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Interaction of conical membrane inclusions: Effect of lateral tension

T. R. Weikl,1,* M. M. Kozlov,1,2 and W. Helfrich1
1Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany

2Department of Physiological Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
~Received 5 September 1997!

Considering two rigid conical inclusions embedded in a membrane subject to lateral tension, we study the
membrane-mediated interaction between these inclusions that originates from the hat-shaped membrane defor-
mations associated with the cones. At nonvanishing lateral tensions, the interaction is found to depend on the
orientation of the cones with respect to the membrane plane. The interaction of inclusions of equal orientation
is repulsive at all distances between them, while the inclusions of opposite orientation repel each other at small
separations, but attract each other at larger ones. Both the repulsive and attractive forces become stronger with
increasing lateral tension. This is different from what has been predicted on the basis of the same static model
for the case of vanishing lateral tension. Without tension, the inclusions repel each other at all distances
independently of their relative orientation. We conclude that lateral tension may induce the aggregation of
conical membrane inclusions.@S1063-651X~98!04706-0#

PACS number~s!: 87.22.Bt, 87.10.1e, 82.65.Dp, 34.20.2b
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I. INTRODUCTION

Biological membranes consist of a fluid lipid bilayer wi
embedded amphiphilic macromolecules such as integral
teins@1#. Integral proteins are expected to be much less fl
ible than the lipid matrix. In a general sense, any molec
embedded in the membrane and differing in shape or ela
properties from the surrounding lipid molecules can
viewed as an inclusion. The phase behavior of inclusion
the plane of the membrane is determined by interactions
tween them. If the interaction energy is sufficiently large
compete with translational entropy, it can lead to lateral s
assembly of the inclusions. Attractive forces may result i
lateral aggregation of the inclusions, while repulsion c
give rise to a regular array with maximal spacing.

Forces between membrane inclusions can be divided
two classes. The first class consists of the well-known dir
interactions, namely electrostatic~for charged inclusions!
and van der Waals forces. The second class comprises
rect interactions mediated by some kind of membrane de
mation @2–8#. These interactions are determined by t
shapes of the inclusions and the elastic parameters of
inclusions and the lipid bilayer. They can be static or d
namic, in one case being due to equilibrium deformatio
and in the other to shape fluctuations of the membrane.

Both types of indirect interactions have been theoretica
studied for the case of zero lateral tension. The static in
actions of inclusions affecting the membrane thickness@3#
and conical deformations affecting the membrane shape@2#
have been dealt with. Dynamic interactions were treated
inclusions modifying the local bending moduli@2,4,6,7#, in-
cluding the case of rigid disks@2,5,6#.

In the following we consider the static interaction b
tween conical inclusions in the presence of lateral tens
Two sketches of a truncated cone embedded in the m
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brane are given in Figs. 1 and 2. The cone is assumed t
rigid and to impose a uniform slope on the surroundi
membrane, which returns asymptotically to the flat state
large distances.

We find a repulsive interaction at all values of the late
tension if the two conical inclusions have equal orientat
with respect to the membrane plane. By increasing the lat
tension, the interaction is weakened at larger but enhance
smaller inclusion distances. In contrast, for opposite orien
tions of the inclusions in a membrane with nonvanishi
lateral tension the sign of the interaction depends on
distance between the inclusions. At small separations the
clusions repel each other, while at large separations the
teraction is attractive. With rising tension the attractive p
tential well deepens and moves towards smaller distan
between the inclusions.

II. SHAPE AND ENERGY OF MEMBRANES
WITH CONICAL INCLUSIONS

We consider a membrane with two embedded conical
clusions. The cross sections of the inclusions in the midpl
of the membrane are circles of radiusa. The centers of the
two circles are separated by the distanceR ~see Fig. 3!.

