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Dielectric function of a two-component plasma including collisions
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A multiple-moment approach to the dielectric function of a dense nonideal plasma is treated beyond the
random phase approximation including collisions in the Born approximation. Sum rules are checked, and the
relation to the dc electrical conductivity is pointed out. Enlarging the number of moments used, converging
results are obtained. The proposed approach is compared to a perturbation expansion of the Kubo formula.
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I. INTRODUCTION As pointed out in[4], this expression is a generalization of
. . . R . the well-known Kubo formula. The matrix elements

Theadlelectrlc functione(k,w) depending on the wave M nn(K,®) are equilibrium correlation functions which are
vectork and frequency is a physical quantity providing us explicitly given in the following section. They contain opera-

with various information about the plasma. In homogeneousyors B, which specify the nonequilibrium state of the system
isotropic systems, the dielectric function is related to the nger the influence of an external field.

electrical conductivityo(k,w) and the polarization function

- For the evaluation of the dielectric function, we have to
I1(k,w) according to

deal with two problems(i) the choice of the operatoB;, to
i 1 describe the relevant fluctuations in the linear response re-
e(k,w)=1+ —o(k,0)=1— —5I(k ). (1) gime and(ii) the evaluation of the equilibrium correlation
€o® €k functions such asl (K, w).
The equilibrium correlation functions in a nonideal

A quantum statistical approach to these quantities can bSlasma can be evaluated using different methods. Computer

found from kinetic theory as well as from linear reSPONSeyimulations such as quantum molecular dynamics are able to
theory. As an example of the latter approach, the Kubo for- q y

mula relates the dielectric function to equilibrium correlation ob'Fam resyl.ts for an arb|tra_ry den3|ty.and coupling ;trength.
functions, which can be treated by perturbation theory. In thel NiS Promising approach will not be discussed here in detail.
lowest order of perturbation theory, a well-established ex©On the other hand, analytical results are found using the
pression is the random phase approximatieRA), valid for method of thermodynam|c Green funct|ons,.wh|ch can be
collisionless plasmas. The inclusion of collisions, howevertreated by perturbation theory. We shall restrict ourselves to
is connected with difficulties. Partial summations have to be2nly the lowest-order terms corresponding to the Born ap-
performed which are sometimes in conflict with sum rules. Proximation of the collision integral as described [i#].
Different approximations are known to go beyond theHigher-order terms of the perturbation theory can be taken
RPA. In the static limit, local field correctiofd] have been into account in a systematic way; sk.
studied extensively. Making use of sum rules to parametrize With respect to the choice of the operat&s, only the
the dielectric function, this treatment was extended to finitecurrent density operatar has been considered jd]. In the
frequencies in[2]. A study of the dynamical corrections spirit of the Chapman-Enskog approach we will include here
within a time-dependent mean-field theory was reported irhigher moments of the single-particle distribution function.
[3]. However, damping effects are neglected in this treatin the limiting case of the dc conductivity7] it has been
ment. shown that the improvement by using higher moments con-
A particular prc_>bl_em is the appropriate treatment of theyerges to the Spitzer result.
long-wavelength limitk—0 at small frequencies where the  Note that different approaches based on different sets of
n(;elevant observablds,, are formally equivalent as long as no
. . approximations in evaluating the correlation functions are
cides with the Chapman-Enskog approgShto the dc con- pszormed. However, withi?] a finite-order perturbation

dUCt'V'ty'. - : : theory, the results for the conductivity are improved if the set
In particular, within a generalized linear response ap-

proach the polarization function was found as of relevant observablgs is gxtendeq.
Results for the dielectric function for two-component

2 plasmas are shown within a one-moment approach and com-
IM(k,w)=i—e(k,w)BQg pared with a two-moment approach in Sec. Il. To study the
@ internal consistency of the approach, some exact relations

0 Mg,k w) such as sum rules are discussed in Sec. Ill. Of particular
/|an(k,w)|.
)

Mok @) Mok, w)

interest is the relation to the Kubo formula which under cer-
tain circumstances may be treated by perturbation theory as
discussed in Sec. IV.
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Il. MOMENT APPROACH FOR THE POLARIZATION FUNCTION OF A TWO-COMPONENT PLASMA

To evaluate the dielectric function we use the expres&rior the polarization function, where the matrix elements are
given by[9]

