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Turbulent cascades in anisotropic magnetohydrodynamics
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and National Center for Atmospheric Research, Boulder, Colorado 80307
~Received 17 December 1997!

The cascade behavior of turbulent magnetohydrodynamics with a strong background magnetic field is
examined and compared with direct numerical solutions at high Reynolds number. Resonant interactions give
rise to qualitatively different behavior for modes below a characteristic wave numberkL defined in terms of the
background field. Modes with parallel wave number abovekL are passively driven by the longer wavelength
modes, even when the majority of the energy is contained in the passive wave numbers. The passive modes do
not cascade to higher parallel wave numbers, so the parallel wave number spectrum is not a power law and
does not extend to dissipation scales. Energy is cascaded normally to small perpendicular scales, but more
rapidly in the case of the passive modes, so an anisotropic spectrum develops from isotropic initial conditions.
For a finite system with minimum wave number.kL , the only dynamically controlling mode is the vertical
average, or mean mode. The mean mode evolves with two-dimensional dynamics, forming coherent current
structures which are mirrored by the passive modes. Because of the differential decay rates, the mean mode
dominates at long times. Quantitative comparisons are made to numerical solutions of reduced magnetohydro-
dynamics.@S1063-651X~98!06406-X#

PACS number~s!: 52.35.Ra, 47.65.1a, 52.65.Kj
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I. INTRODUCTION

Although theoretical studies of turbulence usually be
with assumptions of homogeneity and isotropy, such
sumptions are more often motivated by convenience t
physical arguments. In a plasma, isotropy is particularly d
ficult to justify, for nearly every naturally occurring plasm
from terrestrial to solar to galactic scales, possesses a m
netic field on the largest scale of the system. Laborat
plasmas are also usually constructed with large-scale m
netic fields necessary for confinement. The theory of tur
lent magnetohydrodynamics~MHD! in the presence of a
large-scale magnetic field is in need of further developme

Observations and laboratory measurements reveal
turbulent fluctuations against a strong background field t
to have longer length scales along the field direction and
the fluctuating component in the direction of the field
smaller than the components perpendicular to the fi
These conclusions have been drawn by scintillation obse
tions of distant objects viewed through the interstellar m
netic field@1# or near the solar limb@2#, or from direct mea-
surement of the fluctuations via spacecraft in the solar w
@3–5#, and have also been noted in tokamak experiments@6#.
Some of these features have also been seen in nume
solutions of three-dimensional~3D! MHD. Spectral anisot-
ropy was found from isotropic initial conditions in incom
pressible MHD@7#, while anisotropy in the magnetic fiel
vector components was found in compressible solutions@8#.
The degree of anisotropy in the fluctuations was observe
increase with the strength of the background field, but
dynamical mechanism by which these anisotropies deve
is still not well understood, and large Reynolds numbers
still not achievable in 3D MHD solutions.

Although classical MHD turbulence theory is nominal
isotropic, closure calculations@9# assign a key role to mag
571063-651X/98/57~6!/7111~11!/$15.00
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netic helicity, an inherently anisotropic quantity. Furthe
more, in inertial-range scaling arguments@10,11#, a large-
scale magnetic field is presumed to influence the small sc
by the ‘‘Alfvèn effect,’’ in which the small-scale fluctuation
‘‘see’’ a large-scale magnetic field as a constant backgro
and thus behave like Alfve´n waves. Classically, the effect o
the large-scale field is simply to reduce the mode interac
time when determining the isotropic inertial-range spectru
However, the interaction of Alfve´n waves is unusual in tha
waves traveling in the same direction do not interact at
~barring compressible and dissipative effects!. Thus it has
been argued that the three-wave interactions are in
empty unless one of the modes in the triad has zero com
nent along the mean magnetic field@12,13#, and that energy
is therefore more efficiently transferred to perpendicu
wave numbers. It has also been argued@14# that such modes
by virtue of having zero frequency, do not contribute at all
the interactions, and that the cascade is therefore determ
by the four-wave resonant interactions@15#. Direct numerical
tests of the interaction between pairs of wave packets h
shown that the triad interactions do dominate@18#, but it has
been claimed that in a fully turbulent state with many inte
acting packets, all orders will contribute equally@19#.

Reduced MHD~RMHD! @20,21# is a reduction of MHD
with three spatial dimensions and two-dimensional~2D! field
components. It was originally derived for tokamak fusio
devices from scaling arguments based on a strong ver
magnetic field. In fact, environmental anisotropies other th
background magnetic fields~such as strong rotation! can lead
to dynamics closely related to RMHD@22#. The dynamics of
the time-dependent parallel components~which have no in-
fluence on the perpendicular component evolution! differ un-
der different scalings@22#. RMHD was used to compute th
triad interactions in Ref.@18#, and the restriction to consid
eration of shear Alfve´n waves in Refs.@14,15# is in fact
7111 © 1998 The American Physical Society
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7112 57R. M. KINNEY AND J. C. McWILLIAMS
equivalent to starting from RMHD. Although a simplifica
tion, RMHD is advantageous in that its solutions are
easier to compute than MHD, making possible studies
higher Reynolds number. RMHD has all of the importa
dynamical features relevant to the development of anisotr
in MHD: three dimensionality, cascade behavior in all dire
tions, and a competition between linear and nonlinear for

