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Continuum description of granular flows: Simulation and experiment
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Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway

~Received 2 February 1998!

Granular flows with strong hydrodynamic effects are studied numerically and experimentally. We introduce
a model for grain flow in the presence of an interstitial gas in the approximation that inertia may be neglected.
The model thus describes the grains as moving at their local terminal velocity relative to the interstitial gas,
which is described by a local Darcy law. In addition to these two fields there is also a fluidization field that
turns the granular motion on or off. This allows for the description of stagnant zones inside a granular flow as
well as a free surface and heap formation. Experiments are carried out to study both a simple bubble rising
through a tube and the more complex flow of grains out through a hopper. There is a reasonable quantitative
agreement between experiment and simulation for the bubble flow. In the hopper flow the stagnation zones
forming on the sides of the hopper during outflow are compared. Simulations and experiments agree quanti-
tatively to the level of exponents characterizing the stagnation zones. In contrast to earlier experiments the
present experiments use smooth grains and geometrically rough walls. This causes the present exponent to
differ from that obtained in the earlier experiments. We finally apply the model to study the dynamics of a
two-dimensional bubble.@S1063-651X~98!14106-5#

PACS number~s!: 83.50.2v, 83.70.Fn, 47.11.1j
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I. INTRODUCTION

Recently much effort has been devoted to the mode
and description of granular flows@1–3#. Like all dynamic
systems, granular flows obey the basic conservation law
mass, momentum, and energy. These conservation laws
be cast in the form of differential equations. However,
order to make such a description useful, constitutive eq
tions are needed, in particular relations between strain
stress@1#, and an equation of state. Since the validity of su
constitutive relations depends strongly on the granular m
rial at hand as well as its dynamical state, general continu
descriptions of granular flows are difficult, if not impossib
While it is true that existing descriptions may work well fo
strongly excited granular media, they are not applica
when the medium is less excited.

In hydrodynamics a wide variety of phenomena are
scribed by the Navier Stokes equations for incompress
fluid flow. Since no analogous unified descriptions for gran
lar flows exists, it is important to examine carefully the r
gimes of validity of each separate model. In most cases
interest, this cannot be done without direct experimen
verification.

While current efforts to understand experiments of gra
lar dynamics have largely focused on molecular dynam
simulations @4#, a wide variety of simplified description
have also been studied. There are several models for gra
flows that are based on simple kinematic rules for the mo
of individual grains@5–7#. Although these models may pro
duce grain formations, like heaps of realistic shape, they l
a realistic dynamic description.

Among the models that focus on dynamic aspects
granular flows there exist various continuum descriptio
@8–11# as well as cellular automata models that seek to c
ture some essential part of the physics@3#. For the case of
fluidized beds@12# continuum descriptions that describe t
state of granular material excited by the flow of gas as
571063-651X/98/57~6!/6962~11!/$15.00
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in-viscid liquid, have been studied@13#. In general these
models describe granular flows that resemble the flow
fluids.

However, many granular flows are not strongly excited
salient feature of such ‘‘cooler’’ flows is the continuous tra
sition between solidlike behavior, where the material is k
in place by the walls of its container, to fluidlike behavi
where there are continuous internal deformations. This k
of behavior appears not to have been previously studied
continuum models—although it has frequently been o
served in experimental studies, for instance, in Refs.@14,15#.

The purpose of the present paper is to investigate a c
tinuum model that describes both the transition between
solidlike and the fluidlike behavior, and the dynamics of t
flow. We specialize to the case of dry granular flow, which
strongly influenced by interstitial gas. The description of th
flow is similar to that of fluidized beds@16#. However, as in
cellular automata treatments of granular flows, the spirit
the present modeling emphasizes simplicity more than ac
racy. In this spirit we propose a simple dynamical pictu
based mainly on the equations of mass conservation.
central simplification of the fluidlike dynamics relative t
earlier models is the neglect of inertial effects in both t
granular and gas phase. The aim is to model large s
features rather than details of the flow.

In order to describe the solid-fluid transition of the gran
lar material, henceforth called sand, we assume that abo
certain threshold densityr0 it behaves as a solid block con
nected with the walls of the container, whereas it behave
a fluid governed by local drag forces where the density
below the threshold value. This means that where the den
becomes larger than the threshold, the sand velocity is s
zero corresponding to solidification. In a real system, wh
momentum conservation holds, this would imply that m
mentum was absorbed by the surrounding walls. In
model description this momentum transfer is not explic
only its effect of keeping the grains in place is taken in
6962 © 1998 The American Physical Society
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57 6963CONTINUUM DESCRIPTION OF GRANULAR FLOWS: . . .
account. The communication between the solid and fl
phases takes place on the boundary between them.

The continuum equations to be derived are solved by
use of a lattice Boltzmann model@17#. This model resembles
a finite difference method in the way it treats the fluid pha
and could be replaced by such a method there. However
model has a particularly useful aspect in providing a sim
physical scheme for the solid-fluid boundary interaction. T
model is based on the exchange of mass along links betw
lattice sites, and while the solid sites are otherwise fro
they are allowed to exchange mass with the fluid sites al
the links to them.

