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Error threshold in finite populations

D. Alves and J. F. Fontanari
Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Caixa Postal 369, 13560-970 Sa˜o Carlos, SP, Brazil

~Received 24 December 1997!

A simple analytical framework to study the molecular quasispecies evolution of finite populations is pro-
posed, in which the population is assumed to be a random combination of the constituent molecules in each
generation; i.e., linkage disequilibrium at the population level is neglected. In particular, for the single-sharp-
peak replication landscape we investigate the dependence of the error threshold on the population size and find
that the replication accuracy at the threshold increases linearly with the reciprocal of the population size for
sufficiently large populations. Furthermore, in the deterministic limit our formulation yields the exact steady
state of the quasispecies model, indicating then that the population composition is a random combination of the
molecules.@S1063-651X~98!10306-9#

PACS number~s!: 87.10.1e, 64.60.Cn
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I. INTRODUCTION

An important issue in the investigation of the dynamics
competing self-reproducing macromolecules, whose p
digm is Eigen’s quasispecies model@1#, is the effect of the
finite size of the population on the error threshold pheno
enon that limits the length of the molecules@2#. The qua-
sispecies model was originally formulated as a determini
kinetic theory described by a set of ordinary different
equations for the concentrations of the different types
molecules that compose the population. Such a formulat
however, is valid only in the limit where the total number
molecules,N, goes to infinity. More pointedly, in this mode
a molecule is represented by a string ofn digits
(s1 ,s2 ,...,sn), with the variablessa allowed to take onk
different values, each of which representing a different ty
of monomer used to build the molecule. For the sake
simplicity, in this paper we will consider only binary string
i.e., sa50,1. The concentrationsxi of molecules of typei
51,2,...,2n evolve in time according to the following differ
ential equations@1,2#:

dxi

dt
5(

j
Wi j xj2@Di1F~ t !#xi , ~1!

where the constantsDi stand for the death probability o
molecules of typei andF(t) is a dilution flux that keeps the
total concentration constant. This flux introduces a non
earity in Eq. ~1! and is determined by the conditio
( idxi /dt50. The elements of the replication matrixWi j de-
pend on the replication rate or fitnessAi of the molecules of
type i as well as on the Hamming distanced( i , j ) between
stringsi and j . They are given by

wii 5Aiq
n ~2!

and

Wi j 5Aiq
n2d~ i , j !~12q!d~ i , j !, iÞ j , ~3!

where 0<q<1 is the single-digit replication accuracy
which is assumed to be the same for all digits. Hencefo
we will set Di50 for all i . The quasispecies concept is
571063-651X/98/57~6!/7008~6!/$15.00
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lustrated more neatly for the single-sharp-peak replicat
landscape, in which we ascribe the replication ratea.1 to
the so-called master string~1,1,...,1! and the replication rate
1 to the remaining strings. In this context, the parametera is
termed the selective advantage of the master string. As
error rate 12q increases, two distinct regimes are observ
in the population composition: thequasispeciesregime
characterized by the master string and its close neighb
and theuniform regime where the 2n strings appear in the
same proportion. The transition between these regimes t
place at the error threshold 12qt , whose value depends o
the parametersn and a @1,2#. A genuine thermodynamic
order-disorder phase transition occurs in the limitn→` only
@3–5#. We must note, however, that standard statistical m
chanics tools developed to study the surface equilibri
properties of lattice systems can be used to investigate
finite n case as well@3,4#. Moreover, the complete analytica
solution of the single-sharp-peak replication landscape
been found recently by mapping the stationary solution
the kinetic equation~1! into a polymer localization problem
@5,6#.

Closely related to our approach to the quasispecies ev
tion of finite populations is the population genetics formu
tion of a deterministic quasispecies model proposed rece
@7#. In that formulation it is assumed that the molecules
characterized solely by the number of monomers 1 th
have, regardless of the particular positions of these mo
mers inside the molecules. Hence there are onlyn11 differ-
ent types of molecules which are labeled by the integeP
50,1,...,n. This assumption is not so farfetched since t
feature that distinguishes the molecules is their replicat
ratesAi , which in most analyses have been chosen to dep
on P only, i.e., Ai5AP @2#. Furthermore, denoting the fre
quency of monomers 1 in generationt by pt , it is assumed
that the molecule frequenciesPP(t) are given by the bino-
mial distribution

PP~ t !5S n
PD ~pt!

