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Continuum description of granular flows: Simulation and experiment
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Granular flows with strong hydrodynamic effects are studied numerically and experimentally. We introduce
a model for grain flow in the presence of an interstitial gas in the approximation that inertia may be neglected.
The model thus describes the grains as moving at their local terminal velocity relative to the interstitial gas,
which is described by a local Darcy law. In addition to these two fields there is also a fluidization field that
turns the granular motion on or off. This allows for the description of stagnant zones inside a granular flow as
well as a free surface and heap formation. Experiments are carried out to study both a simple bubble rising
through a tube and the more complex flow of grains out through a hopper. There is a reasonable guantitative
agreement between experiment and simulation for the bubble flow. In the hopper flow the stagnation zones
forming on the sides of the hopper during outflow are compared. Simulations and experiments agree quanti-
tatively to the level of exponents characterizing the stagnation zones. In contrast to earlier experiments the
present experiments use smooth grains and geometrically rough walls. This causes the present exponent to
differ from that obtained in the earlier experiments. We finally apply the model to study the dynamics of a
two-dimensional bubbld.S1063-651X98)14106-5

PACS numbds): 83.50-v, 83.70.Fn, 47.1%;j

[. INTRODUCTION in-viscid liquid, have been studiefl3]. In general these
models describe granular flows that resemble the flow of
Recently much effort has been devoted to the modelingdluids.
and description of granular flowg—3]. Like all dynamic However, many granular flows are not strongly excited. A
systems, granular flows obey the basic conservation laws cfalient feature of such “cooler” flows is the continuous tran-
mass, momentum, and energy. These conservation laws caition between solidlike behavior, where the material is kept
be cast in the form of differential equations. However, inin place by the walls of its container, to fluidlike behavior
order to make such a description useful, constitutive equawhere there are continuous internal deformations. This kind
tions are needed, in particular relations between strain andf behavior appears not to have been previously studied by
stresq 1], and an equation of state. Since the validity of suchcontinuum models—although it has frequently been ob-
constitutive relations depends strongly on the granular mateserved in experimental studies, for instance, in Réf4,15.
rial at hand as well as its dynamical state, general continuum The purpose of the present paper is to investigate a con-
descriptions of granular flows are difficult, if not impossible. tinuum model that describes both the transition between the
While it is true that existing descriptions may work well for solidlike and the fluidlike behavior, and the dynamics of the
strongly excited granular media, they are not applicabldlow. We specialize to the case of dry granular flow, which is
when the medium is less excited. strongly influenced by interstitial gas. The description of this
In hydrodynamics a wide variety of phenomena are deflow is similar to that of fluidized bedgl6]. However, as in
scribed by the Navier Stokes equations for incompressibleellular automata treatments of granular flows, the spirit of
fluid flow. Since no analogous unified descriptions for granuthe present modeling emphasizes simplicity more than accu-
lar flows exists, it is important to examine carefully the re-racy. In this spirit we propose a simple dynamical picture
gimes of validity of each separate model. In most cases dfased mainly on the equations of mass conservation. The
interest, this cannot be done without direct experimentatentral simplification of the fluidlike dynamics relative to
verification. earlier models is the neglect of inertial effects in both the
While current efforts to understand experiments of granugranular and gas phase. The aim is to model large scale
lar dynamics have largely focused on molecular dynamicgeatures rather than details of the flow.
simulations[4], a wide variety of simplified descriptions In order to describe the solid-fluid transition of the granu-
have also been studied. There are several models for granular material, henceforth called sand, we assume that above a
flows that are based on simple kinematic rules for the motiorcertain threshold density, it behaves as a solid block con-
of individual graing[5—7]. Although these models may pro- nected with the walls of the container, whereas it behaves as
duce grain formations, like heaps of realistic shape, they lack fluid governed by local drag forces where the density is
a realistic dynamic description. below the threshold value. This means that where the density
Among the models that focus on dynamic aspects obecomes larger than the threshold, the sand velocity is set to
granular flows there exist various continuum descriptionszero corresponding to solidification. In a real system, where
[8—11] as well as cellular automata models that seek to capmomentum conservation holds, this would imply that mo-
ture some essential part of the physjgs$. For the case of mentum was absorbed by the surrounding walls. In our
fluidized bedq12] continuum descriptions that describe the model description this momentum transfer is not explicit;
state of granular material excited by the flow of gas as armnly its effect of keeping the grains in place is taken into
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account. The communication between the solid and fluidained by measurements on a finite size container to an infi-
phases takes place on the boundary between them. nite container size was 0.40. Hence, in a random loose pack-

The continuum equations to be derived are solved by thehng at atmospheric gas pressiire=0.60 andp=1.0.
use of a lattice Boltzmann modgd7]. This model resembles e shall take the threshold density below which the sand
a finite difference method in the way it treats the fluid phasejs allowed to move as that of the random loose packing.

and could be replaced by such a method there. However, tr\ﬁ/henfas exceedg, the motion of the sand is frozen relative

model has a particularly useful aspect in providing a simpleto the walls. We shall refer to this state of the sandalili-
physical scheme for the solid-fluid boundary interaction. The d and we shall call the state wheﬁg< and the sand
<Po

model is based on the exchange of mass along links betwedl® <
lattice sites, and while the solid sites are otherwise frozeffa move adluidized o ,
they are allowed to exchange mass with the fluid sites alon% The consgrvaﬂon of sand and air is described by the con-
the links to them. huity equations