In this paper we present an analysis of the effects o
strong background magnetic field on turbulent MHD. Se
tion II explores the effects of a strong background field wh
a range of parallel scales is present. In a multiple-time-sc
analysis, the behavior of both the slowly varying compone
and the slow WKB behavior of the rapidly varying comp
nents are derived. The analysis is carried out for RMHD, a
the generalization to 3D incompressible MHD is given in t
Appendix. Section III gives results from high-resolutio
long-time integrations of RMHD which confirm the predi
tions of Sec. II. Section IV gives our conclusions.

II. MULTIPLE TIME SCALES OF ANISOTROPIC
MAGNETOHYDRODYNAMICS

Plasmas contain motions on an enormous range of t
scales. MHD is itself a simplification of the basic plasm
equations in which certain fast-time scales~e.g., particle gy-
rofrequency, plasma frequency! have been removed, ye
even MHD has a multiplicity of time scales, and further r
ductions are useful to make analysis less difficult. Here,
study RMHD, in which fast compressional modes are abs
but shear Alfve´n waves remain. It should be emphasized t
our analysis can be equally well applied to 3D incompre
ible MHD, as is presented in the Appendix. The fundamen
dynamical consequences of the analysis are the same
both systems. The RMHD analysis is emphasized in the
so that we may make explicit comparisons with numeri
solutions.

We adopt a notation in which boldface denotes pur
horizontal vector components. Likewise,“ is the perpen-
dicular gradient and¹2 is the perpendicular Laplacian]x

2

1]y
2. The magnetic field is measured in units of veloci

there is a constant vertical magnetic fieldB0 , and the density
is assumed constant. In terms of scalar potentialsc, A, the
perpendicular velocity is given byv5 ẑ3“c and the per-
pendicular magnetic field byB5 ẑ3“A. The RMHD equa-
tions,

] tz1@c,z#2@A, j #5B0]zj , ~1a!

] tA1@c,A#5B0]zc, ~1b!

determine the evolution of the perpendicular component
the fields, wherez5¹2c is the parallel vorticity,j 5¹2A is
the parallel current, and@•,•# is the horizontal Jacobian. Th
parallel components of the velocity and magnetic fields
passively driven by thec and A fields. Introducing the El-
sasser fieldsu65v6B, c65c6A, and V65¹2c6,
RMHD can also be written by taking the sum and differen
of Eq. ~1a! and the Laplacian of Eq.~1b!,

] tV
61“•@c7,“c6#56B0]zV

6. ~2!
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Neglecting boundary sources, RMHD has three integral
variants,

E u“c1u21u“c2u2dxdz, E u“c1u22u“c2u2dxdz,

E Adxdz, ~3!

which are the total energy, cross-helicity, and magnetic
licity. These invariants are the same as general 3D MH
whereas in 2D, the magnetic helicity invariant is replaced
the *A2dx.

The resonant interaction of MHD waves has been kno
for some time@16#, and can be stated in terms of the form
theory of partial differential equations@17#. For a small pa-
rametere!1, if the terms in Eq.~2! containingB0 are larger
by 1/e than the nonlinear terms, one can postulate a fast-t
scalet8 and a slow-time scalet such that] t5(1/e)] t81]t
and c65c6(x,z,t8,t). The fast-time-scale behavior is de
termined by theO(e21) parts of Eq.~2! and the slow re-
sponse by theO(1) parts. The multiple time scale is distinc
from a simple asymptotic expansion ine. Applying the
analysis to 3D MHD, one finds that the slow-time-scale b
havior is given by 2D MHD@23#, while RMHD follows by
additionally assuming fast and slow variations inz @21,24#.

Applying resonance theory to broadband turbulence
quires some care. In truth, a simple scaling in which theB0
term in Eq. ~2! is larger by 1/e than the nonlinear term is
overly simplistic, since the size of the linear term depends
the strength of thez derivatives and a large range of scal
may be present. To account for all possible parallel sca
we introduce the vertical Fourier transform ofV6,

V65(
k

Vk~x,t !eikz, ~4!

and write Eq.~2! as

] tVk
652“•(

k8
@ck8

7 ,“ck2k8
6

#6 ikB0Vk
6 . ~5!

