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Dielectric function of a two-component plasma including collisions

G. Röpke and A. Wierling
FB Physik, Universita¨t Rostock, D-18051 Rostock, Germany

~Received 9 January 1998!

A multiple-moment approach to the dielectric function of a dense nonideal plasma is treated beyond the
random phase approximation including collisions in the Born approximation. Sum rules are checked, and the
relation to the dc electrical conductivity is pointed out. Enlarging the number of moments used, converging
results are obtained. The proposed approach is compared to a perturbation expansion of the Kubo formula.
@S1063-651X~98!02606-3#

PACS number~s!: 52.65.2y, 51.10.1y, 05.20.Dd
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I. INTRODUCTION

The dielectric functione(kW ,v) depending on the wave
vectorkW and frequencyv is a physical quantity providing u
with various information about the plasma. In homogeneo
isotropic systems, the dielectric function is related to
electrical conductivitys(k,v) and the polarization function
P(k,v) according to

e~k,v!511
i

e0v
s~k,v!512

1

e0k2 P~k,v!. ~1!

A quantum statistical approach to these quantities can
found from kinetic theory as well as from linear respon
theory. As an example of the latter approach, the Kubo
mula relates the dielectric function to equilibrium correlati
functions, which can be treated by perturbation theory. In
lowest order of perturbation theory, a well-established
pression is the random phase approximation~RPA!, valid for
collisionless plasmas. The inclusion of collisions, howev
is connected with difficulties. Partial summations have to
performed which are sometimes in conflict with sum rule

Different approximations are known to go beyond t
RPA. In the static limit, local field corrections@1# have been
studied extensively. Making use of sum rules to paramet
the dielectric function, this treatment was extended to fin
frequencies in@2#. A study of the dynamical correction
within a time-dependent mean-field theory was reported
@3#. However, damping effects are neglected in this tre
ment.

A particular problem is the appropriate treatment of t
long-wavelength limitk→0 at small frequencies where th
dc conductivity should be obtained. In a previous paper@4#
an approach has been given where this limiting case c
cides with the Chapman-Enskog approach@5# to the dc con-
ductivity.

In particular, within a generalized linear response a
proach the polarization function was found as

P~k,v!5 i
k2

v
e~k,v!bV0

3U 0 M0n~k,v!

Mm0~k,v! Mmn~k,v!
UY uMmn~k,v!u.

~2!
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As pointed out in@4#, this expression is a generalization
the well-known Kubo formula. The matrix elemen
Mmn(k,v) are equilibrium correlation functions which ar
explicitly given in the following section. They contain oper
torsBn which specify the nonequilibrium state of the syste
under the influence of an external field.

For the evaluation of the dielectric function, we have
deal with two problems:~i! the choice of the operatorsBn to
describe the relevant fluctuations in the linear response
gime and~ii ! the evaluation of the equilibrium correlatio
functions such asMmn(k,v).

The equilibrium correlation functions in a nonide
plasma can be evaluated using different methods. Comp
simulations such as quantum molecular dynamics are ab
obtain results for an arbitrary density and coupling streng
This promising approach will not be discussed here in det
On the other hand, analytical results are found using
method of thermodynamic Green functions, which can
treated by perturbation theory. We shall restrict ourselves
only the lowest-order terms corresponding to the Born
proximation of the collision integral as described in@4#.
Higher-order terms of the perturbation theory can be ta
into account in a systematic way; see@6#.

With respect to the choice of the operatorsBn , only the
current density operatorJ has been considered in@4#. In the
spirit of the Chapman-Enskog approach we will include h
higher moments of the single-particle distribution functio
In the limiting case of the dc conductivity@7# it has been
shown that the improvement by using higher moments c
verges to the Spitzer result.

Note that different approaches based on different set
relevant observablesBn are formally equivalent as long as n
approximations in evaluating the correlation functions a
performed. However, within a finite-order perturbatio
theory, the results for the conductivity are improved if the
of relevant observables is extended.

Results for the dielectric function for two-compone
plasmas are shown within a one-moment approach and c
pared with a two-moment approach in Sec. II. To study
internal consistency of the approach, some exact relat
such as sum rules are discussed in Sec. III. Of partic
interest is the relation to the Kubo formula which under c
tain circumstances may be treated by perturbation theor
discussed in Sec. IV.
7075 © 1998 The American Physical Society
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II. MOMENT APPROACH FOR THE POLARIZATION FUNCTION OF A TWO-COMPONENT PLASMA

To evaluate the dielectric function we use the expression~2! for the polarization function, where the matrix elements a
given by @9#

M0n~k,v!5~Jk ;Bn!, Mm0~k,v!5„Bm ;e~k,v!Jk…,

Mmn~k,v!52 iv~Bm ;Bn!2~Ḃm ;Bn!1^Ḃm ;Ḃn&v1 ih1U 0 ^Ḃm ;Bj&v1 ih

^Bi ;Ḃn&v1 ih ^Bi ;Bj&v1 ih
UY u^Bi ;Bj&v1 ihu. ~3!
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The equilibrium correlation functions are defined as

~A;B!5~B1;A1!5
1

bE0

b

dt Tr@A~2 i\t!B1r0#,

^A;B&z5E
0

`

dt eizt
„A~ t !;B…, ~4!

with A(t)5exp(iHt/\)A exp(2iHt/\) and Ȧ5( i /\)@H,A#.
The averages are performed with the equilibrium statist
operatorr05exp(2bH1b(cmcNc)/Tr exp(2bH1b(cmcNc).

