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Space-charge waves in the wiggler field of a Raman free-electron laser
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A waveguide filled with a relativistic electron beam that passes through a helical wiggler magnetic field and
a uniform axial magnetic field is considered. The propagation of two types of space-charge waves in this
device is analyzed. An electrostatic approximation is employed that is based on Gauss’s law and the require-
ments that the magnetic field of the wave and the curl of the electric field of the wave both be zero in the
electron-beam reference frame. These equations transformed into the laboratory reference frame are shown to
be more accurate than a system of equations that includes Gauss’s law in conventional form. A dispersion
relation is derived with the combined effects of the wiggler and axial magnetic fields and the waveguide
boundary included. Some numerical results are presented for both plasma and cyclotron types of space-charge
waves.[S1063-651X%98)04406-1

PACS numbegps): 41.60.Cr, 52.75.Ms

I. INTRODUCTION through a cylindrical metallic waveguide completely filled
with a relativistic electron beam. A uniform, static axial
In a free-electron lasdFEL), a relativistic electron beam magnetic field and a static, spatially periodic magnetic wig-
radiates as a result of oscillations induced by its passageler field are present. In Sec. Il, equations are introduced that
through a wiggler. The conventional wiggler is a static mag-comprise the beam-frame Gauss’s law and requirements that
netic field that is periodic along the beam axis in the laborathe magnetic field of the wave and the curl of the electric
tory reference frame. It is a propagating electromagnetidiéld of the wave both be zero in the beam frame. An equiva-
wave in the electron-beam reference frafheam framg As lent laboratory-frame formulation that includes the linearized
viewed in the beam frame, the wiggler wave in a Ramarfontinuity and momentum transfer equations is applied to the
FEL backscatters off of a space-charge wave. A realistic the2nalysis of space-charge waves in the absence of the wiggler
oretical treatment of this stimulated Raman scattering prol® demonstrate its validity. In Sec. Ill, the wiggler magnetic
cess requires inclusion of the effects of the wiggler field onfi€!d is represented in an idealized one-dimensional approxi-
the propagation of the space-charge wave. Freund an@ation and a solution of the basic laboratory-frame equa-
Sprangld 1] have developed a theory of space-charge wavdlons IS represented as truncated Fourier and Fourier-Bessel
propagation through a wiggler in the presence of an axiaPeres: A derivation of the dispersion relation is then summa-
guide magnetic field with the beam cross section assumed f¢7€d- In Sec. IV, the results of a numerical study of the
be infinite. The combined effects of these two magneticEffects of the waveguide boundary, wiggler field, and axial

fields can be quite large as illustrated in a book by Freundnagnetic field on the two types of space-charge waves are

and Antonser2]. discussed and some conclusions are presented.
A recent publication[3] by the authors of the present
paper presents an analysis of a space-charge wave propagat- Il. ELECTROSTATIC APPROXIMATION

ing through a waveguide filled with a relativistic electron When a space-charge wave has a phase velocity relative
beam in the presence of wiggler and axial magnetic fields P 9 P Y

The basic equations employed in the analysis includé0 the medium through which it propagates that is much

Gauss's law in the laboratory frame. A numerical study ofsmaller than the speed of ligit the magnetic field associ-

cvelotronlike waves with large wave numbers and smallated with the wave may be neglected. This is usually the case
Y . larg ; . in the beam frame for a space-charge wave in a Raman FEL.
phase velocities was carried out to illustrate the combine

effects of waveguide boundary and wiggler and axial mag- IOI’lf(_%q:cJ_elrglgl,E the Spacf' dan'?h tg?e—dependﬁn;. be{ahm—I\rA(Ia\me
netic fields. The purpose of the present study is to derive %aesﬁcngif;grentiaBl aessuo;&ines ov;"elect?o\gtg\tli?:ssa Isties the two
dispersion relation with a wider range of validity and carry q '
out a numerical study of both plasma and cyclotron types of V. 6Eg=47dpg 1)
space-charge waves.

