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Interaction of conical membrane inclusions: Effect of lateral tension
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Considering two rigid conical inclusions embedded in a membrane subject to lateral tension, we study the
membrane-mediated interaction between these inclusions that originates from the hat-shaped membrane defor-
mations associated with the cones. At nonvanishing lateral tensions, the interaction is found to depend on the
orientation of the cones with respect to the membrane plane. The interaction of inclusions of equal orientation
is repulsive at all distances between them, while the inclusions of opposite orientation repel each other at small
separations, but attract each other at larger ones. Both the repulsive and attractive forces become stronger with
increasing lateral tension. This is different from what has been predicted on the basis of the same static model
for the case of vanishing lateral tension. Without tension, the inclusions repel each other at all distances
independently of their relative orientation. We conclude that lateral tension may induce the aggregation of
conical membrane inclusiongS1063-651X98)04706-(

PACS numbes): 87.22.Bt, 87.10te, 82.65.Dp, 34.26:b

[. INTRODUCTION brane are given in Figs. 1 and 2. The cone is assumed to be
rigid and to impose a uniform slope on the surrounding
Biological membranes consist of a fluid lipid bilayer with membrane, which returns asymptotically to the flat state at
embedded amphiphilic macromolecules such as integral prdarge distances.
teins[1]. Integral proteins are expected to be much less flex- We find a repulsive interaction at all values of the lateral
ible than the lipid matrix. In a general sense, any moleculdension if the two conical inclusions have equal orientation
embedded in the membrane and differing in shape or elasti%ith respect to the membrane plane. By increasing the lateral
properties from the surrounding lipid molecules can betension, the interaction is weakened at larger but enhanced at
viewed as an inclusion. The phase behavior of inclusions igmaller inclusion distances. In contrast, for opposite orienta-
the plane of the membrane is determined by interactions bdions of the inclusions in a membrane with nonvanishing
tween them. If the interaction energy is sufficiently large tolateral tension the sign of the interaction depends on the
compete with translational entropy, it can lead to lateral selfdistance between the inclusions. At small separations the in-
assembly of the inclusions. Attractive forces may result in &lusions repel each other, while at large separations the in-
lateral aggrega’[ion of the inclusions, while repu|si0n Canteraction is attractive. With rising tension the attractive po-
give rise to a regular array with maximal spacing. tential well deepens and moves towards smaller distances
Forces between membrane inclusions can be divided intBetween the inclusions.
two classes. The first class consists of the well-known direct
interactions, namely electrostatior charged inclusions
and van der Waals forces. The second class comprises indi-
rect interactions mediated by some kind of membrane defor-
mation [2—8]. These interactions are determined by the We consider a membrane with two embedded conical in-
shapes of the inclusions and the elastic parameters of thelusions. The cross sections of the inclusions in the midplane
inclusions and the lipid bilayer. They can be static or dy-of the membrane are circles of radias The centers of the
namic, in one case being due to equilibrium deformationswo circles are separated by the distaftésee Fig. 3.
and in the other to shape fluctuations of the membrane.
Both types of indirect interactions have been theoretically
studied for the case of zero lateral tension. The static inter
actions of inclusions affecting the membrane thickn3s
and conical deformations affecting the membrane shape
have been dealt with. Dynamic interactions were treated fol
inclusions modifying the local bending mod{#,4,6,7, in-
cluding the case of rigid disk2,5,6].
In the following we consider the static interaction be-
tween conical inclusions in the presence of lateral tension
Two sketches of a truncated cone embedded in the men (6

Il. SHAPE AND ENERGY OF MEMBRANES
WITH CONICAL INCLUSIONS

*Present address: Max-Planck-Institut fiiolloid- und Grenz-
flachenforschung, Kantstrasse 55, 14513 Teltow, Germany. FIG. 1. Conical inclusion in a bilayer membrane.
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The inclusions characterized by smajl and 8; can pro-
duce only a weak deformation of the initially flat membrane,
which means that the gradient of the functiafx,y) re-
mains small|Vu|<1, everywhere along the membrane. The
membrane energh®] can then be written in the approximate
form

sz (g(Au)2+?K+%(Vu)2 d2r, )

wherek denotes the bending rigidity the lateral tensiork

FIG. 2. Idealization of a conical inclusion as a rigid disk of o 4 ,55jan curvature, amdthe modulus of the Gaussian
heighth; and tilt angleB; making a uniform contact anglke; with : - .
, . > i Gprvature. In our approximation, the Laplacian equals the
the surrounding membrane. The cross section contains the axis 0 S .
the cone sum of the principal curvatures of the membrahewhile

