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Error threshold in finite populations
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A simple analytical framework to study the molecular quasispecies evolution of finite populations is pro-
posed, in which the population is assumed to be a random combination of the constituent molecules in each
generation; i.e., linkage disequilibrium at the population level is neglected. In particular, for the single-sharp-
peak replication landscape we investigate the dependence of the error threshold on the population size and find
that the replication accuracy at the threshold increases linearly with the reciprocal of the population size for
sufficiently large populations. Furthermore, in the deterministic limit our formulation yields the exact steady
state of the quasispecies model, indicating then that the population composition is a random combination of the
molecules[S1063-651X98)10306-9
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[. INTRODUCTION lustrated more neatly for the single-sharp-peak replication
landscape, in which we ascribe the replication ratel to

An important issue in the investigation of the dynamics ofthe so-called master strind,1,...,2 and the replication rate
competing self-reproducing macromolecules, whose parat to the remaining strings. In this context, the paramatisr
digm is Eigen’s quasispecies modél, is the effect of the termed the selective advantage of the master string. As the
finite size of the population on the error threshold phenom-error rate - q increases, two distinct regimes are observed
enon that limits the length of the moleculg®]. The qua- in the population composition: theguasispeciesregime
sispecies model was originally formulated as a deterministicharacterized by the master string and its close neighbors,
kinetic theory described by a set of ordinary differentialand theuniform regime where the 2strings appear in the
equations for the concentrations of the different types ofsame proportion. The transition between these regimes takes
molecules that compose the population. Such a formulatiomlace at the error threshold-1qg,, whose value depends on
however, is valid only in the limit where the total number of the parameterss and a [1,2]. A genuine thermodynamic
moleculesN, goes to infinity. More pointedly, in this model order-disorder phase transition occurs in the lipit o only
a molecule is represented by a string of digits [3-5]. We must note, however, that standard statistical me-
(s1.85,....8,), with the variabless, allowed to take ork  chanics tools developed to study the surface equilibrium
different values, each of which representing a different typeproperties of lattice systems can be used to investigate the
of monomer used to build the molecule. For the sake ofinite v case as well3,4]. Moreover, the complete analytical
simplicity, in this paper we will consider only binary strings, solution of the single-sharp-peak replication landscape has
i.e., s,=0,1. The concentrations; of molecules of type been found recently by mapping the stationary solution of
=1,2,...,2 evolve in time according to the following differ- the kinetic equatiorfl) into a polymer localization problem
ential equation$1,2]: [5,6].

Closely related to our approach to the quasispecies evolu-
tion of finite populations is the population genetics formula-
tion of a deterministic quasispecies model proposed recently
[7]. In that formulation it is assumed that the molecules are
where the constant®; stand for the death probability of characterized solely by the number of monomers 1 they
molecules of type and®(t) is a dilution flux that keeps the have, regardless of the particular positions of these mono-
total concentration constant. This flux introduces a nonlinmers inside the molecules. Hence there are onhl differ-
earity in Eq. (1) and is determined by the condition ent types of molecules which are labeled by the integer
2;dx;/dt=0. The elements of the replication math; de-  =0,1,...p. This assumption is not so farfetched since the
pend on the replication rate or fitne&s of the molecules of feature that distinguishes the molecules is their replication
typei as well as on the Hamming distandé¢i,j) between ratesA;, which in most analyses have been chosen to depend

dXi
dt =2 Wi~ [Di+ @], (1)

stringsi andj. They are given by on P only, i.e., Aj=Ap [2]. Furthermore, denoting the fre-
) quency of monomers 1 in generatibioy p;, it is assumed
Wi =Aiq (@ that the molecule frequencidp(t) are given by the bino-
mial distribution
and
Aol e Cat A T o= ) (p0P(1-po" ? @

where 0sq<1 is the single-digit replication accuracy,
which is assumed to be the same for all digits. Henceforthfor P=0,1,...p. Thus, in each generation, the monomers are
we will setD;=0 for all i. The quasispecies concept is il- sampled with replacement from a pool containing monomers
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1 and 0 in the proportionp; and 1-p;, respectively. This correlations between the molecules, it does not cause any
amounts to neglecting linkage disequilibrium; i.e., in eachsignificant loss of genetic information since the fitness of the
generation, the molecule frequencies are random combinarolecules depends only on the number of monomers 1 they
tions of the constituent monomdi®]. With the two assump- have, which, on average, is not affected by the procedure.
tions presented above, a simple recursion relation for the The changes in the population compositiorare due to
monomer frequency, can be readily derivefi7]. the driving of natural selection, modeled by the replication