The present paper contains a laboratory-frame analysis @fnd
space-charge waves that is equivalent to the beam-frame
electrostatic approximation. The waves are propagating V X 6Eg=0, 2
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wheredpg is the charge-density perturbation associated with V=20 . (12)
the wave. In this approximatiofreferred to herein as the
electrostatic approximationthe beam-frame magnetic-field The total electric field, magnetic field, electron density, and

perturbation is electron fluid velocity may be written in the form
6Bg=0. (3) E=6E, (12
Three of the beam-frame Maxwell equations are satisfied, B=B,+ 6B, (13
namely, Gauss’s laWEq. (1)], Faraday’s law
n=ng+ 4n, (14
1 96Bg
VXoBg=—_——, 4 V=Vy+ 6V. (15
and Gauss'’s law for magnetism In the unperturbed state, the electric field is assumed to be
negligible and the magnetic fiel, is the sum of a static,
V. 6Bg=0. (5) spatially periodic wiggler field,, and a uniform, static axial

. magnetic fieldg, By, ; the electron density, is uniform and
The Ampee-Maxwell equation is not satisfied exactly in the constant, and the electron fluid velocity is the sum of the
e_Iectrostatic approximation and is not employed in the analytransverse velocity,, (due to passage through the wiggler
SIS. and the uniform, constant axial velocii,. The charge-

It is frequently convenient to develop FEL theory in the density perturbationsp and the linearized current density
laboratory frame. Since Gauss’s law is not invariant in formperturbationsJ are given by

under a Lorentz transformation when the Amgélaxwell

equation is not satisfied, it must be transformed separately Sp=—edn (16)
into the laboratory frame. This yields the modified form of
Gauss's law, and
1 A7 1 d6E 8J=—e(ngév+vydn), (17)
V-5E—EV”~ VX SB— 75.]4'67 :4775[),

©6) where — e is the electron charge. Equatiof® and(7) may
be expressed in the form

whereE, 8B, 8, and dp are the laboratory-frame perturba-

tions of the electric field, magnetic field, current density, and y . sg— Yi 5.V X 5B+ 4”9)(n05vz+05n)_ E IOk,
charge density, respectively, andis the axial component of c c Jt
the electron beam velocity in the absence of the wave. Equa- _ _Aresn (18)
tion (3) may be transformed into Tt
2
1 i _ Ul sp NI 5_
7||( oB— < VX JE | - i+ vi(vy-6B)=0, (7) OB 2XdE (m+1)c? 08,2=0. (19

where the Lorentz factor for the reference-frame transforma]-he.ba.sIC equations also include E§) ar!d the linearized
tion is continuity and momentum transfer equations

o aon
y=(1-vfc )12 ® —r FoV - v (Van) - vo=0, (20)
The two homogeneous Maxwell equatidiis. (4) and(5)]

. . . . . 6\/
comprise a covariant pair that may be written in the Same(?—+vo~Vé\/+ V- Vo= — ( yoMy) i SE— c~2vgVy- OE

form in the laboratory frame, i.e., at
1 96B +c 1ovxBy+c vy x 6B
VX5E=——7, ©) 2 -3
¢ — ¥36 3 (VoX Bo)Vg- 8V],  (21)
V.-5B=0. (100 where
Note the Eq(10) is redundant for waves with a time depen- yo=(1—v3c 212 (22)

dence of the form exp(iwt).

A laboratory-frame analysis of an axisymmetric space-Although the wiggler induced velocity and axial velocity are,
charge wave in a cylindrical metallic waveguide completelyin general, relativistic, the space-charge oscillation velocity
filled with a relativistic electron beam will be presented. Theév is assumed to be nonrelativistic.
wave will be assumed to be approximately electrostatic in To illustrate the significance of using the modified form
the beam frame. With the beam and waveguide axis taken af Gauss’s law rather than the conventional form, space-
the z axis, charge wave propagation through the beam-filled waveguide
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will first be analyzed with no wiggler present. In this case,

7171

The above dispersion relation can be transformed into the

the unperturbed magnetic field, electron fluid velocity, andbeam frame by use of

Lorentz factor reduce to

wg=y(0—kv)), (40)
kg=y,(k—wv,c”2), (41)
wps= ., (42)
Qo= 7,0, (43)

where wg, kg, wpg, and{Qyg are the wave angular fre-
guency, wave number, plasma frequency, and cyclotron fre-
guency in the beam frame. The result is
(35— w0p)(wg—whp)

ey, v =
wg(Qog+ wpg— wg)

P5,
k5R?