To examine and validate the model we study three types
of flow, two of which depend strongly on the interstitial gas
and one in which the internal transition between solidlike . "
and fluidlike behavior is the dominant feature. The gas domi- dpst+V-]s=0, 2
nated flows both involve rising bubbles of air through
densely packed grains. In the first case a bubble of air riseghere the (normalized mass currents of air and sand,
through a straight vertical tube. As the bubble rises it disj,, js=pg4js, have been introduced. These currents are
solves, and the free surface near the top of the tube is lowpartly determined by the local Darcy law
ered. Experiments and simulations agree on the large scale
features in a rough quantitative sense. In the second gas- i
dominated case we investigate the qualitative aspects of a la=p
rising two-dimensional bubble numerically. Both a charac-

teristic bubble shape and a dynamic evolution of the freghere the sand flow velocityszfs/ﬁs andK=K([JS) is the

sur_lf_?]ce s obtair:\ed. . : | I e i local permeability of the sand matrix, the dynamic viscos-

| © (r:]ase w elre gafsl mte;act;]ons play ‘2 smaher rI(I) € Nity of air, andP the interstitial air pressure. Equati¢8) says
volves the granular outflow of a hopper with rough walls. In ot i the local rest frame of reference for the sand the air
the experiments the grains are large, thus allowing the 9as i,y 5 proportional to the pressure gradient. We shall take

pass easily through. The system is phoftographed with the local permeability as that given by the Carman-Kozeny
charge-coupled devic€CCD) camera at various times, and expressiof19] for packings of spheres. It reads
the resulting images are subtracted pixel by pixel to allow

detection of stagnant zones. Even though inertia is thought to

dp+V-ja=0, ey

K
Ug— —VP), 3)
)7

2 _~\3
be important in the experiment and not included in the simu- K(,‘)s):a_ (lA_pS), (4)
lations, the experiments and simulations agree on the quali- 9K p§

tative shape of the stagnant zones as well as the exponent
that governs the relation between the hopper angle and theherea is the sphere’s radius and the constért5 is ob-
distance from the hopper opening to the stagnant zone. Wegined experimentally for a random packing of spheres. The
find that this exponent differs significantly from earlier mea-above Darcy law plays the role of a constitutive equation for
surements by Baxteet al. [15] where smooth walls were the mass currents and relies on the flow to be governed by
used. viscous—rather than inertial—forces, i.e., the pertinent Rey-
It is noted that the numerical method employed, whilenolds number must be small. In the experiments particles of
adequate for the simulations discussed, appears to lack tlitameter 50 and 6wm are used. At terminal velocity for
resolution necessary to deal realistically with system whereingle particles in air the Reynolds number is less than 0.8,
small scale pressure differences are crucial for the dynamicsvhich in the present context will be considered marginally
Such systems presently include the intermittent flow of sangmall. In the modeling of fluidized beds E@) is employed
in an hourglas$14]. with an extra term that is second order in velodity]. This
term can be neglected at small Reynolds numbers. For fluid-
ized beds momentum equations both for the fluid and granu-
lar phases are used. The neglect of inertial terms constitute

As a starting point of the description we define the localthe main simplification in the present model. It should be
densities of sand and air. The sand mass depsity defined  noted, however, that while inertial forces may be negligible
as the density per unit volume. This volume is occupied byfor single particles they may be important for the motion of

both sand and air. We define the dimensionless depsity clusters of pa_rtlcles. . e
=ps/py Wherepg is the density of the material that makes . ";] Appelzndllx B we allrgue thatf;c_h(_a |n|terst|t|<'illl ?'r \é‘”" be
up the grains, in this case glass. Likewise we define the gisothermal w 1en pa_rt|c €s are su iciently small n.'F at case
mensionless density of ajr as the mass of air per unit vol- Ehe pressure is easily vv_ntten In terms of.the densiiend
ume normalized by the density of air at atmospheric pressurgs- It follows from the isothermal equation of state for an
in a random loose packing. We shall use the result given bydeal gas thatpPxp where ¢=1—ps is the porosity. By
Scott [18] for the porosity of a random loose packing of taking the gradient on both sides of this equation and then
spheres. The value he obtained by extrapolating data olglividing by the equation itself we obtain

Il. THE MODEL
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VP Vp Vp where the subscripts and k denote the time at which the
—_ =t —. (5) fields are evaluated and the last line follows by induction

P P 1-ps from the first. Upon convergence of the densities must

organize to giveVP=pJ. This happens when the down-

Substituting this equation of state in B§) we get wind instability is handled as in Eq7).

Even though the description of the mass flows given by

) kP Vp V[)S Egs. (6) and (7) neglect all inertial effects, they will deal
Ja=p| Us— 7 74' 1-, (6) correctly with the time dependence caused by the variation

S

of permeability and air pressure. Hence, when accelerations
can be neglected the model will describe both the transient
pressure relaxation and the overall evolution of the bubbles
following from the semisteady velocities.