We will consider a two-component plasma consisting
electrons (c5e) and ions (c5 i ). In particular, results are
given below for a hydrogen plasma. We introduce the sing
particle operators

np,k
c 5~np,2k

c !†5ac,p2k/2
† ac,p1k/2 , ~5!

where a† and a are creation and annihilation operators
momentum representation. Choosing thez axis parallel tokW ,
the current density operator is given byJW k5JkeW z with

Jk5
1

V0
(
c,p

ec

mc
\pznp,k

c . ~6!

To select the relevant operatorsBn , we restrict ourselves
to only single-particle observables,

Bn5( bn
c~p!np,k

c . ~7!

This corresponds to the ordinary kinetic approach, wh
only the single-particle distribution is considered. The inc
sion of higher-order correlations is also possible; see@6#.

Within the kinetic approach, the nonequilibrium state
the plasma is described by the mean values of the sin
particle operators~5! corresponding to an induced singl
particle distribution function with wave numberk. Instead of
treating an infinite number of operators depending on
momentump, we can restrict ourselves to a finite number
moments of the distribution function. This procedure is
miliar from the theory of dc conductivity@6#. Whereas in that
case only moments with respect top have to be selected, in
the general case of arbitraryk to be considered here mo
ments ofp as well aspW •kW have to be taken into account.

In this paper we investigate how the lowest-moment
proach in the Born approximation is modified if further m
ments are included. From the theory of dc conductivity
l
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know that important modifications are obtained by includi
the energy current density in addition to the particle curr
density, i.e., if we include also the moment related to
average ofpW 2pz . Then, the electrical conductivity is not onl
described by the electron-ion interaction, but includes a
the effects of the electron-electron interaction which are
effective in the lowest-moment approximation due to t
conservation of total momentum.

The two-moment approach for a two-component plas
to be considered in this paper is given by the following m
ments of the electron (c5e) or ion (c5 i ) distribution func-
tion, respectively:

b1
c~p!5

\

A2mckBT
pz ,

b2
c~p!5S \

A2mckBT
D 3/2

pW 2pz . ~8!

The evaluation of the corresponding correlation functions
the Born approximation is given in Appendixes A and B f
the nondegenerate case. As a trivial result, in the lowest
proximation with respect to the interaction the RPA result
recovered. In general the matrix elements are given in te
of integrals of expressions containing the Dawson integr

It is interesting to study the difference between the R
and the approximation detailed above for a dense plasma
an example for a dense plasma we consider a plasma u
the conditions found in the center of the sun, i.e., with
temperature ofT598 Ry and a density ofne58.9aB

23 @10#.
To simplify the analysis, the plasma considered here s
consist of electrons and protons only, neglecting, e.g.,a par-
ticles. We will see that the results are comparable to
results obtained in@4# for parameter values corresponding
laser produced high-density plasmas@8#.

Results for the imaginary and real parts of the dielec
function in the one-moment approximation given byb1

c(p)
are shown in Figs. 1 and 2, respectively. The dielectric fu
tion is shown as a function of the frequency for two differe
wave numbers,k50.1aB

21 andk51025aB
21 . For the sake of

comparison the RPA is displayed as well. As can be s
from Fig. 1, the differences between the improved dielec
function and the RPA are small at higher wave numbersk
50.1aB

21), while significant changes occur at smaller wa
numbers (k51025aB

21). In both situations, the high
frequency behavior of the improved dielectric function
inverse proportional to the cube of the frequency, while
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57 7077DIELECTRIC FUNCTION OF A TWO-COMPONENT . . .
RPA decreases exponentially. Such a 1/v3 dependence is
also known from the simple Drude relation. Inspecting fu
ther the situation at the small wave number (k51025aB

21),
several regions can be distinguished. Fromv51021 Ry
down to v51024 Ry there is a 1/v proportionality, as is
anticipated from Eq.~1!. This region ends where single
particle damping comes into play. At very small frequenci
a second 1/v region shows up. At even smaller frequencie
the imaginary part increases linearly with the frequency a
known from RPA.

Figure 2 shows that the static limit is given by the Deb
law, which is also the limit for the RPA. In analogy to th
imaginary part, the improved dielectric function resemb
the RPA at high wave numbers, while a drastic differen
emerges at small wave numbers.