To examine and validate the model we study three ty
of flow, two of which depend strongly on the interstitial g
and one in which the internal transition between solidl
and fluidlike behavior is the dominant feature. The gas do
nated flows both involve rising bubbles of air throug
densely packed grains. In the first case a bubble of air r
through a straight vertical tube. As the bubble rises it d
solves, and the free surface near the top of the tube is l
ered. Experiments and simulations agree on the large s
features in a rough quantitative sense. In the second
dominated case we investigate the qualitative aspects
rising two-dimensional bubble numerically. Both a chara
teristic bubble shape and a dynamic evolution of the f
surface is obtained.

The case where gas interactions play a smaller role
volves the granular outflow of a hopper with rough walls.
the experiments the grains are large, thus allowing the ga
pass easily through. The system is photographed wit
charge-coupled device~CCD! camera at various times, an
the resulting images are subtracted pixel by pixel to all
detection of stagnant zones. Even though inertia is though
be important in the experiment and not included in the sim
lations, the experiments and simulations agree on the qu
tative shape of the stagnant zones as well as the expo
that governs the relation between the hopper angle and
distance from the hopper opening to the stagnant zone.
find that this exponent differs significantly from earlier me
surements by Baxteret al. @15# where smooth walls were
used.

It is noted that the numerical method employed, wh
adequate for the simulations discussed, appears to lack
resolution necessary to deal realistically with system wh
small scale pressure differences are crucial for the dynam
Such systems presently include the intermittent flow of s
in an hourglass@14#.

II. THE MODEL

As a starting point of the description we define the lo
densities of sand and air. The sand mass densityrs is defined
as the density per unit volume. This volume is occupied
both sand and air. We define the dimensionless densitr̂s
5rs /rg whererg is the density of the material that make
up the grains, in this case glass. Likewise we define the
mensionless density of airr as the mass of air per unit vo
ume normalized by the density of air at atmospheric press
in a random loose packing. We shall use the result given
Scott @18# for the porosity of a random loose packing
spheres. The value he obtained by extrapolating data
d
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tained by measurements on a finite size container to an
nite container size was 0.40. Hence, in a random loose p
ing at atmospheric gas pressurer̂s50.60 andr51.0.

We shall take the threshold density below which the sa
is allowed to move as that of the random loose packi
Whenr̂s exceedsr0 the motion of the sand is frozen relativ
to the walls. We shall refer to this state of the sand assolidi-

fied, and we shall call the state wherer̂s<r0 and the sand
can move asfluidized.

The conservation of sand and air is described by the c
tinuity equations

] tr1“• ja50, ~1!

] tr̂s1“• ĵ s50, ~2!

where the ~normalized! mass currents of air and san
ja , j s5rgĵ s , have been introduced. These currents
partly determined by the local Darcy law

ja5rS us2
k

m
“PD , ~3!

where the sand flow velocityus5 ĵ s / r̂s andk5k( r̂s) is the
local permeability of the sand matrix,m the dynamic viscos-
ity of air, andP the interstitial air pressure. Equation~3! says
that in the local rest frame of reference for the sand the
flow is proportional to the pressure gradient. We shall ta
the local permeability as that given by the Carman-Koze
expression@19# for packings of spheres. It reads

k~r̂s!5
a2

9K

~12 r̂s!
3

r̂s
2

, ~4!

wherea is the sphere’s radius and the constantK.5 is ob-
tained experimentally for a random packing of spheres. T
above Darcy law plays the role of a constitutive equation
the mass currents and relies on the flow to be governed
viscous—rather than inertial—forces, i.e., the pertinent R
nolds number must be small. In the experiments particles
diameter 50 and 65mm are used. At terminal velocity fo
single particles in air the Reynolds number is less than
which in the present context will be considered margina
small. In the modeling of fluidized beds Eq.~3! is employed
with an extra term that is second order in velocity@16#. This
term can be neglected at small Reynolds numbers. For fl
ized beds momentum equations both for the fluid and gra
lar phases are used. The neglect of inertial terms const
the main simplification in the present model. It should
noted, however, that while inertial forces may be negligib
for single particles they may be important for the motion
clusters of particles.

In Appendix B we argue that the interstitial air will b
isothermal when particles are sufficiently small. In that ca
the pressure is easily written in terms of the densitiesr and
r̂s . It follows from the isothermal equation of state for a
ideal gas thatfP}r where f512 r̂s is the porosity. By
taking the gradient on both sides of this equation and t
dividing by the equation itself we obtain
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“P

P
5

“r

r
1

“ r̂s

12 r̂s

. ~5!

Substituting this equation of state in Eq.~3! we get

ja5rFus2
kP

m S“r

r
1

“ r̂s

12 r̂s
D G ~6!

as the governing equation for the flow of air.
Equations~1!–~6! do not fully determine the dynami

evolution of the conserved densities. The physical assu
tion we add to complete the description is that the sand fl
immediately reaches steady state, i.e., we neglect the a
eration of the sand. This assumption is justified for the c
of single small grains: The distance a spherical grain of g
of radiusa needs to fall to reach terminal velocity is approx
mately@a/(50 mm)#4 3 cm if the particle is falling freely.
In a dense packing where there is also an initial upwa
flow of air this distance is likely to be significantly smalle
If grain accelerations thus are neglected the net force~per
unit volume! acting on the sand must vanish, i.e.,“P5rsg,
whereg is the acceleration of gravity. We will substitute th
relation in Eq.~3! to get an expression forus . However,
since we are neglecting inertial effects, we will have pro
lems when the falling sand causes the air to move do
wards, and, in the next time step, the sand again acqu
terminal velocity in the moving air. This downwind instabi
ity may be avoided by simply imposing that the sand o
feels air motion that reduces the sand velocity. The s
velocity is then prescribed by the following relation:

us5H ja /r1~k/m!rsg when uus2 ja /ru<us

~k/m!rsg when uus2 ja /ru.us

0 when rs>r0 .

