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Storage-ring FEL amplifiers and electron beam longitudinal mode-damping times

G. Dattoli, L. Mezi, P. L. Ottaviant, A. Renieri, and M. Vaccafi
ENEA, Dipartimento Innovazione, Divisione Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
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We exploit the Fokker-Planck equation to investigate the longitudinal phase-space dynamics of a FEL
amplifier operating with a storage ring. We study both standard and optical-klystron configurations and prove
that in both cases the damping times of the electron longitudinal modes are modified by the system operating
conditions. In particular, they decrease with increasing laser power when the input laser is tuned at the resonant
frequency [S1063-651X98)00306-1

PACS numbd(s): 41.60.Cr

I. INTRODUCTION II. SR FEL AMPLIFIERS AND LONGITUDINAL MODE
DYNAMICS

Different models have been developed to analyze the evo- The evolution of the longitudinal distributiof(z,¢,t) of
lution of the storage-ringSR) free-electron lasefFEL) dy- ~ an elec.tron beam circula}ting in a SR and undergoing a FEL
namics[1]. Among these, a fairly efficient tool is provided interaction can be described by the FPE

by the Fokker-Planck equatigfPE [2], which has recently 2
been employed to study the dynamical behavior of theﬂ:w Cag of _ ws of +Ei 218f+ 2
T de | 75 2
) (2.1)

€ z
electron-beam longitudinal distribution for a SR FEL ampli- 7t ws JZ Cac Jde
fier [3]. This preliminary investigation has provided an indi- P

cation that the damping times of the longitudinal modes de- +DT) —

pend on the system parameters. They have been shown to be Je

a function of the laser intensity and of the detuning paramyyheres is the relative energyw the synchrotron frequency,
eter. In this paper we analyze this problem more deeply ang(C the momentum compactiorf, the machine revolution
show that the damping times of higher-order longitudinalperiod, andD the radiation noise diffusion coefficient. Equa-
modes is significantly reduced for SR FEL amplifiers oper-tjon (2.1) reduces to the usual FPE of the SR synchrotron
ating in either the undulator or optical-klystrd®K) con-  motion when the laser is off §2)=0). In this last case, the

figuration. stationary solution {f/gt=0) is provided by
The increase of the damping times ensures a more effi-

cient “cooling” mechanism and therefore this result appears fo(z,6)= «d — 1 z N e? 2.2
particularly interesting since, as it will be discussed in the o(ze) =5y 073 o2 o) '

following, it seems to confirm the general tendency, sug-

gested by experimental and numerical studies, that the onsetere
of the FEL interaction acts as a feedback stabilizing mecha-

nism for some kinds of longitudinal instabilities. o = /D 7s o _Cac o 2.3

The plan of the paper is the following. In Sec. Il we study € 27 TP wg '

the FPE governing the evolution of the longitudinal phase-
space dynamics of a SR electron beam undergoing a FEL
amplification in the undulator configuration. We perform a 0= .t
mode expansion based on Hermite functions and prove, by s
numerical analysis, that the mode damping times are sensi- —

By rescaling the variable according to the prescription

tive to the various parameters of the system. In Sec. Il we @sT OsTs
address the same problem for the OK configuration and show z (249
that in this case too the mode damping times are affected by X=
the main parameter of the system. Section IV is devoted to z
concluding remarks. We comment on the link between the e
present results and other observations related to the inhibi- y= P
tion caused by the FEL interaction of microwave instability €
and potential well distortion effects. Appendixes A and B areand by recalling that
devoted to the details of the calculations.
sin(v/2)]? wo— @
(8e2)=A , v=2wN , (2.4b
vi2 wq
*Present address: ENEA, Dipartimento Innovazione, Centro
Ricerche Bologna, Bologna, Italy. we can recast Eq2.1) in the form
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d J d
299~ ya_x_X@)w—E_SW yog+{[1+W
J
XG[(y+Yo)u.1}] 9 (2.5a

where u.,=4No, is the energy-spread inhomogeneous
broadening parametey,, is linked to the detuning as dis-

cussed below, and

1
-
Mg

<

S

W= T (2.5b

|

I
with | being the laser power density ahdthe FEL power

saturation density. Equatiof2.5) can be conveniently ex-
panded in terms of harmonic-oscillator functiofsee Ap-

pendix A

L
9Oy, 0= 5 2 Neimm(6)HE () Hen(y)

x2+y?
Xexp — (2.6
2
to get(see also Refl.3])
2m
do hnm=(M+1)hy mea—(M=m+1)h, 1 — R Pn,m
S
2W
+ a_ Z G:n(:“s vyO)hn—m-H,r
s r=0
(n=0,1,2; m=0,1,...n; h,,=0
for m>n or m,n<0), (2.7