0, (44)

which is the well-known beam-frame dispersion relation. If
the conventional Gauss's law were employed rather than the
modified form, the procedure would yield

(05— 0?) (0~ wly ?)

EQ(QS—F wﬁ,yﬁ—a?)

2
Poy +
k(k_ (X)U”072) R2

-0 (45

in the laboratory frame, which transforms to

2
pOu

(1+ wgks ‘v ?)(QFs— wg) (wp— wha)
k3R? B

702 2 7
wg(Qogt+ wpp— wg)

(46)

Bo=2By, (23
Vo=2v,, (24)
Yo=Y - (25)
A solution of the foregoing linear equations can be expressed
in the form
SE=FSE, +25E,, (26)
SE, = 6E,J;(po,r/R)exi (kz— wt)], (27)
SE,= SE,Jo(Po,T/R)eX i (kz— wt)], (29)
SB=05B,, (29
8Bo= 8B ,J1(po,r/R)exi (kz— wt)], (30)
on=6nJy(po,r/R)exdi(kz— wt)], (3D
N=FSv,+ v 4+ 2v,, (32
Sv,= 80,31(po,R)eX{ i (kz— wt)], (33
8V y= 60 pd1(Po,r RV exd i (kz— wt)], (34
8V ,= 60 AJo(Po,T/R)exd i (kz— wt)]. (35

HereJ, andJ; are Bessel functions of the first kind of order

0 and 1, respectivelyny, (with v=1,2,3,..) is thesth zero of

Jo, andR is the electron beam radius and waveguide inner

radius. With the unperturbed beam veloaity, wave num-
ber k, and wave angular frequenay taken to be positive,

the beam velocity and phase velocity are in the positive

direction in the laboratory frame. Substitution of E¢@6)—
(35 into Egs.(9), (18), (19), (20), and(21) leads to seven

linear, homogeneous algebraic equations in the seven u

known amplitudessE,, SE,, 6B,, én, dv,, dv,, and

in the beam frame. This contains the erroneous factor (1
+(1)Bk§lUHC72).

Ill. DISPERSION RELATION WITH WIGGLER PRESENT

An analysis of an axisymmetric space-charge wave in a
wiggler magnetic field will be presented next. As in Sec. I,
a uniform axial magnetic field is also present and the relativ-
istic electron beam completely fills the cylindrical metallic
waveguide. The beam-frame electrostatic approximation is
invoked. Although the analysis is carried out in the labora-

n_

tory frame, the basic equations are equivalent to the beam-
frame Gauss’s law and the requirements that the magnetic

dv,. The necessary and sufficient condition for a nontrivialge|q of the wave and the curl of the electric field of the wave

solution yields the laboratory-frame dispersion relation

(03— 0)(@%— wly; ?)

52(0(2)4-(»‘2)7”_2—52)

2
Poy +
'}/ﬁ(k_ CUUHC_Z)ZRZ

=0,
(36)

where (), and w, are the laboratory-frame cyclotron fre-

guency and plasma frequency given by

Qo=eBy,/(yomeC), (37
B ( 477e2n0> 12 @8
“pT YoMpC

with y, set equal toy, since the wiggler is absent, and

(39

azw—kvu .

both be zero in the beam frame. The linearized continuity
and momentum transfer equations are also employed.

In the unperturbed state, the electron densigyis uni-
form and constant, the electric fieH, is assumed to be
negligible, and the magnetic fieBy and electron velocity,
are given by

Bo=rBwcosO + 6By,sin © + 2B, ,

(47)
Vo=fvycosO + bvwsin O+w,. (48

HereB,y is the magnitude of the wiggler magnetic fieBk,
is the axial magnetic field is defined as
0= sz_ 0, (49)

vw is the transverse electron velocity given by
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vw=Quwo [(Qo—kwv)), (50) — (12 apa; 'R0 wd0 g+ (€/Mg) v *
v is the axial electron velocityQ\y is the relativistic cyclo- X[1- (1/2)ch*2]5IAE,0
tron frequency corresponding to the wiggler field given by -
_(elmo)'}/alcilUM&BgO:O, (65)
Qw=eBy/(yomeC), (51)

and vy, is the Lorentz factor given by w300 =[Qo+(112) 77]5&r0+(1/2)po”alilRile§a o1
0