If the typical perpendicular scale and amplitude of allck
6

modes are comparable, then the question of whether the
ear term dominates over the nonlinear term is dependen
the value ofk. Let us define a cutoff wave number for linea
behavior, kL , such that modes for whichk!kL evolve
mostly via the nonlinearity, while those for whichk@kL
evolve mostly linearly. An estimate forkL is

kL;
k̄ v̄
B0

, ~6!

for a characteristic perpendicular wave numberk̄ and per-
pendicular velocityv̄. The behavior of the system depen
on the scale content relative tokL . Below we consider three
different cases for initial excitations with wave numberk0 .
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57 7113TURBULENT CASCADES IN ANISOTROPIC . . .
A. k0@kL

One possibility is that all finite wave numbers present
the initial conditions are.kL . In a finite system with a
minimum wave number, one may havekL less than the mini-
mum wave number, but there may still be energy in thek
50 mode. The fast-time-scale behavior is given by
O(e21) part of Eq.~5!,

] t8Vk
656 ikB0Vk

6 , ~7!

so that

Vk
65Vk~x,t!e6 ikB0t8 ~8!

for all k, includingk50 which does not evolve on the fas
time scale. The fast-time behavior is nondispersive Alfv´n
wave propagation with speedB0 either parallel~for V2! or
antiparallel~for V1! to the background magnetic field. Ob
viously, there is no transfer among wave numbers on the
time scale. We may calculate theO~1! parts of Eq.~5!,

]tVk
6e6 ikB0t852“•(

k8
@ck8

7 ,“ck2k8
6

#e6 i ~k22k8!B0t8

~9!

and isolate the slow-time behavior by projection~i.e., multi-
plying by e7 ikB0t8 and averaging over the fast phase var
tions!. The time averaging of the nonlinear terms gives r
to a cancellation of the interaction between most Fou
modes, i.e., in the summation overk8, only the terms with
k850 survive. This is a peculiarity of shear Alfve´n waves in
ideal MHD, and comes from the fact that waves traveling
the same direction do not interact at all@12#. This resonance
condition breaks down when nonideal effects are conside
such as compressibility or unequal viscosity and resistivit
The result of the averaging is

]tVk
61“•@c0

7 ,“ck
6#50, ~10!

which describes the slow WKB evolution of Alfve´n wave
amplitudes.

Inspection of Eq.~10! shows that thek50 mode evolves
independently of all the finite-k modes. Furthermore, the dy
namics of thek50 mode~which we refer to as the ‘‘mean
mode’’! are just those of 2D MHD. That the mean mode c
be associated with the slow-time-scale dynamics of an
tropic MHD has been known for some time@23#. An impor-
tant point is that the plasma need not be weaklyz dependent;
the independence of the mean mode arises from the s
interaction time of oppositely propagating waves. In effe
the only (x,y,t) field affecting a propagating wave is that
the mean mode, whose presence is felt continuously.

Each of the finite-k components~the ‘‘wave modes’’! has
a separate subdynamics which are driven by the mean m
without influencing it. An additional consequence of Eq.~10!
is that

]tE u“ck
6u2dx50, ~11!

i.e., the energy in each wave mode is conserved individua
Thus there is no cascade in parallel wave number on
e
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slow-time scale either. Any transfer of energy among diff
ent k must be through higher-order interactions. In the p
pendicular directions, however, there is a cascade on
slow-time scale which is entirely controlled by the me
mode. Because the mean mode will undergo the forw
energy cascade characteristic of 2D MHD, the wave mo
will also be driven to small perpendicular wavelengths on
slow-time scale. However, the time scale of this cascad
controlled by the amount of energy in the mean mode an
the mean mode is very weak, the cascade may instea
controlled by higher-order effects neglected here. The p
sive behavior of the high-k modes holds for 3D MHD as wel
as RMHD ~see the Appendix!.

It has been speculated previously that the more rap
varying components would evolve ‘‘parasitically’’ to th
slowly varying component in anisotropic MHD@23#. Triad
interactions between individual wave packets have been
plicitly calculated and verified numerically@18#, but may not
dominate over many collisions@19#. Equation~10! is appro-
priate to broadband turbulence and will be compared dire
against the behavior of 3D RMHD numerical solutions b
low.

B. k0!kL

If the initial excitation is at wave numbers less than t
linear cutoffkL , then the primary dynamics are nonlinear.
this case, the interaction time between wave packets is l
enough that they may interact without being resonant and
expect a turbulent cascade to higher wave numbers by
usual doubling in wave number space, i.e.,

] tV2k
6 ;Vk

7Vk
612ikB0V2k

6 . ~12!

Although initially unexcited modes grow in amplitude due
nonlinear coupling from lower-k modes, this is not a cascad
in the traditional sense because of the characteristic am
tudeB0 . We can presume based on the preceding subsec
that if a modeV2k grows to an amplitude such that the line
term in Eq.~12! is approximately as strong as the nonline
term, the mode will begin to interact only in resonant tria
~i.e., will be passively driven by the mean mode!, and will no
longer cascade to higher wave numbers. Thus the exten
the cascade ink is limited not by dissipation, but by the
background fieldB0 . A mode will grow in amplitude until
there is an approximate balance between the terms in
~12!. This implies a parallel spectrum withV2k;Vk

2, which
suggests an exponential formVk;eak. On dimensional
grounds, the natural choice for the exponential scale facto
kL , giving a parallel spectrum

Vk
6;e2uk/kLu. ~13!