P~12pt!
n2P ~4!

for P50,1,...,n. Thus, in each generation, the monomers
sampled with replacement from a pool containing monom
7008 © 1998 The American Physical Society
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57 7009ERROR THRESHOLD IN FINITE POPULATIONS
1 and 0 in the proportionspt and 12pt , respectively. This
amounts to neglecting linkage disequilibrium; i.e., in ea
generation, the molecule frequencies are random comb
tions of the constituent monomers@8#. With the two assump-
tions presented above, a simple recursion relation for
monomer frequencypt can be readily derived@7#.

To take into account the effect of finiteN, the determin-
istic kinetic formulation must be replaced by a stochas
formulation based on a master equation for the probab
distribution of the number of different types of molecules
the population@9,10#. However, the extreme approximation
used to derive results from that master equation or from
lated Langevin equations@11,12# have hindered the analys
of the error threshold for finite populations. An alternati
approach to study stochastic chemical reaction network
the algorithm proposed by Gillespie@13#, which has been
successfully employed to simulate numerically the quasis
cies model, providing thus a base line for analytical inve
gations@14#. The goal of this work is to propose an analy
cal framework to investigate the quasispecies evolution
finite populations. More specifically, we will focus on th
evolution of the molecule frequenciesPP(t) for P50,...,n
and, since for finiteN these frequencies are random va
ables, we will derive a recursion relation for the avera
valuesP̄P(t). Although we will concentrate mainly on th
dependence of the error threshold on the population sizeN,
the formalism presented in the sequel can be applied to s
a variety of fascinating phenomena related to the finitude
the population, such as mutational meltdown@15# and punc-
tuated equilibria or stasis@12,16#, to mention only a few.
Moreover, since modern theories of integration of inform
tion in prebiotic systems involve the compartmentation o
small number of molecules~typically 10–100! @17#, the un-
derstanding of the effects of the error propagation in fin
populations has become an important issue to the theorie
the origin of life.

II. MODEL

In each generation the population is described by the v
tor n5(n0 ,...,nn), wherenP is the number of molecules o
typeP, so that(PnP5N. Similarly to the deterministic cas
@7#, we have to resort to a simplifying assumption to rela
the molecule frequenciesPP to the vectorn. In particular, in
generationt we consider a molecule pool containing the d
ferent molecule types in the proportionsPP , so thatn is
distributed by the multinomial distribution

P~n!5
N!

n0!n1!¯nn!
@P0~ t !#n0@P1~ t !#n1

¯@Pn~ t !#nn.

~5!

Hence in each generation the molecules are sampled
replacement from the molecule pool. In this sense, in e
generation the population is a random combination of
constituent molecules, which amounts to neglecting linka
disequilibrium at the population level. More pointedly, th
population composed of the offspring of the molecu
present in the generationt21 is destroyed and its molecul
frequencyPP(t) used to create an entire new populati
according to Eq.~5!. Although this procedure destroys th
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correlations between the molecules, it does not cause
significant loss of genetic information since the fitness of
molecules depends only on the number of monomers 1 t
have, which, on average, is not affected by the procedur

The changes in the population compositionn are due to
the driving of natural selection, modeled by the replicati
rateAP , and to mutations, modeled by the error rate per d
12q. Following the prescription used in the implementati
of the standard genetic algorithm@18#, we consider first the
effect of natural selection and then the effect of mutatio
As usual, we assume that the number of offspring that e
molecule contributes to the new generation is proportiona
its relative replication rate, which, for molecules of typeP,
is defined by

WP~n!5
nPAP

(RnRAR
. ~6!

Thus the population composition after selection is descri
by the random vectorn85(n08 ,...,nn8) which is distributed
according to the conditional probability distribution

Ps~n8un!

5
N!

n08!n18!¯nn8!
@W0~n!#n08@W1~n!#n18

¯@Wn~n!#nn8.

~7!

Next, we consider the changes inn8 due to mutations. After
mutation, the population is described byn95(n09 ,...,nn9)
whose components are written as

nP9 5 (
R50

n

nPR9 , ~8!

where the integernPR9 stands for the number of molecules
type R that have mutated to a molecule of typeP. Clearly,
nR85(PnPR9 . We note that the probability of mutation from
molecule of typeR to a molecule of typeP is given by

M PR5 (
Q5Ql

Qu S R
QD S n2R

P2QDqn2P2R12Q~12q!P1R22Q,

~9!

whereQl5max(0,P1R2n) andQu5min(P,R). The popu-
lation is more conveniently described by the set$nPR9 % rather
than by n9. In fact, givennR8 , the conditional probability
distribution of$nPR9 % is again a multinomial

Pm~n0R9 ,n1R9 ,...,nnR9 unR8 !

