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Turbulent cascades in anisotropic magnetohydrodynamics
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The cascade behavior of turbulent magnetohydrodynamics with a strong background magnetic field is
examined and compared with direct numerical solutions at high Reynolds number. Resonant interactions give
rise to qualitatively different behavior for modes below a characteristic wave numqhefined in terms of the
background field. Modes with parallel wave number abkyere passively driven by the longer wavelength
modes, even when the majority of the energy is contained in the passive wave numbers. The passive modes do
not cascade to higher parallel wave numbers, so the parallel wave number spectrum is not a power law and
does not extend to dissipation scales. Energy is cascaded normally to small perpendicular scales, but more
rapidly in the case of the passive modes, so an anisotropic spectrum develops from isotropic initial conditions.
For a finite system with minimum wave numbeik, , the only dynamically controlling mode is the vertical
average, or mean mode. The mean mode evolves with two-dimensional dynamics, forming coherent current
structures which are mirrored by the passive modes. Because of the differential decay rates, the mean mode
dominates at long times. Quantitative comparisons are made to numerical solutions of reduced magnetohydro-
dynamics[S1063-651X98)06406-X]

PACS numbgs): 52.35.Ra, 47.65:a, 52.65.Kj

I. INTRODUCTION netic helicity, an inherently anisotropic quantity. Further-
more, in inertial-range scaling argumernt0,11], a large-
Although theoretical studies of turbulence usually beginscale magnetic field is presumed to influence the small scales
with assumptions of homogeneity and isotropy, such asby the “Alfven effect,” in which the small-scale fluctuations
sumptions are more often motivated by convenience thafisee” a large-scale magnetic field as a constant background
physical arguments. In a plasma, isotropy is particularly dif-and thus behave like Alfrewaves. Classically, the effect of
ficult to justify, for nearly every naturally occurring plasma, the large-scale field is simply to reduce the mode interaction
from terrestrial to solar to galactic scales, possesses a matime when determining the isotropic inertial-range spectrum.
netic field on the largest scale of the system. LaboratoryHowever, the interaction of Alfwewaves is unusual in that
plasmas are also usually constructed with large-scale magvaves traveling in the same direction do not interact at all
netic fields necessary for confinement. The theory of turbu¢barring compressible and dissipative eff¢ctBhus it has
lent magnetohydrodynamic@VHD) in the presence of a been argued that the three-wave interactions are in fact
large-scale magnetic field is in need of further developmentempty unless one of the modes in the triad has zero compo-
Observations and laboratory measurements reveal thaent along the mean magnetic figlt2,13), and that energy
turbulent fluctuations against a strong background field tends therefore more efficiently transferred to perpendicular
to have longer length scales along the field direction and thatvave numbers. It has also been arg{d] that such modes,
the fluctuating component in the direction of the field is by virtue of having zero frequency, do not contribute at all to
smaller than the components perpendicular to the fieldthe interactions, and that the cascade is therefore determined
These conclusions have been drawn by scintillation observay the four-wave resonant interactidri$]. Direct numerical
tions of distant objects viewed through the interstellar magiests of the interaction between pairs of wave packets have
netic field[1] or near the solar limp2], or from direct mea- shown that the triad interactions do domingté], but it has
surement of the fluctuations via spacecraft in the solar windeen claimed that in a fully turbulent state with many inter-
[3-5], and have also been noted in tokamak experimigits acting packets, all orders will contribute equdlig].
Some of these features have also been seen in numerical Reduced MHD(RMHD) [20,21] is a reduction of MHD
solutions of three-dimension&BD) MHD. Spectral anisot- with three spatial dimensions and two-dimensioi24) field
ropy was found from isotropic initial conditions in incom- components. It was originally derived for tokamak fusion
pressible MHD[7], while anisotropy in the magnetic field devices from scaling arguments based on a strong vertical
vector components was found in compressible solutj@hs magnetic field. In fact, environmental anisotropies other than
The degree of anisotropy in the fluctuations was observed tbackground magnetic fieldsuch as strong rotatipican lead
increase with the strength of the background field, but theo dynamics closely related to RMH[R22]. The dynamics of
dynamical mechanism by which these anisotropies develothe time-dependent parallel componetdich have no in-
is still not well understood, and large Reynolds numbers aréluence on the perpendicular component evolytiiffer un-
still not achievable in 3D MHD solutions. der different scaling$22]. RMHD was used to compute the
Although classical MHD turbulence theory is nominally triad interactions in Refl18], and the restriction to consid-
isotropic, closure calculatior®] assign a key role to mag- eration of shear Alfve waves in Refs[14,15 is in fact
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equivalent to starting from RMHD. Although a simplifica- Neglecting boundary sources, RMHD has three integral in-

tion, RMHD is advantageous in that its solutions are farvariants,

easier to compute than MHD, making possible studies at

higher Reynolds number. RMHD has all of the important

dynamical features relevant to the development of anisotropyf |VyT|2+|V ey |2dxdz, f|V¢*|2—|Vz,lf|2dxdz,