If kL is small ~B0 large!, the turbulent cascade will be
strongly suppressed before reaching dissipation sca
Higher-order effects may still give rise to significant trans
of energy to small scales, so nonlinear numerical soluti
are necessary to verify the inhibition of cascade.

The value ofkL depends on the characteristic perpendic
lar wave numberk̄, which may increase when the initia
excitation undergoes a perpendicular cascade. It has b
suggested@15# that a scale-invariant cascade occurs such
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7114 57R. M. KINNEY AND J. C. McWILLIAMS
the mean parallel wave numberk̄ increases at the same ra
as kL . We must establish whether the increase inkL inter-
feres with the scaling argument leading to the above ex
nential spectrum.

Suppose the perpendicular energy cascade of an ex
tion with initially isotropic wave numberk0 leads to a devel-
oped perpendicular spectrum

Ek;
v0

2

k0
S k

k0
D 2n

, ~14!

up to some dissipation cutoffkd@k0 . If the energy is to be
finite and the energy dissipation rate independent of the
cosity, then 1,n,2. The characteristic entropy can be es
mated by

k̄2v̄2;E k2Ekdk. ~15!

After the spectrum has fully developed,kL as estimated by
Eq. ~6! will have increased from its initial value to

kL;kd

v0

B0
S kd

k0
D ~12n!/2

. ~16!

Although much larger than its initial value,k0v0 /B0 , the
final value ofkL is still !kd . Therefore the parallel spec
trum will always be dominated by the exponential depe
dence in Eq.~13! rather than by the power law of a scal
invariant cascade to dissipation.~Note, however, that if
collisions are infrequent, the viscous operator in a plasm
anisotropic@26#. Since the parallel dissipation wave numb
kd is then!kd , a short inertial range might be establish
instead of an exponential spectrum.!

Our conclusion is that the standard picture of a sca
invariant Kolmogorov-type cascade does not apply in
direction parallel to a strong magnetic field. There is a fu
damental difference in energy transfer rates at different p
allel scales because large-k modes that are excited soon b
come oscillatory and decouple from the rest of the system
particular, this stops the cascade from progressing to d
pation scales in the parallel wave number and implies
exponential spectrum rather than the traditional power la

C. k0;kL

If the initial excitation contains wave numbers across
large range, a quantitative assessment is difficult. We
expect that those wave numbers@kL will decouple from the
smaller-k modes and evolve according to the resonant in
actions in Sec. II A, effectively truncating the parallel spe
trum at wave numberkL . However, the mean mode will no
evolve independently with 2D dynamics, as in the reson
case. Instead, all modes withk,kL will be coupled to form
a dynamical system whose evolution is independent of
k>kL modes.

III. NUMERICAL SOLUTIONS OF TURBULENT RMHD

We test the results of the multiple-time-scale analysis
numerically calculating solutions of RMHD in the form
given by Eq.~1!. The numerical scheme is finite differenc
o-
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with the nonlinear terms calculated by discretization of t
Jacobian operator, for which several second- and fou
order symmetric algorithms were tested. The elliptic probl
for the vorticity-streamfunction diagnostic equation~i.e.,
solving z5¹2c for c! is solved by an iterative multigrid
algorithm discretized with a second-order operator which
based on staggered differences, giving it an effective cu
scale compatible with the higher-order advection scheme
staggered vertical grid is used, withc and A defined on
conjugate grids and either second- or fourth-order sche
used to evaluate vertical derivatives. In combination with
centered leapfrog time stepping, this has the implication t
vertical Alfvén waves are not dissipated by the numeric
method, which is important when investigating questions
spectral transfer in the parallel. We use a purely horizon
dissipation operator so that energy is explicitly removed
small horizontal scales with no such sink for wave vect
parallel toẑ. Various dissipation operators are used, inclu
ing the commonly used hyperdiffusion2n¹4 and a nonlin-
ear variant of this~i.e., theg scheme of Ref.@27#!, which
allow a somewhat larger inertial range and narrower diss
tion range compared with ordinary diffusion. Although th
choice between higher-order finite difference schemes
affect the outcome of sensitively dependent determini
problems and can influence the late-time shape of cohe
structures@27#, we find that our results do not change app
ciably under different numerical schemes. In particular, no
of the results we quote are sensitive to choice of dissipa
operator.

We define the parallel mode energies

Ek5E u“cku21u“Aku2dx, ~17!

such that the total energy is(kEk . Similarly, we define the
horizontal Fourier transforms,

ĉ~k,z!5E ceik•xdx, ~18!

and the energies

Êk5 (
uk8u5k

k82E uĉ~k8,z!u21uÂ~k8,z!u2dz, ~19!

so that the total energy is(kÊk . The mean parallel and
perpendicular wave numbers are measured by

k̄2[

(
k

k2Ek

(
k

Ek

, k̄2[

(
k

k2Ê

(
k

Ê
. ~20!

