ﬂ), (3.16
fact, not the case as shown by Figbjrand is possibly the V,Aeo N,
weakest aspect of our theory. With the preceding definitions,
the time rate of change of the inelastic shear stedinhas ~ whereo andn., are defined by
the form
2 1

=V, Ae[Rin, —R_n_], (3.10 €= V,Aen.o C= V,Aso (3.19
whereV, is the typical volume of a zone anfle is the From Eq.(3.16 we see thamn,, is the stable equilibrium
increment of local shear strain. value ofny,, S0 long ass«&!" remains positiveo is a char-

acteristic stress that, in certain cases, turns out to be the
B. Specific assumptions plastic yield stress. As we shall see, we need only the above

orm of the equations of motion to deduce the existence of
ge plastic yield stress and to compute some elementary
gropertles of the system.

The interesting time-dependent behavior of the system,
however, depends sensitively on the as-yet unspecified ingre-
dients of these equations. Consider first the rate faRtor
Our zero-temperature hypothesis implies tRgtshould be
(31D zero whenever the inelastic shear ral8 and the elastic

shear rate:%'= o4/2u both vanish. Accordingly, we assume
The prefactoR, is an as-yet unspecified attempt frequencythat
for these transformations. In writing E.11) we have used
the assumed symmetry of the system to note thAMf (o) o= (£2)2+ (M4, (3.18
is the required excess free volume forta— — transition,
then the appropriate free volume for the reverse transitiomvherev is a constant that we must determine from the nu-
must beAV* (— o). We adopt the convention that a positive merical data. Note that contains both an attempt frequency
shear stress deforms a zone in such a way that it enhances thied a statistical factor associated with the multiplicity of
probability of a+ — — transition and decreases the probabil-trajectories leading from one state to the other in an active
ity of a ——+ transition. ThenAV* (o) is a decreasing zone[48].
function of o. We can offer only a speculative justification for the right-

Before going any further in specifying the ingredients of hand side of Eq(3.18. The rearrangements that occur dur-
Ry, AV*, etc., it is useful to recast the equations of motion ining irreversible shear transformations are those in which

We turn now to the more detailed assumptions and analyf
ses that we need in order to develop our general hypothes
into a testable theory. According to our hypothesis about th
probabilities of volume fluctuations, we should write the
transition rates in Eq3.9) in the form

AV* (o)

Us

R.=Rg exp{ -

the following form. Define molecules deviate from the trajectories that they would fol-
low if the system were a continuous medium undergoing

Nt=N,+N_, nNy=n_—n,, (3.12 affine strain. If we assume that these deviations are diffusive

and that the affine deformation over some time interval
and scales like the strain rate, then the nonaffine transformation

rate must scale like the square root of the affine rddéfu-

* * sive deviations from smooth trajectories have been observed
1 _Av (Us) _Av ( crs) ; : . . :
Clog)= > ex + ex , directly in numerical simulations of sheared foap§], but
only in the equivalent of our plastic flow regimen Eqg.
. (3.18 we further assume that the elastic and inelastic strain
S(oo= 1 ox AV (Us) ox AV ( Us) rates are incoherent and thus write the sum of squares within
99=3 the square brackets. In what follows, we shall not be able to

(3.13 test the validity of Eq(3.18 with any precision. Most prob-
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TABLE II. Values of parameters for comparison to simulation dilational free volume is only about the same as the initial

data. free volume estimated by this analysis.
As a final step in examining the underlying structure of
Parameter Value these equations of motion, we make the scaling transforma-
- 032 tions
V,Aen, 5.7% 2uel n n o
v 50.0 s _g, n—AEA, %EA, ==3. (3.20
Vil 14.0 7 ” ” 7
M 0.25 Then we find
Neor(0)/N., 2.0 R
E=EF(Z,AA), (3.2)
ably, the only properties of importance to us for the present A=2F3,A0)(1-324), (3.22
purposes are the magnitudeRy{ and the fact that it vanishes L
when the shear rates vanish. A=2FZ,A02(1-A), (3.23
Finally, we need to specify the ingredients &%* and where
v;. For AV* we choose the simple form
F(Z,AA)=R[AS(Z)—-AC(2)] (3.29
AV* (o5)=V§ exp(—os/p), (3.19 and
* V3 V§
whereVj is a volume, perhaps of order the average molecu- cs)== exp( _ 0 oA +exy{ _ _eA2>
lar volumeuv g, andw has the dimensions of a shear modulus. 2 Ut f
The right-hand side of Eq3.19 simply reflects the fact that 1 * V*
the free volume needed for an activated transition will de- SS)== exp( - _e—AE) —exp( — _OeAE)
crease if the zone in question is loaded with a stress that 2 f Ut
coincides with the direction of the resulting strain. We (3.29