where

r 11
Gn(Me Yo) = =01 E

+ o0
XJ sinc

2
Xexp( - y;) He, . 1(y)Hen—1(y)dy.

(2.9

T 2
5 (y+yo)usD

It is evident that when the FEL is switched off(=0),

coupling occurs only between modes having the same ind

n, which specifies the order of the mode=1 dipole, n
=2 quadrupolen=3 sextupole, et¢. The evolution of the

mode can be easily obtained and is characterized by the

genvalues
+ n 1
Nps=—==Is 1- =, s<<m,
' wg wg
(2.9
s=0,2,...n (even, s=1,3,...n (odd
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TABLE |. Even and odd eigenvalues and relevant notatigvs.
is the number of eigenvalued/; the number of real eigenvalues,
N| the number of couples of complex conjugate eigenvaludbe
real eigenvalue, and Rethe real part of the complex conjugate
eigenvalue.

N NR NL A Re\
1 2 0 1 0 @
2 3 1 1 a b
3 4 0 2 0 (8,5
4 5 1 2 c (d,e)

(see Appendix A for further commentsit is also evident
that the longitudinal mode evolution is characterized by a
damping timer,/n and by an oscillatory frequency. When
W=+0 the problem is no longer amenable for an analytical
treatment, modes are coupled, and the damping times be-
come functions of the characteristic quantities of the system,
such as, the detuning, the laser intensity, and the inhomoge-
neous broadening parameter.

Before proceeding further we must stress that the variable
y is linked to the FEL detuning parameter by

14

y= )
The (2.10
v=2mN Po— @ ,
Wo

where wg is the resonant frequency. Sind¥ is inversely
proportional to x., we introduce for later convenience,
namely, to study separately the effect of the energy spread
and of the input laser power density, the quantity

072
&}

W=W,
o u,

(2.11

where,ug is the inhomogeneous broadening parameter asso-
ciated with a reference energy spread &glis the dimen-
sionless input laser power density normalizecﬁ@a

The kernel of the problem is contained in the convolution
integral (2.8), which fixes the size of the matrices to be in-
volved in the calculatiorfsee Appendix B The problem is
slightly simplified however, by the fact that odd-odd and
even-even mode couplings only are allowedygt0. The
range of values we have considered has allowed us to restrict
the size of the matrices to 224 for the even mode@ip to
n=28) and to 2x 20 for the odd mode&up ton=7). In the
more general casg,# 0 even and odd modes are mixed and

&%e have considered 4444 matrices.

In this way we have obtained reliable eigenvaluesrfor
=1,3,5 andn=2,4,6. The results of the numerical analysis
€4re shown in Figs. 1-3, which have been divided into two
groups of odd §=1,3) and evenr{=2,4) eigenvalues. We
have displayed the dependenceWs in Figs. Xa) and 1b),
VS v in Figs. 4a) and 2b), and vsu, in Figs. 3a) and 3b).
The eigenvalues are labeled as indicated in Table I.

In Figs. 1a) and Xb) we have reported the real part of the
eigenvalues v&\V,. It is evident that the deviation from the
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FIG. 1. (a) Real part of the odd eigenvalues W), for w,=4 FIG. 2. (a) Real part of the odd eigenvalues wg for different
different v, values,u(0)=0.1, andu,=0.2 (undulator configura- W, values, with the same parameters as in Fighl Same aga),
tion). (b) Same aga) but for the even eigenvalues. but for the even eigenvalues.

natural damping is maximum forosp a_n.d for Ia_rge_r values: behavior of the real part of the eigenvalues as a function of
of Wy. The effect becomes less significant with increasing, detuning parameter, (v, is the value of the detuning

vy and for vy>2.5 there is the opposite tendency, namely, ; . .
the eigenvalues decreaSe modulus and thus the damping _correspondmg o) for dlffergntWO values. [To give an
idea of the number involved in, we note that,=1 corre-

times tend to increase. Figuresap and Zb) describe the ) )

behavior of Re\, vs w, for fixed W,. In this case one can SPONds to a laser input power density of abodtfngcmzfor
see that the effect of damping time reduction is counteractell =50, k=3, \,=9 cm. y= 10°, 7=3x10"°ms, T
by larger values of the natural energy spread. This result wil= 300 ns, an.dfig(O)~1O : Thgy confirm, from a differ-
be discussed in Sec. IV. FiguresaBand 3b) provide the €nt perspective, the results of Fig. 1.
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FIG. 3. (a) Real part of the odd eigenvalues us for different
W, values,vy=0, ws=4, andu’=0.1. (b) Same aga), but for the
even eigenvalues.
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Ill. STORAGE-RING FEL AMPLIFIERS
WITH AN OK CONFIGURATION
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Gk o) = 517 _/_1 Fwd eV
m vyO - 2(m_1)| 2 ) y