FIG. 1. Conical inclusion in a bilayer membrane.
6988 © 1998 The American Physical Society
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57 6989INTERACTION OF CONICAL MEMBRANE . . .
In the absence of inclusions the membrane is assume
be flat and to lie in thex-y plane of the Cartesian system
coordinates. We describe the membrane equilibrium sh
produced by the inclusions by a functionu(x,y), which de-
termines the displacement of the membrane from thex-y
plane in thez direction ~see Fig. 2!.

At the boundaries of the conical inclusions the displa
mentu is assumed to fulfill the conditions~cf. @2#!

uur i5a5hi1ab i cosf i , ~1a!

]u

]r i
U

r i5a

5a i1b i cosf i , i 51,2 ~1b!

where the subscripti takes the value 1 or 2 for the first an
the second inclusion, respectively. Byr i and f i we denote
the polar coordinates related to the center of projectionEi of
the respective inclusion on thex-y plane~see Fig. 3!. Equa-
tion ~1a! describes the boundary of each inclusion as a ci
of radiusa whose center is at heighthi above thex-y plane
and that is tilted with respect to thez axes by an angleb i in
the x direction. Equation~1b! takes into account that due t
the conical shape of the inclusion the membrane is attac
to the circumference of the tilted circle with a constant an
a i . It is assumed in Eqs.~1! that the contact anglea i and tilt
angleb i are small,a i!1 andb i!1, so we set tana i5a i
and tanb i5b i and neglect contributions of the order
magnitude ofb i

2 determining the deviation of the inclusio
projection from the circular shape. At large distances fr
the inclusions,r i@R, the membrane remains flat, so“u
→0 for r i→`.

FIG. 2. Idealization of a conical inclusion as a rigid disk
heighthi and tilt angleb i making a uniform contact anglea i with
the surrounding membrane. The cross section contains the ax
the cone.

FIG. 3. x-y plane with inclusion projectionsE1 andE2 .
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The inclusions characterized by smalla i andb i can pro-
duce only a weak deformation of the initially flat membran
which means that the gradient of the functionu(x,y) re-
mains small,u“uu!1, everywhere along the membrane. T
membrane energy@9# can then be written in the approxima
form

G5E S k

2
~Du!21k̄K1

g

2
~“u!2Dd2r , ~2!

wherek denotes the bending rigidity,g the lateral tension,K
the Gaussian curvature, andk̄ the modulus of the Gaussia
curvature. In our approximation, the LaplacianDu equals the
sum of the principal curvatures of the membraneJ, while
1
2 (“u)2 gives the increase of membrane area per unit p
jected area due to membrane tilt“u. The integration of Eq.
~2! is performed over the projected area. The membr
shape is determined by the Euler-Lagrange equation foll
ing from Eq.~2!,

DDu5
g

k
Du. ~3!

We derive the interaction energy of two conical inclusio
in two steps. First, we solve the shape equation~3! account-
ing for the boundary conditions~1! and the asymptotic
boundary condition“u→0 for r i→`. Second, inserting the
obtained functionu(x,y) into Eq. ~2!, we determine the
membrane energy. Throughout this calculation we assu
the inclusion distanceR to be large compared to the radius
inclusiona and retain only the leading terms ina/R.

It is important to note that the interaction energy cann
depend on the modulus of Gaussian curvaturek̄. According
to the theorem of Gauss and Bonnet, an integral of
Gaussian curvatureK over a surface is equal to the negati
sum of the line integrals of the geodetic curvaturekg over the
surface boundaries~apart from a constant that depends on
on the genus of the surface!. The value of the geodetic cur
vature at the inclusion boundaries is completely determi
by the radiusa and contact anglesa i (ukgu51/a cosai) and
does not depend on the distanceR between the inclusions
Therefore, the integral of the Gaussian curvatureK over the
membrane must be independent of the distanceR and does
not contribute to the interaction potential.

For any given distanceR between the inclusions the en
ergy has to be minimized with respect to the heightshi and
tilt anglesb i . This results in conditions of zero vertical forc
and zero torque acting on each inclusion. The two conditi
are expressed by the equations~see Appendix A!

E
0

2pFa
]

]r i
~gu2kDu!G

r i5a

df i50,

~4!