in MHD: three dimensionality, cascade behavior in all direc-

tions, and a competition between linear and nonlinear forces.
In this paper we present an analysis of the effects of a

strong background magnetic field on turbulent MHD. Sec-

tion Il explores the effects of a strong background field when

a range of parallel scales is present. In a multiple-time-scalghich are the total energy, cross-helicity, and magnetic he-
analysis, the behavior of both the slowly varying componentsicity  These invariants are the same as general 3D MHD,
and the slow WKB behavior of the rapidly varying compo- yhereas in 2D, the magnetic helicity invariant is replaced by
nents are derived. The analysis is carried out for RMHD, angj,e [AZdx.

the generalization to 3D incompressible MHD is giveninthe  The resonant interaction of MHD waves has been known
Appendix. Section Il gives results from high-resolution 4 some time[16], and can be stated in terms of the formal
long-time integrations of RMHD which confirm the predic- theory of partial differential equatiorfd7]. For a small pa-

f Adxdz, ()

tions of Sec. II. Section IV gives our conclusions. rametere<1, if the terms in Eq(2) containingB, are larger
by 1/e than the nonlinear terms, one can postulate a fast-time
Il. MULTIPLE TIME SCALES OF ANISOTROPIC scalet’ and a slow-time scale such thatd,= (1/€)d + 4,
MAGNETOHYDRODYNAMICS and ¢~ = ¢~ (x,z,t',7). The fast-time-scale behavior is de-

) ) _ termined by theO(e™ 1) parts of Eq.(2) and the slow re-
Plasmas contain motions on an enormous range of timgponse by th@(1) parts. The multiple time scale is distinct
scales. MHD is itself a simplification of the basic plasmagom a simple asymptotic expansion ia Applying the
equations in which certain fast-time scalesg., particle 9y-  analysis to 3D MHD, one finds that the slow-time-scale be-
rofrequency, plasma frequencyave been removed, yet payior is given by 2D MHD{23], while RMHD follows by
even MHD has a multiplicity of time scales, and further re- additionally assuming fast and slow variationszifi21,24.

ductions are useful to make analysis less difficult. Here, we Applying resonance theory to broadband turbulence re-
study RMHD, in which fast compressional modes are absenty  ires some care. In truth, a simple scaling in which Bge

but shear Alfva waves remain. It should be emphasized thaterm in Eq.(2) is larger by 1¢ than the nonlinear term is

our analysis can be equally well applied to 3D incompress'overly simplistic, since the size of the linear term depends on
ible MHD, as is presented in the Appendix. The fundamentale sirength of the derivatives and a large range of scales

dynamical consequences of the analysis are the same ft,y e present. To account for all possible parallel scales,
both systems. The RMHD analysis is emphasized in the tex}q intoduce the vertical Fourier transform @f,
so that we may make explicit comparisons with numerical

solutions.
We adopt a notation in Whlch bol_dfac_e denotes purely Q== Qxt)e*, (4)
horizontal vector components. Likewis¥, is the perpen- K
dicular gradient and&v? is the perpendicular Laplaciaﬁﬁ
+¢9§. The magnetic field is measured in units of velocity, and write Eq.(2) as
there is a constant vertical magnetic fi@g, and the density
is assumed constant. In terms of scalar poteniial8, the B
perpendicular velocity is given by=2zxV and the per- oQi=—=V-2 [, Vi o 1+ikBeQi . (5)
pendicular magnetic field bB=2zx VA. The RMHD equa- k'
tions,
If the typical perpendicular scale and amplitude ofyafl
L+ [, L]1-[Aj1=Bod4 (1a) modes are comparable, then the question of whether the lin-
ear term dominates over the nonlinear term is dependent on
the value ok. Let us define a cutoff wave number for linear
behavior, k; , such that modes for whick<k, evolve

) ] ] mostly via the nonlinearity, while those for whidk>k;
determine the evolution of the perpendicular components ofyolve mostly linearly. An estimate fdt,_ is

the fields, wherg' =V?y is the parallel vorticityj = V?A is

the parallel current, angd,-] is the horizontal Jacobian. The —

parallel components of the velocity and magnetic fields are K, ~ ﬂ, (6)

passively driven by thes and A fields. Introducing the El- Bo

sasser fieldsu™=v+B, ¢ “=y¢=*A, and Q =V?2y~,

RMHD can also be written by taking the sum and differencefor a characteristic perpendicular wave numieand per-

of Eq. (18 and the Laplacian of Ed1b), pendicular velocityy. The behavior of the system depends

on the scale content relative k¢ . Below we consider three

QT+ V [, Vi ]=£Byd, Q™. (2)  different cases for initial excitations with wave numbgr.