choose the exponential rather than a linear dependence b

_ \ Bere,
cause it makes no sense for the incremental free voMgne

to be negative, even for very large values of the applied o — 2uV,Aen,
stresses. A==, Ef=—-—7—. (3.26
Irreversibility enters the theory via a simple switching be- s o

havior that occurs when the, dependence cAV* in Eq.
(3.19 is so strong that it converts a negligibly small rate at
os=0 to a large rate at relevant, nonzero valuesrof If R0=?1’2('22+<'€2)1’4, (3.27
this happens, then zones that have switched in one direction
under the influence of the stress will remain in that statgyhere
when the stress is removed.

In the formulation presented here, we considerto be
constant. This is certainly an approximation; in fact, as seen
in Fig. 3, the system dilates during shear deformation. We
have experimented with versions of this theory in which the
dilation plays a controlling role in the dynamics via varia-
tions inv;. We shall not discuss these versions further be- Although, in general, we must use numerical methods to
cause they behaved in ways that were qualitatively differensolve the fully time-dependent equations of motion, we can
from what we observed in our simulations. The differencessolve them analytically for special cases in which the stress
arise from feedback between inelastic dilation and flow tha® is held constant. Note that none of the results presented in
occur in these dilational models and apparently not in thehis subsection, apart from E.35), depend on our specific
simulations. A simple comparison of the quantities involvedchoice of the rate factor,.
demonstrates that the assumption thatis approximately There are two specially important steady-state solutions at
constant is consistent with our other assumptions. If we assonstants,. The first of these is a jammed solution in which
sume that the increment in free volume at zero stress must ke=0, that is, F(3,A,A) vanishes and therefore
of order the volume of a small particég~v,~0.3 and
then look ahead and use our best-fit value for the ratio A:A@:AT@) (3.29
Vi/vi~14.0 (see Sec. Il D, Table J] we find v;~0.02. C(X) ’
Since the change in free volume due to a dilational st&gin
is Avi=eql/p, where p is the number density andg
<0.2% for all shear stresses except those very close to yield,
it appears that, generallvi~eqvo<v;. Even whengy T3)=1-2
=1%, the value observed in our simulations at yield, the

The rate factor in Eq(3.18 can be rewritten

I
v=—v. (3.28
2u

C. Special steady-state solutions

where

Vs -
1+ex ZU—fsmr(AE)) . (3.30
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Now suppose that instead of increasing the stress at a Examination of Eqs(3.22 and (3.23 reveals that the
finite rate, as we have done in our numerical experiments, wammed solution3.29 is stable for low stresses, while the
let it jump discontinuously, from zero, perhaps, to its valueflowing solution(3.34) is stable for high stresses. The cross-
> at timet=0. While X, is constant, Eqs(3.22 and(3.23 over between the two solutions occurs when both Ej29

can be solved to yield and (3.34 are satisfied. This crossover defines the yield
stressX.,, which satisfies the condition
1-A(t) 1-3A(t)
— =1 ) (3.3 1
1-A(0) 1-3A(0) E_:ﬂzy)_ (3.36
y

whereA(0) andA(0) denote the initial values ok (t) and _ _ _
A(t), respectively. Similarly, we can solve Eq&.21) and  Note that the argument of the logarithm in E&.33 di-
(3.22 for &(t) in terms of A(t) and obtain a relationship Verges at 2=3,. Note also that, so long as
between the bias in the population of defects and the chand@V5/v1)sinh(A%,)>1, Eq.(3.36) implies thatX =1. This

in strain, inequality is easily satisfied for the parameters discussed in
the following subsection. Thus the dimensional yield stress
£ 1-3A(0) oy, is approximated accurately by in our original units
&(t)=&(0)+ i'”(m : (332 defined in Eq(3.20.
Combining Egs(3.29, (3.31), and(3.32, we can determine D. Parameters of the theory
the change in strain prior to jamming. That is, Brsuffi- There are five adjustable system parameters in our theory:

;'?i?]tg isnzggiza;tt:;?rgg"owmg limit exists, we can compute V,Aen,., v, V&/vg, andu. In addition, we must specify

initial conditions for&, A, and A. For all cases of interest
here, £(0)=A(0)=0. However, A(0)=n;,(0)/n,. is an

&=1lim&t)=E©0) + im 1+3 ﬂE)A(O)_A(O))_ important parameter that characterizes the as-quenched ini-
t—soo 2%, 1-37(%) tial state of the system and remains to be determined.
(3.33 To test the validity of this theory, we now must find out

whether there exists a set of physically reasonable values of
The right-hand side of EQq(3.33, for £0)=A(0)=0, these parameters for which the theory accounts forall
should be at least a rough approximation for the inelastiaimost al) of the wide variety of time-dependent phenomena
strain as a function of stress as shown in Fig. 5. seen in the molecular-dynamics experiments. Our strategy
The preceding analysis is our mathematical description ohas been to start with rough guesses based on our under-
how the system jams due to the two-state nature of the sheatanding of what these parameters mean and then to adjust
transformation zones. Each increment of plastic deformatiothese values by trial and error to fit what we believe to be the
corresponds to the transformation of zones aligned favorablgrucial features of the experiments. We then have used those
with the applied shear stress. As the zones transform, the biaglues of the parameters in the equations of motion to check
in their population, i.e.A, grows. Eventually, all of the fa- agreement with other numerical experiments. In adjusting
vorably aligned zones that can transform at the given magparameters, we have looked for accurate agreement between
nitude and direction of the stress have undergone their ongheory and experiment in low-stress situations where we ex-
allowed transformation has become large enough to causepect the concentration of active shear transformation zones to
Fin Eqg. (3.29 to vanish, and plastic deformation comes to abe low and we have allowed larger discrepancies near and
halt. above the yield stress where we suspect that interactions be-
The second steady state is a plastically flowing solution inween the zones may invalidate our mean-field approxima-
which ££0 but A=A =0. From Eq.(3.22 and (3.23 we tion. Our best-fit parameters are shown in Table II.
see that this condition requires The easiest parameter to fit shoulddd®ecause it should
be very nearly equal to the yield stress. That is, it should be
somewhere in the range 0.30-0.35 according to the data
shown in Fig. 5. Note that we cannot use E233 to fit the
experimental data near the yield point because both the nu-
This leads us directly to an equation for the strain rate afmerical simulations and the theory tell us that the system
constant applied stress, approaches its stationary state infinitely slowly there. More-
over, we expect interaction effects to be important here. The
1 2 solid curve in Fig. 5 is the theoretically predicted strain
S(2)— gC(E)} : (339 found by integrating the equations of motion for 800 time
units, the duration of the longest of the simulation runs. The

This flowing solution arises from the nonlinear annihilation downward adjustment af, from its apparent value of about
and creation terms in E¢3.9). In the flowing state, stresses 0.35 to its best-fit value of 0.32, has been made on the basis
are high enough that shear transformation zones are continof the latter time-dependent calculations plus evidence about
ously created. A balance between the rate of zone creatioie effect of this parameter in other parts of the theory.

and the rate of transformation determines the rate of defor- Next we consideV,Aen., a dimensionless parameter
mation. that corresponds to the amount of strain that would occur if