5
nR8 !

n0R9 !n1R9 !¯nnR9 !
M

0R

n0R9 M
1R

n1R9
¯M

nR

nnR9 ~10!

for R50,...,n. In this framework the frequency of molecule
of type P in the next generationPP(t11) is given simply
by (1/N)(RnPR9 . This frequency is used to generate the n
population ofN molecules of lengthn according to the dis-
tribution ~5!. The procedure is then repeated again.

We have run simulations for the single-sharp-peak re
cation landscape using the procedure described above, w
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7010 57D. ALVES AND J. F. FONTANARI
neglects linkage disequilibrium at the population level,
well as the standard genetic algorithm@18#, in which the
correlations between consecutive generations are mainta
We have focused on the effect of the error rate 12q on the
normalized mean Hamming distanced between the maste
string and the whole population in the stationary regim
This quantity is given by the fraction of monomers 0 in t
entire population, i.e.,d5(1/n)(P(n2P)PP . In Figs. 1 and
2 we present the results of the simulations ford and its
standard deviations, respectively, as functions of the erro
rate 12q. The initial population is set withPn51 andPP
50 for PÞn, and it is left to evolve for 23103 generations.
No significant differences were found for longer runs or
different choices of the initial molecular frequencies. Ea
data point involves two kinds of average: for each run
average over the mean Hamming distance in the last
generations; this value is then averaged over 200 runs.
note that even if the populations are identical in the init
generation, the random character of the transitionsn→n8
→n9 will make them distinct in the next generation. It
clear from these results that, asN increases, the quantitativ
effects of assumption~5! become less significant. Moreove
the dependence ofd ands on the error rate is qualitatively
the same for both algorithms.

III. RECURSION EQUATIONS

To derive an analytical recursion relation for the avera
molecular frequenciesP̄P(t), we consider the following ap
proximate procedure, akin to the annealed approximation
the statistical mechanics of disordered systems, which fa
tates greatly the analysis: instead of averaging over

FIG. 1. Steady-state normalized mean Hamming distance
tween the master sequence and the whole population as a fun
of the error rate per digit forN510 ~,!, andN5100~s!. The solid
symbols are the results obtained with the algorithm that negl
linkage disequilibrium, while the open symbols are the results
tained with the standard genetic algorithm. The theoretical pre
tion is given by the solid curves. The dashed line is the predic
for N→`. The parameters aren510 anda510.
s
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populations only after the stationary regime is reached,
perform this average in each generation. The result obtai
P̄P(t), is then used to build the new populations. Of cour
in doing so we neglect the fluctuations ofPP(t) for the
different runs. Within this framework the average frequen
of molecules of typeP in generationt11 is written as

P̄P~ t11!

5
1

N (
n

(
n8

(
$nPR9 %

(
R

nPR9 Pm~$nPR9 %un8!Ps~n8un!P~n!.

~11!

Using

(
$nPR9 %

nPR9 Pm~$nPR9 %un8!5M PRnR8 ~12!

and

(
nR8

nR8Ps~n8un!5NWR~n!, ~13!

we rewrite Eq.~11! as

P̄P~ t11!5(
n

(
R

M PRWR~n!P~n!. ~14!

Noting that (PM PR51 and (RWR(n)51, we can easily
verify that the normalization condition(PP̄P(t11)51 is
satisfied. To proceed further we must specify the replicat
rate AP . In the case of the single-sharp-peak replicati
landscape, i.e.,An5a andAP51 for PÞn, the summations
over n0 ,...,nn21 can be readily carried out. The final resu
is

e-
ion
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-
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n

FIG. 2. Steady-state standard deviation of the normalized m
Hamming distance between the master sequence and the w
population as a function of the error rate per digit. The parame
and convention are the same as for Fig. 1.
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57 7011ERROR THRESHOLD IN FINITE POPULATIONS
P̄P~ t11!5M Pn@P̄n~ t !#N

1 (
n50

N21

Bn

(R50
n21P̄R~ t !$M PR1a@r /~12r !#M Pn%

11r ~a21!

~15!

for P50,...,n. Here

Bn5S N21
n D @P̄n~ t !#n@12P̄n~ t !#N212n ~16!

and r 5n/N. Thus, given the initial average molecular fr
quenciesP̄P(t50) for P50,...,n, Eq. ~15! is iterated until
the stationary regime is reached.