GA+[,A]=Bod, i, (1b)
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A. kKo>k slow-time scale either. Any transfer of energy among differ-
One possibility is that all finite wave numbers present in€Ntk must be through higher-order interactions. In the per-
the initial conditions are>k, . In a finite system with a Pendicular directions, however, there is a cascade on the
slow-time scale which is entirely controlled by the mean
mode. Because the mean mode will undergo the forward
=0 mode. The fast-time-scale behavior is given by the®N€rdy cascapie characteristic of 2D MHD, the wave modes
O(e™1) part of Eq.(5), will aIsp be driven to small perpe.ndlcular Wavele_ngths on th(_a
slow-time scale. However, the time scale of this cascade is
a9y Qp = *ikBoQp , (7)  controlled by the amount of energy in the mean mode and if
the mean mode is very weak, the cascade may instead be
so that controlled by higher-order effects neglected here. The pas-
_ sive behavior of the higk-modes holds for 3D MHD as well
QO =0 (x,7)e* kB’ (8)  as RMHD (see the Appendix
_ ) ) It has been speculated previously that the more rapidly
for all k, |nC|Ud|ng k=0 which does not evolve on the,faSt- Varying Components WOUId ev0|ve “parasitica”y” to the
time Scale. The fast'time behaViOI’ iS nondispersive A”Ve S|ow|y Varying Component in anisotropic MHQS] Triad
wave propagation with spedsh, either parallelfor 17) or  jnteractions between individual wave packets have been ex-
antiparallel(for Q™) to the background magnetic field. Ob- piicitly calculated and verified numerical[8], but may not
viously, there is no transfer among wave numbers on the fagiominate over many collisiorf49]. Equation(10) is appro-

minimum wave number, one may hakgeless than the mini-
mum wave number, but there may still be energy in khe

time scale. We may calculate ti&(1) parts of Eq.(5), priate to broadband turbulence and will be compared directly
against the behavior of 3D RMHD numerical solutions be-
aTQl‘(_"etikBot' —_V. 2 [¢k:r ,Vlﬂf_k,]eii(k_Zk,)Botl low.
k!
C) B. ko<k,
and isolate the slow-time behavior by projectide., multi- If the initial excitation is at wave numbers less than the

plying by e*ikBot" and averaging over the fast phase varia-linear cutoffk, then the primary dynamics are nonlinear. In
tions). The time averaging of the nonlinear terms gives risethis case, the interaction time between wave packets is long
to a cancellation of the interaction between most Fourie€nough that they may interact without being resonant and we
modes, i.e., in the summation ovkf, only the terms with €xpect a turbulent cascade to higher wave numbers by the
k’ =0 survive. This is a peculiarity of shear Alfwavaves in  uUsual doubling in wave number space, i.e.,

ideal MHD, and comes from the fact that waves traveling in « Nt o +

the same direction do not interact at [dP]. This resonanc% I~ Qi i+ 2ikBold (12)

gﬁgﬁ 'ggncg:ﬁa:(essg%?(i? V\g:eunn2035i?;fg;ftsaﬁ;ergc;?sst;si?ifs%though initially unexcited modes grow in amplitude due to
P y q y nonlinear coupling from lowek-modes, this is not a cascade

The result of the averaging is in the traditional sense because of the characteristic ampli-
9,05+ V [y Vi 1=0, (10) tudeB,. We can presume based on the preceding subsection
that if a mode&(),, grows to an amplitude such that the linear
which describes the slow WKB evolution of Alfaewave term in Eq.(12) is approximately as strong as the nonlinear
amplitudes. term, the mode will begin to interact only in resonant triads
Inspection of Eq(10) shows that théc=0 mode evolves (i-e., will be passively driven by the mean modend will no
independently of all the finité-modes. Furthermore, the dy- longer cascade to higher wave numbers. Thus the extent of
namics of thek=0 mode(which we refer to as the “mean the cascade ik is limited not by dissipation, but by the
mode”) are just those of 2D MHD. That the mean mode canbackground field,. A mode will grow in amplitude until
be associated with the slow-time-scale dynamics of anisothere is an approximate balance between the terms in Eq.
tropic MHD has been known for some tifi23]. An impor-  (12). This implies a parallel spectrum with,~QZ, which
tant point is that the plasma need not be weaktiependent;  suggests an exponential forf,~e®. On dimensional
the independence of the mean mode arises from the shogrounds, the natural choice for the exponential scale factor is
interaction time of oppositely propagating waves. In effectk., giving a parallel spectrum
the only (,y,t) field affecting a propagating wave is that of .
the mean mode, whose presence is felt continuously. Qk’”ef‘k/kd- 13
Each of the finitek componentgthe “wave modes’) has ) .
a separate subdynamics which are driven by the mean modk K is small (By large, the turbulent cascade will be

without influencing it. An additional consequence of Etp)  Strongly suppressed before reaching dissipation scales.
is that Higher-order effects may still give rise to significant transfer

of energy to small scales, so nonlinear numerical solutions
. are necessary to verify the inhibition of cascade.
tﬁf |V i |dx=0, 11 The value ofk, depends on the characteristic perpendicu-
lar wave numberx, which may increase when the initial
i.e., the energy in each wave mode is conserved individuallyexcitation undergoes a perpendicular cascade. It has been
Thus there is no cascade in parallel wave number on theuggestedl15] that a scale-invariant cascade occurs such that