~7!

Note that while the approximate Eq.~7! depends on the rela
tive velocity ja /r2us only, the“r/r term in Eq. ~6! de-
pends onja /r through Eq.~1!. Equations~7! and~6! are thus
independent and fully determine the flow velocitiesua and
us . The physical reason for this is the approximation of va
ishing accelerations in Eq.~7!. By the above assumptions w
have obtained a closed set of equations on the level of m
conservation, thus avoiding the complications of finding
correct constitutive equations that describe the flow of m
mentum or energy.

How do the density fields relax to a state as described
Eqs. ~7! and ~3!? This question is less obvious than in t
case where a momentum equation is employed. When
first line of Eq. ~7! is used to get the current value ofus at
time tn , the previous value ofja at timetn21 is required. By
combining the first line of Eqs.~7! and Eq.~3! to eliminateja
we obtain the recursion relation

us
~n11!5us

~n!1Fk~n!

m
~rs

~n!g2“P~n!!G
5 (

k50

n Fk~k!

m
~rs

~k!g2“P~k!!G ,
p-
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where the subscriptsn and k denote the time at which the
fields are evaluated and the last line follows by inducti
from the first. Upon convergence ofus the densities mus
organize to give“P5rsg. This happens when the down
wind instability is handled as in Eq.~7!.

Even though the description of the mass flows given
Eqs. ~6! and ~7! neglect all inertial effects, they will dea
correctly with the time dependence caused by the varia
of permeability and air pressure. Hence, when accelerat
can be neglected the model will describe both the trans
pressure relaxation and the overall evolution of the bubb
following from the semisteady velocities.

By rewriting Eqs.~7! and ~6! in terms of dimensionless
quantities, obtained by rescaling of the velocities byU0
5k(r0)rgg/m, the densities by their stationary values, t
distance by some characteristic lengthh, the pressure byP0,
and the time withh/U0 it is seen that the physical system
characterized by the Pe´clet number Pe5U0h/D0 whereD0
5k(r0)P0 /m. When the above expressions forU0 and D0
are used, Pe takes the form

Pe5rggh/P0. ~8!

The Péclet number may be interpreted as a measure of
ratio of the convective flow rate of sand to the diffusive flo
of air in the solid phase. It is also the ratio of pressure for
to gravity forces. For instance, a bubble of air rising in a tu
full of sand is described by the Pe´clet number Pe50.125,
whenP0 is taken as the atmospheric pressure,h50.5 m and
the density of glassrg52.53103 kg/m3. Note that Pe de-
pends on the background pressureP0 but not on the perme-
ability ~particle radius! or viscosity. This is because the san
flow rate in still air and the air diffusivity depend onk/m in
a way such thatk/m cancels in Pe.

Among the other simplifications made in the model, t
use of the approximate Carman Kozeny equation~4! for the
permeability is important. It can be shown to hold reasona
well for packings that are sufficiently dense. Zick an
Homsy @20# have demonstrated that there is agreem
within 25% between the predictions of Eq.~4! and simula-
tions of flow in periodic arrays of spheres whenr̂s.0.3. For
lower densities Eq.~4! becomes less accurate. Because of
stability criteria of the Boltzmann model@21#, we have fur-
ther introduced the cutoff condition on the permeability th
k( r̂s,0.3)5k(0.3)[kmax.

III. THE NUMERICS: A LATTICE BOLTZMANN MODEL

The lattice Boltzmann model that we introduce for t
present purposes represents a generalization of a mode
advection diffusion phenomena@21#. These phenomena ar
described by the advection diffusion equation

] tr1“•~ru2D“r!50, ~9!

whereu5u„x,t) is an arbitrary vector field andD5D(x,t) a
diffusivity, which may also depend on space and time. T
equation describes the conservation of the densityr, which
is transported by the combined action of advection and
fusion. We will exploit the fact that Eqs.~1! and ~2! can be
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cast in the above form. In the following we briefly revie
how the lattice Boltzmann model works.

In general a lattice Boltzmann~LB! model@22# describes
a fluid by a large number of particle populations@23# that
move from site to site on a regular lattice, where they inter
in collisions according to certain conservation laws. In t
present case the lattice will be triangular. The lattice u
vectors connecting neighboring sites areci , i 51, . . . ,6.
While a finite difference approach would give a numeric
solution to the conservation equations, a LB model is ba
directly on a conservative process, which in turn is descri
by the conservation equations. This is useful in impleme
ing the boundary conditions.