1
A=§, A=1. (3.39

=&
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the density of zones were equal to the equilibrium concen- 25 . . '
tration (n;,;=n.) and if all the zones transformed in the
same direction in unison. Alternatively, if the local strain 20 T
incrementAe is about unity, then this parameter is the frac- = e
tion of the volume of the system that is occupied by shear ‘g
transformation zones. In either way of looking at this quan- % 15}
tity, our best-fit value of 5.7% seems sensible. -
The parameter is a rate that is roughly the product of an E 10 | | memsmmmzemmzzazm NITTT
attempt frequency and a statistical factor. The only system- § ’ ?

dependent quantity with the dimensions of inverse time is the

molecular vibrational frequency, which we have seen is of osry Y-

order unity. Our best-fit value of 50 seems to imply that the | p======="

statistical factor is moderately large, which, in turn, implies

that the shear transformation zones are fairly complex, mul- 00 100 200 300 400 500

timolecule structures. Lacking any first-principles theory of Time

this rate factor, however, we cannot be confident about this F|G. 9. strain vs time for simulations in which the stress has

observation. been ramped up at a controlled rate to stresses of 0.1, 0.2, and 0.3,
Our first rough guess for a value @ /v; comes from the  held constant, and then ramped down to zésolid lines. The

assumption thabV* must be about one molecular volume dashed lines are the corresponding theoretical predictions. Time is

in the absence of an external stress and#has likely to be  measured in units ofrga,/eg) 2

about a tenth of this. Thus our best-fit value of 14.0 is reas-

suringly close to what we expected. units (es /a3,), in the middle curve 0.2, and in the highest
The parametep, a modulus that characterizes the sensi-0.3. The dashed lines show the predictions of the theory. The

tivity of AV* to the applied stress, is especially interesting.excellent agreement during and after the ramp up is our most

Our best-fit value of 0.25 is almost two orders of magnitudey; ot evidence for the small value E quoted above. The

smaller than a typical shear modulus for these systems. Thigatailed shapes of these curves at the tops of the ramps,

means that the shear transformations are induced by rela- . . L
where o drops abruptly to zero, provide some qualitative

tively small stresses or, equivalently, the internal elastic 3 hoi f1h e d dencaefin E
modes within the zones are very soft. This conclusion jgUpPpOrt Tor our choice ot the rate dependencegiin £q.

supported quite robustly by our fitting procedure. AIternative(S'llsb.' AIS s_hown In F_|g. E and discussed in Sec. i D, thf
assumptions, such as control by variations in the average frékpa d_lr][e;\stéc stratmls 'B t tﬁseihramp—up experiments are also
volume v; discussed earlier, produce qualitatively wrong predicted adequately by the theory.

pictures of the time-dependent onset of plastic deformation. The situation is different for the unloading phases of these
Finally, we considerA (0)=n,(0)/n.., the ratio of the experiments, that is, during and after the periods when the
inital zoné density to the equilig)rtium zo(;ﬁe density. This pa_stresses are ramped back down to zero. The theoretical strain

rameter characterizes the transient behavior associated Wifﬂtes shown in Fig. 9 vanish abruptly at the bottoms of the

the initial quench; that is, it determines the as-quenched Syggmps because our transformation rates become negligibly

tem’s first response to an applied stress. We can learn som _r_naII at zero stress. In the two experimental curves for the

thing about this parameter by looking at later behavior, i.e igher stresses, however, the strain continues to decrease for
the next few segments of a hysteresis loop such a’s th' short while after the stresses have stopped.chang_ing. Qur
shown in Fig. 6. If, as is observed there, the loop narrow eory seems to rule out any such recovery of inelastic strain

after the first leg, then we know that there was an excess cﬁt zero stress; thus we cannot account for this phenomenon

shear transformation zones in the as-quenched system aﬁéqept to remark that it must have something to _do V.V'th the
: r+n|tlal state of the as-quenched system. As seen in Fig. 6, no

such recovery occurs when the system is loaded and un-
loaded a second time.