1(Vu)? gives the increase of membrane area per unit pro-

In the absence of inclusions the membrane is assumed @cted area due to membrane Mu. The integration of Eq.

be flat and to lie in thex-y plane of the Cartesian system of (2) is performed over the projected area. The membrane

coordinates. We describe the membrane equilibrium shap%h""pe is determined by the Euler-Lagrange equation follow-

produced by the inclusions by a functiox,y), which de- N9 from Eq.(2),
termines the displacement of the membrane from xhe
plane in thez direction (see Fig. 2 AAu= L Au. 3)
At the boundaries of the conical inclusions the displace- K
mentu is assumed to fulfill the conditiongf. [2])
We derive the interaction energy of two conical inclusions

u|,i:a=hi+a,8i CoS ¢, (1a in two steps. First, we solve the shape equaf®raccount-
ing for the boundary conditiongl) and the asymptotic
ou boundary conditiorWu—0 forr;—o. Second, inserting the
o =qa;+B;cosg¢;, i=172 (1b)  obtained functionu(x,y) into Eq. (2), we determine the
ilri=a membrane energy. Throughout this calculation we assume

the inclusion distancR to be large compared to the radius of
where the subscrigt takes the value 1 or 2 for the first and inclusiona and retain only the leading terms &iR.
the second inclusion, respectively. By and ¢; we denote It is important to note that the interaction energy cannot
the polar coordinates related to the center of projediipof  depend on the modulus of Gaussian curvatiréccording
the respective inclusion on they plane(see Fig. 3 Equa-  to the theorem of Gauss and Bonnet, an integral of the
tion (19 describes the boundary of each inclusion as a circlésaussian curvaturié over a surface is equal to the negative
of radiusa whose center is at height above thex-y plane  sum of the line integrals of the geodetic curvatiggever the
and that is tilted with respect to tfreaxes by an angl@; in  surface boundarie@part from a constant that depends only
the x direction. Equatior(1b) takes into account that due to on the genus of the surfacelhe value of the geodetic cur-
the conical shape of the inclusion the membrane is attacheghture at the inclusion boundaries is completely determined
to the circumference of the tilted circle with a constant anglepy the radiusa and contact angles; (Jkg|=1/a cosa;) and
;. Itis assumed in Eqgl) that the contact angle; and tilt  does not depend on the distarRebetween the inclusions.
angle B; are small,a;<1 and§;<1, so we set tam;=«a;  Therefore, the integral of the Gaussian curvatirever the
and tang;=g; and neglect contributions of the order of membrane must be independent of the distaRand does
magnitude OfBi2 determining the deviation of the inclusion not contribute to the interaction potential.
projection from the circular shape. At large distances from For any given distanc® between the inclusions the en-
the inclusions,ri>R, the membrane remains flat, 3ou  ergy has to be minimized with respect to the heightand
—0 for ri—o. tilt anglesg; . This results in conditions of zero vertical force
and zero torque acting on each inclusion. The two conditions

y are expressed by the equatidsse Appendix A
27 J
r?f,- rk f a—(yu—«xAu)| d¢;=0,
O q) N ¢ 0 &I’i _
) SR ri=a @
: R a X 2 9
f COS ¢; aZ&T(yu—KAU)+KaAU d¢;=0,
° i ri=a
E, E,

respectively. The integration in Eq&}) is performed over
FIG. 3. x-y plane with inclusion projectiong; andE,. the boundary of each inclusion.
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[ll. INTERACTION IN THE ABSENCE
OF LATERAL TENSION

We first consider the important limiting case of zero lat-
eral tensiony=0. The shape equatidi3) then reads

AAu=0.