The particle populations are denoted byNi(x,t). A com-
mon interpretation is to think ofNi(x,t) as the probability of
finding a particle atx at time t moving with unit velocity in
one of the six lattice directionsi 51, . . . ,6. However, we
may also think of theNi ’s as actual masses. The densityr is
defined as

r5(
i 51

6

Ni ~10!

and the algorithm consists of a two-step procedure: First
particle probabilities are propagated to their neighbor
sites according to their associated velocities, i.e.,Ni(x1ci) is
given the value ofNi(x,t) for every x. Second, the 6Ni ’s
undergo a local interaction that conserves the value or.
These two steps constitute the basic simulation time step
are described by the equation

Ni~x1ci ,t11!5Ni~x,t !1l@Ni~x,t !2Ni
eq#, ~11!

wherel is a free relaxation parameter of the model and
equilibrium distribution Ni

eq depends only onu(x,t) and
r(x,t) and is given as

Ni
eq5

r

6
~112ci•u!. ~12!

Note that since( iNi
eq5r and the propagation step conserv

the values of theNi ’s, Eq. ~11! conservesr at every time
step. At boundary sites the probabilities are propagated b
into the directions from which they came. This gives a va
ishing mass flux on the boundaries. By using a Chapm
Enskog expansion procedure@21# it is possible to show tha
the evolution ofr resulting from Eq.~11! is indeed given by
Eq. ~9! in the limit of small spatial gradients inr. The dif-
fusivity is given as

D52
1

2S 1

l
1

1

2D . ~13!

Now, in order to solve Eqs.~1! and ~2! we introduce two
particle probabilitiesAi and Si that define the densities ac
cording tor5( iAi and r̂s5( iSi . The corresponding equi
librium distributions are taken as

Si
eq5

r̂s

6
~112ci•us!, ~14!
ct
e
it

l
d
d
t-

e
g

nd

e

ck
-
n-

Ai
eq5

r

6S 112ci•Fus2
k~r̂s!Da¹r̂s

~12 r̂s!
G D . ~15!

For every time step the currentja is computed and the ad
vection velocityus is given by Eq.~7!. Also the discrete
approximation of“ r̂s must be computed at every time ste
There are now two evolution equations that are equivale
of Eq. ~11! for Ai and Si and two corresponding relaxatio
parameterslA and lS . The first of these is chosen aslA

522/(4DA11) with DA5k( r̂s)P0 /m whereP0 is taken to
be the constant initial average pressure.

The parameterlS determines a diffusivityDS for the
transport ofr̂s , i.e., an additional termDS“ r̂s on the right
hand side of Eq.~7!. For reasons of numerical stability thi
term cannot be set to zero. Hence, even thoughDS is chosen
as small as numerically possible, there will be a diffusi
smoothening of sharp fronts in the sand density profiles.

Since Eq.~7! predicts a faster flow of dilute than dens
regions, fronts of increasing gradients inr̂s may form. In
particular, if sand is settling down through stationary g
lower values ofrs propagate faster than higher values a
sharp shocks may form. This is seen in sedimenting beds
the other hand, it may be shown@16# that, due to the lack of
inertia, small perturbations during settling in a homogene
rs are linearly stable. The finite diffusivityDS will counter-
act the formation of shocks. Furthermore, for the dynam
to be given by Eqs.~6! and ~7! it is necessary that the sca
over which the densities vary is significantly larger than t
scale of the lattice constant@21#. For this reason as well a
that of numerical stability,Ds must be nonzero.

Theoretically it would have been more elegant not to ha
the“rs dependence inAi

eq. It is possible to obtain the sam
macroscopic equations~1! and ~2! by instead having a term
linear in Si2Si

eq in the evolution equation forAi . However,
this solution is numerically unstable.

In order to describe the solid fluid boundary a Boole
field C(x,t) is introduced. At ‘‘solidified’’ sites wherer̂s
>r0 C(x,t)51, otherwise it is 0. The interaction betwee
the fluid and solid phases that is responsible for the dyna
transition between the two takes place along the bonds
connect solid and fluid sites. The mass exchange along t
bonds is free, just as in the fluid phase. This is illustrated
Fig. 1. In the solid region the dynamics of the sand densi
is otherwise frozen in the sense that the particle populati
are simply not touched. Equation~6!, which governs the air
dynamics, then reduces to the simple diffusion equation.

As the sand mass transport between the solid and fl
phases is proportional to the density difference between
adjacent solid and fluid sites, the solid-fluid interaction
diffusive in nature. The existence of the granular diffusiv
Ds adds to this picture. It is instructive to work out a simp
example of the steady surface boundary layer that the m
contains: Take the case where the boundary of the solid
gion forms a straight line at an angleQ to the horizontal and
assume for simplicity that the air currentja50. We may then
obtain the surface currentJi5*dz8 j si wherez8 is a coordi-
nate normal to the boundary andj si is the parallel componen
of the full granular mass currentj s52Ds“rs1rsus . Since
ja50 Eq. ~7! reduces tous5k/mrsg. At steady statej s'
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50 and Ds(“rs)'5(krs
2/m)g cosQ. Hence j si5rsusi

5(krs
2/m)g sinQ5rsus'tan Q5Ds(“rs)'tan Q. Integra-

tion of the right-hand side gives

Ji5r0Dstan Q, ~16!

where, as before,r0 is the density in the solid phase. Th
physical picture behind this equation is that of a random
excited thermal gas in a gravity field, where particles t
tear loose from the solid phase receive a certain ave
constant velocity. In Appendix A the density profile acros
Q50 interface is studied in some more detail, and it
shown that it confirms well to analytic predictions.