as the governing equation for the flow of air.
Equations(1)—(6) do not fully determine the dynamic

evolution of the conserved densities. The physical assump- By rewriting Eqs.(7) and (6) in terms of dimensionless

tion we add to complete the description is that the sand flo uantities, obtained by rescaling of the velocities by

immediately reaches steady state, i.e., we neglect the acce:-K(po)pgg/M, the densities by their stationary values, the

mately[a/(50 xm)]* 3 cm if the particle is falling freely. = k(po)Po/ . When the above expressions 1dg and D
In a dense packing where there is also an initial upwards o usoedOPe takes the form 0

flow of air this distance is likely to be significantly smaller.
If grain accelerations thus are neglected the net fpes
unit volume acting on the sand must vanish, i.¥.P=p.g,

whereg is the acceleration of gravity. We will substitute this . )
relation in Eq.(3) to get an expression fan,. However, The Pelet number may be interpreted as a measure of the

since we are neglecting inertial effects, we will have prob_ratiq qf the conyective flow_ rate of sand to the diffusive flow
lems when the falling sand causes the air to move downof air in the solid pha_se. Itis also the ratio of pressure forces
wards, and, in the next time step, the sand again acquirég gravity forges. For_lnstance, apubble of air rising in a tube
terminal velocity in the moving air. This downwind instabil- full of sand is described by the Elet number Pe0.125,

ity may be avoided by simply imposing that the sand onlyWhenPq is taken as the atmospheric presstre,0.5 m and
feels air motion that reduces the sand velocity. The sanée density of glaspy=2.5x 10° kg/n’. Note that Pe de-

Pe=pygh/Py. (8

velocity is then prescribed by the following relation: pends on the background prességbut not on the perme-
ability (particle radiug or viscosity. This is because the sand
jalp+(klw)psg when |us—ja/p|<us flow rate in still air and the air diffusivity depend ot in
i a way such thak/u cancels in Pe.
us=1 (x/p)psg when  |us=ja/p|>Us (7) Among the other simplifications made in the model, the
0 when ps=p,. use of the approximate Carman Kozeny equafirfor the

permeability is important. It can be shown to hold reasonably
Note that while the approximate Ef) depends on the rela- Well for packings that are sufficiently dense. Zick and
tive velocity j,/p—us only, the Vp/p term in Eq.(6) de- Hpmsy [20] have demonstra_te(_j that there is a_greement
pends orj,/p through Eq(1). Equationg7) and(6) are thus within 25% between the predictions of E@L) Aand simula-
independent and fully determine the flow velocitiegsand  tions of flow in periodic arrays of spheres wheg>0.3. For
Us. The physical reason for this is the approximation of van-lower densities Eq4) becomes less accurate. Because of the
ishing accelerations in Eq7). By the above assumptions we stability criteria of the Boltzmann modgR1], we have fur-
have obtained a closed set of equations on the level of magker introduced the cutoff condition on the permeability that
conservation, thus avoiding the complications of finding thex(p.<0.3)= k(0.3)= knax.
correct constitutive equations that describe the flow of mo-
mentum or energy.

How do the density fields relax to a state as described b)}”' THE NUMERICS: A LATTICE BOLTZMANN MODEL

Egs.(7) and (3)? This question is less obvious than in the  The lattice Boltzmann model that we introduce for the
qase_where a momentum equation is employed. When thgresent purposes represents a generalization of a model for
first line of Eq.(7) is used to get the current value of at  advection diffusion phenomer21]. These phenomena are

timet,, the previous value gf, at timet,,_, is required. By  described by the advection diffusion equation
combining the first line of Eq47) and Eq.(3) to eliminatej ,

we obtain the recursion relation dp+V-(pu—DVp)=0, (9)
(n)
uMr D =y 4 K_(pm)g_vp(n))} whereu=u(x,t) is an arbitrary vector field anB =D (x,t) a
s s mos diffusivity, which may also depend on space and time. The

K equation describes the conservation of the densitwhich
_ K K y_ v pk is transported by the combined action of advection and dif-
> g—VPY)
woos ' fusion. We will exploit the fact that Eqg1l) and(2) can be
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cast in the above form. In the following we briefly review P k(p)DaVp
how the lattice Boltzmann model works. A?ng 1+2¢- | ug— ————2| | (15)
In general a lattice Boltzmanfi.B) model[22] describes (1—ps)

a fluid by a large number of particle populatiof3] that
move from site to site on a regular lattice, where they interacEor every time step the currejy is computed and the ad-
in collisions according to certain conservation laws. In thevection velocityug is given by Eq.(7). Also the discrete

present case the lattice will be triangular. The lattice unitapproximation ofV p; must be computed at every time step.
vectors connecting neighboring sites axg i=1,...,6.  There are now two evolution equations that are equivalents
While a finite difference approach would give a numericalof Eq. (11) for A; and S; and two corresponding relaxation
solution to the conservation equations, a LB model is basefarameters\, and Ag. The first of these is chosen as
directly on a conservative process, which in turn is described. —2/(4D o+ 1) with D 5= x(p<) Po/ 1« WhereP, is taken to

by the conservation equations. This is useful in |mplementbe the constant initial average pressure

ing the boundary conditions. The parameteig determines a diffusivit for the
The particle populations are denoted dy(x,t). A com- para oS . I S s s .
transport ofpg, i.e., an additional ternDsV ps on the right

mon interpretation is to think dfl;(x,t) as the probability of . X - .
finding a particle ak at timet moving with unit velocity in hand side of Eq(7). For reasons of numerical S.tab'"ty this
term cannot be set to zero. Hence, even thdDghs chosen

one of the six lattice directions=1, ... ,6. However, we I icall ble. th il b diffusi
may also think of thé\;’s as actual masses. The dengitis as smail as numerically possibie, theré will be a ditusive
defined as smoothening of sharp fronts in the sand density profiles.