In Fig. 3, the imaginary part of the dielectric function fo
the solar core is presented as a surface plot, showing
dependence on the wave number and the frequency. Th
sults shown in Fig. 1 can be recognized as cuts along

FIG. 1. Imaginary part of the dielectric function for a hydrog
plasma ~parameter values: temperatureT598 Ry, density n
58.9aB

21) as a function of the frequency at two wave numbersk
50.1aB

21 ~lower left! and k51025aB
21 ~upper left!. The dielectric

function including collisions~solid lines! is compared with the RPA
~dashed lines!.

FIG. 2. The same as Fig. 1 for the real part. The real par
normalized to the Debye law.
-
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frequency axis. As was already mentioned above, a cond
tivitylike behavior shows up at small wave numbers, while
high wave numbers a RPA-like behavior exists. This cond
tivity region enlarges the smaller the wave number. T
lower bound to the conductivity region can be traced back
the electronic maximum in the RPA dielectric functio
which is situated atv5kAkBT/me. The line connecting the
lettersA indicates this position. The upper bound is appro
matively given by the relaxation time.

The dc conductivity can easily be obtained by inspect
of v Ime(k,v), as given in Fig. 4. The conductivity regio
discussed before appears as a plateau. As expected from
3 the plateau gets more pronounced the smaller the w
number. In the long-wavelength limit, the Drude result
reproduced. Within a one-moment approximation the dc c
ductivity is s(0,0)/e051703 Ry. This value coincides with
the dc conductivity yielded in the Chapman-Enskog a
proach using only the momentb1

c . Note that a second pla
teau appears at small frequencies.

In order to demonstrate the convergence, we have
larged the set of relevant observables. The effect on the
electric function is shown in Fig. 5. In addition tob1

c also the
momentsb2

c were considered. In this figure, the produ

is

FIG. 3. The imaginary part of the dielectric function for a h
drogen plasma~parameter values: temperatureT598 Ry, density
n58.9aB

21) as a function of frequencyv and wave numberk. The
letter A indicates the line of largest single-particle damping.

FIG. 4. v Ime(k,v) as a function of the frequencyv for dif-
ferent wave numbersk.
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7078 57G. RÖPKE AND A. WIERLING
v Ime(k,v) is shown for different wave numbers as a fun
tion of the frequency setting against a calculation withb1

c

only. Since it is tedious to calculate the correlation functio
Mmn(k,v), the long-wavelength limitk→0 of these func-
tions has been used in determining the dielectric functi
The details of the calculation can be found in Appendix
The position of the plateau changes significantly, leading
dc conductivity ofs(0,0)/e052720 Ry. This is in agreemen
with the improvement one gets in the Chapman-Ens
method by consideringb1

c andb2
c . The reason for this sig

nificant change is that electron-electron and proton-pro
collisions come into play viab2

c only.
In Fig. 5, large differences between the one-moment

the two-moment calculations occur in the lower-frequen
region only. However, we notice that the dc conductiv
within our approach coincides with the corresponding
proximation in the Chapman-Enskog method. On the ot
hand, we know that the Chapman-Enskog approach c
verges to the Spitzer result if higher moments are includ
cf. @7#. Therefore we conclude that also our approach for
dielectric function is converging, if the number of momen
is enlarged.

Results for the inverse dielectric function, which d
scribes the response to the external potential, are show
Fig. 6 for a wave number ofk50.3aB

21 and compared with
the RPA. The imaginary part of the dielectric function i
cluding collisions is considerably broader than the RPA o
While the imaginary part of the inverse dielectric function
the RPA approximation becomesd-like in the long-
wavelength limit, the improved dielectric function converg
to a broad profile~see Fig. 7!, reflecting the broadening o
the plasmons, by taking into account collisions. Quali
tively, this kind of broadening is also found in molecul
dynamic simulations as reported in@11# and @12#.

III. EXACT RELATIONS FOR THE DIELECTRIC
FUNCTION AND LIMITING CASES

Approximations are to be made to calculate the dielec
function for a system of interacting particles. A possibility

FIG. 5. Long wavelength limit ofv Ime(k,v) for a two-
moment approach~upper plateau! compared to the one-moment a
proach~lower plateau!. Note that the two-moment collision inte
grals are calculated fork→0.
s
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assess the quality and internal consistency of an approx
tion is the check of exact known properties for the dielect
function. Several exact properties independent of the mo
discussed are known@13# such as sum rules and the hig
frequency as well as long-wavelength limit. Since the s
rules are closely related to conservation laws, it is conside
virtuous for an approximation to obey these sum rules. S
rules can be formulated for a product of the imaginary par
the dielectric function with odd moments of the frequenc
In the following, only the lowest-order sum rules are cons
ered, since the sum rules are directly connected to the d
sity. Closely connected to collective excitations in the syst
is the f -sum rule

2E
2`

` dv

p
v Ime21~k,v!5vpl

2 , ~9!

whereas a similar sum rule

E
2`

` dv

p
v Ime~k,v!5vpl

2 ~10!

FIG. 6. The imaginary part of the inverse dielectric functio
compared to the RPA at wave numberk50.3aB

21 .