The normalization is such that the computational domain
cube with edge length 2p and* u“cu21u“Au2dxdz51 at t
50. In this paper we discuss only unforced solutions, so
energy is a decaying function of time. We adopt a norm
ization in which ‘‘B051’’ means that*B0

2dxdz51. Thus a
vertical Alfvén transit time forB051 is approximatelyDt
5100. The initial spectrum is chosen with random pha
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57 7115TURBULENT CASCADES IN ANISOTROPIC . . .
such thatÊk is peaked atk̄55 and Ek is constant fork
between 0 and a finitekmax, typically 1

8 of the maximum
resolved wave number.

A. Strong background field

We begin by examining solutions withB0 large, in which
case the dominant interaction is expected to be the reso
dynamics of Eq.~10!. By Eq. ~6!, choosingB055 gives
kL52, so that all the modes should obey Eq.~10!, with no

FIG. 1. Parallel wave number momentk̄ ~solid! and perpendicu-
lar moment k̄ ~dashed! from decaying RMHD solution withB0

55. The parallel wave number shows almost no evolution, wh
the perpendicular wave number shows a normal cascade.
nt

interaction between different parallel modes. Figure 1 sho
the mean parallel and perpendicular wave numbers vs tim
a B055 solution calculated on a 1283 grid. No parallel cas-
cade is evident, but a cascade proceeds normally in the
pendicular wave numbers. Whilek̄ remains constant to
within 2% during the entire solution,k̄ increases as the spec
trum broadens, with a maximum att'60. After reaching its
maximum, k̄ decays due to dissipation and the absence
forcing.

In the absence of a parallel cascade, all energy dissipa
occurs via cascade to small perpendicular scales. Since

e

FIG. 2. Evolution of energy contained in various modes. T
k50 mode decays more slowly than the finite-k modes and will
eventually dominate the solution.
FIG. 3. On the left are visualizations of the current~top! and vorticity~bottom! of the mean mode of a 5122332 solution att51100. In
the middle are the time derivatives of the fields. On the right are what the time derivatives would be for a 2D solution.
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FIG. 4. Current~above! and vorticity~below! of the mean mode of a 3D solution on the left and a 2D solution initialized with the fi
in Fig. 4, showing persistence of 2D dynamics in the 3D case over many decorrelation times.
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mean mode is the only one with nonlinear dynamics, its
havior is fundamentally different from the other modes. A
of the wave modes should behave similarly since our co
putational method dissipates all parallel modes equally. F
ure 2 showsEk as a function of time for variousk. The
numerical value of the decay rates should converge w
large Reynolds number. Although we cannot establish
the measured rates are universal, a clear difference betw
the mean and wave modes is visible. The energy of the m
modeE0 , decays more slowly than the others. The sum
all modes withk.0 is also shown. In this solution, the mea
mode begins with 6% of the total energy and ends with 40
The t→` state is clearly one in which the mean mode w
dominate all other modes.

The dynamics of the mean mode are plainly those of
MHD. Rigorous attributes such as conservation of*A0

2dx are
observed along with phenomenological features reporte
previous solutions of 2D turbulent MHD~e.g., Ref.@25#!
such as dominance of magnetic over kinetic energy throu
-
l
-
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h
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f
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in
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out the spectrum and rising current kurtosis@25#. Visualiza-
tions of the mean mode amplitudes of currentj 0(x) and vor-
ticity z0(x) are shown on the left hand side of Fig. 3. Th
time shown is t51130 in a B055 solution on a 5122

332 grid. The fields have very similar appearance to th
from 2D solutions, with magnetic vortex structures and th
current and vorticity sheets@25#. In the middle are]t j 0 and
]tV0 from the 3D solution, calculated from the difference
the fields at two nearby times. On the right is the res
obtained by calculating what the time derivatives would
for 2D dynamics. The time evolution of the mean mode
very closely predicted by the simple 2D dynamics. The c
relation coefficient for the two fields~defined for two func-
tions g andh as*gh/A*g2*h2! is 0.74, with the difference
most probably due to the fast-time-scale forcing presen
the 3D solution. These dynamics persist over long tim
Figure 4 shows the current and vorticity of the mean mode
t51660 on the left, compared with the fields from a 2
solution initialized with the mean mode field att51130. The
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57 7117TURBULENT CASCADES IN ANISOTROPIC . . .
time elapsed is greater than a decorrelation time~correlation
coefficients between the 3D fields at the initial and fin
times are 0.025 and 0.003 for the current and vorticity,
spectively!, but the 2D and 3D solutions are still well corre
lated ~coefficients 0.69 and 0.65!. Correlations over longe
times should decrease because of the sensitive depend
on initial conditions inherent to these equations.