E
0

2p

cosf iFa2
]

]r i
~gu2kDu!1kaDuG

r i5a

df i50,

respectively. The integration in Eqs.~4! is performed over
the boundary of each inclusion.

of
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III. INTERACTION IN THE ABSENCE
OF LATERAL TENSION

We first consider the important limiting case of zero la
eral tensiong50. The shape equation~3! then reads

DDu50. ~5!

To solve this equation satisfying the boundary conditions~1!
and the conditions of equilibrium~4! we use the following
ansatz. We consider the functionu(x,y) describing the shape
of the membrane in the form

u5u1~r 1 ,f1!1u2~r 2 ,f2!, ~6!

wherer i ,f i denote polar coordinates with respect to the c
ter of inclusioni . The relationships between the polar coo
dinates related to the first and the second inclusion are~see
Fig. 3!

r 15AR21r 2
222Rr2 cosf2, ~7!

cosf15
r 2 cosf22R

AR21r 2
222Rr2 cosf2

. ~8!

The functionsu1 andu2 in Eq. ~6! are general solutions o
the shape equation~5! in polar coordinates. They are ob
tained from Eq.~B2! derived in Appendix B and have th
form

ui~r i ,f i !5const1c0
~ i ! ln r i1c1

~ i !r i cosf i

1c2
~ i !r i ln r i cosf i1c3

~ i !
cosf i

r i

1c4
~ i ! cos 2f i1c5

~ i !
cos 2f i

r i
2

1¯

1c2n
~ i !

cosnf i

r i
n22

1c2n11
~ i !

cosnf i

r i
n

1¯ . ~9!

Terms of Eq.~B2! proportional to sinnf are omitted in Eq.
~9! because of the mirror symmetry of the system with
spect to thex-z plane ~see Fig. 3! and terms exhibiting
higher than logarithmic divergence forr i→` are left out
since they violate the boundary condition of an asympt
cally flat membrane“u→0 for r i→`. The only exceptions
are r i ln ri cosfi and r i cosfi . From the boundary condi
tion of an asymptotically flat membrane it can be conclud
immediately that the coefficientc2

(1) must be equal to
2c2

(2) . The sum of the corresponding terms then diverg
only logarithmically forr i→`. The termsr i cosfi are pro-
portional to the Cartesian coordinatex and thus describe ro
tations of the membrane as a whole@10#. Any such rotations
-
-

-

i-

d

s

must be equal but opposite, i.e.,c1
(1)52c1

(2) , to satisfy the
boundary conditions at infinity, so that we can drop the
terms as well.

The coefficientscj
( i ) in Eq. ~9! are determined from the

boundary conditions~1! and equilibrium conditions~4!. Con-
sider these conditions at the circumference of inclusion 2.
apply them we have to express the membrane shape~6! in
the vicinity of the inclusion. The functionu2 is simply given
by Eq. ~9! with i 52. To present the functionu1 in a conve-
nient form we take Eq.~9! with i 51 and insert Eqs.~7! and
~8! into it. In the vicinity of the second inclusion the value o
r 2 is close to the inclusion radiusr 2'a. Using the assump-
tion a!R and, consequently,r 2!R we perform a Taylor
expansion about the center of the inclusion projectionE2 ,

u1ur 2!R5const1c0
~1!S ln R2

r 2

R
cosf22

r 2
2

2R2
cos 2f2D

2c3
~1!S 1

R
1

r 2

R2
cosf2D

1c2
~1!S 2R ln R1~11 ln R!r 2 cosf2

2
r 2

2

2R
1

r 2
3

12R2
~cos 3f223 cosf2!D

1c4
~1!S 12

r 2
2

R2
~12cos 2f2!D 1

c5
~1!

R2

2c6
~1!S 1

R
1

r 2

R2
cosf2D 1

c8
~1!

R2
1OS r 2

3

R3D . ~10!