FIG. 7. The imaginary part of the inverse dielectric function
wave numbersk51023aB

21 andk51024aB
21 . The Drude formula

is shown as well.
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57 7079DIELECTRIC FUNCTION OF A TWO-COMPONENT . . .
can be related to the conductivity. The perfect screening
havior reads

lim
k→0

E
2`

` dv

p

1

v
Ime21~k,v!521. ~11!

Here vpl
2 5(c5e,i(e

2nc)/(e0mc) denotes the plasma fre
quency.

Furthermore, the Kramers-Kronig relation holds whi
connects the real and imaginary parts of the dielectric fu
tion:

Ree~k,v!511PE dv8

p

Ime~kW ,v8!

v2v8
. ~12!

Here, P denotes the Cauchy principal value integration. U
ally, this relation follows from the causality principle usin
the assumption that the dielectric function vanishes su
ciently fast at large frequencies. The inverse dielectric fu
tion obeys a corresponding relation. Combining t
Kramers-Kronig relation with the sum rules results in rigo
ous statements about the asymptotic behavior at high
quencies:

lim
v→`

Ree~k,v!512
vpl

2

v2
1OS 1

v4D . ~13!

Further, important relation can be derived which relate
dielectric function to thermodynamical properties. In partic
lar, the static limit of the real part of the dielectric functio
obeys the compressibility sum rule

lim
k→0

Ree~k,0!511V~k!n2K. ~14!

HereK denotes the isothermal compressibility. This sum r
follows from the well-known relation between the dynamic
structure factor

S~k,v!5
1

2pE2`

`

dt^rk
†~ t !rk&e

ivt ~15!

and the dielectric function which can be established via
fluctuation-dissipation theorem,

S~k,v!52
1

p

1

ebv21
Ime21~k,v2 i0!. ~16!

Further extensions for a many-component system can
found in @14#.

The RPA, which describes the collisionless plasma, sa
fies the relations~9!–~16!. While this can be shown analyti
cally, only numerical verifications of the sum rules for th
improved dielectric function are possible.

The results for a numerical check for the sum rules~10!
and~9! are presented in Table I. It is found that the sum ru
are fulfilled within the numerical accuracy ('0.1%). The
numerical evaluation shows that the main contribution to
f -sum rule at small wave numbers is provided at frequen
close to the plasma frequency, as is also known from
e-

-

u-

-
-

e-

e
-

e
l

e

be

s-

s

e
s
e

RPA. The low-frequency region, where the conductivity b
havior is found, contributes most significantly to the integ
in Eq. ~10!.

The improved dielectric function exhibits perfect scree
ing behavior. It can be shown analytically from the expre
sion for Mmn(k,v) given in Appendix A that the static limit
of the dielectric function is given by the Debye law

lim
v→0

Ree~k,v!511
k2

k2
, ~17!

lim
v→0

Ime~k,v!50, ~18!

implying Eq. ~11!. Here, k denotes the inverse Deby
screening length,k25(cncec

2/(e0kBT).
It is found numerically that the Kramers-Kronig relatio

holds as well. As discussed above, the imaginary part of
dielectric function falls off asv23. Keeping in mind the
Kramers-Kronig relation, the real part declines in conc
dance with Eq.~13!. The compressibility sum rule will be
studied in future work. In order to check this sum rule, o
has to determine the isothermal compressibility within t
scope of the approximation given here. This has not b
carried out yet.

Thus, the lowest-order sum rules are satisfied by the
proved dielectric function reported here in contrast to seve
other microscopically based approaches beyond the R
This problem, which is closely related to so-called conse
ing approximations, will be discussed in the next section.
many phenomenological approaches@15#, the sum rules are
incorporated to parametrize the dielectric function. A furth
possibility to test the dielectric function is to calculate t
dynamical structure factor via Eq.~16!, since this quantity is
determined in molecular dynamics simulations; cf.@11,12#.

IV. COMPARISON WITH THE KUBO FORMULA

An alternative approach to improve the dielectric functi
beyond the RPA is a perturbative treatment starting from
Kubo formula@9# as given by

P~k,v!52
ik2bV0

v
e~k,v!^Jk ;Jk&v1 ih . ~19!

TABLE I. Check of sum rules for different wave numbers. Th
integrals in Eq.~9! and Eq.~10! are normalized by division with
vpl

2 .

Sum rule
Wave numberk
~units of aB

21) Normalized integral

Eq. ~10! 1023 0.9990
Eq. ~10! 1024 0.9989
Eq. ~10! 1025 0.9990
Eq. ~9! 0.3 0.9990
Eq. ~9! 1021 0.9989
Eq. ~9! 1022 0.9989
Eq. ~9! 1023 0.9992
Eq. ~9! 1024 0.9992
Eq. ~9! 1025 0.9991
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7080 57G. RÖPKE AND A. WIERLING
As shown in@4#, this result follows as a special case with
the generalized linear response theory. As also shown th
the different expressions are identical in the limith→0 if no
further approximations are performed. However, the diff
ent expressions might be more or less suited for a pertu
tion expansion. Indeed, several problems arise in carry
out a perturbation expansion based on the Kubo form
Two of these problems, which are connected to the dc c
ductivity and the sum rules, shall be discussed here.