The slower decay rate of the dynamical fields is attrib
able the development of the coherent structures appare
Fig. 4. A similar mechanism occurs in 2D neutral fluid tu
bulence, in which the entropy decays more slowly than
variance of a passive scalar because the coherent struc
formed in the vorticity field inhibit the cascade to dissipati

FIG. 5. Energy of decaying 2D MHD solution~dashed line! and
a passive field driven according to Eq.~10! ~solid line!. The differ-
ence in decay rates is similar to what is observed in Fig. 2.
l
-

nce

-
in

e
res

@28#. Figure 5 shows the results of a 2D MHD calculation
which the evolution of a passive field was evolved accord
to Eq.~10! simultaneously with the MHD fields. The passiv
field decays at a faster rate than the dynamical fields. The
solution shown in Fig. 5 is at higher Reynolds number th
the 3D solution of Fig. 2; 2D solutions with the same Re
nolds number as the 3D solution shown in Fig. 5 have si
lar values for the power-law decay rates.

A consequence of the passive dynamics of Eq.~10! is that
the wave mode amplitudesVk.0

6 acquire horizontal structure
from the mean mode. The form of passive interaction in E
~10! is different from a simple passive scalar; the quadra
invariant is an energy rather than a scalar variance~here
enstrophy,* uVk

6u2dx!. The mean mode has a direct casca
of energy and evolves coherent structures. The wave mo
develop a similar perpendicular spectrum and exhibit gh
structures. On the left in Fig. 6 is the mode amplitudeuV2

1u2

from the 5122332 RMHD solution att51660, the same
time as shown in Fig. 4. It is clear that theV2

1 cross section
mirrors certain vortex features apparent inj 0 . On the right is
the result of a 2D integration of Eq.~10!, starting from initial
conditions given by theV2

1 mode att51130, i.e., the fields
in Fig. 3. The correlation coefficient between the fields giv
by the 3D and 2D solutions is 0.87, demonstrating the lo
term applicability of Eq.~10! over many decorrelation times

It should be emphasized that the validity of 2D dynam
for the mean mode of a 3D solution does not depend on
mean mode being energetically dominant. The dynam
come about purely for reasons of multiple time scales.
example, in Fig. 2, the mean mode comprises less than
of the total energy. The fraction of energy contained in t
mean mode grows because of the difference in decay ra
but the dynamics of the mean mode are 2D long befor
dominates energetically. Visualizations in 3D of subdoma
containing current structures are shown in Fig. 7. The m
mode is not dominant in the case on the left. While it
at
FIG. 6. Amplitude of theVk52
1 mode from a 3D solution att51660~left! compared with a 2D calculation initialized from the fields

the time shown in Fig. 3. Passive driving of the wave modes by the mean mode is consistent over many decorrelation times.
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FIG. 7. Details of coherent structures in the parallel current of 3D RMHD solutions. Structures occur whether thek50 mode has
comparable energy with the finite-k modes~left! or is dominant~right!.
ru
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gh
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etic
possible to see that the vertically averaged current is st
tured, the total current can even reverse sign at partic
levels, a result of beating by the wave modes. The right h
case is one in which the mean mode is dominant and
structures appear more vertically uniform.

B. Moderate background field

Although we do not present a higher-order theory in t
paper, we can observe the effects of higher-order interact
not considered in deriving Eq.~10! by calculating solutions
with B0,1. Although RMHD is derived based on physic
arguments of a ‘‘strong’’ background magnetic field, RMH

FIG. 8. Energy of selected modes vs time forB050.2 solution.
The small-k modes decay at a markedly slower rate than the hi
k modes, analogous to the situation in Fig. 2.
c-
ar
d
e

s
ns

is well behaved for smallB0 sinceB0 appears only in com-
bination with ]z . ChoosingB0 small in Eq. ~1! should be
interpreted as a rescaling of the vertical coordinate, as ari
from a scale anisotropy in the initial conditions. The physic
picture of taking theB0→0 limit of Eq. ~1! is a collection of
packets far removed inz but still linked by a strong magnetic
field. The extreme of this limit yields a system of indepe
dently evolving 2D planes, which while physically meanin
ful, is clearly distinct from 3D MHD in the absence of
background magnetic field. The independent evolution of
horizontal planes leads to the generation of parallel gradie

-

FIG. 9. Parallel~solid! and perpendicular~dashed! wave number
moments for three solutions with differentB0<1. The parallel cas-
cade is limited by the magnetic field strength rather than by di
pation, while the perpendicular cascade is unaffected by magn
field strength.
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and cascade. We calculate numerical solutions in this reg
to test the scaling arguments of Sec. II B.

Figure 8 shows the energy in certain low- and highk
modes from a 12823256, B050.2 solution. Here, some o
the initial excitation is at scales which interact only res
nantly. The energy in each mode havingk.20 decays at a
single rate. The smaller-k modes decay with a different rate
We surmise, based on a similarity with Fig. 2, that as s
gested in Sec. II C, there is a passive relationship betw
the small- and large-k modes similar to the passive driving o
the finite-k modes by thek50 mode seen in the large-B0
solutions. This relationship cannot be so simply dem
strated because of the lack of structuring in this soluti
Contrary to the large-B0 solutions, thek50 mode does no
develop 2D-like coherent flux-tube structures. Intense, r
tively short-lived current sheets do appear like those see
3D isotropic solutions@29#, but there is no association of th
current sheets with magnetic island structures as in 2D@25#.
Note that because the total energy is decaying whileB0 is
constant,kL is effectively shrinking, and the system wi
obey the dynamics of Sec. II A oncekL&1.