MOn(kaw):(Jk;Bn)a Mmo(k,w):(Bm;E(k,(D)Jk),
0 <Bm;Bj>w+in

an ky =—i Bm;Bn - Bm;Bn Bm;Bn w+i .
( w) |w( ) ( )+< > 7]+ <Bi;Bn>w+i7] <Bi;Bj>w+i7]

/|<Bi;Bj>w+i7;|- ©)

The equilibrium correlation functions are defined as know that important modifications are obtained by including
the energy current density in addition to the particle current
density, i.e., if we include also the moment related to the
average oﬁzpz. Then, the electrical conductivity is not only

described by the electron-ion interaction, but includes also

A'B—B+'A+—1fﬁd T A(=ifi7)B*
(AB)=(BTHAT) =2 | d7 TMA(=i77)B" po],

AB).— °°d A (D) B 4 the effects of the electron-electron interaction which are not

(AiB),= o te%(A(1);B), ) effective in the lowest-moment approximation due to the
conservation of total momentum.

with A(t) = exp(Ht/4)A exp(—iHt/h) and A= (i/4)[H,A]. The two-moment approach for a two-component plasma

The averages are performed with the equilibrium statisticaf® P& considered in this paper is given by the following mo-

operatorpy=exp(— BH+ BEuN)/Tr exp(—BH+ BNy ments of the'electronc(z e) or ion (c=i) distribution func-
We will consider a two-component plasma consisting oftion: respectively:

electrons ¢=e) and ions ¢€=i). In particular, results are

given below for a hydrogen plasma. We introduce the single- bS(p) = h D
particle operators 1 m z
n;c),k: (”;C;,—k)T: aZ,pfk/z Ac p+k/2; ) 32
wherea' and a are creation and annihilation operators in bg(p)=(—) p2p,. (8)
p ! V2mkgT
momentum representation. Choosing thaxis parallel tok,
the current density operator is given BV:Jkéz with The evaluation of the corresponding correlation functions in

the Born approximation is given in Appendixes A and B for
1 €c . the nondegenerate case. As a trivial result, in the lowest ap-
=g 2 m Pp k- (6)  proximation with respect to the interaction the RPA result is
ocp e recovered. In general the matrix elements are given in terms
of integrals of expressions containing the Dawson integral.
It is interesting to study the difference between the RPA
and the approximation detailed above for a dense plasma. As
an example for a dense plasma we consider a plasma under
B,= 2, bi(p)n . (7)  the conditions found in the center of the sun, i.e., with a
temperature off =98 Ry and a density afi,=8.9a5° [10].
This corresponds to the ordinary kinetic approach, wherdo simplify the analysis, the plasma considered here shall
only the single-particle distribution is considered. The inclu-consist of electrons and protons only, neglecting, exgar-
sion of higher-order correlations is also possible; [&e ticles. We will see that the results are comparable to the
Within the kinetic approach, the nonequilibrium state of results obtained if4] for parameter values corresponding to
the plasma is described by the mean values of the singldaser produced high-density plasnias.
particle operatorg5) corresponding to an induced single-  Results for the imaginary and real parts of the dielectric
particle distribution function with wave numbkr Instead of ~ function in the one-moment approximation given bj(p)
treating an infinite number of operators depending on there shown in Figs. 1 and 2, respectively. The dielectric func-
momentump, we can restrict ourselves to a finite number oftion is shown as a function of the frequency for two different
moments of the distribution function. This procedure is fa-wave numbersk=0.1a;* andk=10 %ag*. For the sake of
miliar from the theory of dc conductivityg]. Whereas in that comparison the RPA is displayed as well. As can be seen
case only moments with respectichave to be selected, in from Fig. 1, the differences between the improved dielectric
the general case of arbitralky to be considered here mo- function and the RPA are small at higher wave numbérs (
ments ofp as well asp-k have to be taken into account. =0.1a,;1), while significant changes occur at smaller wave
In this paper we investigate how the lowest-moment apfhumbers k=10*5ag1). In both situations, the high-
proach in the Born approximation is modified if further mo- frequency behavior of the improved dielectric function is
ments are included. From the theory of dc conductivity weinverse proportional to the cube of the frequency, while the

To select the relevant operatdg, we restrict ourselves
to only single-particle observables,
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frequency w [units of Ry] FIG. 3. The imaginary part of the dielectric function for a hy-
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FIG. 1. Imaginary part of the dielectric function for a hydrogen n=8.9a5') as a function of frequency and wave numbek. The

plasma (parameter values: temperatufE=98 Ry, density n letter A indicates the line of largest single-particle damping.
:8.9a§1) as a function of the frequency at two wave numblers