The surface flow in the model implies that heaps of gra
lar material will slowly decay to a flat state, as if they we
being gently shaken. However, as will be seen in Sec. IV
is possible to identify an interface shape on the time scal
the simulation as the final decay of the interface happ
more slowly than the main flow itself.

The discontinuous transition between the solidified a
fluidized phase is based on the physical approximation
all grain-grain contacts are instantly replaced by hydro
namic grain interactions when the density falls below
threshold density.

It is a well established fact that a granular medium m
dilate ~expand! in order to move relative to itself or its sur
roundings@24,25#. The dilatency necessary for motion rel
tive to a smooth wall might be significantly smaller than t
dilatency needed for internal shear. In the present mo
however, we make no such distinction between small
large dilatencies. In the simulations discussed in Sec. IV
the dilatency needed for the motion relative to the walls
begin is determined by the initial excess density.

IV. EXPERIMENTS AND SIMULATIONS

In order to see what can be learned from the pres
model we now turn to the direct comparison of it by tw
selected experiments.

FIG. 1. Particle populations in the Boltzmann model. The si
marked with ad are solidified sites. Filled arrows represent s
tionary particle populations while empty arrows represent mov
particles. All directions on every site has an associated par
population. Only selected ones are shown.
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A. Bubble in a tube

One of the simplest possible applications of the mode
a case where gas interactions are strongly governing the
is a simple one-dimensional flow through a tube. In the
periments, the flow is, of course, three dimensional.

Bubble dynamics have been studied extensively in
case of fluidized beds, and an approximate analytic solu
of corresponding continuum equations for mass and mom
tum conservation has been obtained by Davis and Ta
@26#. While this solution neglects boundary effects and d
pends on the inertia of a fluidized medium, the present
merical study focuses on a drag dominated bubble in an
tially close packing in the presence of walls. Th
experimental setup here is similar to that used in the work
Raafatet al. @27# who also introduce an analytic descriptio
of the nonlinear essentially one-dimensional motion
granular plugs. However, while their work deals with th
dynamics of a finite ‘‘bubble’’ of sand moving through ai
the present setup deals with the complementary state whe
bubble of air creates a local motion in a bed of station
sand. The present description and the corresponding sim
tions are two dimensional and can easily be extended to t
dimensions.

In the experiment, illustrated in Fig. 2 the bubble w
released at the bottom of a long vertical glass tube. The tu
which is closed on both sides, has an internal diamete
5 mm, and a total internal length of 105.1 cm. The tube h
two parts of length 5 cm and 100.1 cm, respectively. T
upper part of length 100.1 cm was filled with small gla
beads and the lower part 5 cm was filled with air at atm
spheric pressure. Two types of glass beads of diameted
55168 mm and d56569 mm were used. A density o
rs51.38 g/cm3 was obtained by simply pouring the bea
into the tube. To perform an experiment with an increas
density, thed565 mm particle packing was further compac
tified by tapping uniformly on the side walls. This gave

s
-
g
le

FIG. 2. The experimental bubble setup. A plate with a hole
pulled to the right by an external magnet, thus allowing the bub
to form within the sealed system. The bubble motion and the
interface are recorded by two video cameras.
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densityrs51.44 g/cm3. A shutter mechanism is placed b
tween the upper and the lower tube. The shutter consists
0.5 mm thick aluminum plate with a hole of diameter 5 m
Two small permanent magnets are mounted on each sid
the plate, and an external permanent magnet was use
move the plate. The bubble propagation starts when the
in the aluminum plate is in position with the tube. To preve
air leakage and to make the system transparent, the sh
mechanism is sealed in a piece of Plexiglas. Both the up
and the lower parts were initially kept at atmospheric pr
sure. To visualize the motion of the bubble and the top le
of the sand we used two video cameras. The camera
recorded the bubble motion was mounted on a vertical tra
lation stage to follow the bubble. The second camera
corded the motion of the top interface of the sand.

The bubble has a rather sharply defined top and bott
The position of the upper and lower interface of the bub
as functions of time were easily determined from video
cordings of the bubble motion. Also the position of the fr
surface on the top was easily defined.

In these experiments one should really consider two v
ues of the dilation needed for the granular packing to star
motion. To move relative to the walls the static wall-partic
friction must be relaxed. Due to the slight elasticity of t
particles this requires a small dilation of the packing. T
dilation will be larger if the walls are rough. To move rel
tive to each other particles must be able to pass by e
other. This internal shear motion requires a much larger
latency, which may be of the order 10%. In the case of
flow in a smooth tube like the present one, an initial co
pactification of the packing may survive throughout the e
periment@25#. This confirms that in order to move relative
the walls the packing need only reduce its density by a sm
fraction of the initial density.

In the simulations no wall friction exists, and the wa
interactions are either on or off according to the value ofr̂s .
The bubble was initialized as a depletion of Gaussian sh
in an otherwise constant density profiler̂s5(11q)r0. Ini-
tially the solidification field is therefore on outside the dep
tion. The termq is the relative excess compactification. In
tially in the simulation a fluidization front propagate
through the system, as illustrated in Fig. 3, thus reducing
density belowr0. For moderate values ofq and significant
values of the terminal velocity, which the particles are
sumed to reach instantly, the layer of sites that become
idized will have a sufficient mass transport away from t
front to allow the next layer above to fluidize in the next tim
step. In this case the speed of the front will be betweenA3/2
and 1 lattice unit per time step, depending on the orienta
of the lattice.