The correlation function can be calculated by perturbat
theory which is most effectively formulated within the co
cept of thermodynamic Green functions@16#. The prefactor
e(k,v) can be omitted if only irreducible diagrams are tak
into account in evaluating the correlation functio
^Jk ;Jk&v1 ih .

In lowest order with respect to the interaction, from E
~19! the RPA result is obtained immediately, in coinciden
with all other approaches includingJk within the set of rel-
evant operators. Evaluating the polarization function up
second order with respect to the screened interaction r
@17#

P~k,vl!5(
p

f ~Ep1Dp!2 f ~Ep2k1Dp2k!

Ep1Dp2vl2Ep2k2Dp2k

2nion(
pq

Vq
2f pS kq

m D 2S 1

Ep2Ep2q
D 2

3
1

Ep2vl2Ep2k

1

Ep2vl2Ep2k2q

3
1

Ep2k2Ep2k2q
1~vl ,k↔2vl ,2k!,

~20!

where the self-energy shift is introduced via

Dp5nion(
q

Vq
2 1

Ep2Ep2q
. ~21!

The first term corresponds to a quasiparticle RPA originat
from the self-energy corrections. The second term is the
tex correction. For the sake of simplicity, we have taken
adiabatic limit wheremi /me→` ~Lorentz plasma!. In par-
ticular, we find, fork→0,

ImP~k,v!5n(
pq

Vq
2S kq

m D 2

pd~Ep2v2Ep2q!

3e2b~Ep2m!
12ebv

v4
, ~22!

which gives the frequency-dependent conductivity.
However, this perturbation expansion diverges atv→0.

Thus, this expression cannot be used to derive a dc con
tivity. To tackle this problem, partial summations have to
performed. For instance, a simple approximation for the
larization function including interactions with further pa
ticles would be a polarization function given by the produ
of two full propagators. This way, the polarization functio
contains the shift and damping of the single-particle sta
re,

-
a-
g

a.
n-

n

.

o
ds

g
r-
e

c-

-

t

s

due to the interaction with the medium. However, this a
proximation for the polarization function does not fulfill rig
orous relations such as sum rules. This can be traced to
omission of vertex corrections, which are of the same or
in the density as the self-energy corrections considered h
A rigorous relation between the self-energy and the ver
corrections is given by the Ward identities@18#, which must
be fulfilled in order to satisfy the sum rules.

As early as 1961, Baym and Kadanoff proposed a sche
to consider self-energy and vertex corrections on the sa
footing. They started from an approximation of the groun
state–energy functional in a way that the conservation la
for energy, momentum, and particle number are obeyed.
lowing Baym and Kadanoff@19#, a consistent vertex can b
constructed to a given self-energy. As a consequence,
Ward identities are fulfilled. A detailed description of th
connection between sum rules and conservation laws ca
found in @20#. A straightforward way to construct conservin
vertices within the language of parquet theory can be fou
in @21#.

Although a lot of work has been done in deriving conse
ing vertex equations, the explicit solution of this equation
still in its infancy. The solution of the vertex equation cann
be given in a simple algebraic form and detailed numeri
studies have to be carried out to solve this equation beca
of the complicated multifrequency dependence of the ker
Up to now, no solutions beyond the Born approximation a
known to the authors. Although some further approximatio
can be made as shown in@17#, leading to an expression fo
P(k,vl), in that paper no expression for the physical r
evant retarded polarization function could be given.

Summarizing, a finite-order perturbative treatment of t
Kubo formula is not feasible in contrast to the more gene
approach given in Sec. II, which allows for a perturbati
treatment even near (k50,v50). In the Kubo theory, one is
forced to perform partial summations which sometimes le
to contradictions with exactly known properties.

V. CONCLUSIONS

An approach to the dielectric function has been inve
gated which includes the effects of collisions and can be u
in the entirek,v space. Within a one-moment approach to
two-component plasma, the Born approximation has b
evaluated, and important rigorous properties for the diel
tric function such as sum rules are found to be fulfilled. As
main result, an approximation for the dc conductivity
found.

The method proposed here permits a systematic impro
ment of the dielectric function by enlarging the number
moments. In particular, a two-moment approach was stud
An improvement of the dc conductivity is found due to th
inclusion of electron-electron and ion-ion collisions. On ea
level of the approximation, the approximative value for t
dc conductivity coincides with the one calculated in t
Chapman-Enskog approach using corresponding momen

Within the quantum statistical approach described her
systematic way to account for interaction effects is poss
by evaluating the correlation functions beyond the Born
proximation. This can be done most effectively using th
modynamic Green’s functions. E.g., the inclusion of stro
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collisions and bound states can be done by trea
T-matrix-like contributions. The treatment of the dynam
screening of the interaction is possible by partial summa
of particle-hole excitations. Degeneracy effects can be inc
porated by inclusion of exchange diagrams. An interest
point would be the comparison of the quantum version of
formalism with the well-known expressions for the loc
field corrections.