To take into account the effect of finité, the determin- rateAp, and to mutations, modeled by the error rate per digit
istic kinetic formulation must be replaced by a stochasticl —q. Following the prescription used in the implementation
formulation based on a master equation for the probabilityof the standard genetic algorithfh8], we consider first the
distribution of the number of different types of molecules in effect of natural selection and then the effect of mutations.
the populatior{9,10]. However, the extreme approximations As usual, we assume that the number of offspring that each
used to derive results from that master equation or from remolecule contributes to the new generation is proportional to
lated Langevin equationfd 1,12 have hindered the analysis its relative replication rate, which, for molecules of type
of the error threshold for finite populations. An alternative is defined by
approach to study stochastic chemical reaction networks is
the algorithm proposed by Gillespid 3], which has been Wo(n)= NpAp
successfully employed to simulate numerically the quasispe- P SRNRAR'
cies model, providing thus a base line for analytical investi-
gations[14]. The goal of this work is to propose an analyti- Thus the population composition after selection is described
cal framework to investigate the quasispecies evolution oPy the random vecton’=(ng,...,n;) which is distributed
finite populations. More specifically, we will focus on the according to the conditional probability distribution
evolution of the molecule frequencid$p(t) for P=0,...p ,
and, since for finiteN these frequencies are random vari-Ps(n [n)
ables, we will derive a recursion relation for the average N!
valueslIIp(t). Although we will concentrate mainly on the
dependence of the error threshold on the population Nize
the formalism presented in the sequel can be applied to study (7)
a variety of fascinating phenomena related to the finitude of
the population, such as mutational meltdofs] and punc- Next, we consider the changesnnh due to mutations. After
tuated equilibria or stasifl2,16, to mention only a few. Mutation, the population is described ly=(ng,...,n")
Moreover, since modern theories of integration of informa-whose components are written as
tion in prebiotic systems involve the compartmentation of a ,
small number of moleculegypically 10—100 [17], the un- .
derstanding of the effects of the error propagation in finite n NpR:
populations has become an important issue to the theories of
the origin of life. where the integen}, stands for the number of molecules of

type R that have mutated to a molecule of type Clearly,
Il. MODEL ng=pNpr. We note that the probability of mutation from a

molecule of typeR to a molecule of typd® is given by
In each generation the population is described by the vec-

6

[Wo(n)] o[ Wy (n)]"- - [W,(n)]".

no'nl

®

tor n=(ng,...,n,), wherenp is the number of molecules of 2 /R\/¥»—R

- . v—P—-R+2Q P+R-2Q
type P, so that2pnp=N. Similarly to the deterministic case Mpr= 2 o/lp-g)d (1—a) :
[7], we have to resort to a simplifying assumption to relate Q=Q ©)

the molecule frequencidd to the vectom. In particular, in

generatiort we consider a molecule pool containing the dif- where Q,=max(0OP+ R— ») andQ,=min(P,R). The popu-
ferent molecule types in the proportiotth,, so thatn is  |ation is more conveniently described by the &gz} rather
distributed by the multinomial distribution than byn”. In fact, givennj, the conditional probability

Nt distribution of {n} g} is again a multinomial

P(n)= p [o(t)]o[ Ty ()] [T1,(t)]".

- . . n ’
ng!nql---n, Pn(NoRsNTR -+ NRINR)

) /
ng! "
) . ) —MnORMan MR (10)
Hence in each generation the molecules are sampled with nog!Nig!---nigl  OR "R

replacement from the molecule pool. In this sense, in each

generation the population is a random combination of thdor R=0,...». In this framework the frequency of molecules
constituent molecules, which amounts to neglecting linkage®f type P in the next generatiotlp(t+1) is given simply
disequilibrium at the population level. More pointedly, the by (1N)Zrnig. This frequency is used to generate the new
population composed of the offspring of the moleculespopulation ofN molecules of lengthy according to the dis-
present in the generatidn-1 is destroyed and its molecule tribution (5). The procedure is then repeated again.
frequencyIlp(t) used to create an entire new population We have run simulations for the single-sharp-peak repli-
according to Eq(5). Although this procedure destroys the cation landscape using the procedure described above, which
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FIG. 1. Steady-state normalized mean Hamming distance be-