This rapid fluidization front, although realistic in appea
ance, only captures part of the physics in the experimen
the experiments the packing must also loosen from the w
by the action of a rapidly propagating front. But here inert
wall friction, and long range force network will all be poten
tially active mechanisms. Several questions regarding
fallout process from a region of grains supported by
walls are still open, both in this and related works@27#.

In the simulations the delay of the free surface mot
relative to the initialization of the bubble is sensitive to t
f a
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value ofq. On the other hand, the motion of the bubble itse
which takes place on a larger time scale than the front pro
gation, depends only weakly onq.

Figure 4 shows the time evolution of the sand dens
profiles in the simulations. The location of the bubble botto
and top as well as the position of the free surface was defi
in these simulations as the position where the density
half way between its local minimum and maximum value
These positions are illustrated in a graphical way in Fig.
which also closely resembles the visual appearance of
experiment. The final comparison between experimental
simulation results is shown in Figs. 6 and 7. In the expe
ment the bubble location is determined by visual inspecti
In the simulation, where the bubble undergoes some di
sive smearing, its extent is defined by the region where
density is below (r01rmin)/2, wherermin is the minimum
value of the density in the bubble. The position of the fr
surface is defined similarly,rmin is in this case the minimum
value of the density above the surface. The time is norm
ized by the timeT0, which is the time the~extrapolated!

FIG. 4. Simulation: the dimensionless sand density profiles
different times. The system size is 512 by 1,Ds50.001 and the
compactification parameterq50.0025.

FIG. 3. Simulation: the fluidized region shown at a series
different times. Parameters are as in Fig. 4.
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bubble needs to reach the top of the sand packing. The
sitions are normalized with the position of the top surfaceh
before the bubble was released. Both experiments and s
lation agree that the velocity of the bubble is independen
its position and size. The agreement is fairly good both
the position where the bubble finally disappears, and for
top motion. In view of the simplifications introduced in th
simulations this agreement is rather encouraging. Howe
it should be noted that both the interior shape of the bub
and its exact boundary positions are not captured by
simulations.

B. Stagnant regions and hopper flow

There are two main aspects of the modeling, the gas-g
interaction described by the comoving Darcy law and
grain-grain interactions introduced by the solid fluid tran

FIG. 5. The bubble and the top regions shown at a serie
different times. The figure represents the same data as in Fig.

FIG. 6. The top and bottom positions of the bubble and
position of the top surface for the simulation and experiment. T
positions are normalized by the tube length. Simulation parame
are as in Fig. 4. Here the lattice is 13512 andq50.0025.
o-

u-
f
r
e
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le
e
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tion rules. Here we investigate the latter in a simple hop
flow experiment. The solid-fluid–like transition is a unique
granular phenomenon that is linked both to the static frict
present between grains and the dilatency that is a prerequ
for granular motion.

In the experiment a quasi-two-dimensional hopper c
sists of two glass plates separated a distance 5 mm apart
inclined hopper side walls make an angleQ/2 with the ver-
tical. These side walls are made rough by absorbing g
beads onto double-sided tapes, glued on the side-walls.
width of the orifice, initially closed with a piece of tape,
D510.1 mm. The hopper was filled with glass beads od
51.0 mm, and the flow was initiated by removing the tape
the orifice. To visualize the flow, pictures were taken with
high resolution~1500 times 1200 pixels! Kodak DCS 420
CCD camera. The stagnant zones become apparent by
traction of the pictures with a picture before the flow starte
As seen in Fig. 8 the stagnation zones will then appea
regions with much less noise than in regions with parti
movement. Note that on account of the gluing of particles
the walls, a layer or two along the sides will always be sta
nant. Figure 9 shows the corresponding simulations. Th
were carried out in an hourglass geometry in order to see
pile formation in the bottom as well. This pile has the sam
qualitative shape that is observed in experiments@7#. The
distancedc to the stagnant region from the orifice, as ind
cated in Fig. 8, was measured as a function of the hop

of

e
e
rs

FIG. 7. The surface positions corresponding to the bubble p
tions shown in Fig. 6.

FIG. 8. Picture of the hopper flow experiment. This is a diffe
ence image obtained by subtracting an image before from an im
during the flow. The stagnation zones, which are regions of
displacement, are made visible as distinct dark zones with very l
noise.
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angleQ. In the simulations the stagnant regions are direc
available as the regions where the solidification field is
Figure 10 shows this field as a function of time. In bo
experiment and simulations the lower position of the st
nant region was quite time independent, so that a singledc

could be defined. In the simulations the fieldr̂s interacts with
solidified sites in the same way as wall sites. Hence,

FIG. 9. Hopper flow. The granular density is shown on a line
gray scale where black corresponds to the highest density.
Péclet number Pe50.12,Ds50.0005, and the lattice is 643128.

FIG. 10. The solidified region shown as dark gray correspo
ing to Fig. 9. The fluidized region is shown as light gray.
y
.