Before we proceed in the analysis of the stationary so
tions of the recursion equation~15!, some comments regard
ing the definition of the error threshold are in order. A pop
lar definition of the error threshold is the error rate at wh
the master frequencyPn vanishes@1,2#. The problem with
this definition is that, even in the deterministic limitN→`,
Pn never vanishes forfinite n. The vanishing of the maste
frequency is an artifact of neglecting reverse mutations@1#,
which can be justified in the limitn→` only. In particular,
for the single-sharp-peak replication landscape this presc
tion yields a very simple equation for the replication acc
racy at the threshold in the deterministic regime@1,2#,

2 ln qt5
1

n
ln a. ~17!

We must emphasize that for finiten this equation is an ap
proximation only. A more appropriate definition of the err
threshold, which is useful for the finite-N case as well, is
obtained by considering the statistical properties of the en
molecular population@19#. In particular, we focus on the
normalized mean Hamming distanced between the maste
sequence and the entire population and define the e
threshold as the error rate at which the standard deviatios
is maximal@19#.

In Figs. 1 and 2 we show the theoretical predictions fod
ands using the steady-state solution of the recursion eq
tion ~15!. As expected, the effects of the fluctuations
PP(t) for the different runs are stronger for smallN, and
hence our analytical approximation yields very poor resu
in this case, although it reproduces quite well the qualitat
behavior pattern of the quantities measured. However,
ready for N5100 there is a good agreement between
theoretical predictions ford and the simulation results, pro
vided that 12q is not too near the threshold transitio
Rather surprisingly, that agreement is better for the stand
genetic algorithm. As expected, however, the theoretical p
dictions for the standard deviations are very poor since ou
approximation scheme neglects the fluctuations inPP be-
tween the different runs, which are directly measured bys.
Nevertheless, the qualitative features of the simulation
sults are again well described by the theoretical curves.
note, in particular, the abrupt increase ofs as the error
threshold is approached from below and the slow decay
the error rate increases further. The agreement betw
theory and simulation becomes better asN increases. In Fig.
-
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3 we show the replication accuracy at the thresholdqt as a
function of the reciprocal of the population size. The i
crease ofqt with decreasingN is expected since the fluctua
tions become stronger for smallN, and so the replication
must be more accurate in order to keep the master strin
the population. In particular, for largeN we find that qt
increases linearly with 1/N. This result is in disagreemen
with the predictions of the birth and death model of err
threshold proposed by Nowak and Schuster, which pred
that qt increases with 1/AN for largeN @14#. We note that,
despite the claim of those authors, it is not possible to d
cern whetherqt increases with 1/N or 1/AN from their nu-
merical data obtained using Gillespie’s algorithm@14#.

Another interesting phenomenon, termed stochastic
cape, is the loss of the master string in a finite populat
@20–22#. In the limit n→` this loss becomes irreversible
since no reverse mutation will be able to restore the ma
string. We can easily derive a lower bound to the probabi
that the master string is absent from the population using
inequality

12n̄n<Pr$nn50%, ~18!

which follows trivially from the fact thatnn>0. Using n̄n

5NP̄n , we can find the replication accuracyql such that the
conditionP̄n51/N is satisfied for fixedn anda. Clearly, for
q,ql the probability that the master string is absent from
population is nonzero. However, since this probability m
be nonzero forq.ql as well,ql gives only a lower bound to
the value of the replication accuracy below which the s
chastic escape phenomenon actually takes place. This b
is presented in Fig. 3 as a function of the reciprocal of
population size. In the limitN→` we findql→0 for finite n,
since in the deterministic regimeP̄n is bounded by 1/2n

.0. It is interesting that forN not too large we findql.qt so

FIG. 3. Replication accuracy at the error thresholdqt ~solid
curves! and lower bound to the replication accuracy below whi
the stochastic escape phenomenon occursql ~dashed curves! as
functions of the reciprocal of the population size fora510 and
~from bottom to top! n56,8,...,20.
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7012 57D. ALVES AND J. F. FONTANARI
that the master string is likely to be absent from the quasis
cies for replication accuracies in the rangeqt,q,ql .

We turn now to the analysis of the deterministic regim
N→`. In this case, the sum in Eq.~15! is dominated by the
closest integer to (N21)P̄n(t), so thatr→P̄n(t) and the
recursion equation~15! reduces to

P̄P~ t11!5
(R50

n21M PRP̄R~ t !1aMPnP̄n~ t !