The resulting expression for the membrane shapeu5u1
1u2 is

uur 2!R5 f 0
~2!~r 2!1 f 1

~2!~r 2!cosf21 f 2
~2!~r 2!cos 2f2

1 f 3
~2!~r 2!cos 3f21¯ , ~11!

where

f 0
~2!5const1c0

~2! ln r 22r 2
2S c2

~1!

2R
1

c4
~1!

R2 D ,

f 1
~2!5c2

~2!r 2 ln r 21
c3

~2!

r 2
1r 2F2

c0
~1!

R
1c2

~1!S 11 ln R2
r 2

2

4R2D
2

c3
~1!1c6

~1!

R2 G ,

~12!
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f 2
~2!5c4

~2!1
c5

~2!

r 2
2

1~2c0
~1!12c4

~1!!
r 2

2

2R2
,

f 3
~2!5

c6
~2!

r 2
1

c7
~2!

r 2
3

1
c2

~1!r 2
3

12R2
.

Inserting Eq.~11! into the boundary conditions~1! and equi-
librium conditions~4! at the inclusion 2 we obtain a series
equations for the coefficientscj

( i ) . To account for the bound
ary and equilibrium conditions at the inclusion 1, we perfo
the same procedure as described above to obtain iden
equations in which the index 2 is replaced by 1 and v
versa.

The equations obtained for the coefficientscj
( i ) can be

solved order by order in the small parametera/R. The solu-
tions are

c0
~1!5a1a1OS 1

R3D , c4
~1!5

a2a3

R2
1OS 1

R3D ,

c5
~1!52

1

2

a2a5

R2
1OS 1

R3D , ~13!

and equivalent results forcj
(2) , the remaining coefficients

being of third or higher order ina/R.
We are now in a position to compute the energy of

membrane. Omitting the contribution of the integral of t
Gaussian curvature, which is independent of the distancR
between the inclusions~see above!, we obtain from Eq.~2!

G~R!5E k

2
J2d2r , ~14!

where the curvatureJ is given by

J5Du524c4
~1!

cos 2f1

r 1
2

24c4
~2!

cos 2f2

r 2
2

1¯ . ~15!

In the first nonvanishing order ina/R, the energy of interac-
tion of the inclusions is

G~R!54pk~a1
21a2

2!
a4

R4
1OS 1

R5D . ~16!

According to Eq.~16!, the energy is positive and decay
monotonically at all values of the contact anglesa1 ,a2 and
all distances between the inclusionsR. This means that in
the case of zero lateral tension the interaction between
rigid conical inclusions is always repulsive. The result~16! is
in agreement with an earlier calculation@2# which in addition
cal
e

e

he

predicts a contribution proportional tok̄, the modulus of
Gaussian curvature. We think that there should be nok̄ term
~see the end of Sec. II!.

IV. INTERACTION IN THE PRESENCE
OF LATERAL TENSION

We now extend the methods of the preceding section
analyze the interactions of inclusions embedded in a m
brane subject to nonvanishing lateral tensiong. The shape
equation~3! can be written as

DDu5j2Du, ~17!

wherej5Ag/k has the dimension of a reciprocal length. T
find a solution of the shape equation satisfying the bound
conditions~1! and equilibrium conditions~4! we use, as in
the Sec. III, the ansatz~6! with the functionsui(r i ,f i) being
general solutions of the shape equation~17! in polar coordi-
nates. These functions are taken from Eq.~B3! derived in
Appendix B and have the form

ui5const1c0
~ i !K0~jr i !1c1

~ i !r i cosf i1c2
~ i !K1~jr i !cosf i

1c3
~ i !

cosf i

r i
1c4

~ i !K2~jr i !cos 2f i1c5
~ i !

cos 2f i

r i
2

1¯

1c2n
~ i !Kn~jr i !cosnf i1c2n11

~ i !
cosnf i

r i
n

1¯ . ~18!