Since Eq.(7) predicts a faster flow of dilute than dense

6 regions, fronts of increasing gradientsﬁ'ug may form. In
pZZ N; (10 particular, if sand is settling down through stationary gas
=1 lower values ofps propagate faster than higher values and

and the algorithm consists of a two-step procedure: First th%h: :)pthS:rOﬁI;ﬁ (;n Eiityn:(;g/mbgzlr?ol\sz[m?(%i?]g: sdeud;r?(;e ?ﬁ'g?akéid;' on

Eizti(retécrlﬂe(:cgrrg?nab'ltgtl'[isei?;ngg?gtzaa\:gﬁ)ctigetshill;( nf'g;]?snn%ertia, small perturbations during settling in a homogeneous
9 MK TG ps are linearly stable. The finite diffusivitl 5 will counter-

Slr:/degrg;geav?(lz(:ll ()imie(r)fa{(t:?[i;(rzr tﬁ;?rz ;ﬁssef\fg:?héht?/aﬂgof act the_formation of shocks. I_:u_rthermore, for the dynamics
. e T tq be given by Eqs(6) and(7) it is necessary that the scale
These two steps constitute _the basic simulation time step a er which the densities vary is significantly larger than the
are described by the equation scale of the lattice constafi2l]. For this reason as well as
that of numerical stabilityD must be nonzero.
Theoretically it would have been more elegant not to have
dhe Vps dependence id. It is possible to obtain the same
macroscopic equationd) and(2) by instead having a term
linear in S;—S%in the evolution equation foA; . However,
this solution is numerically unstable.
p In order to describe the solid fluid boundary a Boolean
NF=5(1+26:-u). (120 field C(x,t) is introduced. At “solidified” sites wherep
=po C(x,t)=1, otherwise it is 0. The interaction between
Note that sincet;N®%= p and the propagation step conservesthe fI_u_id and solid phases that is responsible for the dynamic
the values of theN.’s, Eq. (11) conserves at every time transition bgtween the tyvo takes place along the bonds that
step. At boundary sites the probabilities are propagated bacgennect solid and fluid sites. The mass exchange along these
into the directions from which they came. This gives a van-20nds is free, just as in the fluid phase. This is illustrated in
ishing mass flux on the boundaries. By using a Chapman_'-:'g- 1. In_the solid region the dynamics of the_ sand denS|_t|es
Enskog expansion procedui2] it is possible to show that S oth_erW|se frozen in the sense that the particle popula_’uons
the evolution ofp resulting from Eq(11) is indeed given by &€ Simply not touched. Equatid6), which governs the air

Eq. (9) in the limit of small spatial gradients ip. The dif- dynamics, then reduces to the simple diffusion equation.
fusivity is given as As the sand mass transport between the solid and fluid

phases is proportional to the density difference between the
1<1 1) adjacent solid and fluid sites, the solid-fluid interaction is

Ni(X+Ci ,t+ 1):Ni(X,t)+)\[Ni(X,t)—Nieq], (11)

where\ is a free relaxation parameter of the model and th
equilibrium distribution N79 depends only oru(x,t) and
p(x,t) and is given as

D=- > X+ > (13)  diffusive in nature. The existence of the granular diffusivity
D, adds to this picture. It is instructive to work out a simple
example of the steady surface boundary layer that the model
contains: Take the case where the boundary of the solid re-
gion forms a straight line at an angi to the horizontal and
assume for simplicity that the air currggt=0. We may then
obtain the surface curredf=fdz'jg wherez' is a coordi-
nate normal to the boundary apg is the parallel component
of the full granular mass currepf= — DV ps+ psUs. Since
ja=0 Eq. (7) reduces tous=«/upsg. At steady statg,

Now, in order to solve Eqs(l) and (2) we introduce two
particle probabilitiesA; and S; that define the densities ac-
cording top=3,A; andp==;S . The corresponding equi-
librium distributions are taken as

sieq=%(1+2ci uy), (14)
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FIG. 1. Particle populations in the Boltzmann model. The sites
marked with a® are solidified sites. Filled arrows represent sta- Magnets
tionary particle populations while empty arrows represent moving I
particles. All directions on every site has an associated particle
population. Only selected ones are shown.

FIG. 2. The experimental bubble setup. A plate with a hole is
pulled to the right by an external magnet, thus allowing the bubble
to form within the sealed system. The bubble motion and the top

_ (2 -
=0 and Dy(Vps), =(xps/n)g cos®. Hence jg=psUs|  interface are recorded by two video cameras.
= (Kpﬁ/,u)g sin®=plg, tan®=D¢(Vpy), tan®. Integra-
tion of the right-hand side gives A. Bubble in a tube
Jj=poDstan @, (16) One of the simplest possible applications of the model to