) . FIG. 2. Steady-state standard deviation of the normalized mean
tween the master sequence and the whole population as a fur]Ct"i)-?ammin distance between the master sequence and the whole
of the error rate per digit foN=10(V), andN=100(O). The solid 9 d

symbols are the results obtained with the algorithm that neglecthpUIatlon as a function of the error rate per digit. The parameters

linkage disequilibrium, while the open symbols are the results ob-and convention are the same as for Fig. 1.

tained with the standard genetic algorithm. The theoretical predic- lati v after the stati . . hed

tion is given by the solid curves. The dashed line is the predictiorPOpu a |0n§ only a e.r € sta Ionary'reglme IS reache ! we

for N—>o. The parameters ane=10 anda=10. perform this average in each generation. The result obtained,
ITp(t), is then used to build the new populations. Of course,

neglects linkage disequilibrium at the population level, agh doing so we neglect the fluctuations bix(t) for the

well as the standard genetic algorithi8], in which the different runs. Within this framevyork the. average frequency
correlations between consecutive generations are maintaine%f. molecules of typeP in generatiort +1 is written as

We have focused on the effect of the error ratedLon the I (t+1)

normalized mean Hamming distandebetween the master ~

string and the whole population in the stationary regime. 1

This quantity is given by the fraction of monomers 0 inthe =7 > 2 2 ER: NprPm({NpriN")Ps(n’[N)P(N).
entire population, i.ed=(1/v)=p(v—P)IIp. In Figs. 1 and T {ngg)

2 we present the results of the simulations tbrand its (12)
standard deviatiomr, respectively, as functions of the error

rate 1—q. The initial population is set withl ,=1 andIlp Using

=0 for P# v, and it is left to evolve for X 10° generations.

No significant differences were found for longer runs or for " " "= /

differgnt choices of the initial molecular frquuencies. Each 2 MerPr({nertln’) =Mesn 12

' ! ' {nH }
data point involves two kinds of average: for each run we PR
average over the mean Hamming distance in the last 108nd
generations; this value is then averaged over 200 runs. We
note that even if the populations are identical in the initial , ,
PP > niPy(n’[n)=NWg(n), (13)

generation, the random character of the transitioasn’ "
—n" will make them distinct in the next generation. It is R
clear from these results that, Bisincreases, the quantitative \ye rewrite Eq.(11) as
effects of assumptiofb) become less significant. Moreover,

the dependence af and o on the error rate is qualitatively —
the same for both algorithms. Hp(t+1)=; ; MprWr(N)P(N). (14

Noting that XpMpg=1 and ZgWg(n)=1, we can easily
verify that the normalization conditioX pllp(t+1)=1 is

To derive an analytical recursion relation for the averagesatisfied. To proceed further we must specify the replication
molecular frequencieBp(t), we consider the following ap- rate Ap. In the case of the single-sharp-peak replication
proximate procedure, akin to the annealed approximation dndscape, i.eA,=a andAp=1 for P# v, the summations
the statistical mechanics of disordered systems, which facilieverng,...,n,_; can be readily carried out. The final result
tates greatly the analysis: instead of averaging over thés

Ill. RECURSION EQUATIONS
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1.00 -

Tp(t+1)=Mp,[IT,(t)]V

. EE;%}I_IR(I){MPR‘Fa[”(l_r)]MPu}

N
0.95
+n§0 Bn 1+r(a—1)

(15 0.0 |

for P=0,...p. Here

085

N-1| — —
Bn:( n )[Hy(t)]”[l—ﬂy(t)]'\' ton (16)

0.80 -/

andr=n/N. Thus, given the initial average molecular fre- f

qguenciesllp(t=0) for P=0,...p», Eq. (15) is iterated until ;

the stationary regime is reached. \ 075

Before we proceed in the analysis of the stationary solu- i
tions of the recursion equatiql5), some comments regard-

ing the definition of the error threshold are in order. A popu- %0

lar definition of the error threshold is the error rate at which 1N

the master frequencil, vanisheq1,2]. The problem with

this definition is that, even in the deterministic linht— oo, FIG. 3. Replication accuracy at the error threshajd(solid