In Fig. 6, we compare the stress-strain hysteresis loop in
the simulation(solid line) with that predicted by the theory
(dashed ling Apart from the inelastic strain recovery after

We now illustrate the degree to which this theory can andhe first unloading in the simulation, the theory and the ex-
cannot account for the phenomena observed in the numericpkriment agree well with one another at least through the
experiments. reverse loading to poirk. The agreement becomes less good

Figure 9 summarizes one of the principal successes of thia subsequent cycles of the hysteresis loop, possibly because
theory, specifically, its ability to predict the time-dependentshear bands are forming during repeated plastic deforma-
onset of plastic deformation over a range of applied stressefons.
below the yield stress. The solid lines in the figure show the In the last of the tests of theory to be reported here, we
shear strains in three different simulations as functions ohave added in Fig. 1 two theoretical curves for stresses as
time. In each simulation the stress is ramped up at the sanfanctions of strain at the two different constant strain rates
controlled rate, held constant for a period of time, and therused in the simulations. The agreement between theory and
ramped down, again at the same rate. In the lowest curve thexperiment is better than we probably should expect for situ-
stress reaches a maximum of 0.1 in our dimensionless streasions in which the stresses necessarily rise to values at or

initial excess meang\ (0)>1, consistent with our best-fit
value of 2.0.

E. Comparisons between theory and simulations



7204 M. L. FALK AND J. S. LANGER 57

above the yield stress. Moreover, the validity of the compariwhether this is a repeatable and/or physically important phe-
son is obscured by the large fluctuations in the data, whicmomenon). The discrepancy between the elastic properties of
we believe to be due primarily to small sample size. the two systems leads us to believe that, in future work, we
Among the interesting features of the theoretical results irshall have to learn how to control the initial configurations
Fig. 1 are the peaks in the stresses that occur just prior to th@ore carefully, perhaps by annealing the systems after the
establishment of steady states at constant stresses. Thdg#ial quenches. Unfortunately, straightforward annealing at
peaks occur because the internal degrees of freedom of tiemperatures well below the glass transition is not yet pos-
system, specificallA (t) and A(t), cannot initially equili-  sible with standard molecular-dynamics algorithms, which
brate fast enough to accommodate the rapidly increasing ir:an simulate times only up to aboutul for systems of this
elastic strain. Thus there is a transient stiffening of the maSize even with today’s fastest computers. Monte Carlo tech-
terial and a momentary increase in the stress needed faues or accelerated molecular-dynamics algorithms may
maintain the constant strain rate. This kind of effect may in€ventually be useful in this effoft49-51. An alternative
part be the explanation for some of the oscillations in theS'at€dy may be simply to look at larger numbers of simula-
stress seen in the experiments. In a more speculative vein, ns. - . . .
note that this is our first direct hint of the kind of dynamic By far the most difficult and interesting questions, how-

plastic stiffening that is needed in order to transmit highever, pertain to our theoretical analysis. Although Figs. 7 and

L ) . 8 provide strong evidence that irreversible shear transforma-

stresses to crack tips in brittle fracture. The strain rates negy localized h L

the tips of brittle cracks are at least of the same order OEPons are localize gavents, we have no sharp defl_nmon .Of a
‘shear transformation zone.” So far, we have identified

magnitude as the strain rates imposed here and may in fa ese zones only after the fact, that is, only by observing

be substantially higher. where the transformations are taking place. Is it possible, at
least in principle, to identify zones before they become ac-
tive?

The most striking and robust conclusion to emerge from One ingredient of a better_defjnition pf shegr transforma-
this investigation, in our opinion, is that a wide range oftion zones will be a generalization to isotropic amorphous
realistic, irreversible, viscoplastic phenomena occur in an exSystéms in both two and three dimensions. As we noted in
dimensional, two-component, Lennard-Jones amorphoudescribe dlstrlbutlons over the ways in wh|ch the individual
solid at essentially zero temperature. An almost equally strikZones are aligned with respect to the orientation of the ap-
ing conclusion is that a theory based on the dynamics oplied shear_ stress. We believe that this is a relatively easy
two-state shear transformation zones is in substantial agregeneralization; one of UV.L.F.) expects to report on work
ment with the observed behavior of this model. This theorylong these lines in the future. _
has survived several quantitative tests of its applicability. ~ Our more urgent reason for needing a better understand-