o=l (24 v2)c 2] 12 52 + (1 aza; 'R Mowdb2=0, (66)
o= LL—(vwTy :

it “10 “1gn
The quantitiesBy,, Bo,, vw, vy, kw, Qw, Qo, andy, are twdv +owar “(Po, ~@2)R™"6vrg

independent of position and time. _ _ +[kwo+ (1/4) 71605+ [ Qo+ (1/4) 7] 60
The small-amplitude wave causes a perturbation that is R
assumed to be of the form —vwv ey v e 3(elmg) SE =0, (67)
5Er:5Er0‘Jl(pOUr/R)eXF[i(kz_wt)]v (53) _ia&arz_vwazaIlRilb‘l}90_[kwv”_(1/4)77]613”_
SE,= SE,,0Jo(Po,fR)eX i (kz— wt)], (54) +ag (oot~ kwow— Qw) 800
5By= 0B yoJ1(Popl/R)EX i (k2= wt)],  (55) T Q0T (3/4)7]6v =0, (68)
Sn=ReJo(Po,T/R)EXH i (kz— wt)], (56) —i®0D g1+ vw(Po, — @2) @y "R™160 so+ [Kuw
. . . — (114 7]60 g+ i (Qu+kpow— wh) 80
80, = (80 ,4+ 80,1005 O + 80,55 ©)J1(Po,F/R) (A 7]00 g @y “(Qwt kwow= 7010w") 0020
i g1
50 4= (80 yo+ 80 91C0S O + 80 4, Sin @)J;(Po, I/ R) 1wV g Fvwaze; "R™dvrg
xexgi(kz— wt)], (58) —[kwv+ (1/8) )60 g, — [ Qo+ (1/4) 7] 60,
-1.-2 —1or
- - / 6E,;=0. 70
80,= 80 1o PoyFIR)EXH i (KZ— wt)]. (59) D1 Yo "C(€/Mo) ary “0F (70)
Here

These perturbation quantities are function®athat are rep-
resented by Fourier series with only the dominant terms re-
tained. The quantitie$E,, sn, and dv,, which vanish at
r=R, are functions ofr that are represented by Fourier- R
Bessel series with only the dominant terms retained. The a1:2R_2[J1(p0v)]_2f rJo(Po,T/R)J1(Po,F/R)Mr,
radial dependences ofE,, 6By, év,, and dv, are then 0
represented in a consistent manner. In these truncated series, (72
the dominant terms are assumed to be those that survive in o
f/r\;i(;gl;lrgrltfioefldlhﬂmte waveguide radius or in the limit of zero 012=2R71[J1(p00)]72f0 Jo(PosT/R)J1(Po, F/R) AT
Substitution of Eqs(53)—(59) into Egs.(9), (18), (19), (73
(20), and(21) results in the following eleven linear homoge-
neous algebraic equations in the eleven unknown amplitudes: The necessary and sufficient condition for a nontrivial so-
lution of Eqgs.(60)—(70) may, after some extensive algebraic

n= —kWUW(Z)U\ZNC_Z’ (72)

PosR™1¥A( SEro— v, 18B yo) +iy2(k— wv ¢ 2) SE, manipulation, be cast into the form
+4medho—4meyfno c 250 ,0=0, (60) Po (D205~ %) (0’ ~ wp® ¥,y )
2 —2\2 2 2+ —2/h20)2 2 -1_-2_-722
- - k—wuC R b Q5+ wp ¥ -
5800_U\|C715Er020: (61) ¥; (K—wv, )p o“( 0T Wpt Yo Vi )
=0, (74

ikSE, g+ PoyR L0E,0—iwC 16Byp=0,  (62)

—iwdNg+NgPg,R™ 180,09+ 1kNgdv,0=0, (63)
wp=(4me’ny/my)*?, (75)
. —_— _l ~ ~ ~
—lway 60,01 (Q,/2)(6v,5— 6V y1) B
1 o - p={1+(QQoow; = 8)[Qo— kv 2~ w?] 1}
+ v Y “ay (e/mg) SE,0=0, (64) (76)

— 1 ©6010+[ Qo+ (1/2) 9]0 o+ (1/2) poy a1 'R0 wd0 1 b=1—kyvwac 2v3Q 1, (77
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T=1-(1/2) ﬁU\ZNC—Z, (78)  tion is valid at large wave numbers for whiah; /kg<c and
also for weak magnetic field€Xpg<w,g), where the cyclo-

and tron wave resembles a Langmuir wave for which the electron
current tends to cancel the effects of the displacement cur-

O=1—y'QuQuowv; L(vow' Quwtovdv; 2Qo)vvw'Qw  rent. Otherwise, a fully electromagnetic treatment is required

— 1 ) 1 as given, e.g., by lvanov and Alex¢g].