a case where gas interactions are strongly governing the flow

where, as beforep, is the density in the solid phase. The is a simple one-dimensional flow through a tube. In the ex-
physical picture behind this equation is that of a randomlyPeriments, the flow is, of course, three dimensional.
excited thermal gas in a gravity field, where particles that Bubble dynamics have been studied extensively in the
tear loose from the solid phase receive a certain averagease of fluidized beds, and an approximate analytic solution
constant velocity. In Appendix A the density profile across aof corresponding continuum equations for mass and momen-
©=0 interface is studied in some more detail, and it istum conservation has been obtained by Davis and Taylor
shown that it confirms well to analytic predictions. [26]. While this solution neglects boundary effects and de-
The surface flow in the model implies that heaps of granufends on the inertia of a fluidized medium, the present nu-
lar material will slowly decay to a flat state, as if they were merical study focuses on a drag dominated bubble in an ini-
being gently shaken. However, as will be seen in Sec. IV C itially close packing in the presence of walls. The
is possible to identify an interface shape on the time scale gixperimental setup here is similar to that used in the work of
the simulation as the final decay of the interface happen&aafatet al.[27] who also introduce an analytic description
more slowly than the main flow itself. of the nonlinear essentially one-dimensional motion of
The discontinuous transition between the solidified anddranular plugs. However, while their work deals with the
fluidized phase is based on the physical approximation thdynamics of a finite “bubble” of sand moving through air,
all grain-grain contacts are instantly replaced by hydrodylhe present setup deals with the complementary state where a

namic grain interactions when the density falls below thebubble of air creates a local motion in a bed of stationary
threshold density. sand. The present description and the corresponding simula-

It is a well established fact that a granular medium mustions are two dimensional and can easily be extended to three

dilate (expand in order to move relative to itself or its sur- dimensions.

roundings[24,25. The dilatency necessary for motion rela-  In the experiment, illustrated in Fig. 2 the bubble was

tive to a smooth wall might be significantly smaller than thereleased at the bottom of a long vertical glass tube. The tube,
d”atency needed for internal shear. In the present modevyhich is closed on both Sides, has an internal diameter of
however, we make no such distinction between small an® Mm, and a total internal length of 105.1 cm. The tube has
large dilatencies. In the simulations discussed in Sec. IV Awo parts of length 5 cm and 100.1 cm, respectively. The

the dilatency needed for the motion relative to the walls toupper part of length 100.1 cm was filled with small glass
begin is determined by the initial excess density. beads and the lower part 5 cm was filled with air at atmo-

spheric pressure. Two types of glass beads of diantbter
=518 um andd=65+9 um were used. A density of
ps=1.38 g/cm was obtained by simply pouring the beads
In order to see what can be learned from the presento the tube. To perform an experiment with an increased
model we now turn to the direct comparison of it by two density, thed=65 um particle packing was further compac-
selected experiments. tified by tapping uniformly on the side walls. This gave a

IV. EXPERIMENTS AND SIMULATIONS
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densityps=1.44 g/cni. A shutter mechanism is placed be- i

tween the upper and the lower tube. The shutter consists of a "“""
0.5 mm thick aluminum plate with a hole of diameter 5 mm.
Two small permanent magnets are mounted on each side of
the plate, and an external permanent magnet was used to
move the plate. The bubble propagation starts when the hole
in the aluminum plate is in position with the tube. To prevent
air leakage and to make the system transparent, the shutter
mechanism is sealed in a piece of Plexiglas. Both the upper
and the lower parts were initially kept at atmospheric pres-
sure. To visualize the motion of the bubble and the top level
of the sand we used two video cameras. The camera that
Il |

recorded the bubble motion was mounted on a vertical trans-
lation stage to follow the bubble. The second camera re-
corded the motion of the top interface of the sand.

The bubble has a rather sharply defined top and bottom.
The position of the upper and lower interface of the bubble
as functions of time were easily determined from video re-
cordings of the bubble motion. Also the position of the free
surface on the top was easily defined.

In these experiments one should really consider two val-
ues of the dilation needed for the granular packing to start itS FIG. 3. Simulation: the fluidized region shown at a series of
motion. To move relative to the walls the static wall-particle different times. Parameters are as in Fig. 4.
friction must be relaxed. Due to the slight elasticity of the

particles this requires a small dilation of the packing. Thisya|ye ofg. On the other hand, the motion of the bubble itself,
dilation will be larger if the walls are rough. To move rela- \yhich takes place on a larger time scale than the front propa-
tive to each other particles must be able to pass by eaC@ation, depends only weakly an
other. This internal shear motion requires a much larger di- Figure 4 shows the time evolution of the sand density
latency, which may be of the order 10%. In the case of thgyqfiles in the simulations. The location of the bubble bottom
flow in a smooth tube like the present one, an initial com-anq top as well as the position of the free surface was defined
pactification of the packing may survive throughout the ex- these simulations as the position where the density was
periment 25]. This.confirms that in order'to move relative to 5 way between its local minimum and maximum values.
the v_valls the pgc_k_mg nee_d only reduce its density by a smalpege positions are illustrated in a graphical way in Fig. 5,
fraction of the initial density. _ which also closely resembles the visual appearance of the
In the simulations no wall friction exists, and the wall gxperiment. The final comparison between experimental and
interactions are either on or off according to the valupaf  simulation results is shown in Figs. 6 and 7. In the experi-
The bubble was initialized as a depletion of Gaussian shapsent the bubble location is determined by visual inspection.
in an otherwise constant density proffle=(1+q)p,. Ini-  In the simulation, where the bubble undergoes some diffu-
tially the solidification field is therefore on outside the deple-sive smearing, its extent is defined by the region where the
tion. The termq is the relative excess compactification. Ini- density is below fo+ pmin)/2, wherepp,, is the minimum
tially in the simulation a fluidization front propagates value of the density in the bubble. The position of the free
through the system, as illustrated in Fig. 3, thus reducing théurface is defined similarlyy, is in this case the minimum
density belowp,. For moderate values af and significant value of the density above the surface. The time is normal-
values of the terminal velocity, which the particles are asdzed by the timeT,, which is the time the(extrapolateyl
sumed to reach instantly, the layer of sites that become flu-
idized will have a sufficient mass transport away from the ' ' '
front to allow the next layer above to fluidize in the next time 0.6
step. In this case the speed of the front will be betwgal2
and 1 lattice unit per time step, depending on the orientation o 04t
of the lattice.
This rapid fluidization front, although realistic in appear-
ance, only captures part of the physics in the experiment. In 0.2
the experiments the packing must also loosen from the walls
by the action of a rapidly propagating front. But here inertia, 0.0 ' ! ! '
wall friction, and long range force network will all be poten- 0.0 0.2 04 0.6 0.8 1.0
tially active mechanisms. Several questions regarding the y/h
fallout process from a region of grains supported by the
walls are still open, both in this and related wofR]. FIG. 4. Simulation: the dimensionless sand density profiles at
In the simulations the delay of the free surface motiondifferent times. The system size is 512 by[,=0.001 and the
relative to the initialization of the bubble is sensitive to the compactification parametey=0.0025.
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FIG. 7. The surface positions corresponding to the bubble posi-
tions shown in Fig. 6.