11P̄n~ t !~a21!
, ~19!

for P50,...,L.
To appreciate the relevance of the present formulation

the quasispecies model, we compare it with an exact solu
of the kinetic equation~1! for finite n. In fact, as pointed ou
by Swetina and Schuster@23#, for the type of replication
landscape considered in this paper, the 2n molecular concen-
trations xi can also be grouped inton11 distinct classes
according to the number of monomers 1 that compose
molecules. This procedure allows the description of
chemical kinetics by onlyn11 coupled first-order differen
tial equations. In particular, for the single-sharp-peak la
scape the concentrations of molecules in classP50,...,n,
denoted byYP with (PYP51, obey the differential equation
@23#

dYP

dt
5 (

R50

n21

M PRYR1aYnM Pn2YP@11Yn~a21!#.

~20!

It is clear then that both models~19! and ~20! possess the
same stationary state. This very interesting finding indica
that in the quasispecies model there is no linkage disequ
rium at the population level in the stationary regime; i.e.,
population is a random combination of the constituent m
ecules. In fact, this result holds true for any choice of
replication landscapeAP , as can be easily verified by takin
the limit N→` in Eq. ~14!.

It is also interesting to compare the deterministic limit
our model~19! with the population genetics approach to t
deterministic quasispecies model@7#. This can easily be done
by writing down a recursion equation for the frequency
monomers 1 in the populationp̄t5(1/n)(PPP̄P(t), namely,

p̄t11512q1~2q21!
p̄t1~a21!P̄n~ t !

11~a21!P̄n~ t !
. ~21!

Clearly, this equation is useless since one must solve
general recursion equation~19! in order to findP̄n(t). How-
ever, the population genetics formulation makes use of
binomial assumption~4! to setP̄n(t)5 p̄t

n so that the recur-
sion equation~21! will involve the monomer frequencie
only @7#.

In Fig. 4 we present the logarithm of the replication a
curacy at the threshold, lnqt , as a function of the logarithm
of the selective advantage, lna, for several values ofn for
the deterministic case. There is a good agreement with
~17! for a'1 and, as expected, this agreement becomes
ter asn increases. We have also verified that the prediction
the population genetics approach@7# yields a very poor ap-
proximation for the location of the error threshold. Furthe
e-
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more, we have verified thatP̄P departs significantly from a
binomial distribution only near the threshold transitio
Alongside this region, the population genetics approach p
vides a reliable and concise description of the determini
quasispecies model.

IV. CONCLUSION

In this paper we have proposed a simple analytical mo
based on the neglect of linkage disequilibrium, to study
error propagation in the quasispecies evolution of fin
populations. In particular, our finding that in the determin
tic regime this model yields exactly the same stationary s
of the original kinetics model@23# implies that the steady
state molecular population of the deterministic quasispe
model is a random assembly of the component molecule

Some comments regarding the comparison of our
proach with previous population theoretical analyses of
finite-N quasispecies model@21,24# are in order. These
works provide approximate formalisms to study the evo
tion of finite populations on a multiplicative single-peak fi
ness landscape without neglecting linkage disequilibrium.
terestingly, for this fitness landscape, which is given byAP
5(12ŝ)n2P with 0,ŝ,1, the binomial assumption~4!
yields the exact solution to the deterministic equations
PP @21#. Moreover, in the weak selection limit (ŝ!1), the
1/N corrections to the deterministic value of the mean Ha
ming distance between the master sequence and the w
population can be calculated analytically@21#. An alternative
formalism concentrates on the evolution of the ensemble
erage of the first cumulants of the distribution of fitness
the population@24#. It is not clear, however, whether thes
quantities can be related to the more natural measures o
population composition, namely,d ands. We note that the

FIG. 4. Logarithm of the replication accuracy at the threshold
the deterministic regime as a function of the logarithm of the se
tive advantage for~from top to bottom! n55, 10, 15, 20, and 25.
The solid curves are obtained using Eq.~19!, and the dashed
straight lines are given by Eq.~17!.
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57 7013ERROR THRESHOLD IN FINITE POPULATIONS
location of the error threshold is not addressed in th
works.

An important open question, which can be answe
through intensive numerical simulations only, is the dep
dence of the replication accuracy at the threshold on
population size for large populations. In fact, the numeri
data existent in the literature do not allow one to distingu
between the 1/N dependence predicted by our model and
1/AN dependence predicted by the birth and death mo
y
,

e

d
-
e
l

h
e
el

@14#. We think that simulations based on genetic algorith
rather than on Gillespie’s algorithm may prove more effe
tive to address this issue.
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