7114 R. M. KINNEY AND J. C. MCWILLIAMS 57

the mean parallel wave numbkrincreases at the same rate With the nonlinear terms calculated by discretization of the
ask, . We must establish whether the increaseininter-  Jacobian operator, for which several second- and fourth-
feres with the scaling argument leading to the above expoerder symmetric algorithms were tested. The elliptic problem
nential spectrum. for the vorticity-streamfunction diagnostic equatidne.,
Suppose the perpendicular energy cascade of an excitgolving {=V?y for y) is solved by an iterative multigrid
tion with initially isotropic wave numbek, leads to a devel- algorithm discretized with a second-order operator which is

oped perpendicular spectrum based on staggered differences, giving it an effective cutoff
scale compatible with the higher-order advection schemes. A

vS k" staggered vertical grid is used, with and A defined on
B~ k_o (k_o) ' (14) conjugate grids and either second- or fourth-order schemes

used to evaluate vertical derivatives. In combination with a
up to some dissipation cutoffs>k,. If the energy is to be centered leapfrog time stepping, this has the implication that
finite and the energy dissipation rate independent of the visvertical Alfven waves are not dissipated by the numerical
cosity, then &k n<2. The characteristic entropy can be esti-method, which is important when investigating questions of

mated by spectral transfer in the parallel. We use a purely horizontal
dissipation operator so that energy is explicitly removed at

—— 2 small horizontal scales with no such sink for wave vectors

kv Nf K°E dr. (15 parallel toz. Various dissipation operators are used, includ-

. ing the commonly used hyperdiffusion»V# and a nonlin-
After the spectrum has fully developeki, as estimated by ear variant of thigi.e., the y scheme of Ref[27]), which

Eq. (6) will have increased from its initial value to allow a somewhat larger inertial range and narrower dissipa-
tion range compared with ordinary diffusion. Although the
(1-nyi2 . : L .
K ~ Vo [ Kd (16) choice between higher-order finite difference schemes can
LBy | kg ' affect the outcome of sensitively dependent deterministic

problems and can influence the late-time shape of coherent
Although much larger than its initial valudguo/Bg, the  structure§27], we find that our results do not change appre-
final value ofk is still <«4. Therefore the parallel spec- ciably under different numerical schemes. In particular, none
trum will always be dominated by the exponential depen-of the results we quote are sensitive to choice of dissipation
dence in Eq(13) rather than by the power law of a scale- operator.
invariant cascade to dissipatiofiNote, however, that if We define the parallel mode energies
collisions are infrequent, the viscous operator in a plasma is
anisotropic[26]. Since the parallel dissipation wave number 5 )
kq is then< kg, a short inertial range might be established Ek:f [Vl “+ VA “dx, (17)
instead of an exponential spectrym.

Our conclusion is that the standard picture of a scalesych that the total energy B,E, . Similarly, we define the

invariant Kolmogorov-type cascade does not apply in thehgrizontal Fourier transforms,
direction parallel to a strong magnetic field. There is a fun-
damental difference in energy transfer rates at different par- . _
allel scales because larggemodes that are excited soon be- P(Kk,2)= f ye! < Xdx, (18)
come oscillatory and decouple from the rest of the system. In
particular, this stops the cascade from progressing to dissﬁnd the energies
pation scales in the parallel wave number and implies an
exponential spectrum rather than the traditional power law. R . R
Ee= 2 K’Zf ¥’ 2)>+|A(x",2)|?dz,  (19)
C. ko~k_ &' |=k
If the initial excitation contains wave numbers across agg that the total energy i§x|§x- The mean parallel and

large range, a quantitative assessment is difficult. We CaBerpendicular wave numbers are measured by
expect that those wave numberk, will decouple from the

smallerk modes and evolve according to the resonant inter- E K2E E 2E
actions in Sec. Il A, effectively truncating the parallel spec- - K -
trum at wave numbek, . However, the mean mode will not k?= . K= = (20)
evolve independently with 2D dynamics, as in the resonant EkEk 2E
K

case. Instead, all modes wikix k, will be coupled to form
a dynamical system whose evolution is independent of th

k=k_ modes. q‘he normalization is such that the computational domain is a

cube with edge length2and [|V ¢|2+|VA|?dxdz=1 att

=0. In this paper we discuss only unforced solutions, so the

energy is a decaying function of time. We adopt a normal-
We test the results of the multiple-time-scale analysis byization in which “By=1" means that/Bjdxdz=1. Thus a

numerically calculating solutions of RMHD in the form vertical Alfven transit time forBy=1 is approximatelyAt

given by Eqg.(1). The numerical scheme is finite difference, =100. The initial spectrum is chosen with random phases