tion rules. Here we investigate the latter in a simple hopper
| flow experiment. The solid-fluid—like transition is a uniquely
I granular phenomenon that is linked both to the static friction
| present between grains and the dilatency that is a prerequisite
I for granular motion.
| In the experiment a quasi-two-dimensional hopper con-
| sists of two glass plates separated a distance 5 mm apart. The
| | A 1 A | A 1 I O | N inclined hopper side walls make an an§¢2 with the ver-
tical. These side walls are made rough by absorbing glass
FIG. 5. The bubble and the top regions shown at a series oP€ads onto double-sided tapes, glued on the side-walls. The
different times. The figure represents the same data as in Fig. 4. Width of the orifice, initially closed with a piece of tape, is
D=10.1 mm. The hopper was filled with glass beadsof
bubble needs to reach the top of the sand packing. The po=1.0 mm, and the flow was initiated by removing the tape at
sitions are normalized with the position of the top surface the orifice. To visualize the flow, pictures were taken with a
before the bubble was released. Both experiments and simf}igh resolution(1500 times 1200 pixeJskodak DCS 420
lation agree that the velocity of the bubble is independent ofCD camera. The stagnant zones become apparent by sub-
its position and size. The agreement is fairly good both fortraction of the pictures with a picture before the flow started.
the position where the bubble finally disappears, and for thé\S seen in Fig. 8 the stagnation zones will then appear as
top motion. In view of the simplifications introduced in the regions with much less noise than in regions with particle
simulations this agreement is rather encouraging. Howevefnovement. Note that on account of the gluing of particles to
it should be noted that both the interior shape of the bubbléhe walls, a layer or two along the sides will always be stag-

and its exact boundary positions are not captured by th8ant. Figure 9 shows the corresponding simulations. These
simulations. were carried out in an hourglass geometry in order to see the

pile formation in the bottom as well. This pile has the same
gualitative shape that is observed in experimditts The
distanced. to the stagnant region from the orifice, as indi-

~ There are two main aspects of the modeling, the gas-graiated in Fig. 8, was measured as a function of the hopper
interaction described by the comoving Darcy law and the

grain-grain interactions introduced by the solid fluid transi- e

B. Stagnant regions and hopper flow

————— e —

e——e Simulation S
04 r 4 Experiment d=50 um “‘t‘
O Experiment d=65 um s #i

0.0 0.2 0.4
time/T,
FIG. 8. Picture of the hopper flow experiment. This is a differ-
FIG. 6. The top and bottom positions of the bubble and theence image obtained by subtracting an image before from an image
position of the top surface for the simulation and experiment. Theduring the flow. The stagnation zones, which are regions of no
positions are normalized by the tube length. Simulation parameterdisplacement, are made visible as distinct dark zones with very little
are as in Fig. 4. Here the lattice is<612 andq=0.0025. noise.



t= 52428 t=104856 simulations model an experimental situation where the wall

has the property of a collection of fixed grains. For that rea-
son smooth walls were inadequate for comparison with the
present simulations. This corresponds to walls with grains
glued onto them as in the experiments. Figure 11 shods 1/
as a function o® for both the simulations and experiments.
Both graphs are consistent with a linear dependence. This is
in a striking contrast to the smooth wall experiments by Bax-
ter and Behringef15] who obtained an exponent of 2.2
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+0.1. The prefactors are seen to differ in the experiment and

t= 0
the simulations though. These are expected to depend on

t=157284  t=209712 grain-grain friction as well as the grain geometry and possi-

I | l I bly size (see Fig. 12
Finally we present some purely numerical results for a

While the simulations do not include inertia, the experi-

ment clearly does as the particles in the hopper opening are

large and fall freely. The flow rate close to the stagnhant

zones, on the other hand, is very slow. However, it may still
be affected by the inertia controlled central flow. Hence, it is
not obviousa priori that the simulations are suited to capture
the experimental behavior, and the results must be judged in
view of that. It is therefore an encouraging observation that
the stagnant zones indeed appear to be predictable by the
present, inertialess model.