=0.1a5 " (lower lef) andk=10"%ag " (upper lefl. The dielectric frequency axis. As was already mentioned above, a conduc-
function |r_1clud|ng collisiongsolid lines is compared with the RPA tivitylike behavior shows up at small wave numbers, while at
(dashed lines high wave numbers a RPA-like behavior exists. This conduc-

) ~ tivity region enlarges the smaller the wave number. The
RPA decreases exponentially. Such a’l/dependence is |ower bound to the conductivity region can be traced back to

also known from the simple Drude relation. Inspecting fur-the electronic maximum in the RPA dielectric function,
ther the situation at the small wave numb&=(10"%ag b,

which is situated atv=k+kgT/m.. The line connecting the
several regions can be distinguished. Fram=10"' Ry |ettersA indicates this position. The upper bound is approxi-
down to w=10"% Ry there is a X proportionality, as is matively given by the relaxation time.
anticipated from Eq.1). This region ends where single-

. ( _ _ The dc conductivity can easily be obtained by inspection
particle damping comes into play. At very small frequenciesof » Ime(k,w), as given in Fig. 4. The conductivity region

a second b region shows up. At even smaller frequencies,discussed before appears as a plateau. As expected from Fig.
the imaginary part increases linearly with the frequency as ig the plateau gets more pronounced the smaller the wave
known from RPA. number. In the long-wavelength limit, the Drude result is
Figure 2 shows that the static limit is given by the Debyereproduced. Within a one-moment approximation the dc con-
law, which is also the limit for the RPA. In analogy to the ductivity is o(0,0)/e;=1703 Ry. This value coincides with
imaginary part, the improved dielectric function resemblesthe dc conductivity yielded in the Chapman-Enskog ap-

the RPA at h|gh wave numberS, Wh||e a drastiC diﬁerenc%roach using On'y the momebﬁ_ Note that a second p|a_
emerges at small wave numbers.

; ) A ) ) ) teau appears at small frequencies.
In Fig. 3, the imaginary part of the dielectric function for

) ' In order to demonstrate the convergence, we have en-
the solar core is presented as a surface plot, showing thgrged the set of relevant observables. The effect on the di-
dependence on the wave number and the frequency. The rgrectric function is shown in Fig. 5. In addition b§ also the

sults shown in Fig. 1 can be recognized as cuts along thF‘nomentsbg were considered. In this figure, the product
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moment approactupper plateaucompared to the one-moment ap- compared to the RPA at wave number 0_3351,

proach (lower platealt Note that the two-moment collision inte-

grals are calculated fdt—0. assess the quality and internal consistency of an approxima-
tion is the check of exact known properties for the dielectric

o Ime(k, ) is shown for different wave numbers as a func- function. Several exact properties independent of the model

tion of the frequency setting against a calculation with  discussed are knowfil3] such as sum rules and the high-

only. Since it is tedious to calculate the correlation functionsfrequency as well as long-wavelength limit. Since the sum

Mmn(k,®), the long-wavelength limik—O0 of these func- rules are closely related to conservation laws, it is considered

tions has been used in determining the dielectric functionvirtuous for an approximation to obey these sum rules. Sum

The details of the calculation can be found in Appendix B.rules can be formulated for a product of the imaginary part of

The position of the plateau changes significantly, leading to @he dielectric function with odd moments of the frequency.

dc conductivity ofa(0,0)/eq=2720 Ry. This is in agreement In the following, only the lowest-order sum rules are consid-

with the improvement one gets in the Chapman-Enskogred, since the sum rules are directly connected to the den-

method by considering] andb$ . The reason for this sig- sity. Closely connected to collective excitations in the system

nificant change is that electron-electron and proton-protons the f-sum rule

collisions come into play vi&®$ only.

In Fig. 5, large differences between the one-moment and % de

the two-moment calculations occur in the lower-frequency —J —w Ime_l(k,w)=w§|, 9

region only. However, we notice that the dc conductivity —e T

within our approach coincides with the corresponding ap-

proximation in the Chapman-Enskog method. On the othewhereas a similar sum rule

hand, we know that the Chapman-Enskog approach con-

verges to the Spitzer result if higher moments are included; = d

w
cf. [7]. Therefore we conclude that also our approach for the J o |m€(kaw):w§| (10)
dielectric function is converging, if the number of moments

— 0

is enlarged.
Results for the inverse dielectric function, which de- 00 4 .
scribes the response to the external potential, are shown in
Fig. 6 for a wave number dé=0.3a;* and compared with 200 | |

the RPA. The imaginary part of the dielectric function in-
cluding collisions is considerably broader than the RPA one.
While the imaginary part of the inverse dielectric function in

the RPA approximation becomeg-like in the long- _é
wavelength limit, the improved dielectric function converges ¢ .| |
to a broad profilesee Fig. J, reflecting the broadening of —— Drude formula
the plasmons, by taking into account collisions. Qualita- ! ---k=10"a,"
tively, this kind of broadening is also found in molecular 800 - \ Ok=10a," 1
dynamic simulations as reported [ib1] and[12].