— (074 6)] "= 6[(Qo—kwo )+ QuQovwr, At large wave numbers, it is convenient to employ an
—(@2+6)] L (79 alternative classification_ of th_e two types of spacg-c_harge
waves. The waves that, in the infinite-wave-number limit and

The quantitiess, and 8, vanish in the limit of infinite wave- in the absence of the wiggler field, have frequencies ap-
guide radius and also in the limit of zero wiggler field. They Proaching the cyclotron frequenc€y,g will be referred to as
are given by a hierarchy of algebraic equations that will becyclotronlike; those that have frequencies approaching the
omitted for brevity. Equation(74) is the laboratory-frame Plasma frequencyopg will be referred to as plasmalike. In
dispersion relation for Space_charge waves in the W|gg|erthe limit of infinite normalized .beam-frame wave number
The range of validity of this equation exceeds that of the(keR—), the present theory yields

corresponding dispersion relation derived in R&f since

the present derivation is not based on the approximations w=yb’0f (82
1- ok lyc 2=y, ? (80)  for the cyclotronlike waves and
and wi=wi®.v ", (83)
1+ wgkg e 1=1. (81)

where, with the limitR— also imposed,

Note thatw,, is the nonrelativistic beam plasma frequency in _ 2 -1
the laboratory frame. Do =17 Qo Quwvwy,
X[(vow' Qwtoip; 2Qo)vjvw' Qw
IV. NUMERICAL RESULTS AND DISCUSSION 2 1 o4
—wp®ayy Ty T (84)
The laboratory-frame analysis presented herein is appro-
priate for two types of space-charge waves in a beam-fillegr the plasmalike waves. Note thattimesB,, is the effec-
waveguide containing wiggler and axial magnetic fields. Thejye axial magnetic field and.. times n, is the effective
beam is treated as neutralized in the unperturbed state argbctron density in the presence of the wiggler field.
the waves are treated as electrostatic in the beam frame. Con- Numerical calculations have been made to illustrate the
sequently the present analysis, transformed to the beag¥fects of waveguide radius, wiggler magnetic field, and
frame with the wiggler field set equal to zero, yields the gxjg] magnetic field on both types of space-charge waves
same results as the quasistatic analysis of space-chargg large beam-frame wave numbers. Wiggler magnetic
waves in a plasma-filled waveguide by Trivelpiece andsgig By and wiggler wavelength 2/k,, were taken to be
Gould [4]. Equation (44) is a quadratic equation for the 760 G and 5 cm, respectively. The inner radRisof the
square of the frequenayg as a function of the square of the peam-filled waveguide was taken to be 0.3 cm. Laboratory
wave numbek% for axisymmetric space-charge waves in theframe electron density, was taken to be ¥6cm 2 and
absence of a wiggler field. Choosing the minus sign in theslectron-beam energyyf— 1)myc? was taken to be 700 keV
quadratic formula forw3 yields the dispersion relation for corresponding to a Lorentz factgg of 2.37. Axial magnetic
plasma waves. The frequency of each mode increases monfleld B, was varied from 0 to 25.4 kG, which corresponds to
tonically with increasing wave numbdg from zero atkg  a variation from 0 to 5 in the normalized laboratory-frame
=0 and approaches the plasma frequengy or the cyclo-  relativistic cyclotron frequency},/(ck,) associated with
tron frequency()yg, whichever is lower, agkg approaches By,. The first @#=1) mode was chosen for whicp,
infinity. The phase velocitywg /kg is generally sufficiently =py;=2.405.
small compared to the speed of light so that the electro- Figures 1-4 show the normalized beam-frame frequency
static approximation is valid for plasma space-charge waveswvg/(cky,) of the cyclotronlike and plasmalike waves as
Choosing the plus sign in the quadratic formuladgyyields  functions ofQ,/(cky), which hereafter will be referred to
the dispersion relation for cyclotron waves. The frequencyas the normalized axial magnetic field. Both group-I stable
wg of each mode decreases monotonically with increasingrbits ((2g<kyv,) and group-Il orbits o>kyv,) are con-
kg from the upper hydrid frequencyO3g;+ wSB)l’2 at kg  sidered. The normalized beam-frame wave number was
=0 and approacheQg or w,g, Whichever is higher, alsg  taken askgR=c (circles, kgR=100 (solid curve, and
approaches infinity. Thus, in the electrostatic approximationkgR=10 (dashed curve In the invariant phasekgzg
the cyclotron space-charge modes are backward waves, i.es,wgtg=kz— wt, wg may be positive or negative witkg,
they have oppositely directed phase and group velocitiek, andw taken as positive. The calculations were made for a
The electrostatic assumption restricts the validity of thewave propagating in the negativg direction and, conse-
theory to low phase velocities and frequencies below theuently, wg is negative. The minus sign is omitted in the
cutoff of the empty waveguide. The electrostatic approximafigures.
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FIG. 1. Normalized beam-frame frequenay/(cky) of the FIG. 3. Normalized beam-frame frequen%/(ckw)_ of the _
cyclotronlike wave as a function of the normalized axial magneticPlasmalike wave as a function of the normalized axial magnetic
field Qo/(cky) for group-l orbits. The values of the normalized field Qo/(ckw) for group-I orbits. The values of the normalized