IIl. NUMERICAL SOLUTIONS OF TURBULENT RMHD
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FIG. 1. Parallel wave number momeatsolid) and perpendicu- FIG. 2. Evolution of energy contained in various modes. The
lar momentx (dashedl from decaying RMHD solution wittBy  —0 mode decays more slowly than the finkenodes and will
=5. The parallel wave number shows almost no evolution, Wh"eeventually dominate the solution.
the perpendicular wave number shows a normal cascade.
interaction between different parallel modes. Figure 1 shows
such thatEK is peaked atk=5 and E is constant fork the mean parallel and perpendicular wave numbers vs time in
between 0 and a finité,,, typically i of the maximum @Bo=5 solution calculated on a 128rid. No parallel cas-

resolved wave number. cade is evident, but a cascade proceeds normally in the per-
pendicular wave numbers. Whilk remains constant to
A. Strong background field within 2% during the entire solution increases as the spec-

trum broadens, with a maximum &t 60. After reaching its
We begin by examining solutions wiBy, large, in which  maximum, x decays due to dissipation and the absence of
case the dominant interaction is expected to be the resonafircing.
dynamics of Eq.(10). By Eq. (6), choosingBy=5 gives In the absence of a parallel cascade, all energy dissipation
k_=2, so that all the modes should obey E#j0), with no  occurs via cascade to small perpendicular scales. Since the

R

—_

=2

FIG. 3. On the left are visualizations of the curréimp) and vorticity (bottorm of the mean mode of a 532 32 solution at=1100. In
the middle are the time derivatives of the fields. On the right are what the time derivatives would be for a 2D solution.
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FIG. 4. Currentabove and vorticity (below) of the mean mode of a 3D solution on the left and a 2D solution initialized with the fields
in Fig. 4, showing persistence of 2D dynamics in the 3D case over many decorrelation times.

mean mode is the only one with nonlinear dynamics, its beeout the spectrum and rising current kurtof28]. Visualiza-
havior is fundamentally different from the other modes. All tions of the mean mode amplitudes of currgg(tx) and vor-
of the wave modes should behave similarly since our comticity {,(x) are shown on the left hand side of Fig. 3. The
putational method dissipates all parallel modes equally. Figtime shown ist=1130 in aBy,=5 solution on a 512
ure 2 showsE, as a function of time for variouk. The X 32 grid. The fields have very similar appearance to those
numerical value of the decay rates should converge withrom 2D solutions, with magnetic vortex structures and thin
large Reynolds number. Although we cannot establish thaturrent and vorticity shee{25]. In the middle are’,j, and
the measured rates are universal, a clear difference betweern(), from the 3D solution, calculated from the difference in
the mean and wave modes is visible. The energy of the meahe fields at two nearby times. On the right is the result
modeE,, decays more slowly than the others. The sum ofobtained by calculating what the time derivatives would be
all modes withk>0 is also shown. In this solution, the mean for 2D dynamics. The time evolution of the mean mode is
mode begins with 6% of the total energy and ends with 40%very closely predicted by the simple 2D dynamics. The cor-
Thet—« state is clearly one in which the mean mode will relation coefficient for the two field&lefined for two func-
dominate all other modes. tionsg andh as fgh/\/fg%[h?) is 0.74, with the difference
The dynamics of the mean mode are plainly those of 2Dmost probably due to the fast-time-scale forcing present in
MHD. Rigorous attributes such as conservatiorf Afdx are  the 3D solution. These dynamics persist over long times.
observed along with phenomenological features reported ifigure 4 shows the current and vorticity of the mean mode at
previous solutions of 2D turbulent MHRe.g., Ref.[25]) t=1660 on the left, compared with the fields from a 2D
such as dominance of magnetic over kinetic energy throughsolution initialized with the mean mode fieldtat 1130. The
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1.00f ' T ] [28]. Figure 5 shows the results of a 2D MHD calculation in
which the evolution of a passive field was evolved according
to Eq.(10) simultaneously with the MHD fields. The passive
field decays at a faster rate than the dynamical fields. The 2D
solution shown in Fig. 5 is at higher Reynolds number than
the 3D solution of Fig. 2; 2D solutions with the same Rey-
nolds number as the 3D solution shown in Fig. 5 have simi-
lar values for the power-law decay rates.
. A consequence of the passive dynamics of @€) is that
] the wave mode amplitudé®,. , acquire horizontal structure
from the mean mode. The form of passive interaction in Eq.
(10) is different from a simple passive scalar; the quadratic
invariant is an energy rather than a scalar variafiuere
enstrophy [|Q, |2dx). The mean mode has a direct cascade
of energy and evolves coherent structures. The wave modes
develop a similar perpendicular spectrum and exhibit ghost
0.01 A L R structures. On the left in Fig. 6 is the mode amplit{g |2
0 100 1000 from the 512x32 RMHD solution att=1660, the same
t time as shown in Fig. 4. It is clear that thiB, cross section
FIG. 5. Energy of decaying 2D MHD solutigidashed linpand ~ mirrors certain vortex features appareni gn On the right is
a passive field driven according to E40) (solid ling). The differ-  the result of a 2D integration of E¢L0), starting from initial
ence in decay rates is similar to what is observed in Fig. 2. conditions given by thé), mode att=1130, i.e., the fields
in Fig. 3. The correlation coefficient between the fields given
time elapsed is greater than a decorrelation tiowerelation by the 3D and 2D solutions is 0.87, demonstrating the long-
coefficients between the 3D fields at the initial and finalterm applicability of Eq(10) over many decorrelation times.
times are 0.025 and 0.003 for the current and vorticity, re- It should be emphasized that the validity of 2D dynamics
spectively, but the 2D and 3D solutions are still well corre- for the mean mode of a 3D solution does not depend on the
lated (coefficients 0.69 and 0.65Correlations over longer mean mode being energetically dominant. The dynamics
times should decrease because of the sensitive dependeramme about purely for reasons of multiple time scales. For
on initial conditions inherent to these equations. example, in Fig. 2, the mean mode comprises less than half
The slower decay rate of the dynamical fields is attribut-of the total energy. The fraction of energy contained in the
able the development of the coherent structures apparent mean mode grows because of the difference in decay rates,
Fig. 4. A similar mechanism occurs in 2D neutral fluid tur- but the dynamics of the mean mode are 2D long before it
bulence, in which the entropy decays more slowly than thalominates energetically. Visualizations in 3D of subdomains
variance of a passive scalar because the coherent structurtaining current structures are shown in Fig. 7. The mean
formed in the vorticity field inhibit the cascade to dissipationmode is not dominant in the case on the left. While it is