5

must be equal but opposite, i.e{"=—c{?, to satisfy the
boundary conditions at infinity, so that we can drop these
terms as well. _

The coefficientsc{” in Eq. (9) are determined from the
boundary conditiongl) and equilibrium condition§4). Con-
sider these conditions at the circumference of inclusion 2. To
apply them we have to express the membrane sk@pm
the vicinity of the inclusion. The function, is simply given

by Eq.(9) with i=2. To present the function, in a conve-

To solve this equation satisfying the boundary conditidis
g fying y & nient form we take Eq(9) with i=1 and insert Eq9;7) and

and the conditions of equilibriuntd) we use the following

ansatz. We consider the functiafix,y) describing the shape

of the membrane in the form

(8) into it. In the vicinity of the second inclusion the value of
r, is close to the inclusion radius~a. Using the assump-
tion a<R and, consequently,,<R we perform a Taylor

expansion about the center of the inclusion projecEgn
U=uy(ry, @) +Ux(ra, o), (6)

r2

) 2
In R— = cos ¢,— — cos
b2 >R2 2h;

wherer; , ¢; denote polar coordinates with respect to the cen- usl,
R

ter of inclusioni. The relationships between the polar coor-
dinates related to the first and the second inclusion(see

<r=const+c!

Fig. 3 1
ri=RZ+r2-2Rr, oS 5, (7)
+ci’| —RIn R+(1+In R)r, cos ¢,
r, COS ¢py—
COS 1= : ®)
1 VRZ+r5—2Rr, COS ¢, r2 £ ——(cos 3p,— 3 coS )
2R 12R? 2 2

The functionsu; andu, in Eq. (6) are general solutions of
the shape equatiofb) in polar coordinates. They are ob-
tained from Eq.(B2) derived in Appendix B and have the

2 c)
(D( —(1- cos?d;z)>+R—

form
1 r ctt 3
(1) 2 8 2
—Cg'| g+ —; cos +—+0| = 10
ui(r; ) =constrcl’ In ri+cir; cos ¢, 6 |R"R2 2 R2 3/ 10
+cir Inr; cos ¢+ c(‘)cos¢i . _
: i The resultmg expression for the membrane shapeu,
+U, is
cos
cd) cos 2p;+cl) —— %,
rA
! Ulr,<r= f67(r2)+ 12 (rp)cos o+ 157)(r)cos 2p,
. CoSNng; . cosng; (2)
+ci) 2 ey " +-o 0 (9) +f57(ry)cos 3pp+--- (1)
i i
where

Terms of Eq.(B2) proportional to sim¢ are omitted in Eq.
(9) because of the mirror symmetry of the system with re-
spect to thex-z plane (see Fig. 3 and terms exhibiting
higher than logarithmic divergence for—« are left out
since they violate the boundary condition of an asymptoti-
cally flat membran& u— 0 for r;—. The only exceptions
arer; Inr;cos¢;, andr; cos¢;. From the boundary condi-
tion of an asymptotlcally flat membrane it can be concluded c?
immediately that the coefficienc{) must be equal to  f1 '=cPr,In r2+—+f2

)
—0(22). The sum of the corresponding terms then diverges

2) _ 2
f(?'=const-c(® In r,—r3

(1) (1)
ﬁ+ =)

C(l) 1+InR _r2
R cV n e

only logarithmically forr;— . The terms; cos¢; are pro- ey o
portional to the Cartesian coordinateand thus describe ro- - % ,
tations of the membrane as a whplé)]. Any such rotations R

(12
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c@ 2 predicts a contribution proportional te, the modulus of

F2—o@ 4 S (4 pt) 2 ) . =
2 4 r2 0 4 HR2’ Gaussian curvature. We think that there should b& merm
2 (see the end of Sec.)ll
c? c® 3 IV. INTERACTION IN THE PRESENCE

ry I’g 10R? OF LATERAL TENSION

We now extend the methods of the preceding section to
Inserting Eq(11) into the boundary conditiond) and equi-  analyze the interactions of inclusions embedded in a mem-
librium conditions(4) at the inclusion 2 we obtain a series of Prane subject to nonvanishing lateral tensignThe shape
equations for the coefficients” . To account for the bound- equation(3) can be written as
ary and equilibrium conditions at the inclusion 1, we perform

the same procedure as described above to obtain identical AAu=£%Au, (17)
equations in which the index 2 is replaced by 1 and vice
versa. whereé=/y/k has the dimension of a reciprocal length. To