1% 210 215 22,0

lll. EXACT RELATIONS FOR THE DIELECTRIC frequency o [units of Ry]

FUNCTION AND LIMITING CASES - _ _ _ _
FIG. 7. The imaginary part of the inverse dielectric function at

Approximations are to be made to calculate the dielectriGvave number«=10 3a;* andk=10"“ag'. The Drude formula
function for a system of interacting particles. A possibility to is shown as well.
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can be related to the conductivity. The perfect screening be- TABLE I. Check of sum rules for different wave numbers. The

havior reads integrals in Eq.(9) and Eq.(10) are normalized by division with
(DS| B
_ © dw 1 1
lim | ——Ime *(k,0)=—1. (11 Wave numbek
k=07 7% Sum rule (units ofag ) Normalized integral
Here w§|=EC:e,i(ean)/(eomc) denotes the plasma fre- Eq. (10 103 0.9990
guency. Eg. (10 104 0.9989
Furthermore, the Kramers-Kronig relation holds which Eq. (10) 10°° 0.9990
connects the real and imaginary parts of the dielectric funcggq. (9) 0.3 0.9990
tion: Eq. (9) 10! 0.9989
. Eq. (9 1072 0.9989
do' Ime(k,w’) -3
Ree(kow)=1+p[ 2 M) =gy Ea.© 107 0.9992
T w—w Eq. (9) 10 0.9992
Eq. (9 10°° 0.9991

Here, P denotes the Cauchy principal value integration. Usu=
ally, this relation follows from the causality principle using ) o
the assumption that the dielectric function vanishes suffiRPA. The low-frequency region, where the conductivity be-
ciently fast at large frequencies. The inverse dielectric funchavior is found, contributes most significantly to the integral
tion obeys a corresponding relation. Combining thein Ed.(10). _ _ _ o

Kramers-Kronig relation with the sum rules results in rigor-  The improved dielectric function exhibits perfect screen-

ous statements about the asymptotic behavior at high frdDg behavior. It can be shown analytically from the expres-
guencies: sion forM ,,(k,w) given in Appendix A that the static limit

of the dielectric function is given by the Debye law

(13 K?

lim Ree(k,w)=1+ @ (17)

. wpl
lim Ree(k,w)=1——+0
w—® w

w—0

Further, important relation can be derived which relate the

dielectric function to thermodynamical properties. In particu- lim Ime(k, ) =0, (18
lar, the static limit of the real part of the dielectric function w0
obeys the compressibility sum rule implying Eq. (11). Here, x denotes the inverse Debye
lim Ree(k,0) =1+ V(K)n?K. (14  Screening lengthi®=3 .n.e%/(eoksT).
K0 ' It is found numerically that the Kramers-Kronig relation

holds as well. As discussed above, the imaginary part of the

HereK denotes the isothermal compressibility. This sum ruledielectric function falls off asw™%. Keeping in mind the

follows from the well-known relation between the dynamical Kramers-Kronig relation, the real part declines in concor-
structure factor dance with Eq.(13). The compressibility sum rule will be

studied in future work. In order to check this sum rule, one
1 (= + (ot has to determine the isothermal compressibility within the
S(k,w)= Ef_wdt<pk(t)/)k>e (19  scope of the approximation given here. This has not been
carried out yet.
and the dielectric function which can be established via the 11US, the lowest-order sum rules are satisfied by the im-
fluctuation-dissipation theorem, proved Q|electr|c_funct|on reported here in contrast to several
other microscopically based approaches beyond the RPA.
1 This problem, which is closely related to so-called conserv-
S(k,w)=—— Ime™ *(k,w—i0). (16) ing approximations, will be discussed in the next section. In
™ efe— many phenomenological approachHés], the sum rules are
) incorporated to parametrize the dielectric function. A further
Further extensions for a many-component system can bgossibility to test the dielectric function is to calculate the
found in[14]. dynamical structure factor via E¢L6), since this quantity is

The RPA, which describes the collisionless plasma, satisjetermined in molecular dynamics simulations;[afL,12].
fies the relationg9)—(16). While this can be shown analyti-
pally, only numer.ical verjfications of .the sum rules for the IV. COMPARISON WITH THE KUBO FORMULA
improved dielectric function are possible.