FIG. 9. Hopper flow. The granular density is_shown on a."neartwo-dimensional bubble, which is shown in Fig. 12. The
gray scale where black corresponds to the highest density. ThSubble was again initialized as a Gaussian depletion in an
Peclet ber Pe0.12,D,=0.0005, and the lattice is 64128. . e - .

eriet number Fe s and fhe lafiice 1S otherwise constant density field. The simulation parameters
angle®. In the simulations the stagnant regions are directlyi{l%v%alzg Iirr11 ggccall\etgn;r:]l f\',go 1;22i;gdfg'g?iﬁ:sgesl?réi_
available as the regions where the solidification field is onlations are the s.hape. of the bubble which shows a clear
Flgurg 10 shows .th's f|_eId as a function .OT time. In bOthwedge shape in the bottom, and thé evolution of the free
expenmgnt and smula’qons_ the lower position of th? Stag_surface. As is discussed in ’the Appendix, the free surface
nant region yvas quite tlme |nd.ependen'F,AS(.) that a S"?'g'e shape will change slowly in time, corresponding to the fact
could be defined. In the simulations the figldinteracts with 15t there will be a small surface flow due boundary diffu-
solidified sites in the same way as wall sites. Hence, thgjon, However, in large simulations a separation of the time

scale on which the main flow takes place and the time scale

C. A two-dimensional bubble

t= 0 t= 52428 t=104856 on which the surface flow takes place, is possible. Hence, the
surface will have insufficient time to change between the end
of the flow and the end of the simulations, and comparison
between experiment and simulation will make sense.
1.5 T T r
@—@ Simulations P
== Experiments /
1.0 1

&
X

0.0 : : :
20.0 40.0 60.0 80.0 100.0
0

t=157284 t=209712 &3
FIG. 11. The inverse distancedl/, whered, is the distance

between the hopper opening and the stagnation zone as a function

FIG. 10. The solidified region shown as dark gray correspond-of the hopper opening angl®. Both experiments and simulations
ing to Fig. 9. The fluidized region is shown as light gray. are shown.
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t= 0 t=20480  t=40960
t=61440 t=81920 t=102400

t=122880 t=143360 t=163840

FIG. 12. A simulated two-dimensional bubble at different times.
The Pelet is Pe=0.025, the granular diffusivityD;=0.0005, and
the lattice size 128 128. The gray outer rim of the bubble shows

the region where the density is in the interval@[&< 0.35.

V. CONCLUSION

We have introduced a model for granular flow under th
influence of an interstitial gas. We have tested the model b
comparing its main features directly with experiments. Thi
development has had three distinct parts:

(1) the development of the model as described by Egs.

(1) and(2) and the constitutive permeability;
(2) the development and implementation of the corre

sponding scheme for the numerical solution of this

model by means of a lattice Boltzmann model;
(3) the experiment and interpretation necessary for th
comparison with the theoretical results.

Although we have in part found quantitative agreement be
tween experiment and simulations, we stress that (@amf
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only partially solved by the present numerical scheme. This
numerical scheme has successfully described the dynamics
of a single bubble where details of local pressure variations
are not crucial. Current numerical studj@8§] aimed at mod-
eling the intermittent flow in the “ticking hourglass[14]
indicate that this can be done with a model similar to the
present one, but at the expense of solving explicit pressure
and momentum equations.

When grains fall through a gas at terminal velocity coop-
erative hydrodynamic effects, giving the local drag forces,
will cause dilute regions of the particle cloud to fall faster
than denser regions. This effect will cause shocks to form,
and in experiments on granular pipe flg&7] sudden ap-
pearances of clogs are observed. Numerically this is an in-
trinsic mechanism of instability as it implies the divergence
of density gradients. For this reason the numerical model
used, which is a variant of a lattice Boltzmann mofEf],
cannot explore all the information that is in principle avail-
able through the governing equations at hand.

We were, however, able to predict quantitatively the mo-
tion of the bubble boundaries in a tube and the motion of the
free surface. Moreover, the model was successful in the de-
scription of hopper flow with the boundary between flowing
and stagnant regions. Further developments of numerical
technigues to handle Egdl) and(2) seem a promising route
Yo improve insight on complexities of granular flows.
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APPENDIX A: THE INTERFACE THICKNESS
AND NUMERICAL STABILITY

this development does not perfectly communicate between

parts (1) and (3). This is due to the fact that the equations

The free surface of the sand will have a finite thickness as

t= 0 t=20480  t=40960
t=61440 t=81920 t=102400

Ldhd hd

t=122880 t=143360 t=163840

FIG. 13. The fluidized and solidified regions corresponding to
Fig. 12. Again the solidified region is shown in dark gray and the

fluidized region in white.

nonvanishing diffusivity in the sand current. In E/),
which gives the sand mass current, we get an extra diffusive
term — D Vp, on the right hand side. Hence, in the steady
state when there is no mass flux, Ed) takes the form

K(;)s)

0= p2g—DVps, (A1)
whereDyg is the small but nonzero diffusion constant. From
Eq. (A1) it is possible to obtain an expression for the density
profile across an interface oriented perpendiculay. td y is
taken as a coordinate alongg we get

Dsu -
=— %dps, (A2)
Pg9PsK(ps)
which can also be written
Kkodp dy
AZ—AS =—Pey- (A3)
psk(ps)
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0.8 ‘ ‘ agreement between theory and simulation is obtained for an
L06 preeoceoce 1 interface thickness of 2-3 lattice sites. However, when the
Q 8421 g \_ ] simulations are two dimensional, the minimum thickness is
0.0 ‘ about 5-6 lattice units.
0.7 0.8 0.9 1.0 In an actual simulation this stability criteria limit the reso-
y/h lution of the results. The diffusive smearing of the sand den-

sity field can be estimated by the increase in the root mean
square widthAz of a Gaussian profile. When the time is