The equations obtained for the coefficie can be find a solution of the shape equation satisfying the boundary
solved order by order in the small paramed¢R. The solu-  conditions(1) and equilibrium conditiong4) we use, as in
tions are the Sec. lll, the ansai®) with the functionau;(r;, ¢;) being

general solutions of the shape equatiai) in polar coordi-

a,a 1 nates. These functions are taken from E83) derived in
1 1 P
c'=ama+0 =ik e = 2 0| =) Appendix B and have the form
u;=constr ¢ Ko(&ri)+cir; cos ¢+ cy' K, (&r;)cos ¢;
o Llaa 1 13
G5 =—5 3 ., COS g; ‘ . COS 2
2 R2 R3 +c(3'>—¢'+c§{)K2(§ri)cos 2¢i+c(5|)r—2%+m
! i
and equivalent results fom}z), the remaining coefficients cosng
being of third or higher order ia/R. +clK(ér)cosng+cl) ., a_ (18)

We are now in a position to compute the energy of the 0
membrane. Omitting the contribution of the integral of the
Gaussian curvature, which is independent of the distdce The coefficients of all terms of EqB3) proportional to

between the inclusionee abovg we obtain from EQ(2)  gjn g are taken to be equal to zero because of the symmetry

of the system. Also, the coefficients of terms violating the
boundary condition of asymptotically vanishing gradient of
the displacemenVu—0 for r;—o must be zero. As we do
not consider rotations of the system we sét=0. In addi-
where the curvaturd is given by tion, we omit in Eq.(18) the logarithmic term of EqB3), as
the related change of the area of the membrane would result
in an infinite energy of the lateral tension
Equation(18) transforms into Eq(9) in the limit of van-

ishing lateral tensiory—0 (i.e., £—0). This can be shown
by inserting into Eq(18) the approximative expressions of
the Bessel functionk,(x) for small arguments,

2 n

;

_ n—-2
. (16) _(n—2)! (;) for n=2. (19

G(R)=J‘gJ2d%, (14)

cos cos
1) 22¢1_4C<2> 22¢2+... (15)

J=Au=—4c} ;
r ra

In the first nonvanishing order ia/R, the energy of interac-

tion of the inclusions is
(n—=1)!

2

KO(X)N_In X, Kl(x)%;! Kn(X)N

4

a 1
G(R) :47TK((1%+ ag)g +0

R5

2

According to Eq.(16), the energy is positive and decays The coefficient&*f') in Eq.(18) are determined by the bound-
monotonically at all values of the contact angles a, and  ary conditions(1) and equilibrium conditiong4) in a way

all distances between the inclusioRs This means that in similar to that described in Sec. Ill. For example, we present
the case of zero lateral tension the interaction between the, in the vicinity of the inclusion 2 by inserting Eq&7) and
rigid conical inclusions is always repulsive. The resi)) is  (8) and obtain after an expansion in the small parameter
in agreement with an earlier calculatif2] which in addition  r,/R,



6992 T. R. WEIKL, M. M. KOZLOV, AND W. HELFRICH 57

1
u1|r2<R=cé”( Ko(€R)+ €K1 (ER)T €OS byt 7 £2r5[ Ko €R) +K( £R) S 2]

(1) 1 Lo 2 1. 2
+C37| —Ka(ER) = S €[ Ko(§R) +Ka(ER) Iy Cos ¢y — 5 £ K1(ER)+K3(ER) I3 €O 2p,— 7 £7K4(€R)T

(1) 1 1. 2 1. 2
+C47| Ka(§R)+ S E[K1(ER) + K3(€R) Iz COS a5 ETKo(ER) +Ka(€R)rz COS 2y + 7 £°Ko(£R)T

(20

We have to stress that in this case the expansions up to thke same direction, their contact angtes a, have the same
second order i, /R are sufficient only iféa<<l1. For éa
>1, which is equivalent to the condition of strong lateral and decreases with increasing distaRceThe repulsive po-
tension, the serie@0) converges too slowly to be approxi- tential is illustrated in Fig. 4 for two identical and equally
mated by the sum of just a few Taylor terms. This can beoriented inclusions at different lateral tensions. By increasing
seen from the asymptotic expansion of the functiRéx),
which for large arguments are proportional to exgy/yx

irrespectively ofn.