beam-frame wave numbégR are c (circles, 100 (solid curve, ~ beam-frame wave numbégR are o (circles, 100 (solid curve,
and 10(dashed curve and 10(dashed curye The waveguide radiuR is also infinite

whenkgR is infinite.

Figures 1 and 2 illustrate the variation of the frequency of
the cyclotronlike wave with axial magnetic fiel,, for ~ spond tokgR=cc and were computed using E(B3) with
group-l and group-Il orbits, respectively. The circles corre-®.. computed using Ed84) in the infinite-waveguide-radius
spond tokgR=% and were computed using E(2). The approximation, for whichs; = 5,=0. The rate of change of
frequency, which would be proportional 8y, in the ab- the electron axial velocity with electron energy is propor-
sence of the wiggler, is modified by wiggler effects mani-tional to a function®, that is equal to density factob
fested through the factots and y,. The frequencies com- [defined by Eq(79)] with &;, &,, andw(=wgy; ') set to
puted forkgR=100 using the complete dispersion relation equal zero. For group-I orbitd,=1 for By, small and rises
[Eq. (79)] are in close agreement with those fgR=1° for abruptly, approaching infinity a3y, is increased to the value
most values ofQ0y/(ck,). An exception occurs in Fig. 1 that results in orbital instabilityQ,/(ck,)=0.53]. It is im-
when Q,/(ck,) approaches 0.58vhere group-I orbits be- portant to note that, unliké, the density factos does not
come unstabledue to a reduction in the radius facteand  become singular as the maximum valueBgy, for group-I
the effective normalized beam-frame wave numhkgpR. orbit stability is approached. Consequently, in Fig. 3 the fre-
Exceptions also occur in Fig. 2 at some values ofquency of the plasmalike wave does not become large as
Qo/(cky)=<1, where the wave is not cyclotronlike fagR  o/(ck,) approaches 0.53. In Fig. 4, no frequencies are
finite. Larger departures from the circles were found forshown for()y/(ck,)<1.2; the plasmalike wave is unstable
kgR=10 as expected. in this negative-mass regim@vhere ®,<0) not only for

Figures 3 and 4 illustrate the variation of the frequency ofkgR=2 but for kgR=100 andkgR=10 as well. The plas-
the plasmalike waves with axial magnetic fieR}, for = malike waves withkgR=100 (solid curvg and kgR=w
group-1 and group-Il orbits, respectively. The circles corre-

12
14
1 P e Pt ot il i o
"5 08
3 3
: — 08
< =
5 3 04 -
3
0.2
0
0 1 2 3 4 5 s
0 1 2 3 4 5 6 oot