(3.18

X Her+1(y)Hem1(y)CO% k(y+Yo)

where

k=u2V1+W, w9 =8(N+Nyo,, (3.1b

andNg is the number of equivalent periods of the dispersive
section. The device is composed of two undulators with
identical number of periods\) and lengthN\ ,, separated
by a dispersive section of lengiiy\ .

In Fig. 4 we have reported the real part of the eigenvalues
vs W, for different vg. For smallvy values, there is a clear
indication that the damping times decrease with increasing
W,. For larger detuningsi=2.2) there is the opposite
tendency and the damping times increase. Figure 5 further
confirms the results of Eq4) and it is evident that Rk, is
above the natural threshold (Rﬁwfozn/rs) for vg=2.2.

IV. CONCLUDING REMARKS

The results described in the previous sections are in fairly
good agreement with previous experimental and theoretical
works. It has indeed been obsenjé&d that the onset of the
laser is, in many cases, characterized by a partial suppression
of the higher-order longitudinal modes. More recent numeri-
cal investigation$6] have shown that longitudinal instabili-
ties, like the anomalous bunch lengthening, may be sup-
pressed by the FEL interaction itself. These facts and what
has been discussed in the previous sections can be traced
back to a common framework. The FEL interaction induces
an additional energy spread, which increases with increasing
laser intensity. The onset of and the support to the higher-
order modes becomes significantly reduced. This effect is
more pronounced around sma}j values where the induced
energy spread is larger. This explains the behavior of Figs. 1
and 2, which show that the suppression effect of the higher-
order modes is less efficient with an increasing detuning pa-
rameter. The same holds for Fig. 2; in fact, for equivalent
values ofvy andW,, the induced energy spread is reduced
by increasing values of the inhomogeneous broadening pa-
rameteru,, .

We must underline that the results of this paper hold for
the natural energy spread only. The results of Fig. 3 cannot
be extended to the case of an energy spread different from
the natural one. We must also underline the peculiar nature
of the induced energy spread that is energy dependent and
stress that fowy>2.5, i.e., when the slope of the FEL gain
curve becomes negative, the damping times increase. The
results of Figs. 4 and 5 relevant to the klystron configuration
confirm the above-given interpretation. We note in fact that

The longitudinal dynamics of a SR FEL amplifier, oper- the cooling effect is larger when the induced energy spread is
ating with an OK configuration, is governed by the samelarger i.e., for smallerv, and largetW,).

FPE given in Eqgs(2.1) and (2.7); the only variations are
contained in the function§&!

m?

which should take into ac-

We may therefore conclude that various indications are
converging and seem to confirm that the FEL interaction,

count the role of the dispersive section and of the consequentith the consequent induction of an energy-dependent en-

optimization to enhance the gdid]. In particular we get

ergy spread, creates new conditions, which favor the lowest-
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FIG. 4. (a) Real part of the odd eigenvalues W, for different FIG. 5. (a) Real part of the odd eigenvalues wg for different
vo values,wg=4, andz¥=0.5 (OK configuration. (b) Same as W, values and the same parameters as in Fi{@H configuration.
(a), but for the even eigenvalues. (b) Same aga), but for the even eigenvalues.

order longitudinal modes and provide a suppression mechdiguration. A more appropriate analysis would require the
nism for the longitudinal instabilities. self-consistent treatment of the evolution of the electron
We must stress, however, that the present treatment iseam and optical field. A simple analysis based on a heuris-
limited to the one-dimensional case. Three-dimensional contic one-dimensional oscillator model has provided a prelimi-
tributions may modify some aspects of the interaction benary confirmation of the results of this paper.
tween electrons and laser ligli7,8] and therefore they
should be carefully considered within the present context. ACKNOWLEDGMENTS
As a final remark we underline that our treatment has
been limited to the amplifier case, while the experimental The authors express their gratitude to Dr. L. Palumbo, Dr.
results we have referred to are relevant to the oscillator conV. Litvinenko, and Dr. M. Migliorati for enlightening discus-
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APPENDIX A

and mobility Network No.