sign. In this case the energy of interaction is always positive

the tension the interaction is weakened at large, but enhanced
at small inclusion distances.
If the inclusions are oppositely oriented, the contact

Inserting the sum(18) with i=2 and Eq.(20) into the anglesa; and a, have different signs and the energy of
boundary condition§l) and the equilibrium condition&) at  interaction behaves nonmonotonically, as illustrated in Fig.
inclusion 2, we obtain fom<R and éa<1 a set of linear 5. The energy has a minimum at a finite separaRrof the
equations for the coefficients” . Applying the same proce- inclusions. This means that the forces between the inclusions
dure to satisfy the boundary and equilibrium conditions atchange from repulsive to attractive depending on the dis-
the inclusion 1 leads to an analogous set of equations. SolanceR. For distances shorter th&" the inclusions repel
ing all these equations f@<R and£a<1 we obtain each other, while for separatio&>R* the interaction is

attractive. With rising lateral tension the separation of zero

" o 1 X force R* moves towards smaller values and the associated
Co =—amat-, Cp'=—5aa(éa) Ky (ER)+ -, potential well deepengsee Fig. 5.
(21
Czl): —aza(fa)sz(gR)+"‘ V. CONCLUSION

To summarize, we derived an interaction energy between

and corresponding results fof?, c{?’, andc{? . The coef- Mm@ _ , :
P J gz 2 4 two conical inclusions embedded in a fluid membrane sub-

ficientsc{’ andc{ are given by the relations
V(R)

. 1 . . 1 .
of'=—5ci'éa’Ky(éa), o= gl a’Ks(éa). 0.06 005
(22) 0.1
0.2
The interaction energ(R) of the inclusions is obtained by ~ 0:05
integration of: k(Au)? over thex-y plane. Transforming the
area integrals into line integrals over the boundaries of the, o4
inclusions as shown in Appendix C, we find the dominant
terms for smalla/R and éa<1,
0.03
G(R)=2mkajay(£a)’Ko(£R)
+ k(b + ald)(£a) KE(ER) ++ - . 0.02
(23) 0.01
In the limit of vanishing tensiony—0 (i.e., £—0), this ex-
pression for the interaction energy coincides with Ef), 0 R/a
as can be seen by expanding the Bessel functions for smali S 10 15 20 25 30 3
arguments according to Eq4.9). FIG. 4. Dimensionless interaction potentM(R)=G(R)/a’k

The interaction energ23) depends on the relative orien- of two equally oriented inclusionsag = a,) as a function of the
tation of the conical inclusions. If the cones are oriented indimensionless distand®/a for éa=0.05,0.1,0.2.
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V(R) boundary and equilibrium conditions for the membrane with
0.05 conical inclusions are central to our calculations. They re-
sulted in a set of linear equations for the coefficients of two

\\\\ \ superimposed expansions, one for either inclusion. This

7 . 5 R/a method is extendable to a larger number of inclusions by

using similar sets of boundary conditions. In computer-aided
calculations the shape of a membrane could be determined

-0.05 with any desired precision and for any number of inclusions.
-0.1 APPENDIX A: DERIVATION OF THE EQUILIBRIUM
CONDITIONS (4)
015 To derive the equilibrium condition@) we study a varia-
tion
-0.2

v(r,é,e)=u(r,¢)+ edu(r,d) (A1)

FIG. 5. Dimensionless interaction potentM(R)=G(R)/a?«  Of the equilibrium membrane displacemeft, ¢) on a cir-
of two oppositely oriented inclusionsy{=—a,) as a function of ~cular ring S: asr<»b, 0<¢=<2x around a conical inclu-
the dimensionless distand®/a. The potential well deepens with sion. To simplify the notation we leave out indices of the
increasing¢éa=0.1,0.2,0.3,0.4,0.5. Note th&/a=2 means two polar coordinates,¢. The variation is restricted by the
disks in contact. Near this value the results can only be regarded gsoundary conditions$l) of the inclusion. So
estimates.