If the initial conditions are such that none of the mod
initially present are dominated by Alfve´nic propagation, then
a nonlinear cascade will transfer energy to the higher w
numbers. Because energy cannot be exchanged with m
havingk.kL , there is a limit imposed byB0 on the extent of
the cascade ink, as argued in Sec. II B. Figure 9 showsk̄
and k̄ from three runs withB050.2, 0.5, and 1.0 on a 1282

3256 grid. The perpendicular cascade is indifferent to
strength ofB0 , but the parallel cascade is not. As the init
spectrum expands into higher wave numbers, the mean w
numberk̄ increases, with a maximumk̄ that increases with
decreasingB0 . For B050.2, k̄ peaks in the range betwee
the active and passive modes shown in Fig. 8. After reach
its peakk̄ does not decay ask̄ does, indicating that energy i

FIG. 10. DevelopedEk spectra for smallB0 RMHD solutions
with initial excitation confined tok<4, shown at time of peak mea
parallel wave number. Spectra become approximately exponen
with a scale factor that increases withB0 .
e

-

-
en

-
.

-
in

s

e
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e

ve

g

not being dissipated by transfer to largerk.
Figure 10 shows theEk spectra for the same three runs

in Fig. 4 at the times of maximumk̄. Approximately expo-
nential spectra are evident up to the largest wave numb
where the Fourier truncation prevents transfer to largerk,
causing buildup at the resolution limit. Fits of the spectra
exponential curves for 20<k<100 give scale factors o
16.32, 8.86, and 5.75. The ratio of these factors is 2.8:1.
while the magnetic field strengths are in ratio 5:2:1. Thus
general arguments of Sec. II B give a correct order-
magnitude estimate of the spectrum in Eq.~13!, but a more
careful theory is required to predict the exponential sc
factor more accurately.

IV. DISCUSSION

We have examined the effects of resonant triad inter
tions on broadband turbulent MHD. Under certain con
tions, the cascade behavior of MHD with a strong bac
ground magnetic field is primarily determined by th
resonant triad interactions in which one of the wave vect
has zero projection along the background field. When th
conditions are not met, then higher-order effects will beco
important. In numerical solutions, we have verified quanti
tively the predictions of the third-order theory and the p
rameter regimes in which it is no longer valid.

The third-order theory is based on a multiple-time-sc
analysis, but the time scales can only be legitimately se
rated for parallel wave numbers greater than a character
parallel wave numberkL , defined in terms of the backgroun
field in Eq. ~6!. Modes with wave numbers,kL are funda-
mentally nonlinear and form a dynamical system of mutua
interacting fields. Modes with wave number.kL ~‘‘wave
modes’’! are fundamentally linear and can be described
the third-order theory. They propagate nondispersively o
fast time scale, with a slowly evolving cross-sectional amp
tude described by Eq.~10! for RMHD and Eq.~A9! for 3D
incompressible MHD. The wave modes have no influence
the nonlinear modes.

In a system with finite extent, it is possible that even t
minimum finite wave number will be greater thankL . In this
case, the only nonlinearly interacting mode is the one w
k50, the vertically averaged field, or ‘‘mean mode.’’ Und
these conditions, the only significant interactions are am
resonant triads which include the mean mode. The m
mode evolves with independent 2D dynamics, and forms
herent magnetic structures which produce strong cur
sheets at sites of interaction. The passive dynamics of
wave modes gives them amplitudes mirroring the vortex a
sheet structures of the mean mode. It is not necessary tha
mean mode be energetically dominant, but its energy sets
time scale for the overall perpendicular cascade. If that ti
scale is very long, higher-order effects may again beco
important. One of the possible effects is a pumping of ene
into the mean mode by the wave modes, but this ques
will be left for a later study.

Regardless of whether thek,kL modes are described b
third-order or higher-order dynamics, all modes with wa
number.kL are passive wave modes described by thi
order theory. Since the energy in each individual wave mo
is conserved even on the slow-time scale, there is no tran

al,
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of energy to parallel dissipation scales. Energy is driven
perpendicular dissipation scales by the action of thek,kL
modes, so an anisotropic spectrum will develop. We obse
in numerical solutions that the wave modes are driven
perpendicular dissipation more rapidly than the nonlin
modes, and therefore also become weaker ast→`.