w 0.10}

FIG. 6. Amplitude of the®,_, mode from a 3D solution at= 1660 (left) compared with a 2D calculation initialized from the fields at
the time shown in Fig. 3. Passive driving of the wave modes by the mean mode is consistent over many decorrelation times.
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FIG. 7. Details of coherent structures in the parallel current of 3D RMHD solutions. Structures occur whetkerthmode has
comparable energy with the finitemodes(left) or is dominant(right).

possible to see that the vertically averaged current is struds well behaved for smaB, sinceB, appears only in com-
tured, the total current can even reverse sign at particuldsination with §,. ChoosingB, small in Eqg.(1) should be
levels, a result of beating by the wave modes. The right hanihterpreted as a rescaling of the vertical coordinate, as arising
case is one in which the mean mode is dominant and thfrom a scale anisotropy in the initial conditions. The physical

structures appear more vertically uniform. picture of taking theB;— 0 limit of Eq. (1) is a collection of
packets far removed inbut still linked by a strong magnetic
B. Moderate background field field. The extreme of this limit yields a system of indepen-

Although we do not present a higher-order theory in thisdently evolving 2D planes, which while physically meaning-

paper, we can observe the effects of higher-order interactior{%”’ Is clearly distinct from 3D MHD in the absence of a

not considered in deriving Eq10) by calculating solutions ackground magnetic field. The independent evolution of the
with Bo<1. Although RMHD is derived based on physical horizontal planes leads to the generation of parallel gradients

arguments of a “strong” background magnetic field, RMHD

30_ T IIIIIII| T IIIIIII_
-1 T UL UL [ -
10 F ] . - = N .
- ?
y Q
- N
20f N ]
[ N
r N
J N\
AN
|~ N
5 N\
i B=0.2
10 O .
20<k<40 | I Bp=1.0
0 // 10 100 1000
10_40 //// 1I0 T 1(I)O T 1000 t
t FIG. 9. Paralle(solid) and perpendiculaidashegiwave number

moments for three solutions with differeBy<1. The parallel cas-
FIG. 8. Energy of selected modes vs time By=0.2 solution.  cade is limited by the magnetic field strength rather than by dissi-
The smallk modes decay at a markedly slower rate than the highpation, while the perpendicular cascade is unaffected by magnetic
k modes, analogous to the situation in Fig. 2. field strength.
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not being dissipated by transfer to larder

Figure 10 shows thg, spectra for the same three runs as
in Fig. 4 at the times of maximurk. Approximately expo-
nential spectra are evident up to the largest wave numbers,
. where the Fourier truncation prevents transfer to latger
causing buildup at the resolution limit. Fits of the spectra to
exponential curves for 20k<100 give scale factors of
16.32, 8.86, and 5.75. The ratio of these factors is 2.8:1.5:1,
i while the magnetic field strengths are in ratio 5:2:1. Thus the
general arguments of Sec. Il B give a correct order-of-
magnitude estimate of the spectrum in Efg), but a more
careful theory is required to predict the exponential scale
factor more accurately.