The results for a numerical check for the sum rul&g) An alternative approach to improve the dielectric function
and(9) are presented in Table I. It is found that the sum rulesbeyond the RPA is a perturbative treatment starting from the
are fulfilled within the numerical accuracy~0.1%). The Kubo formula[9] as given by
numerical evaluation shows that the main contribution to the -
f-sum rule at small wave numbers is provided at frequencies _ ik“BQ0
close to the plasma frequency, as is also known from the )

e(K,0) (I I wring - (19
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As shown in[4], this result follows as a special case within due to the interaction with the medium. However, this ap-
the generalized linear response theory. As also shown therproximation for the polarization function does not fulfill rig-
the different expressions are identical in the limit-0 if no  orous relations such as sum rules. This can be traced to the
further approximations are performed. However, the differ-omission of vertex corrections, which are of the same order
ent expressions might be more or less suited for a perturban the density as the self-energy corrections considered here.
tion expansion. Indeed, several problems arise in carrying\ rigorous relation between the self-energy and the vertex
out a perturbation expansion based on the Kubo formulacorrections is given by the Ward identitigs8], which must
Two of these problems, which are connected to the dc conbe fulfilled in order to satisfy the sum rules.
ductivity and the sum rules, shall be discussed here. As early as 1961, Baym and Kadanoff proposed a scheme
The correlation function can be calculated by perturbatiorto consider self-energy and vertex corrections on the same
theory which is most effectively formulated within the con- footing. They started from an approximation of the ground-
cept of thermodynamic Green functiof6]. The prefactor state—energy functional in a way that the conservation laws
e(k,w) can be omitted if only irreducible diagrams are takenfor energy, momentum, and particle number are obeyed. Fol-
into account in evaluating the correlation function lowing Baym and Kadanoff19], a consistent vertex can be
(I I wrin- constructed to a given self-energy. As a consequence, the
In lowest order with respect to the interaction, from Eq.Ward identities are fulfilled. A detailed description of the
(19) the RPA result is obtained immediately, in coincidenceconnection between sum rules and conservation laws can be
with all other approaches includinty within the set of rel-  found in[20]. A straightforward way to construct conserving
evant operators. Evaluating the polarization function up tovertices within the language of parquet theory can be found
second order with respect to the screened interaction reads [21].

[17] Although a lot of work has been done in deriving conserv-
ing vertex equations, the explicit solution of this equation is
Miko)=3 fF(Ep+Ap) —f(Epk+Ap—1) still in its infancy. The solution of the vertex equation cannot
NS Ept A=y —Ep— Ak be given in a simple algebraic form and detailed numerical
) ) studies have to be carried out to solve this equation because
n 2 V2f (@) ( 1 ) of the complicated r_nultifrequency dependence of the kernel.
onse 9PIim) \Ep—Ep_q Up to now, no solutions beyond the Born approximation are
known to the authors. Although some further approximations
% 1 1 can be made as shown [it7], leading to an expression for
Ep— o\ —Ep_k Ep—@y—Ep_k_q I1(k,,), in that paper no expression for the physwal rel-
evant retarded polarization function could be given.
% (@) ke —wy ,—K), Summarizing, a finite-order perturbative treatment of the

Kubo formula is not feasible in contrast to the more general
(20) approach given in Sec. Il, which allows for a perturbative

treatment even neak & 0,0=0). In the Kubo theory, one is
where the self-energy shift is introduced via forced to perform partial summations which sometimes leads
to contradictions with exactly known properties.