The Kolmogorov power-law spectrum of inertial-rang
turbulence depends on the assumption of a scale-inva
cascade. The existence of a characteristic scale in anisot
MHD invalidates this assumption. An interesting analogy e
ists with the dissipation range of Navier-Stokes turbulen
The dissipation range has a characteristic wave number
dissipation wave numberkd , and energy transferred to wav
numbers.kd is quickly removed from the system. In anis
tropic MHD, energy transferred to parallel wave numbe
.kL is decoupled from the rest of the system, even thou
the modes are not damped to zero. Simple scaling argum
balancing the nonlinear transfer with either viscous dissi
tion or the Alfvén wave restoring force suggest a spectru
which is to lowest order exponential, with scale factor p
portional to the characteristic wave number,kd or kL . We
have shown in direct numerical solutions that such a sp
trum does indeed develop.
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APPENDIX: RESONANT BEHAVIOR
OF INCOMPRESSIBLE MHD

In this appendix, we show that applying the sca
dependent multiple-time-scale analysis to 3D incompress
MHD leads to the same conclusions as the RMHD analy
in the text. We denote three-dimensional vectors by an o
head arrow, to distinguish from horizontal vectors, which
denoted by boldface. We write MHD in terms of the Elsas
variablesvW 6BW 5uW 65(u6,w6),

] tuW
61uW 7

•¹W uW 656B0]zuW
62¹W p, ~A1!

wherep is the total pressurep1 1
2 BW •BW 1B0Bz . We consider

only incompressible motions, so that¹W •uW 650, and

~¹W •¹W !p52¹W •~uW 7
•¹W uW 6!. ~A2!

The important point is thatp does not scale likeB0 , but with
the fluctuationsuW 6.

The equations for the perpendicular and parallel com
nents are

] tu
61u7

•“u61u6~“•u6!1“p5]z@6B0u62w7u6#,
~A3!
o

e
o
r

nt
pic
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] tw
61u7

•“w61w6~“•u7!1]zp

5]z@6B0w62w7w6#. ~A4!

Writing again in terms of the vertical Fourier componen
we have

] tuk
61(

k8
@uk8

7
•“uk2k8

6
1uk2k8

6
~“•uk8

7
!#1“pk

5 ikF6B0uk
62(

k8
wk8

7 uk2k8
6 G , ~A5!

] twk
61(

k8
@uk8

7
•“wk2k8

6
1wk2k8

6
~“•uk8

7
!#1 ikpk

5 ikF6B0wk
62(

k8
wk8

7 wk2k8
6 G . ~A6!

Provided that

B0@wk
6 ,;k ~A7!

i.e., that the mean vertical field is larger than the para
fluctuations, the linear terms on the right hand side will
dominant over the nonlinear terms fork greater than some
finite valuekL;u“u6u/B0 . If kL is smaller than the occu
pied wave numbers of the system, we can split the ti
variable into fast- and slow-time scale,t8 andt, and find

] t8uk
656 ikB0uk

6 ,

] t8wk
656 ikB0wk

6 . ~A8!

The divergence-free parts of theu oscillations are shear Al-
fvén waves, while thew6 oscillations are ‘‘pseudo-Alfve´n’’
waves, which are actually the incompressible remnants of
fast magnetosonic mode. In fact, pseudo-Alfve´n waves are
strongly damped by kinetic effects@30#, but we retain them
here for generality.

Just as in the RMHD case, when averaging overt8 to
obtain the slow-time-scale behavior, only thek850 terms
contribute. Since“•uk50

6 50, we may write uk50
6 5 ẑ

3“c0
6 . The result for the slow-time-scale evolution of th

Fourier amplitudes is

]tuk
61@c0

7 ,uk
6#52 ikw0

7uk
62“p̄k ,

]twk
61@c0

7 ,wk
6#52 ikw0

7wk
62 ikp̄k ,

“•uk
61 ikwk

650. ~A9!

The time-averaged total pressurep̄k assures incompressibil
ity and depends only onuW 0

6 and uW k
6 . The RMHD result of

Sec. II A is obtained by takingwk50 and writing uk5 ẑ
3“ck

6 .
The fundamental result is that the only independen

evolving mode is thek50 mean mode, and the finite-k
modes are driven by the mean mode, with* uuk

6u2

1* uwk
6u2dx conserved individually for eachk. Therefore

the total energy in each mode is invariant, and no para



T
in

t
ll
t

m

y
at
ssi-
e in

57 7121TURBULENT CASCADES IN ANISOTROPIC . . .
cascade occurs on either the fast- or the slow-time scale.
conclusion is similar to that based on analysis of RMHD
the text, but is more general because here we have no
sumed any relative scaling of the perpendicular and para
component amplitudes or length scales. Rather than
simple scalar dynamics of Eq.~10!, each mode hasuk

6 and
wk

6 dynamics. It should also be noted that the parallel co
n

tt,

o

s

ch

,

J

he

as-
el
he

-

ponents of the mean mode,w0
6 , are nonzero but passivel

driven by c0
6 . Since our numerical solutions indicate th

passive fields are more rapidly driven to perpendicular di
pation scales, the long-time state of the system will be on
which both the finite-k modes and thew0

6 components have
been removed.
s
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