Alternative approaches to evaluate the dielectric funct
beyond the RPA are given by a perturbative treatment of
Kubo formula and by computer simulation methods. In co
trast to our approach, the Kubo formula requires a par
summation in order to get a finite dc conductivity. Thus, o
approach seems to be more appropriate for a perturba
expansion. The comparison of our approach with compu
simulations is also a promising perspective. Work in t
direction is in progress.
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APPENDIX A: EVALUATION OF THE MATRIX
ELEMENTS OF P

We start from the general expressions~1! and ~2! for the
dielectric function and specify the relevant observablesB1,
B2, B3, and B4 by the momentsb1

e(p), b2
e(p), b1

i (p), and
b2

i (p), respectively, according to Eq.~7!. We introduce a
doubled index (ma) with m51,2, a5e,i , so that the four
momentsBma are given byB1e , B2e , B1i , andB2i , respec-
tively. We extract some factors so that

e~k,v!

512
bne2e~k,v!

e0kv

3U 0 M̃0,nb~k,v!

M̃ma,0~k,v! M̃ma,nb~k,v!
UY uM̃ma,nb~k,v!u,

~A1!

with the matrix elements

M̃0,nb~k,v!5
zb

ne

k

v
M0,nb~k,v!

5
zb

ne

k

v

1

V0
(

g,p,p8

eg

mg
\pzbn

b~p8!~np,k
g ;np8,k

b
!,

~A2!

M̃ma,0~k,v!5
za

ne

k

v
Mma,0~k,v!

5
za

ne

k

v

1

V0
(

d,p,p8

ed

md
\pz8bm

a ~p!~np,k
a ;np8,k

d
!,

~A3!
g

n
r-
g
r

n
e
-
l

r
on
er
s

.

M̃ma,nb~k,v!52 i
Amamb

2kBTnk

1

V0
Mma,nb~k,v!

52 i
Amamb

2kBTnk

1

V0
(
p,p8

bm
a ~p!bn

b~p8!

3$~@ ṅp,k
a 2 ivnp,k

a #;np8,k
b

!

1^ṅp,k
a ;ṅp8,k

b &v1 ih%

2U 0 Cma, j d

C̄ig,nb B̃ig, j d
UY uB̃ig, j du, ~A4!

whereza5@ma /(2kBT)#1/2v/k and the following abbrevia-
tions were used:

B̃ig, j d52 i
Amgmd

2kBTnk

1

V0
^Big ;Bj d&v1 ih

52 i
Amgmd

2kBTnk

1

V0
(
p,p8

bi
g~p!bj

d~p8!

3^np,k
g ;np8,k

d &v1 ih , ~A5!

Cma, j d52 i
Amamd

2kBTnk

1

V0
^Ḃma ;Bj d&v1 ih

52 i
Amamd

2kBTnk

1

V0
(
p,p8

bm
a ~p!bj

d~p8!

3^ṅp,k
a ;np8,k

d &v1 ih , ~A6!

C̄ig,nb5 i
Amgmb

2kBTnk

1

V0
^Big ;Ḃnb&v1 ih

52 i
Amgmb

2kBTnk

1

V0
(
p,p8

bi
g~p!bn

b~p8!

3^np,k
g ;ṅp8,k

b &v1 ih . ~A7!

For ne5ni5n, ee52ei5e we have in Born approximation
~see@6#!

M̃0,1e5M̃1e,05
1

2
, M̃0,2e5M̃2e,05

5

4
,

M̃0,1i5M̃1i ,052
1

2
, M̃0,2i5M̃2i ,052

5

4
, ~A8!

M̃ma,nb~k,v!522
k

v
za

2Nma,nb2
k

v
za

4Bma,nb

2 i
Amamb

2kBTnkV0
^Ḃma ;Ḃnb&v1 ih

~1!

2U 0 Cma, j d

C̄ig,nb B̃ig, j d
UY uB̃ig, j du, ~A9!

with B̃ig, j d52zg
4Big, j dk/v3,
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Cma, j d5 i
k

v2 za
2Nma, j d1 i

k

v2 za
4Bma, j d

2 i
Amamd

2kBTnkV0
^Ḃma ;Bj d&v1 ih

~1! , ~A10!

and

C̄ig,nb5 i
k

v2 zg
2Nig,nb1 i

k

v2 zg
4Big,nb

1 i
Amgmb

2kBTnkV0
^Big ;Ḃnb&v1 ih

~1! . ~A11!