The coefficients of all terms of Eq.~B3! proportional to
sinnf are taken to be equal to zero because of the symm
of the system. Also, the coefficients of terms violating t
boundary condition of asymptotically vanishing gradient
the displacement“u→0 for r i→` must be zero. As we do
not consider rotations of the system we setc1

( i )50. In addi-
tion, we omit in Eq.~18! the logarithmic term of Eq.~B3!, as
the related change of the area of the membrane would re
in an infinite energy of the lateral tensiong.

Equation~18! transforms into Eq.~9! in the limit of van-
ishing lateral tensiong→0 ~i.e., j→0). This can be shown
by inserting into Eq.~18! the approximative expressions o
the Bessel functionsKn(x) for small argumentsx,

K0~x!'2 ln x, K1~x!'
1

x
, Kn~x!'

~n21!!

2 S 2

xD n

2
~n22!!

2 S 2

xD n22

for n>2. ~19!

The coefficientscj
( i ) in Eq. ~18! are determined by the bound

ary conditions~1! and equilibrium conditions~4! in a way
similar to that described in Sec. III. For example, we pres
u1 in the vicinity of the inclusion 2 by inserting Eqs.~7! and
~8! and obtain after an expansion in the small parame
r 2 /R,
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u1ur 2!R5c0
~1!S K0~jR!1jK1~jR!r 2 cosf21

1

4
j2r 2

2@K0~jR!1K2~jR!cos 2f2# D
1c2

~1!S 2K1~jR!2
1

2
j@K0~jR!1K2~jR!#r 2 cosf22

1

8
j2@K1~jR!1K3~jR!#r 2

2 cos 2f22
1

4
j2K1~jR!r 2

2D
1c4

~1!S K2~jR!1
1

2
j@K1~jR!1K3~jR!#r 2 cosf21

1

8
j2@K0~jR!1K4~jR!#r 2

2 cos 2f21
1

4
j2K2~jR!r 2

2D
2c3

~1!S 1

R
1

r 2

R2
cosf2D 1

c5
~1!

R2
1¯ . ~20!
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We have to stress that in this case the expansions up to
second order inr 2 /R are sufficient only ifja,1. For ja
@1, which is equivalent to the condition of strong later
tension, the series~20! converges too slowly to be approx
mated by the sum of just a few Taylor terms. This can
seen from the asymptotic expansion of the functionsKn(x),
which for large arguments are proportional to exp(2x)/Ax
irrespectively ofn.

Inserting the sum~18! with i 52 and Eq.~20! into the
boundary conditions~1! and the equilibrium conditions~4! at
inclusion 2, we obtain fora!R and ja,1 a set of linear
equations for the coefficientscj

( i ) . Applying the same proce
dure to satisfy the boundary and equilibrium conditions
the inclusion 1 leads to an analogous set of equations. S
ing all these equations fora!R andja,1 we obtain

c0
~1!52a1a1¯, c2

~1!52
1

2
a2a~ja!2K1~jR!1¯,

~21!

c4
~1!52a2a~ja!2K2~jR!1¯

and corresponding results forc0
(2) , c2

(2) , andc4
(2) . The coef-

ficientsc3
( i ) andc5

( i ) are given by the relations

c3
~ i !52

1

2
c2

~ i !ja2K2~ja!, c5
~ i !52

1

4
c4

~ i !ja3K3~ja!.

~22!

The interaction energyG(R) of the inclusions is obtained b
integration of1

2 k(Du)2 over thex-y plane. Transforming the
area integrals into line integrals over the boundaries of
inclusions as shown in Appendix C, we find the domina
terms for smalla/R andja,1,

G~R!52pka1a2~ja!2K0~jR!

1pk~a1
21a2

2!~ja!4K2
2~jR!1¯ .

(23)

In the limit of vanishing tensiong→0 ~i.e., j→0), this ex-
pression for the interaction energy coincides with Eq.~16!,
as can be seen by expanding the Bessel functions for s
arguments according to Eqs.~19!.