I1, never vanishes fofinite v. The vanishing of the master curves and lower bound to the replication accuracy below which
14 . .

frequency is an artifact of neglecting reverse mutatipifis ~ the stochastic escape phenomenon ocayrédashed curvesas

which can be justified in the limit— only. In particular, functions of the reciprocal of the population size 10 and

for the single-sharp-peak replication landscape this prescrip(Irom bottom to top »=68,...,20.

tion yields a very simple equation for the replication accu-

racy at the threshold in the deterministic regifae?], 3 we show the replication accuracy at the threstmplés a

function of the reciprocal of the population size. The in-

1 crease ofy; with decreasindN is expected since the fluctua-
—In g=—1In a. (17)  tions become stronger for small, and so the replication

v must be more accurate in order to keep the master string in
the population. In particular, for larghl we find thatq;
increases linearly with N. This result is in disagreement
with the predictions of the birth and death model of error
threshold proposed by Nowak and Schuster, which predicts
fhat q, increases with /N for large N [14]. We note that,
despite the claim of those authors, it is not possible to dis-
Sem whether, increases with N or 1/J/N from their nu-
merical data obtained using Gillespie's algorithibd].

Another interesting phenomenon, termed stochastic es-
cape, is the loss of the master string in a finite population
a[_20—22. In the limit »—oo this loss becomes irreversible,
tion (15). As expected, the effects of the fluctuations in sln_ce nv?/ reverse ”_‘lmg“".” W'Hl be abble to drttastt%re thebmgls_tter
ITp(t) for the different runs are stronger for sméll and tsh”??ﬁ € C"in eatls_ly _emt/)e a tofvver tﬁun OI f proba ”t%/
hence our analytical approximation yields very poor results at the master string 1s absent from the popufation using the
in this case, although it reproduces quite well the quaIitativemequ"’IIIty
behavior pattern of the quantities measured. However, al-
ready for N=100 there is a good agreement between the
theoretical predictions fod and the simulation results, pro- . L L —
vided that 1-q is not too near the threshold transition. which follows trn_nally from .the_fact tham,>0. Usingn,
Rather surprisingly, that agreement is better for the standard NI, we can find the replication accuragysuch that the
genetic algorithm. As expected, however, the theoretical preconditionIl, = 1/N is satisfied for fixed anda. Clearly, for
dictions for the standard deviatianare very poor since our d<0; the probability that the master string is absent from the
approximation scheme neglects the fluctuationdlip be-  Population is nonzero. However, since this probability may
tween the different runs, which are directly measuredsby be nonzero for>q; as well,q; gives only a lower bound to
Nevertheless, the qualitative features of the simulation rethe value of the replication accuracy below which the sto-
sults are again well described by the theoretical curves. Wehastic escape phenomenon actually takes place. This bound
note, in particu|ar’ the abrupt increase @fas the error is presented in Flg 3 as a function of the reciprocal of the
threshold is approached from below and the slow decay agopulation size. In the limiN— 2 we findg,— 0 for finite »,
the error rate increases further. The agreement betweesince in the deterministic regimH, is bounded by 1/2
theory and simulation becomes betteMNagcreases. In Fig. >0. Itis interesting that foN not too large we find),>q; so

We must emphasize that for finitethis equation is an ap-
proximation only. A more appropriate definition of the error
threshold, which is useful for the finitd-case as well, is
obtained by considering the statistical properties of the entir
molecular populatior[19]. In particular, we focus on the
normalized mean Hamming distandebetween the master
sequence and the entire population and define the err
threshold as the error rate at which the standard deviation
is maximal[19].

In Figs. 1 and 2 we show the theoretical predictionsdor
and o using the steady-state solution of the recursion equ

1-n,<Prfn,=0}, (18
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that the master string is likely to be absent from the quasispe- 06
cies for replication accuracies in the range<q<q; .