Introducing the Dawson integral

D~z!5 lim
d→10

1

Ap
E

2`

`

dxe2x2 1

x2z2 id
, ~A12!

we have
N1a,1b5
1

2
dab , N1a,2b5N2a,1b5

5

4
dab ,

N2a,2b5
35

8
dab ~A13!

and

B1a,1b5@11zaD~za!#dab ,

B1a,2b5B2a,1b5F3

2
1za

21~za1za
3 !D~za!Gdab ,

B2a,2b5F15

4
1

5

2
za

21za
41~2za12za

31za
5 !D~za!Gdab .

~A14!

Expanding the matrices in Eq.~A7! we find, up to the first
Born approximation,
. The
he Born
M̃ma,nb~k,v!52U 0 i
k

v2 za
2Nma, j d

i
k

v2 zb
2Nig,nb B̃ig, j d

U Y uB̃ig, j du2 i
Amamb

2kBTnkV0
^Ḃma ;Ḃnb&v1 ih

~1!

2v
Amamb

2kBTnkV0
^Ḃma ;Bnb&v1 ih

~1! 1v
Amamb

2kBTnkV0
^Bma ;Ḃnb&v1 ih

~1!

2U 0 2 i
Amamd

2kBTnkV0
^Ḃma ;Bj d&v1 ih

~1!

i
k

v2 zb
2Nig,nb B̃ig, j d

U Y uB̃ig, j du

2U 0 i
k

v2 za
2Nma, j d

i
Amgmb

2kBTnkV0
^Big ;Ḃnb&v1 ih

~1! B̃ig, j d

U Y uB̃ig, j du. ~A15!

The first contribution in Eq.~A15! is of zeroth order with respect to the interaction and reproduces the RPA result
remaining terms contain the electron-ion interaction and the electron-electron or ion-ion interaction, respectively, in t
approximation. We use a screened interaction with the Debye screening factor exp(2kr), k25(cncec

2/(e0kBT). Evaluating the
Born terms we find

Amamb

2kBTnkV0
~ i ^Ḃma ;Ḃnb&v1 ih

~1! 1v^Ḃma ;Bnb&v1 ih
~1! 2v^Bma ;Ḃnb&v1 ih

~1! !

5
i

8~2p!3/2

1

k
n

e4

e0
2S 1

kBTD 5/2E
0

`

dpe2p2F S memi

Mei
D 1/2

g0~ma,nb;p!1dabS ma

2 D 1/2

h0~ma,na;p!G , ~A16!

2v
Amamb

2kBTnkV0
^Ḃma ;Bnb&v1 ih

~1! 52
i

8~2p!3/2

1

k
n

e4

e0
2S 1

kBTD 5/2E
0

`

dp e2p2F S memi

Mei
D 1/2

g1~ma,nb;p!

1dabS ma

2 D 1/2

h1~ma,na;p!G , ~A17!
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v
Amamb

2kBTnkV0
^Bma ;Ḃnb&v1 ih

~1! 52
i

8~2p!3/2

1

k
n

e4

e0
2S 1

kBTD 5/2E
0

`

dp e2p2F S memi

Mei
D 1/2

g2~ma,nb;p!

1dabS ma

2 D 1/2

h2~ma,na;p!G , ~A18!

where thegi refer to the electron-ion collisions and thehi to the electron-electron or ion-ion collisions, respectively. While
evaluation of terms involvingb1

c is simple @4#, the determination of the terms related tob2
c is quite tedious. The reader i

referred to the next appendix for details concerning the explicit form of the correlation functions.

APPENDIX B: EXPLICIT FORM OF THE CORRELATION FUNCTIONS

Here, the functionsgi andhi defined in Appendix A are given for the momentsb1
c andb2

c defined in Eq.~8!. It is convenient
to introduce the following abbreviations:

zei5
v

k
A Mei

2kBT
, zei,e5zei2Ami

me
cp, zei,i5zei2Ame

mi
cp, zee,e5A2ze2cp ~B1!

andlei511\2k2Mei /(4memikBTp2), lee511\2k2/(2mekBTp2),

L15 lnS lei21

lei11
D 1

2

lei11
, L35

2

~lei!221
, ~B2!

L25leilnS lei21

lei11
D 12, L2

ee5leelnS lee21

lee11
D 12. ~B3!

For the first expression~A16! we find

g0~1e,1e;p!52g0~1e,1i ;p!5L1

2

3
p, ~B4!

g0~1e,2e;p!5g0~2e,1e;p!52g0~2i ,1e;p!52g0~2e,1i ;p!5
1

Mei
L1F5

3
mep1

2

3
mip

3G , ~B5!

g0~2e,2e;p!5
1

Mei
2

L1F47

6
me

2p1
10

3
memip

31
2

3
mi

2p5G1
1

Mei
2

L2F 8

15
me

2p1
8

3
memip

3G2
1

Mei
2

L3

4

15
me

2p, ~B6!

g0~2e,2i ;p!5
1

Mei
2

L1F2
47

6
memip2

5

3
me

2p32
5

3
mi

2p32
2

3
memip

5G1
1

Mei
2

L2F2
8

15
memip1

8

3
memip

3G
1

1

Mei
2

L3

4

15
memip, ~B7!

h0~1e,1e;p!5h0~1e,2e;p!5h0~2e,1e;p!50, ~B8!

h0~2e,2e;p!5L2
ee4

3
p3. ~B9!