Ep-k=Ep-k—q

1
Ap= nionE Véﬁ (21)
q p p—q V. CONCLUSIONS
The first term corresponds to a quasiparticle RPA originating  An approach to the dielectric function has been investi-
from the self-energy corrections. The second term is the vefgated which includes the effects of collisions and can be used

tex correction. For the sake of simplicity, we have taken thqn the entirek, » space. Within a one-moment approach to a
adiabatic limit wherem;/me—c (Lorentz plasma In par-  two-component plasma, the Born approximation has been

ticular, we find, fork—0, evaluated, and important rigorous properties for the dielec-
K\ 2 tric function such as sum rules are found to be fulfilled. As a
IMI(K,w)=n, VZ(_q) 7S(Ey—w—Ey_g) main result, an approximation for the dc conductivity is
pg  \m P P found.
S0 The method proposed here permits a systematic improve-
X e~ BEy—n) 1-e 22) ment of the dielectric function by enlarging the number of
I moments. In particular, a two-moment approach was studied.
An improvement of the dc conductivity is found due to the
which gives the frequency-dependent conductivity. inclusion of electron-electron and ion-ion collisions. On each
However, this perturbation expansion divergesvat-0.  level of the approximation, the approximative value for the

Thus, this expression cannot be used to derive a dc condude conductivity coincides with the one calculated in the
tivity. To tackle this problem, partial summations have to beChapman-Enskog approach using corresponding moments.
performed. For instance, a simple approximation for the po- Within the quantum statistical approach described here, a
larization function including interactions with further par- systematic way to account for interaction effects is possible
ticles would be a polarization function given by the productby evaluating the correlation functions beyond the Born ap-
of two full propagators. This way, the polarization function proximation. This can be done most effectively using ther-
contains the shift and damping of the single-particle statesnodynamic Green'’s functions. E.g., the inclusion of strong
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collisions and bound states can be done by treating
T-matrix-like contributions. The treatment of the dynamic
screening of the interaction is possible by partial summation
of particle-hole excitations. Degeneracy effects can be incor-
porated by inclusion of exchange diagrams. An interesting
point would be the comparison of the quantum version of our
formalism with the well-known expressions for the local
field corrections.

Alternative approaches to evaluate the dielectric function
beyond the RPA are given by a perturbative treatment of the
Kubo formula and by computer simulation methods. In con-
trast to our approach, the Kubo formula requires a partial
summation in order to get a finite dc conductivity. Thus, our

approach seems to be more appropriate for a perturbation

expansion. The comparison of our approach with computel.
simulations is also a promising perspective. Work in this

m ma,nﬂ(krw) =—1

. Vmymg 1

2kgTnk Qg

- me’ngb“ )bE(p")
~ 2K TRK O (P)bn(p

Mma,nﬁ(kvw)

X{([n,‘é‘,k— i wnS,k];nﬁ,,k)

/IB.WI (A4)

+<h§,k:h3r,k>w+m}

0 Cmajﬁ

‘Clynﬁ ijﬁ

herez,=[m,/(2ksT)]Y?w/k and the following abbrevia-
ions were used:

direction is in progress. " \/m—mg 1 EI
iy,jé— — iy1Pjé/lwt+in
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P X<ng'k;npr’k>w+i7yl (AS)
APPENDIX A: EVALUATION OF THE MATRIX
ELEMENTS OF II - Vmgms 1
Cma,jﬁz mﬂ <Bma1 ]5>w+l77
We start from the general expressiqi$ and (2) for the
dielectric function and specify the relevant observalilgs ~ym
B, Bs, and B, by the momentS(p), b5(p), bi(p), and = 2kBTnk 902 b (P)b(
b5(p), respectively, according to Eq7). We introduce a
doubled index fna) with m=1,2, a=e,i, so that the four ><<np I k>w+i7], (AB)
momentsB,,, are given byB,., B,e, By, andB,;, respec- ’
tively. We extract some factors so that m
g C m,ms 1 —(Bi,:Bns)
iv.nB~= 2kBTnkQ iy1BPnplo+in
e(k,0) \/_
m,m
B y B
_ _,Bneze(k,w) 2kBTnkQ E b (p)b (p )
eokw
X<np kN p’ k>w+|7] (A7)
0 MOnB(k o)
Xl o ~ / IM ma,ng(K, )], Forn,=n;=n, e,.= —e;=e we have in Born approximation
Mma,O(k:w) Mma,nﬁ(kvw) (see[G])
(A1)
. . ~ - 1 5
with the matrix elements Mg1e=Mie =3 Mg =My =7
k
M K,w M k,w - - 1 ~ ~ 5
onp(k,0)= ongll) Mom:Mlio—_E: MO,Z:MZi,OZ_Za (A8)
zs k 1
n—izﬂ— yﬁpzbﬁ(p )(Ng ;N r,k), K
Ov.pp My M ma nﬁ(kvw): -2 ZiNma ng~ 2% Bma,n,B
(A2)
Vym,m
- 'm<5ma- nBYotin
Mma,O(k!w): n_eaM ma,O(kiw) B
0 Cma]ﬁ/
z, k1 €. N - B, A9
_ —ﬁpzbm(p)(np,k;ni,’k), ‘Cl'ynﬁ B, s Biyjsl, (A9)