Ai j=(M+1)8s ), (nmr1y— (N=M+1) ) (nm-1)

2m W
N — 5(s,r),(n,m)+ — Gr 5(s,r),(nfm+r,r)a (A2)
Wg Wg

To deal with equations of the tyg2.7) it is convenient to
introduce a column vectdn that is specified by an indeix

=(n,m) with 0=n=n,,,, O=<m=n, so that

where 6 denotes the Kronecker delta function a__mds col-
umn vector that is nonzero for even. In particular we have

hi=2 Ahitgi j=(sin), (Al for y,=0 (with n=1,3 andh’ = Ah)
|
0 1 0 0 0 0
1 2W 3
Ws Wg
0 0 0 1 0 0
A= 0 0 -3 ——(1-wah 2 0 (A33)
S
@, 2 o 2 L2
0 2W 0 0 -1 ° 1 WG3
g 3 s 3 73
and (with n=2,4 andh’ =Ah+g)
0 1 0 0 0 0 0 0
2 2w
-2 —=(1-WG} 2 0 0 0 —G? 0
wg Wg
4 W 2W
0 -1 —z(l—EGg) 0 0 0 0 ;—SG;‘
0 0 0 0 1 0 0 0
A=| o 0 0 -4 7i(17WGi) 2 0 0
Wg
2WG° 0 0 0 -3 2 (17WGZ\ 3 0
o =7
0 2W 0 0 0 -2 _ 8 (17WG3) 4
a_s 3 a_s ? 3
0 0 2WGZ 0 0 0 -1 _8 1—WG4)
oyt E_( 4

(A3b)
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APPENDIX B
min(m,n)

The integrals appearing in Eq&.8) and (3.13 involve | 0.0) = Vara(—1)m+me2 -1 rr|( )
products of Gaussian functions and Hermite polynomials. mn(0@)=yma(—1) 20 (- r
They can be expressed in analytical forms, which are re- (M2
ported here for the sake of completeness and to provide fur- (”) (m+n-2n! /1 «
ther insight into the structure of the problem. We underline r/) |m+n 2 4 '

that the previous analysis is entirely numerical and the re-

sults of this appendix have been used as benchmarks.
We consider therefore the integral

e 2
lm,n(k,a)=f7x cogky)e V" “Hey(y)Hey(y)dy,

(B1)
where
[m/2] rym—2r
(—1)"x
Hepn(x)=m! Zo —2rr!(m—2r)! . (B2)

The integral(B1) can be cast in the form

_ — ak?/4 @[ & E_E- a
Imn(k,a@)=Vmae RG{Hm’n<Ik2, 7 2,Ik 57

if m andn have the same parity; otherwise it vanishes iden-

tically. H{?), are two index Hermite polynomials specified as

(8]

min(m,n)

Hgnz)n(x,z,y,w,k)z E (_1)qq!kq(m)
, 2 a
X(S)Hm—q(X,Z)Hn_q(y,W)' (B4)

whereH (x,y) are Kampe-de Feriet polynomials specified
by [8]

[n/2] erm—Zr
= ' ———
Hm(X,y) m.Z,O T(m=2n1" (B5)
By using the identity
Rdp@ & ¢t xa l @
mn{ K5 3725372732
min(m,n) m\/n
—(—1)\(m+n)/2 _1\r
come g (T
k 1 «
><Hm+n,2r a’z, E_Z y (BG)

we obtain the result

(B7)
which can be exploited to get an analytical expression for
Gl,-

By noting indeed that the approximation

sinx/2|? X2 s
x2 | =R T 11 (B8)
holds (see Fig. 6 by keepingy,=0, and by defining
[(uem? 1)t
a(ﬂg)_[ 11 +§ , (Bg)
we end up with
\/ . -1 (m+h)/2 mn(m—=1,n+1)
Oh (e 0= [ S (-pT
(m—1)! v2 r=0
(m—l)(n+1) (m+n—2r)!
e e e T
—r!
2
1 1 (m+n)/2—r
X 2 4 a(p,) (B10)

An idea of the validity of the approximatio\10) is offered
by Fig. 7.

The Gy, relevant to the OK configuration can be evaluated
without any approximation. We note indeed that by setting
a=2 in Eq.(A3) we find

FIG. 6. Comparison betweésin c(v/2)]? (continuous lingand
the approximant Gaussian exp¢?/11).
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Im,n(kai)z 2m(—1) thHm,n(lk)]eX Y Gnm(k,yo)Zm Rde,1’n+1(ik)e'ky0]ex ek
(B11ag
where (B12)
min(m,n) m\/n
H. (X)=m!n! ! xmtn-2q, . . .
ma(X) qzo q (q) q The behavior ofG},(k,y,) for differentk andy, values is
(B11b) shown in Fig. 8.
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