The remaining terms are obtained by interchanginge and i .
For the second expression~A17! we find

g1~1e,1e;p!52g1~1i ,1e;p!5E
21

1

dcD~zei,e!zei
2Ame

mi
L1@2c#, ~B10!

g1~1e,2e;p!5
1

Mei
zei

2 L1@2mep#1E
21

1

dcD~zei,e!zei
2Ame

mi

1

Mei
$L1@2c~113zei,e

2 !me2cmip
2#

1L2@2~123c2!zei,eAmemip#%, ~B11!
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g1~2e,1e;p!52g1~1i ,2e;p!5
1

Mei
zei

2 L1F2
2

3
mepG1E

21

1

dcD~zei,e!zei
2

3Ame

mi

1

Mei
L1@2c~11zei,e

2 !me22c2zei,eAmemip2cmip
2#, ~B12!

g1~2e,2e;p!5
1

Mei
2

zei
2 H L1F S 1

3
12zei

2 Dme
2p1

2

15
memip

3G1L2F2
16

15
me

2p1
16

15
memip

3G1L3

8

15
me

2pJ
1E

21

1

dcD~zei,e!zei
2Ame

mi

1

Mei
2 $L1@2c~214zei,e

2 13zei,e
4 !me

222c2~zei,e13zei,e
3 !Amemimep

22c~112zei,e
2 !memip

222c2zei,eAmemimip
32cmi

2p4#1L2@2~123c2!~c2zei,e1zei,e
3 !Amemimep

22c~323c222zei,e
2 16c2zei,e

2 !memip
212~123c2!zei,eAmemimip

3#1L3@2c2~12c2!zei,eAmemimep#%,

~B13!

g1~2i ,1e;p!5
1

Mei
zei

2 L1@22mip#1E
21

1

dcD~zei,e!zei
2Ame

mi

1

Mei
$L1@c~113zei,e

2 !mi1cmep
2#

1L2@2~123c2!zei,eAmemip#%, ~B14!

g1~2i ,2e;p!5
1

Mei
2

zei
2 H L1F S 2

1

3
22zei

2 Dmemip2
4

5
mi

2p31
2

3
me

2p3G1L2F16

15
memip1

16

15
memip

3G2L3

8

15
memipJ

1E
21

1

dcD~zei,e!zei
2Ame

mi

1

Mei
2 $L1@c~214zei,e

2 13zei,e
4 !memi12c2~zei,e13zei,e

3 !Amemimip

1c~113zei,e
2 !mi

2p21c~11zei,e
2 !me

2p212c2zei,eAmemimep
32cmemip

4#

1L2@2~124c213c4!zei,eAmemimip12~123c2!~zei,e1zei,e
3 !Amemimep22c~323c222zei,e

2

16c2zei,e
2 !memip

2

12~123c2!zei,eAmemimip
3#1L3@22c2~12c2!zei,eAmemimip#%, ~B15!

h1~1e,1e;p!5h1~1e,2e;p!50, ~B16!

h1~2e,1e;p!5E
21

1

dcD~zee,e!zee
2 1

Mee
L2

ee@4~123c2!zee,emep, ~B17!

h1~2e,2e;p!5
1

Mee
2

zee
2 L2

eeF32

15
me

2p3G1E
21

1

dcD~zee,e!zee
2 1

Mee
2

L2
ee@4~123c2!~zee,e1zee,e

3 !me
2p24c~323c222zee,e

2

16c2zee,e
2 !me

2p214~123c2!zee,eme
2p3#. ~B18!

As above the remaining terms are obtained by interchanginge and i . Furthermore, the terms connected with the th
expression~A18! are obtained asg2(ma,nb;p)5g1(nb,ma;p) andh2(ma,nb;p)5h1(nb,ma;p).
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@7# G. Röpke and R. Redmer, Phys. Rev. A39, 907 ~1989!; R.

Redmer, G. Ro¨pke, F. Morales, and K. Kilimann, Phys. Fluid



s

.
-
n

s

es

p.

57 7085DIELECTRIC FUNCTION OF A TWO-COMPONENT . . .
B, 2, 390~1990!; H. Reinholz, R. Redmer, and S. Nagel, Phy
Rev. A 52, 5368~1995!.

@8# W. Theobald, R. Ha¨ßner, C. Wu¨lker, and R. Sauerbrey, Phys
Rev. Lett.77, 298~1996!; P. Gibbon, D. Altenbernd, U. Teub
ner, E. Fo¨rster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, a
A. Mysyrowicz, Phys. Rev. E55, R6352~1997!.

@9# D. N. Zubarev,Nonequilibrium Statistical Thermodynamic
~Plenum, New York, 1974!; D. N. Zubarev, V. Morozov, and
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