— — ; 2
interface. The solid line shows theoretical values given by Eqs.taken ast=h/U, where Uo=PeD,/h the result isAz

FIG. 14. The densit)aS as a function of position across the free

(A4) and (A5) andO shows the simulations. =_2Dst=2DS/(PeDa)h2, i.e., the characteristic smearing
distance

where we have introduced the "dd&t number Pg

=Ugh/Dg. Integrating this equation from a known density E: 2Ds _ (A7)

,350 atygy and using Eq(4) we immediately get h  PeD,

1-heo According to Eq.(A6) the diffusivity Dy can be chosen
ps=1— . (Ad) smaller as H when the system size is increased while keep-
\/1_ 2 Pe[p2/(1—po) (Y —Yo)/h] ing the interface width fixed. Hence, since a smallgmives
a smallerAz, the resolution can be improved by increasing

However, conforming to the stability criteria of the Boltz- the system size. However, the relative spread only decreases
mann model[21], we have introduced the cutoff condition as 1AM,
on the permeability thak(,35> 0.3)= «(0.3)=kax- Hence
Eq. (A4) only describes the interface down to the cutoff den-  APPENDIX B: DISCUSSION OF THE ASSUMPTION
sity. For thep,<0.3 region we must repeat the above exer- OF AN ISOTHERMAL GAS
cise with k= k. This gives the result

Air at atmospheric pressure is well described by the equa-
~, tion of state for an ideal gas. For sufficiently small particles
;)S: Pso ’ (A5) the gas even follows thisothermalequation of state, which
1+ (kmax ko) PE(Y—Y4)/h we shall employ. To justify this we must examine the time
needed for heat to be absorbed by the grains and compare it
Wheref)s=f3;0 aty=y;. Hence wherD,—0 and Pg— to other relevant time scales. The shortest available such

the density profile will be infinitely sharp. scale is the timeé, a particle spends in falling a distanaeat
When Pgis finite, the first part of the interface will have terminal velocity. For this order-of-magnitude estimate we
a characteristic thickness will approximate the description of the temperature evolution
in the air with a simple diffusion equation. The thermal dif-
h Dg Dgh fusivity is then given a®+=k/(pc,), wherek is the thermal
Ay= p_%: U_o: D,Pe (A6) conductivity [with units WAK m)], ¢, is the specific heat

capacity at constant pressyseith units J/(K kg)], andp is

The latter expression is relevant if, as in the simulations, Péhe mass density. A local temperature variation will spread
is fixed by the experimental value anB, by num- out diffusively according to the diffusion la’d X?=2D+t,
erical constraints [21]. In the simulations D, Wwhere AX is the characteristic spatial extent of the local
=0.001(lattice unit}/(time step), Pg=12 and the charac- Vvariation andt is time. In a not too loose packing of grains
teristic width is 2 lattice units. The prediction of Eq#4)  we can takeAX=a and define the characteristic diffusion
and(A5) are plotted in Fig. 14 together with the results of atime tp=a?(2Dy). Comparing this time with the timé,
simulation. In view of the fact that the equations governingand inserting the proper physical constants for air we get a
this result are obtained in the limit of vanishing density Peclet numbett, /t;~1 characterizing the thermal diffusion
variations on the scale of the lattice constant, the magnitudi stationary air. When the thermal conductivity is taken as
of the width and the agreement with theory is remarkable. that of glass we gety/t;~30. The first of these results

There are at least three important criteria for the stabilityshows that on the time scatg thermal diffusion alone is
of the numerical model, one of which relate to the drift ve-sufficient to smear out temperature variations in the air be-
locity and two of which relates to the magnitude of the den-tween particles. The second result shows that on the same
sity gradients. For stability and adherence to E@isand(2)  time scale an external temperature difference will not be felt
the drift velocityU, should be at least less than 0.1. In orderin the centers of the grair(still taken as equal size spheres
to keep the gradients sufficiently small, the diffusion coeffi-However, the heat capacity of the subvolume of the spheres
cients must be kept above certain minimum values. In practhatwill feel the temperature difference in the titegreatly
tice this restriction is not so stri¢R1,29 and the minimum exceeds the heat capacity of the interstitial air even for par-
value can be chosen as 0.0005(lattice dhityme step) ticles of size up to 1 mm. Hence, temperature variations in
without too much error. Finally, the interface thickness can-the air will be absorbed by the spheres to a good approxima-
not be too small. If the parameters of E&6) are chosen to tion. For larger particles the Blet numberty /tcxa® will
give a too small interface thickness, numerical instability re-increase. However, on time scales larger thathe velocity
sults. In Fig. 14 showing a one-dimensional simulation,gradients in the air caused by the relative motion of the air
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and grains will greatly enhance the temperature equilibracombined action of advection and diffusion inside a medium
tion. In fact, the process is very similar to the process of 30]. Such processes, which are used in industry to speed up
hydrodynamic dispersion in porous media or fluidized bedsnixing, are known to bring about fairly complete mixing
where aconservedpassive tracer is transported under thealready after the passing of a few distanegl31].
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