The interaction energy~23! depends on the relative orien
tation of the conical inclusions. If the cones are oriented
he

l

e

t
lv-

e
t

all

n

the same direction, their contact anglesa1 ,a2 have the same
sign. In this case the energy of interaction is always posit
and decreases with increasing distanceR. The repulsive po-
tential is illustrated in Fig. 4 for two identical and equal
oriented inclusions at different lateral tensions. By increas
the tension the interaction is weakened at large, but enhan
at small inclusion distances.

If the inclusions are oppositely oriented, the conta
anglesa1 and a2 have different signs and the energy
interaction behaves nonmonotonically, as illustrated in F
5. The energy has a minimum at a finite separationR* of the
inclusions. This means that the forces between the inclus
change from repulsive to attractive depending on the d
tanceR. For distances shorter thanR* the inclusions repel
each other, while for separationsR.R* the interaction is
attractive. With rising lateral tension the separation of ze
force R* moves towards smaller values and the associa
potential well deepens~see Fig. 5!.

V. CONCLUSION

To summarize, we derived an interaction energy betw
two conical inclusions embedded in a fluid membrane s

FIG. 4. Dimensionless interaction potentialV(R)5G(R)/a1
2k

of two equally oriented inclusions (a15a2) as a function of the
dimensionless distanceR/a for ja50.05,0.1,0.2.
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ject to lateral tension. For this purpose, we calculated
equilibrium shape of an almost flat membrane and its be
ing energy in the presence of inclusions as a function of th
distance. In contrast to the case of vanishing tension,
interaction depends on the orientations of the inclusions w
respect to the membrane plane. For oppositely oriented
clusions the interaction changes from repulsive to attrac
as the separation increases, while equally oriented inclus
repel each other at all distances. This is very different fr
the case of vanishing lateral tension where the interactio
conical inclusions is always repulsive, independently of re
tive orientation.

We did not consider in this study the contribution of the
mal undulations of the membrane to the interaction betw
the inclusions@2,5,6#. In the case of nonvanishing later
tension this may be partially justified by the fact that t
undulations are diminished by the tension. Moreover, oth
have found for the case of zero tension that the static pa
the interaction exceeds the dynamic one fork(a1

21a2
2)

.3kT @2# or 1.5kT @5,6# wherek is Boltzmann’s constan
andT is temperature. If the tension-induced forces domina
they should lead to interesting phase behavior of embed
inclusions. For example, the attractive interaction betw
pairs of oppositely oriented conical inclusions may favor
formation of clusters with a regular structure where inc
sions with different signs of the contact angles alternate.
an estimate of the attractive interaction one may use Fig
With k51310219 J ~typical of lipid bilayers!, a50.5
(26.8°), andja50.4, the minimum of the interaction energ
G(R)5V(R)a1

2k is roughly 24310221 J ('kT at room
temperature!. Because of j5Ag/k, the lateral tension
needed to produceja50.4 is given byg50.16k/a2. For a
54 nm andk51310219 J, one findsg51 mN/m, which is
below the known tension of lipid bilayer rupture@11#.

While our results are intuitively appealing and may
obtainable more directly, we performed a complete pertur
tion calculation to make sure that no terms are missed.

FIG. 5. Dimensionless interaction potentialV(R)5G(R)/a1
2k

of two oppositely oriented inclusions (a152a2) as a function of
the dimensionless distanceR/a. The potential well deepens with
increasingja50.1,0.2,0.3,0.4,0.5. Note thatR/a52 means two
disks in contact. Near this value the results can only be regarde
estimates.
e
d-
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n
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,
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e
-
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a-
e

boundary and equilibrium conditions for the membrane w
conical inclusions are central to our calculations. They
sulted in a set of linear equations for the coefficients of t
superimposed expansions, one for either inclusion. T
method is extendable to a larger number of inclusions
using similar sets of boundary conditions. In computer-aid
calculations the shape of a membrane could be determ
with any desired precision and for any number of inclusio

APPENDIX A: DERIVATION OF THE EQUILIBRIUM
CONDITIONS „4…

To derive the equilibrium conditions~4! we study a varia-
tion

v~r ,f,e!5u~r ,f!1edu~r ,f! ~A1!

of the equilibrium membrane displacementu(r ,f) on a cir-
cular ring S: a<r<b, 0<f<2p around a conical inclu-
sion. To simplify the notation we leave out indices of th
polar coordinatesr ,f. The variation is restricted by the
boundary conditions~1! of the inclusion. So

duur 5a5dc1db a cosf, ~A2!