-

e

simulations model an experimental situation where the w
has the property of a collection of fixed grains. For that re
son smooth walls were inadequate for comparison with
present simulations. This corresponds to walls with gra
glued onto them as in the experiments. Figure 11 shows 1dc
as a function ofQ for both the simulations and experiment
Both graphs are consistent with a linear dependence. Th
in a striking contrast to the smooth wall experiments by Ba
ter and Behringer@15# who obtained an exponent of 2.
60.1. The prefactors are seen to differ in the experiment
the simulations though. These are expected to depend
grain-grain friction as well as the grain geometry and pos
bly size ~see Fig. 12!.

While the simulations do not include inertia, the expe
ment clearly does as the particles in the hopper opening
large and fall freely. The flow rate close to the stagna
zones, on the other hand, is very slow. However, it may s
be affected by the inertia controlled central flow. Hence, i
not obviousa priori that the simulations are suited to captu
the experimental behavior, and the results must be judge
view of that. It is therefore an encouraging observation t
the stagnant zones indeed appear to be predictable by
present, inertialess model.

C. A two-dimensional bubble

Finally we present some purely numerical results fo
two-dimensional bubble, which is shown in Fig. 12. Th
bubble was again initialized as a Gaussian depletion in
otherwise constant density field. The simulation parame
are given in the caption. In Fig. 13 the solidification field
shown as in Sec. IV B. The two main results of these sim
lations are the shape of the bubble, which shows a c
wedge shape in the bottom, and the evolution of the f
surface. As is discussed in the Appendix, the free surf
shape will change slowly in time, corresponding to the fa
that there will be a small surface flow due boundary diff
sion. However, in large simulations a separation of the ti
scale on which the main flow takes place and the time sc
on which the surface flow takes place, is possible. Hence,
surface will have insufficient time to change between the e
of the flow and the end of the simulations, and comparis
between experiment and simulation will make sense.

r
he

-

FIG. 11. The inverse distance 1/dc , wheredc is the distance
between the hopper opening and the stagnation zone as a fun
of the hopper opening angleQ. Both experiments and simulation
are shown.
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V. CONCLUSION

We have introduced a model for granular flow under
influence of an interstitial gas. We have tested the mode
comparing its main features directly with experiments. T
development has had three distinct parts:

~1! the development of the model as described by E
~1! and ~2! and the constitutive permeability;

~2! the development and implementation of the cor
sponding scheme for the numerical solution of th
model by means of a lattice Boltzmann model;

~3! the experiment and interpretation necessary for
comparison with the theoretical results.

Although we have in part found quantitative agreement
tween experiment and simulations, we stress that part~2! of
this development does not perfectly communicate betw
parts ~1! and ~3!. This is due to the fact that the equatio
themselves pose serious numerical challenges, which

FIG. 12. A simulated two-dimensional bubble at different time
The Péclet is Pe50.025, the granular diffusivityDs50.0005, and
the lattice size 1283128. The gray outer rim of the bubble show

the region where the density is in the interval 0.3, r̂s,0.35.

FIG. 13. The fluidized and solidified regions corresponding
Fig. 12. Again the solidified region is shown in dark gray and
fluidized region in white.
e
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only partially solved by the present numerical scheme. T
numerical scheme has successfully described the dyna
of a single bubble where details of local pressure variati
are not crucial. Current numerical studies@28# aimed at mod-
eling the intermittent flow in the ‘‘ticking hourglass’’@14#
indicate that this can be done with a model similar to t
present one, but at the expense of solving explicit press
and momentum equations.

When grains fall through a gas at terminal velocity coo
erative hydrodynamic effects, giving the local drag forc
will cause dilute regions of the particle cloud to fall fast
than denser regions. This effect will cause shocks to fo
and in experiments on granular pipe flow@27# sudden ap-
pearances of clogs are observed. Numerically this is an
trinsic mechanism of instability as it implies the divergen
of density gradients. For this reason the numerical mo
used, which is a variant of a lattice Boltzmann model@17#,
cannot explore all the information that is in principle ava
able through the governing equations at hand.

We were, however, able to predict quantitatively the m
tion of the bubble boundaries in a tube and the motion of
free surface. Moreover, the model was successful in the
scription of hopper flow with the boundary between flowin
and stagnant regions. Further developments of numer
techniques to handle Eqs.~1! and~2! seem a promising route
to improve insight on complexities of granular flows.
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APPENDIX A: THE INTERFACE THICKNESS
AND NUMERICAL STABILITY

The free surface of the sand will have a finite thickness
described by the Boltzmann model. The reason for this is
nonvanishing diffusivity in the sand current. In Eq.~7!,
which gives the sand mass current, we get an extra diffus
term 2Ds“rs on the right hand side. Hence, in the stea
state when there is no mass flux, Eq.~7! takes the form

05
k~r̂s!

m
rs

2g2Ds“rs , ~A1!

whereDs is the small but nonzero diffusion constant. Fro
Eq. ~A1! it is possible to obtain an expression for the dens
profile across an interface oriented perpendicular tog. If y is
taken as a coordinate along2g we get

dy52
Dsm

rggr̂s
2k~r̂s!

dr̂s, ~A2!

which can also be written

k0dr̂s

r̂s
2k~r̂s!

52Pes

dy

h
~A3!

.
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where we have introduced the Pe´clet number Pes
5U0h/Ds . Integrating this equation from a known densi
r̂s0 at y0 and using Eq.~4! we immediately get

r̂s512
12 r̂s0

A122 Pes@ r̂s0
2 /~12 r̂s0!#@~y2y0!/h#

. ~A4!