Q,/(ckw)
FIG. 4. Normalized beam-frame frequeneyg/(cky) of the
FIG. 2. Normalized beam-frame frequenag/(cky) of the  plasmalike wave as a function of the normalized axial magnetic
cyclotronlike wave as a function of the normalized axial magneticfield Qq/(cky) for group-ll orbits. The values of the normalized
field Qq/(cky) for group-ll orbits. The values of the normalized beam-frame wave numbégR are « (circles, 100 (solid curve,
beam-frame wave numbégR are » (circles, 100 (solid curve, and 10(dashed curve The waveguide radiuR is also infinite
and 10(dashed curve whenkgR is infinite.
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(circles have significantly different frequencies sinée@  both frames are not equivalent. Errors in the dispersion rela-
=3 mm for the former case and=« for the latter case. tion for space-charge waves are only of second order in
Frequencies computed féR=100 using Eq(74) with p  wg/kgc when derived in the beam frame, but are of first
and® given by Eqs(76) and(79) in the infinite-waveguide- order when derived in the laboratory frame for a strongly
radius approximation, for whicld; = 6,=0, however, agree relativistic beam. The present analysis was carried out in the
with those computed using Eq&83) and (84) to three sig- laboratory frame using basic equations that were entirely
nificant figures. It is interesting to note that E@4) is a  equivalent to the basic equations of the beam frame. Inden-
qguadratic equation fo.,. The smaller root was used in tical results could have been derived in the beam frame using
Figs. 3 and 4. The larger root predicts stable waves witlthe conventional form of Gauss’s law, but this would have
kgR=o andR=« for Q4/(ck,)<0.26 and forQ)q/(ck,) required treating the wiggler field as a propagating electro-
< 2.2 with group-1 and group-Il orbits, respectively. magnetic wave.

A system of laboratory-frame equations for the electric The present theory can be used to compute the dispersion
field, magnetic field, electron density, and electron velocityrelation for a space-charge wave in an FEL wiggler. Numeri-
was introduced herein that is equivalent to the system otal results thereby obtained could be compared with Raman
beam-frame equations in the electrostatic approximationfFEL experiments. The theory developed herein is based on
The validity of this new system was demonstrated by derivthe assumption that the electron beam completely fills the
ing the dispersion relation for space-charge waves in a wavewvaveguide. Since this cannot be achieved experimentally, an
guide filled with a relativistic electron beam. It was shownexperiment could be performed with the ratio of the beam
that an error would have resulted if the conventional form ofradius to the waveguide inner radius as near unity as is fea-
Gauss'’s law had been employed in the laboratory frame. Theible. Measurements of the radiation frequency, electron-
new system of equations was then applied to obtain the diddeam energy, electron density, wiggler wavelength, wave-
persion relation for the space-charge waves in the presengiide inner radius, and axial magnetic field would be
of a magnetic wiggler field. The resulting dispersion relationrequired. Calculations of the radiation frequency could then
was cast into the form it would assume in the absence of thbe made using the phase-matching conditions and dispersion
wiggler field but with the electron density, axial magnetic relations for the space-charge wave and the electromagnetic
field, and waveguide radius replaced by effective valuesvave in the wiggler. This would determine if the radial
modified by the wiggler. In general, calculation of these ef-waveguide boundary conditions improve the agreement with
fective values requires the solution of a long chain of alge-experimental results.
braic equations, which will be presented elsewl&ie Nu- In order to use the results of previous Raman FEL experi-
merical calculations were made for space-charge waves wittments, the present authors plan to extend the theory to the
finite beam-frame wave numbers and finite beam and wavesase of a partially filled waveguide. Typical values of the
guide radius. The negative mass instability was found, but neatio of the beam radius to the waveguide inner radius range
singularity of the electron density factdr was found. from 0.2 to 0.35(see, e.g., Refd.7—10])). Studies of the

Free-electron laser theories may be developed in eithezffects of the wiggler on the electromagnetic wave are also
the electron-beam reference frame or the laboratory refernderway. The purpose of this research is to provide a
ence frame. Equivalent results may be obtained in the twenethod of obtaining theoretical values for observable quan-
frames provided that the two sets of basic equations are ettities such as the radiation frequency and the growth rate
tirely equivalent. It was shown herein that electrostaticbased on realistic treatment of the space-charge and electro-
analyses based on the conventional form of Gauss’s law imagnetic waves in the Raman FEL wiggler.
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