IV. DISCUSSION

We have examined the effects of resonant triad interac-
R R T N tions on broadband turbulent MHD. Under certain condi-
0 50 100 150 tions, the cascade behavior of MHD with a strong back-
k ground magnetic field is primarily determined by the
resonant triad interactions in which one of the wave vectors

with initial excitation confined t&=4, shown at time of peak mean has zero projection along the background field. When these

parallel wave number. Spectra become approximately exponentie{l:,ond'tIons are not met, then hlgher-order effec'_[s_ will becqme
with a scale factor that increases Wi} important. In numerical solutions, we have verified quantita-

tively the predictions of the third-order theory and the pa-

and cascade. We calculate numerical solutions in this regimg"met‘":‘r regimes in which .'t is no longer Va“d.' .
to test the scaling arguments of Sec. Il B. The third-order theory is based on a multiple-time-scale

Figure 8 shows the energy in certain low- and high- analysis, but the time scales can only be legitimately sepa-
modes from a 178< 256, B,=0.2 solution. Here, some of rated for parallel wave numbers greater than a characteristic
the initial excitation is at scales which interact only reso_?alrgl_lelévavg nl;/lm%d{“ (_j(;fmed mtermbs of':(he bacrgrgund
nantly. The energy in each mode havikg 20 decays at a ield in Eq. ( ) odes with wave numbersck, are funda-
single rate. The smallde-modes decay with a different rate. mentally nonllnear and form.a dynamical system of mutually
We surmise, based on a similarity with Fig. 2, that as Suglnteorlacflng flef|de Modes”W||t_h wave dnumbirde( Wa.‘;ed b
gested in Sec. Il C, there is a passive relationship betweef© e_S) are fundamentally linear and can be described by
the small- and larg&-modes similar to the passive driving of the third-order theory. They propagate nondispersively on a

the finitek modes by thek=0 mode seen in the largg, fast time scale, with a slowly evolving cross-sectional ampli-

solutions. This relationship cannot be so simply demon-f[Ude described by Eq10) for RMHD and Eq.(A9) for 3D

strated because of the lack of structuring in this solution.'ncornpr.eSSIbIe MHD. The wave modes have no influence on
Contrary to the larg®, solutions, thek=0 mode does not the nonlinear mo_des_. . i .

develop 2D-like coherent flux-tube structures. Intense, rela- .Ir_1 a sy;tgm with finite exten.t, itis possible that even the
tively short-lived current sheets do appear like those seen jfrinimum finite wave ”“mb‘?r will b.e greater thh[" In this :
3D isotropic solution$29], but there is no association of the case, the only nonlinearly mte_zractlng“mode is the ,c,)ne with
current sheets with magnetic island structures as i Za) k=0, the vc_arpcally averageq f".al.d’ or ‘mean mode. Under
Note that because the total energy is decaying whjjeis these condl_tlons, th.e only significant interactions are among
constant,k, is effectively shrinking, and the system will resonant triads which include the mean mode. The mean

abey the dhnaics of Sec. 1A onde<1. e e aront e
If the initial conditions are such that none of the modes 9 P 9

initially present are dominated by Alfwéc propagation, then sheets at sites of interaction. The passive dynamics of the

a nonlinear cascade will transfer energy to the higher wavd/ave modes gives them amplitudes mirroring the vortex and

numbers. Because energy cannot be exchanged with modggeet structures of the mean mode. It is not necessary that the

havingk>k, , there is a limit imposed bB, on the extent of mean mode be energetically doml_nant, but its energy sets the
h de ik din Sec. I B. Fi 9 shoks time scale for the overall perpendicular cascade. If that time
t ed@fsca ehl » as argq(-;-B n ;C' ' (|jgure S O; scale is very long, higher-order effects may again become
and « from three runs W't. 0=0.2, 0.5, an 10 on a 128 important. One of the possible effects is a pumping of energy
X 256 grid. The perpendicular cascade is indifferent to th

) 10 N8hto the mean mode by the wave modes, but this question
strength ofBy, but the parallel cascade is not. As the initial | pe left for a later study.

spectrum expands into higher wave numbers, the mean wave Regardless of whether the<k, modes are described by

numberk increases, with a maximurk that increases with  third-order or higher-order dynamics, all modes with wave
decreasing3,. For Bo=0.2, k peaks in the range between number>k, are passive wave modes described by third-
the active and passive modes shown in Fig. 8. After reachingrder theory. Since the energy in each individual wave mode
its peakk does not decay as does, indicating that energy is is conserved even on the slow-time scale, there is no transfer

FIG. 10. DevelopedE, spectra for smalB, RMHD solutions
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of energy to parallel dissipation scales. Energy is driven to AW +u* - VW +w(V-u™)+d,m
perpendicular dissipation scales by the action of kkek, I
modes, so an anisotropic spectrum will develop. We observe = [ EBoW™ —w W] (A4)

in numerical solutions that the wave modes are driven t
perpendicular dissipation more rapidly than the nonlinea
modes, and therefore also become weakédras.