, , , dU|,—a=6c+ B a cos ¢, (A2)
ject to lateral tension. For this purpose, we calculated the
equilibrium shape of an almost flat membrane and its bend-
ing energy in the presence of inclusions as a function of their déu —s A3
distance. In contrast to the case of vanishing tension, this or r=a_ B cos ¢, (A3)

interaction depends on the orientations of the inclusions with

respect to the membrane plane. For oppositely oriented inyhereesc and e5B denote the changes of the height of the

clusions the interaction changes from repulsive to attractivenclusion center and the tilt angle, respectively.rAtb we
as the separation increases, while equally oriented inclusionsgt

repel each other at all distances. This is very different from
the case of vanishing lateral tension where the interaction of
conical inclusions is always repulsive, independently of rela- Sul, _p=—o
tive orientation. or
We did not consider in this study the contribution of ther-

mal undulations of the membrane to the interaction betweef@mitting Gaussian curvature, the membrane enggyycan
the inclusions[2,5,6. In the case of nonvanishing lateral be written as
tension this may be partially justified by the fact that the
undulations are diminished by the tension. Moreover, others 27 (b 2

. . K ™ k[dv 1dv
have found for the case of zero tension that the static part o = (E(Av) (vv )dzr—f f | ( -

S

=0. (A4)
r=b

the interaction exceeds the dynamic one fefa®+ a3) ar? T

>3kT [2] or 1.5T [5,6] wherek is Boltzmann’s constant 5 ) 5

andT is temperature. If the tension-induced forces dominate, | — 1% + v (‘9_") + i(ﬁ_v) rdrdg

they should lead to interesting phase behavior of embedded (9¢2 2(\ ar r2\d¢

inclusions. For example, the attractive interaction between -

pairs of oppositely oriented conical inclusions may favor the _ [“7

formation of clusters with a regular structure where inclu- _f f (0,070 400U gg,M)Ar db. (AS5)

sions with different signs of the contact angles alternate. For

an estimate of the attractive interaction one may use Fig. 9n equilibrium the energys is minimal. So

With k=1x10"1° J (typical of lipid bilayer3, a=0.5

(26.8°), and¢éa=0.4, the minimum of the interaction energy

G(R)=V(R)aZk is roughly —4Xx1072' J (=kT at room

temperature Because ofé=.y/x, the lateral tension

needed to producéa=0.4 is given byy=0.16«/a. Fora of du,, of

=4 nm andk=1x10*°J, one findsy=1 mN/m, which is

below the known tension of lipid bilayer ruptuf&1].
While our results are intuitively appealing and may be (AB)

obtainable more directly, we performed a complete perturba-
tion calculation to make sure that no terms are missed. ThBy partial integrations we obtain

J’27Tf of dv of dv, of du,
_+__
v de &v, de dvy de

Yool 41 dg=0
vy de  dvgy de | | rd¢=0.
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dG om (bl gf 9 of 9 of 2 of ing to t_he_vanishing lateral tensiop=0 and the case of
—:f f —_——————t— — nonvanishingé.
de 0o Ja\dv 9rdv, dedvy  gr2 duy
2 of \do 2q of do 1. Vanishing lateral tension=0
+ 97 Ty gedrdo+ fo 0, de In this case the shape equation has the fartu=0. A
solution of the intermediate Laplace equatidd=0 on a
g of \dv of dv,|P circular ring can be found by the method of separation of
~\ar v gt v de . (A7) variables and read42,13
and, inserting (v,v,,v 4,0, U g4,r) as defined in EqAS), J(r,p)=ap+by Inr+ >, (a, cosng+b, sinng)r "
are led to n=1
dG 27 (b dv + C, cosn¢+d, sinng)r". Bl
—:f J[KAAv—yAv]—r dr d¢ nzl( n ¢+ dn 2 (B1)
de o Ja de
2m 4 dv do,]P The general solution of the linear inhomogeneous equation
+ jo rE(VU_ KAU)EJF KT Av de ad¢- Au=J(r,¢) is the sum of a special solution and the general

solution of the homogeneous equatitn= 0, the latter hav-
(A8) ing the form of Eq.(B1). We obtain