We stated in our Introduction that this is a preliminary ing of shear transformation zones is that, without such an
report. Both the numerical simulations and the theoreticaknderstanding, we shall not be able to find first-principles
analysis require careful evaluation and improvements. Mos#erivations of several, as-yet purely phenomenological, in-
that need to be addressed in future investigations. able to start from the m_olecular force constants and calculate

The first kind of question pertains to our molecular- the parameter¥ and x that occur in the activation factor
dynamics simulations: Are they accurate and repeatable? W@.19. These parameters, however, seem to have clear physi-
believe that they are good enough for present purposes, baal interpretations; thus we might be satisfied to deduce them
we recognize that there are potentially important difficulties.from experiment. In contrast, the conceptually most chal-
The most obvious of these is that our simulations have beelenging and important terms are the rate factor in BqL8
performed with very small systems; thus size effects may band the annihilation and creation terms in E8.9), where
important. For example, the fact that only a few shear transwe do not even know what the functional forms ought to be.
forming regions are active at any time may account for Calculating the rate factor in E¢3.18), or a correct ver-
abrupt jumps and other irregularities sometimes seen in theion of that equation, is clearly a very fundamental problem
simulations, e.g., in Fig. 1. We have performed the simulain nonequilibrium statistical physics. So far as we know,
tions in a periodic cell to eliminate edge effects. We alsothere are no studies in the literature that might help us com-
have tried to compare results from two systems of differenpute the force fluctuations induced at some site by externally
sizes, although only the results from the larger system ardriven deformations of an amorphous material. Nor do we
presented here. Unfortunately, comparisons between any twaow how to compute a statistical prefactor analogous, per-
different initial configurations are difficult because of our haps, to the entropic factor that converts an activation energy
inability, as yet, to create reproducible glassy starting conto an activation free energj48] We do know, however, that
figurations(a problem that we shall discuss nextlowever, that entropic factor will depend strongly on the size and
we have seen qualitatively the same behavior in both systensructure of the zone that is undergoing the transformation.
and assume that phenomena that are common to both sys- As emphasized in Sec. lll, the annihilation and creation
tems can be used as a guide for theoretical investigations. terms in Eq.(3.9) describe interaction effects. Even within

As noted in Sec. Il B and in Table I, our two systems hadthe framework of our mean-field approximation, we do not
quite different elastic moduli.(Remarkably, their yield know with any certainty what these terms should be. Our
stresses were nearly identical. It would be interesting to learassumption that they are proportional to the rate of irrevers-

IV. CONCLUDING REMARKS
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ible work is by no means uniqudindeed, we have tried have seen, our theoretical picture of viscoplasticity does al-
other possibilities in related investigations and have arrivedow large stresses to be transmitted, at least for short times,
at qualitatively similar conclusionsWithout knowing more  through plastically deforming materials. It should be interest-

about the nature of the shear transformation zones, it will béng to see what happens if we incorporate this picture into
difficult to derive such interaction terms from first principles. theories of dynamic fracture.

A better understanding of these interaction terms is espe-
cially important because these are the terms that will have to
be modified when we go beyond the mean-field theory to
account for correlations between regions undergoing plastic
deformations. We know from our simulations that the active This research was supported by DOE Grant No. DE-
zones cluster even at stresses far below the plastic yielHG03-84ER45108, by the DOE Computational Sciences
stress and we know that plastic yield in real amorphous maGraduate Fellowship Program and, in part, by the MRSEC
terials is dominated by shear banding. Thus, generalizing thBrogram of the National Science Foundation under Grant
present mean-field theory to one that takes into account spdo. DMR96-32716. We wish particularly to thank Alex-
tial variations in the densities of shear transformation zoneander Lobkovsky for his attention to this project and for
must be a high priority in this research program. numerous useful suggestions. We also thank A. Argon and F.

Finally, we return briefly to the question that motivated Lange for guidance in the early stages of this work, J. Cahn
this investigation: How might the dynamical effects de-for directing us to the papers of E. Hart, and S. Langer and
scribed here, which must occur in the vicinity of a crack tip,A. Liu for showing us their closely related results on the
control crack stability and brittle or ductile behavior? As we dynamics of sheared foams.
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