The Kolmogorov power-law spectrum of inertial-range B B
turbulence depends on the assumption of a scale-invariant  duc + >, [u),-Vu; ., +u; (V-u})]+Vm,
cascade. The existence of a characteristic scale in anisotropic K’

MHD invalidates this assumption. An interesting analogy ex-
ists with the dissipation range of Navier-Stokes turbulence. =ik[ +Boupg — > kauki_k,} (A5)
K

riting again in terms of the vertical Fourier components,
we have

The dissipation range has a characteristic wave number, the
dissipation wave numbéqgy, and energy transferred to wave
numbers> kg is quickly removed from the system. In aniso-
tropic MHD, energy transferred to parallel wave numbers
>k, is decoupled from the rest of the system, even though
the modes are not damped to zero. Simple scaling arguments

balancing the nonlinear transfer with either viscous dissipa- =ik
tion or the Alfven wave restoring force suggest a spectrum
which is to lowest order exponential, with scale factor pro-
portional to the characteristic wave numbkg, or k, . We
have shown in direct numerical solutions that such a spec- Bo>wy VK (A7)
trum does indeed develop.

GWE+ 2 (U - VW Wy (V-ug) ]+ ik
k/

+Bow — %‘, w,j,w,:k,} . (A6)

Provided that

i.e., that the mean vertical field is larger than the parallel
ACKNOWLEDGMENTS fluctuations, the linear terms on the right hand side will be
_ ~dominant over the nonlinear terms flrgreater than some
The_ authors are indebted to Alexander Shche_petkln fofinite value k ~|Vu®|/Bg. If k_ is smaller than the occu-

ported by the Institute of Geophysics and Planetary Physicgariaple into fast- and slow-time scalg, and 7, and find
at Los Alamos National Laboratory under Grant No. UCRP

98-823 and by the National Science Foundation under Grant dp U = TikBou,
No. MCA97S009N. The authors utilized the SGI Power
Challenge Array at the National Center for Supercomputing at,wfz tikBowlf . (A8)

Applications, University of Illinois at Urbana—Champaign.
The divergence-free parts of theoscillations are shear Al-
APPENDIX: RESONANT BEHAVIOR fvén waves, while thev= oscillations are “pseudo-Alfug’
OF INCOMPRESSIBLE MHD waves, which are actually the incompressiblp remnants of the
fast magnetosonic mode. In fact, pseudo-Atfugaves are
In this appendix, we show that applying the scale-strongly damped by kinetic effecf80], but we retain them
dependent multiple-time-scale analysis to 3D incompressiblaere for generality.
MHD leads to the same conclusions as the RMHD analysis Just as in the RMHD case, when averaging ot/eto
in the text. We denote three-dimensional vectors by an ovembtain the slow-time-scale behavior, only tké=0 terms
head arrow, to distinguish from horizontal vectors, which arecontribute. Since V-u,_,=0, we may write u,_,=2
denoted by boldface. We write MHD in terms of the Elsasserxv¢§ . The result for the slow-time-scale evolution of the

variablesg +B=0" = (u*,w"), Fourier amplitudes is
g0~ +07 - VO™ = + Bya,d* — V, (A1) 97U+ Lo Ui 1= —ikwg iy =V,
I Wy g Wy ]=—ikwg wy —ikmy,
where is the total pressurp+3B-B+ByB,. We consider Lo Wil 0k k
only incompressible motions, so th&t G*=0, and V- ug +ikwg =0. (A9)
(V-VYmr=—V-(G*-Vi"). (A2)  The time-averaged total pressurg assures incompressibil-

ity and depends only od, andd, . The RMHD result of
The important point is that does not scale lik8,, but with ~ Sec. Il A is obtained by takingv,=0 and writing u,=2z

the fluctuationsi™. XV i .
The equations for the perpendicular and parallel compo- The fundamental result is that the only independently
nents are evolving mode is thek=0 mean mode, and the finite-
modes are driven by the mean mode, witHuy|?
guT+u*-Vur+us(V-ur)+Var=9,]=Bou™—w u~], + [|wy |?dx conserved individually for eack. Therefore

(A3) the total energy in each mode is invariant, and no parallel
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cascade occurs on either the fast- or the slow-time scale. Thgonents of the mean mode, , are nonzero but passively
conclusion is similar to that based on analysis of RMHD indriven by y; . Since our numerical solutions indicate that
the text, but is more general because here we have not agassive fields are more rapidly driven to perpendicular dissi-
sumed any relative scaling of the perpendicular and parall§haiion scales, the long-time state of the system will be one in

component amplitudes or length scales. Rather than thgpich poth the finitek modes and thev: components have
simple scalar dynamics of E¢10), each mode has, and been removed

wy dynamics. It should also be noted that the parallel com-
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