The equilibrium displacement(r, ¢) fulfills the shape equa- u(r,d)=Agr2+Bor2(Inr—1)
tion (3) of a tense membrane. So the integrand of the area

integral in Eq.(A8) is zero ate= 0. Taking into account Egs. +(Ap cos¢+Bysing)rinr
(A2) and(A3), we conclude that w
+ > (A, cosng+B, sinng)r "+2
dG 27[ g n=2
5G_E E_O—fo rE(yu—KAu)(ﬁan&ﬁacos(;s) w

+ >, (C,cosng+D, sinng)r"2+A,
n=1

+ krAuép cos ¢) d¢=0. (A9)

a

r

+Bg Inr+ >, (A, cosng+B, sinng)r "
n=1

SincedpB and éc are independent of each other, we arrive at

the equations + >, (C,cosng+D, sinng)r". (B2)
n=1

2w J
aﬁ(yu—xAu) d¢=0,

r=a

6G(5c)=50f
0

The terms with unbarred coefficients belong to the special
(A10)  solution, which can be directly checked by its insertion into
Au=J. TheA, term of Eq.(B2) corresponds to tha, term
of Eq. (B1), etc. The terms with barred coefficients give the
do general solution oAu=0 in analogy to Eq(B1).

J
aza—r(yu—KAu%l—KaAu

27
6G(6B)= 5,8}0 CoS ¢

2. Nonvanishing lateral tensioné+# 0
=0, (Al11) g ¢

By applying the method of separation of variables de-
scribed in[12,13 also to the case of nonvanishing lateral
Gension we find the general solution of the intermediate equa-
tion AJ=&2J,

which state that the vertical force and the torque, respe
tively, acting on the inclusion must be zero in equilibrium.

APPENDIX B: GENERAL SOLUTIONS OF THE SHAPE %
EQUATIONS IN POLAR COORDINATES I(r, ) =agKo(ér)+ D (a, cosne+by, sinng)K,(£r)
n=1

In this appendix we derive the general solution of the
shape equatiod Au=¢?Au in polar coordinates. We per- ~
form the calculation in two steps. We first look for the solu- + > (¢, cosng+d, sinne)l,(ér),
tion J(r,¢) of an intermediate equatiohJ=£2J and then n=1
solve the equatiodu=J(r,¢). General solutions of the lat-
ter equation are also general solutions of the shape equationsherel , andK,, denote modified Bessel functions. A general
Below we consider separately the casefef0, correspond- solution of the equatiodu=J(r,¢) again consists of the
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sum of a special solution and the general soluti®h) of the

K
Laplace equatiohu=0. It can be written in the form I(f,9)= 5

SAfAg+ %Vf-Vg &, (C2

RZ/E;UE,

=AK + Byl o(€R) +Ay+ By |
U(r, )=AoKo(£1) + Bolo(éR) + Ao+ Bo In ¥ where eitherf obeys Af=(y/x)f, which is true for the

* terms of Eq.(18) containing a Bessel function, ay is a
+ > (A, cosng+B, sinng)K,(ér) solution of Ag=0, or both(see Appendix B E; denotes the
n=1 projection of the inclusion into thex-y plane(see Fig. 3.
i Applying a theorem of Green we may write
+ 21 (C,, cosng+D, sinng)l(£r)
i

. f (VF-Vg) d?r

_ _ R2/E;UE,

+ > (A, cosng+B, sinng)r "
n=1

2m &g
=—f fAg dzr—f f— adg¢;
© o R%/E,UE, o drp r=a
+ (C,cosng+D,sinng)r", (B3
n=1 2m 07g
_ —f f——= ade, (C3)
taking into account thaKy(ér), K,(ér)cosng, lq(ér), o dra r,-a
I ,(ér)cosng, and the corresponding terms containingrsfn
are eigenfunctions of the Laplace operator. if r,f(ag/ar;) goes to zero for,— . Since
APPENDIX C: REDUCING AREA INTEGRALS K y
TO LINE INTEGRALS IN THE CALCULATION f ) EAng— Emg}er:o (C9
OF THE MEMBRANE ENERGY RYELUE,
In the calculation of the energy of the tense membrane for Af=(y/«x)f or Ag=0, we find
G=f (AU 2 (V) |dr (CY) Y ([*7 %9 Y ([*7 %9
2 2 I(f.g)=—5| f-— adg—5| f-— ads,.
0 1 ry=a 0 ra r,=a
we encounter, due to our ans&i®), integrals of the form (CH
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