_newﬂoépp, my

(A3) with B,

4 3
|,},15 ZBi’y,jﬁk/w ’
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Kk Kk

Crna,js=1 ZzziNma,jﬁ" ;zziBma,ja Nla,lﬁzi Sapr Nig2p= N2a,lB:Z5a,B-
ym,m B Al 35
Tk e B (A10 Nzw,25="g Oup (AL3)

and and

— ko ko,

Ci«/,nﬁ:|FZyNi7,nﬁ+|?ZyBiy,nﬁ Bi1a,15=[1+2,D(2,)]64p,

Vym,m 3, 2 3
+i (A11) Bia,25=B2a,15= |51 25+ (24 +Z,)D(Z,) | Oap

2

W<BlvanB>w+ln'

Introducing the Dawson integral 55, , s s
Boa,25= Z+Eza+za+(22a+22a+za)D(za) Oap -
1
D)= lim —| dxe®———  (A12) (A14)
5510 —oo X—2—16
Expanding the matrices in EGA7) we find, up to the first
we have Born approximation,
0 K N
|_2'Z ma,jé \/—
- m
Mma,np(K, @)=~ K, _ /|Bma| m(Bma, 0B otin
1 22Nivns Biyjs
Vm,my Jm,mj
W(Bmav nﬁ>w+|7; 2k Tn m <Bmav nﬁ>w+|7]
ym,m
0 o 2 (B By )
2kBTnkQ ma+ Bj ol w iz
- Kk |Blyj¢5|
. 2 ~
'FZBNW,HB Biyijs
0 I ma15
_ B ol (A15)
m(BI«/!BnB>w+m Biyjs

The first contribution in Eq(A15) is of zeroth order with respect to the interaction and reproduces the RPA result. The
remaining terms contain the electron-ion interaction and the electron-electron or ion-ion interaction, respectively, in the Born
approximation. We use a screened interaction with the Debye screening factemekp¢?= Ecnceﬁl (egkgT). Evaluating the

Born terms we find

vmaMm 1

m(' (Bma; n,3>w+i - o(Brng; Bnﬁ)iﬂi 2~ O(Bmas .Bnﬁ>gulli )

p — .
8(277)3/2k fo(kBT) f dpe” ( Mei) go(Ma,nB;p)+ 6,p 2) ho(ma,na;p) |, (A16)
m,Mg . i 1 e 1 \52 [ { mum: | 12
VMg . v [ _p M _
w_szTnkQO<Bma,BnB>w+ln 8(277_)3/2 kn 6(2)( kBT) fo dp e ( M., ) gl(ma,nﬁ,p)
m.\ 12
+50‘5(7a) hl(maana;p) ) (Al?)
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; 5/2
ymem W i 1 e( J' dp & 02
kgT

MeM; 1/2
w_szTnmo<BmaaBnB>(u+i7]__ 8(2 )3/2 k € ( Mei ) gz(ma,n,B,p)

(A18)

1/2
+ 5aﬁ(7a) ho(ma,na;p) |,

where theg; refer to the electron-ion collisions and theto the electron-electron or ion-ion collisions, respectively. While the
evaluation of terms involving{ is simple[4], the determination of the terms relatedt is quite tedious. The reader is
referred to the next appendix for details concerning the explicit form of the correlation functions.

APPENDIX B: EXPLICIT FORM OF THE CORRELATION FUNCTIONS

Here, the functiong; andh; defined in Appendix A are given for the momebfsandb$ defined in Eq(8). It is convenient
to introduce the following abbreviations:

o [ Mg /m- m
Zei:E ﬁv Zeje= Zei ™ E;Cpi Zoii= Zei— H?va Zeee:\/zze_cp (B1)

and\®'=1+7%2k>M4;/(4memikgTp?), A®8=1+72k2/(2mekpgTP?),

A=l Al 42 A 2 (B2)
=Iin - - s =,
SRR T CEE YA U T
. ei__ )\ee_
A,=\%In +2, AS*=\®4n +2. (B3)
A1 A€+ 1
For the first expressiofA16) we find
_ 2
9o(1e,1e;p)=—go(1e,1i;p)= A1 3P, (B4)
. ) 1 5 2 3
do(le,2e;p)=go(2€,1e;p)= —go(2i,1e;p) = —go(2€,1i;p) = WAl 3MeP+ 3 mMip7, (B5)
el