]du

]r U
r 5a

5db cosf, ~A3!

whereedc andedb denote the changes of the height of t
inclusion center and the tilt angle, respectively. Atr 5b we
set

duur 5b5
]du

]r U
r 5b

50. ~A4!

Omitting Gaussian curvature, the membrane energy~2! can
be written as

G5E
S
S k

2
~Dv !21

g

2
~“v !2Dd2r 5E

0

2pE
a

bH k

2S ]2v

]r 2
1

1

r

]v
]r

1
1

r 2

]2v

]f2D 2

1
g

2F S ]v
]r D 2

1
1

r 2S ]v
]f D 2G J r dr df

5E
0

2pE
a

b

f ~v,v r ,vf ,v rr ,vff ,r !dr df. ~A5!

In equilibrium the energyG is minimal. So

dG

de U
e50

5E
0

2pE
a

bS ] f

]v
dv
de

1
] f

]v r

dv r

de
1

] f

]vf

dvf

de

1
] f

]v rr

dv rr

de
1

] f

]vff

dvff

de D
e50

dr df50.

~A6!

By partial integrations we obtain

as
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dG

de
5E

0

2pE
a

bS ] f

]v
2

]

]r

] f

]v r
2

]

]f

] f

]vf
1

]2

]r 2

] f

]v rr

1
]2

]f2

] f

]vff
D dv

de
dr df1E

0

2pF ] f

]v r

dv
de

2S ]

]r

] f

]v rr
D dv

de
1

] f

]v rr

dv r

de G
a

b

df ~A7!

and, insertingf (v,v r ,vf ,v rr ,vff ,r ) as defined in Eq.~A5!,
are led to

dG

de
5E

0

2pE
a

b

@kDDv2gDv#
dv
de

r dr df

1E
0

2pF r
]

]r
~gv2kDv !

dv
de

1krDv
dv r

de G
a

b

df.

~A8!

The equilibrium displacementu(r ,f) fulfills the shape equa
tion ~3! of a tense membrane. So the integrand of the a
integral in Eq.~A8! is zero ate50. Taking into account Eqs
~A2! and ~A3!, we conclude that

dG5
dG

de U
e50

5E
0

2pF r
]

]r
~gu2kDu!~dc1db a cosf!

1krDudb cosf)G
r 5a

df50. ~A9!

Sincedb anddc are independent of each other, we arrive
the equations

dG~dc!5dcE
0

2pFa
]

]r
~gu2kDu!G

r 5a

df50,

~A10!

dG~db!5dbE
0

2p

cosfFa2
]

]r
~gu2kDu!1kaDuG

r 5a

df

50, ~A11!

which state that the vertical force and the torque, resp
tively, acting on the inclusion must be zero in equilibrium

APPENDIX B: GENERAL SOLUTIONS OF THE SHAPE
EQUATIONS IN POLAR COORDINATES

In this appendix we derive the general solution of t
shape equationDDu5j2Du in polar coordinates. We per
form the calculation in two steps. We first look for the sol
tion J(r ,f) of an intermediate equationDJ5j2J and then
solve the equationDu5J(r ,f). General solutions of the lat
ter equation are also general solutions of the shape equat
Below we consider separately the case ofj50, correspond-
a

t

c-

ns.

ing to the vanishing lateral tensiong50 and the case o
nonvanishingj.