However, conforming to the stability criteria of the Boltz
mann model@21#, we have introduced the cutoff conditio
on the permeability thatk( r̂s.0.3)5k(0.3)[kmax. Hence
Eq. ~A4! only describes the interface down to the cutoff de
sity. For ther̂s,0.3 region we must repeat the above ex
cise withk5kmax. This gives the result

r̂s5
r̂s08

11~kmax/k0!Pes~y2y08!/h
, ~A5!

where r̂s5 r̂s08 at y5y08 . Hence whenDs→0 and Pes→`
the density profile will be infinitely sharp.

When Pes is finite, the first part of the interface will hav
a characteristic thickness

Dy5
h

Pes
5

Ds

U0
5

Dsh

DaPe
. ~A6!

The latter expression is relevant if, as in the simulations,
is fixed by the experimental value andDs by num-
erical constraints @21#. In the simulations Ds
50.001(lattice unit)2/(time step), Pes512 and the charac
teristic width is 2 lattice units. The prediction of Eqs.~A4!
and~A5! are plotted in Fig. 14 together with the results o
simulation. In view of the fact that the equations governi
this result are obtained in the limit of vanishing dens
variations on the scale of the lattice constant, the magnit
of the width and the agreement with theory is remarkabl

There are at least three important criteria for the stabi
of the numerical model, one of which relate to the drift v
locity and two of which relates to the magnitude of the de
sity gradients. For stability and adherence to Eqs.~1! and~2!
the drift velocityU0 should be at least less than 0.1. In ord
to keep the gradients sufficiently small, the diffusion coe
cients must be kept above certain minimum values. In pr
tice this restriction is not so strict@21,29# and the minimum
value can be chosen as 0.0005(lattice unit)2/(time step)
without too much error. Finally, the interface thickness ca
not be too small. If the parameters of Eq.~A6! are chosen to
give a too small interface thickness, numerical instability
sults. In Fig. 14 showing a one-dimensional simulatio

FIG. 14. The densityr̂s as a function of position across the fre
interface. The solid line shows theoretical values given by E
~A4! and ~A5! ands shows the simulations.
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agreement between theory and simulation is obtained fo
interface thickness of 2–3 lattice sites. However, when
simulations are two dimensional, the minimum thickness
about 5–6 lattice units.

In an actual simulation this stability criteria limit the res
lution of the results. The diffusive smearing of the sand d
sity field can be estimated by the increase in the root m
square widthDz of a Gaussian profile. When the time
taken ast5h/U0 where U05PeDa /h the result isDz2

52Dst52Ds /(PeDa)h2, i.e., the characteristic smearin
distance

Dz

h
5

2Ds

PeDa
. ~A7!

According to Eq. ~A6! the diffusivity Ds can be chosen
smaller as 1/h when the system size is increased while kee
ing the interface width fixed. Hence, since a smallerDs gives
a smallerDz, the resolution can be improved by increasi
the system size. However, the relative spread only decre
as 1/Ah.

APPENDIX B: DISCUSSION OF THE ASSUMPTION
OF AN ISOTHERMAL GAS

Air at atmospheric pressure is well described by the eq
tion of state for an ideal gas. For sufficiently small particl
the gas even follows theisothermalequation of state, which
we shall employ. To justify this we must examine the tim
needed for heat to be absorbed by the grains and compa
to other relevant time scales. The shortest available s
scale is the timetc a particle spends in falling a distancea at
terminal velocity. For this order-of-magnitude estimate w
will approximate the description of the temperature evolut
in the air with a simple diffusion equation. The thermal d
fusivity is then given asDT5k/(rcp), wherek is the thermal
conductivity @with units W/~K m!#, cp is the specific heat
capacity at constant pressure@with units J/(K kg)#, andr is
the mass density. A local temperature variation will spre
out diffusively according to the diffusion lawDX252DTt,
where DX is the characteristic spatial extent of the loc
variation andt is time. In a not too loose packing of grain
we can takeDX5a and define the characteristic diffusio
time tD5a2/(2DT). Comparing this time with the timetc
and inserting the proper physical constants for air we ge
Péclet numbertD /tc'1 characterizing the thermal diffusio
in stationary air. When the thermal conductivity is taken
that of glass we gettD /tc'30. The first of these result
shows that on the time scaletc thermal diffusion alone is
sufficient to smear out temperature variations in the air
tween particles. The second result shows that on the s
time scale an external temperature difference will not be
in the centers of the grains~still taken as equal size spheres!.
However, the heat capacity of the subvolume of the sphe
thatwill feel the temperature difference in the timetc greatly
exceeds the heat capacity of the interstitial air even for p
ticles of size up to 1 mm. Hence, temperature variations
the air will be absorbed by the spheres to a good approxi
tion. For larger particles the Pe´clet numbertD /tc}a3 will
increase. However, on time scales larger thantc the velocity
gradients in the air caused by the relative motion of the

s.
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and grains will greatly enhance the temperature equilib
tion. In fact, the process is very similar to the process
hydrodynamic dispersion in porous media or fluidized be
where aconservedpassive tracer is transported under t
J.

se

m

-
f
s

combined action of advection and diffusion inside a medi
@30#. Such processes, which are used in industry to spee
mixing, are known to bring about fairly complete mixin
already after the passing of a few distancesa @31#.
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