47
6

1 (8 , 8 ] 1 4,
+ WAZ TEMeP+ 3 Mem;p™| — WA3Emep, (B6)
i ei

el

1 1 s 2
go(2e,2e;p)=WA1 mZp+ ZMemip”+ 3 mp

ei

47 5

: 1 2.3 S 2.3 2 5 8
G0(2€,213p) = 7 A1/ — 5 Memip— zmZp’— zmp’~ Zmem;p
ei

1 8
+M—2A2[ 15mempwL memp}

ei

1 4

A31 mem; p, (B7)

5
ho(1e,1e;p)=hgy(1le,2e;p)=hy(2€,1e;p) =0, (B8)
ho(2e,2e;p) = A3° 3 p (B9)

The remaining terms are obtained by interchangirandi.
For the second expressi¢A17) we find

1 Me
g:(1le,1e;p)=—gi(li,1e;p)= JildCD(Zei,e)zgi m Al —cl, (B10)

1
0u(16.26)= A 2mp1+ [ doD(zay 02\ Ty (Al —0(1+32, ome—omp?]

+A2[2(1_3Cz)zei,e\/memip]}a (Bll)
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1 2 1
g1(2e,1e;p)=—g,(1i,2e; p)— (29|A1[_§mep +f 1ch(zei,e)Z§i
Mg ~

m, 1
o, ﬁmf\l[—c(lﬂﬁi,e)me— 2C?Z¢j e \VMeM;p—cMyp?], (B12)
I el

16 5 16 3 8 2
1_5mep+1_5memip +A31_5mep

1 1 2 2 2 3
0.(2e,2e;p)= — Y e| Aq §+22ei mgp+ 1—5memip +A, —
ei

/m r——
J dCD(ZeI e)zel 2 {Al[ c 2+4Ze| e+328| e)m 2C2(Ze| e+ 328I e) mep

- 2C(1+ Zzgi e)m m; pz_zczzei,e Mem;m; ps_cmi p4]+A2[2(1_3C2)(C22ei,e+ Zei,e) VMeM;MeP
—2¢(3— 3C o 2Zel et 6sze| e) memip2+ 2(1- 3CZ)Zei,e MeM; M, pg] +A3[202(1_ Cz)zei,e VMeMm; mep]}v

(B13)
. ) 1 > 1 2 Me 1 2 2
91(2i,1e;p) = M_eiZei/\l[_zmip]+ _1dCD(Zei,e)Zei EE{A1[0(1+3Zei,e)mi+C%p ]

+A2[2(1_3C2)Zei,e\/memip]}i (814)

16 16 8
meml p + meml p A3 1_5memi p

_ 1, 1 4 ,, 2
91(2I,Ze;p)=M—zzei Al =3 ~275; memip— ¢ mip3+ 5 mep +tAg T

ei

1 1
+ ﬁlch(zei'e)zgi ———{A4[C(2+425; o+ 3Z5; o) MMy + 2C2(Zej o+ 323; o) MMMy p
1

m; Me4
+e(l+ 32(29i,e) mi2p2+ c(1+ Zgi,e) m§p2+ 2szei,e VMem; mep3_ CMem; p4]
+ Ag[2(1—4¢?+3¢*) Zgj oV MeMiMip+ 2(1— 3¢?)(Ze o+ 23; o) VMeMMep— 2¢(3— 3¢2— 225,

+6¢%2Z; ;) mem; p?
+2(1~3¢%)Zg; e VMMM P+ Al — 2¢%(1~ €?) Zgj eV Memymip1}, (B15)
h,(le,1e;p)=h,(1le,2¢e;p)=0, (B16)
h.(2e,1e;p)= f ch(zeee)zeeMl AST4(1—3¢?)ZgeeMep, (B17)

1 1
+ flch(zeae)zéeM—zAgeM(l—3c2)(zeee+ 23, )Mip—4c(3—3c®—222,,
ee

1 32
) — 2 2.3
h.(2e,2e;p)= _Mﬁ zee/\gs{—lsmep

+60%22, ) M2p2+ 4(1—3¢?) Zge,em2p°]. (B18)

As above the remaining terms are obtained by interchangirand i. Furthermore, the terms connected with the third
expressionAl8) are obtained ag,(ma,nB;p)=g.(nB,ma;p) andh,(ma,nB;p)=h,(nB,ma;p).
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