1. Vanishing lateral tensionj50

In this case the shape equation has the formDDu50. A
solution of the intermediate Laplace equationDJ50 on a
circular ring can be found by the method of separation
variables and reads@12,13#

J~r ,f!5a01b0 ln r 1 (
n51

`

~an cosnf1bn sin nf!r 2n

1 (
n51

`

~cn cosnf1dn sin nf!r n. ~B1!

The general solution of the linear inhomogeneous equa
Du5J(r ,f) is the sum of a special solution and the gene
solution of the homogeneous equationDu50, the latter hav-
ing the form of Eq.~B1!. We obtain

u~r ,f!5A0r 21B0r 2~ ln r 21!

1~A1 cosf1B1 sin f!r ln r

1 (
n52

`

~An cosnf1Bn sin nf!r 2n12

1 (
n51

`

~Cn cosnf1Dn sin nf!r n121Ā0

1B̄0 ln r 1 (
n51

`

~Ān cosnf1B̄n sin nf!r 2n

1 (
n51

`

~C̄n cosnf1D̄n sin nf!r n. ~B2!

The terms with unbarred coefficients belong to the spe
solution, which can be directly checked by its insertion in
Du5J. TheA0 term of Eq.~B2! corresponds to thea0 term
of Eq. ~B1!, etc. The terms with barred coefficients give t
general solution ofDu50 in analogy to Eq.~B1!.

2. Nonvanishing lateral tensionjÞ 0

By applying the method of separation of variables d
scribed in @12,13# also to the case of nonvanishing later
tension we find the general solution of the intermediate eq
tion DJ5j2J,

J~r ,f!5a0K0~jr !1 (
n51

`

~an cosnf1bn sin nf!Kn~jr !

1 (
n51

`

~cn cosnf1dn sin nf!I n~jr !,

whereI n andKn denote modified Bessel functions. A gener
solution of the equationDu5J(r ,f) again consists of the
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sum of a special solution and the general solution~B1! of the
Laplace equationDu50. It can be written in the form

u~r ,f!5A0K0~jr !1B0I 0~jR!1Ā01B̄0 ln r

1 (
n51

`

~An cosnf1Bn sin nf!Kn~jr !

1 (
n51

`

~Cn cosnf1Dn sin nf!I n~jr !

1 (
n51

`

~Ān cosnf1B̄n sin nf!r 2n

1 (
n51

`

~C̄n cosnf1D̄n sin nf!r n, ~B3!

taking into account thatK0(jr ), Kn(jr )cosnf, I 0(jr ),
I n(jr )cosnf, and the corresponding terms containing sinnf
are eigenfunctions of the Laplace operator.

APPENDIX C: REDUCING AREA INTEGRALS
TO LINE INTEGRALS IN THE CALCULATION

OF THE MEMBRANE ENERGY

In the calculation of the energy of the tense membran

G5E Fk2 ~Du!21
g

2
~“u!2Gd2r ~C1!

we encounter, due to our ansatz~18!, integrals of the form
I

tt

r-
r.
I ~ f ,g!5E
R2/E1øE2

Fk2 D f Dg1
g

2
“ f •“gGd2r , ~C2!

where eitherf obeys D f 5(g/k) f , which is true for the
terms of Eq.~18! containing a Bessel function, org is a
solution ofDg50, or both~see Appendix B!. Ei denotes the
projection of the inclusioni into thex-y plane~see Fig. 3!.
Applying a theorem of Green we may write

E
R2/E1øE2

~“ f •“g! d2r

52E
R2/E1øE2

f Dg d2r 2E
0

2p

f
]g

]r 1
U

r 15a

a df1

2E
0

2p

f
]g

]r 2
U

r 25a

a df2 ~C3!

if r i f (]g/]r i) goes to zero forr i→`. Since

E
R2/E1øE2

Fk2 D f Dg2
g

2
f DgGd2r 50 ~C4!

for D f 5(g/k) f or Dg50, we find

I ~ f ,g!52
g

2E0

2p

f
]g

]r 1
U

r 15a

a df12
g

2E0

2p

f
]g

]r 2
U

r 25a

a df2 .

~C5!
n,
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