We turn now to the analysis of the deterministic regime,
N—oc. In this case, the sum in EQL5) is dominated by the
closest integer toN—1)II,(t), so thatr—II (t) and the
recursion equatioll5) reduces to

SEZoMprIIR(H) +aMp, I1(1)

Tp(t+1)= —
P(t+1) 1+T1,(t)(a—1)

. (19

o

£

for P=0,...L. '
To appreciate the relevance of the present formulation of

the quasispecies model, we compare it with an exact solution

of the kinetic equatiorgl) for finite ». In fact, as pointed out

by Swetina and Schustg@3], for the type of replication

landscape considered in this paper, tfigr®lecular concen-

trations x; can also be grouped into+1 distinct classes

according to the number of monomers 1 that compose the

molecules. This procedure allows the description of the In a

chemical kinetics by only+1 coupled first-order differen-

tial equations. In particular, for the single-sharp-peak land- FIG. 4. Logarithm of the replication accuracy at the threshold in

scape the concentrations of molecules in cl®ssO,...p, the deterministic regime as a function of the logarithm of the selec-

[23] The solid curves are obtained using Ed9), and the dashed

straight lines are given by Eq17).

de v—1

W_REO MerYrtaY,Mp,=Yp[1+Y,(a=1)]. more, we have verified thdi, departs significantly from a

(200  binomial distribution only near the threshold transition.
Alongside this region, the population genetics approach pro-

It is clear then that both modeld9) and (20) possess the yides a reliable and concise description of the deterministic
same stationary state. This very interesting finding indicateguasispecies model.

that in the quasispecies model there is no linkage disequilib-

rium at the population level in the stationary regime; i.e., the

population is a random combination of the constituent mol- V. CONCLUSION

ecules. In fact, this result holds true for any choice of the ) ) ]

replication landscap@e, as can be easily verified by taking !N this paper we have proposed a simple analytical model,

the limit N— in Eq. (14). based on the n_eglept of Imkage_ dlsequlhbnum,_to study t_he
It is also interesting to compare the deterministic limit of €TOr Propagation in the quasispecies evolution of finite

our model(19) with the population genetics approach to the popula_ltlons._ln partlcul_ar, our finding that in the d_etermlnls-

deterministic quasispecies mod@l. This can easily be done 1€ régime this model yields exactly the same stationary state

by writing down a recursion equation for the frequency ofof the original kinetics mode]23] implies that the steady-

- L= tate molecular population of the deterministic quasispecies
monomers 1 in the populatign = (1/v) 2 pPIIp(t), namely, S .
pop = (1/v)2pPIlp() y model is a random assembly of the component molecules.

— N Some comments regarding the comparison of our ap-
P+ (a—DIL(D) . . . .

- v’ (21) proach with previous population theoretical analyses of the
1+(a—D)II(1) finite-N quasispecies moddl21,24 are in order. These

_ o . works provide approximate formalisms to study the evolu-
Clearly, this equation is useless since one must solve thgon of finite populations on a multiplicative single-peak fit-
general recursion equati@f9) in order to findll,(t). How-  ness landscape without neglecting linkage disequilibrium. In-
ever, the population genetics formulation makes use of theerestingly, for this fithess landscape, which is givenfyy

ps1=1-0+(29-1)

binomial assumptiort4) to setll,(t)=p; so that the recur- =(1—a)" " with 0<o<1, the binomial assumptio)
sion equation(21) will involve the monomer frequencies Yyields the exact solution to the deterministic equations for
only [7]. II, [21]. Moreover, in the weak selection limit<1), the

In Fig. 4 we present the logarithm of the replication ac-1/N corrections to the deterministic value of the mean Ham-
curacy at the threshold, Iy, as a function of the logarithm ming distance between the master sequence and the whole
of the selective advantage, & for several values of for population can be calculated analyticdIB1]. An alternative
the deterministic case. There is a good agreement with Edormalism concentrates on the evolution of the ensemble av-
(17) for a~1 and, as expected, this agreement becomes beg¢rage of the first cumulants of the distribution of fitness in
ter asv increases. We have also verified that the prediction ofhe population24]. It is not clear, however, whether these
the population genetics approalh yields a very poor ap- quantities can be related to the more natural measures of the
proximation for the location of the error threshold. Further-population composition, namely, and . We note that the
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location of the error threshold is not addressed in thesgl4]. We think that simulations based on genetic algorithms

works. rather than on Gillespie’s algorithm may prove more effec-
An important open question, which can be answeredive to address this issue.

through intensive numerical simulations only, is the depen-

dence of the replication accuracy at the threshold on the

population size for large populations. In fact, the numerical ACKNOWLEDGMENTS
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