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Liquid-vapor interface of an ionic fluid
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We investigate the liquid-vapor interface of the restricted primitive m@aeM) for an ionic fluid using a
density-functional approximation based on correlation functions of the homogeneous fluid as obtained from the
mean-spherical approximation. The ionic interfacial density profiles, which for the RPM are identical for both
species, have a shape similar to those of simple atomic fluids in that the decay towards the bulk values is more
rapid on the vapor side than on the liquid side. This is the opposite asymmetry of the decay to that found in
earlier calculations for the RPM based on a square-gradient theory. The width of the interface is, for a wide
range of temperatures, approximately four times the second moment correlation length of the liquid phase. We
discuss the magnitude and temperature dependence of the surface tension and argue that for temperatures near
the triple point the ratio of the dimensionless surface tension and critical temperature is much smaller for the
RPM than for simple atomic fluid§S1063-651X98)13106-9

PACS numbeps): 68.10—m, 61.20.Qg

I. INTRODUCTION We are interested in the ionic density profiles and the surface
tension of such an interface, which can be viewed as a crude
In this paper we develop a density-functional theorymodel for the corresponding liquid-vapor interface of a mol-
(DFT) for the properties of the liquid-vapor interface of the ten alkali halide. Compared with the well studied case of
simplest model of an ionic fluid, namely, the restricted primi-simple fluids, modeled by a Lennard-Jones poter{i&
tive model (RPM) in which the ions are modeled by equi- very little is known about the interface in the RPM. We are
sized hard spheres of equal and opposite charge. The RPhbt aware of any corresponding simulation studies, although
serves as a simple model for molten salts and electrolytéhere is one early molecular-dynamics simulati@h using
solutions. Indeed the measured partial structure factorhe more realistic Born-Mayer-Huggins potential model for
Sij(k), with i,j e{+,—}, and the thermodynamic properties K.
of several molten alkali halides near their melting points can Theoretical work was pioneered by Telo da Gaetal.
be well described by the corresponding quantities of th 10], who used the gradient expansion developed in Rdi,
RPM(1]. In recent years there has been a revival of interesf, jnyestigate the RPM interface. The special symmetry of
in the properties of the RPM stemming f“’”ﬁ efforts 0 un-yhe Rpm implies that the density profile of the cations should
Qer_stand the nature .Of criticality in ionic fluid2—4]. For be the same as that of the anions, i.e., there should be local
:onlc systems one mllght.suppose_ 'that the Iong—ran_ge COlia’lectroneutralityh(z)=p,(z) throughout the interface. For
omb forces could give rise to critical exponents different ha tric” situation th dient ; £ th
from the Ising ones that are measured and calculated f uch a symmetric™ situation the gradient expansion ot the
ee-energy functional involves only gradients of the total

atomic and molecular fluids. Some recent experiments o _ il - - the ch densi
certain electrolytes revealed mean-field-like behavior or, ifi€NSity profilep(z)=p..(z) +p_(2); the charge density pro-

some cases, Ising critical regions that are several orders 8¢ A(2)=p+(2)—p-(2) vanishes identically. The coeffi-
magnitude smaller than in atomic fluifé]. Since the three- cients in this expansion involve moments of the density-
dimensional RPM is known to exhibit phase separation into #lensity bulk direct correlation functiog{”(r;p). If the
dense, conducting ionic liquid and a very dilute vapor phasegxpansion is truncated at the square gradient term, as is
which is also conducting, it is a natural choice for theoreticalusual, the corresponding coefficient must be positive if the
and simulation studies of phase coexistence and criticalittheory is to yield physical solutions. As was explained in
Although attempts to explain the experimental observation&ef. [10], it is necessary to utilize a rather sophisticated,
regarding criticality have so far been unconvincifesti-  self-consistent theory of the bulk correlation functions, the
mates of the Ginzburg temperatures for the RPM are similageneralized mean-spherical approximati@MSA) [12], in
to those for simpléatomig fluids [5,6] and the latest Monte order to obtain a positive coefficient. The ordinary mean-
Carlo finite-size scaling study7] gives results compatible spherical approximatiofMSA) [13,14, which is often suc-
with Ising behaviot this does not mean that the RPM does cessfully employed1] in studies of the bulk RPM, is insuf-
not warrant further attention. On the contrary, because it inficient as it yields merely the hard-spheffeercus-Yevick
corporates the key features of hard-core repulsion and Couesult forcﬁ,b)(r; p) which produces aegativecoefficient of
lomb forces it remains the canonical, albeit overidealizedthe square-gradient term. That one must supercede the MSA
model for an ionic fluid. to obtain physical interfaces is, at first sight, quite surprising,
Here we shift attention away from the bulk and focus ongiven its success in bulk. One suspects that this is an artifact
the inhomogeneous situation that arises at the planar inteof the square-gradient approximation. Here we reinvestigate
face between the coexisting liquid and vapor of the RPMthe liquid-vapor interface using an alternative DFT, which
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does not utilize the gradient expansion and thereby avoidgl0] and with corresponding results for simple atomic fluids.
the need to employ the GMSA and the ensuing problem$Ve conclude in Sec. V with a summary and discussion of
involved with extrapolation into the two-phase regid©®].  our results.

Our approach, which is motivated by the MSA treatment of

the bulk free energy, involves a local density approximationil. DENSITY-FUNCTIONAL THEORY FOR IONIC FLUIDS

for the hard-sphere part of the functional and a nonlocal We study the simplest model for an ionic fluid, the so-

treatment of the remainingCoulombig contributions, which called restricted primitive model, which consists of charged

IS pbtamed_ by approx!matlng the inhomogeneous pair COMehard spheres with equal diameterdor both species. It can
lation functions by their homogeneous counterparts. It differ

%e considered as a model of a molten salt, but also of an
from other DFT approaches for ionic fluid45-19 that '

h d ful in the primit del d ot felectrolyte solution with the solvent treated as a dielectric
ave proved successiul in the primitiveé model descriplion Ol iy um. The interaction potential is given by

electrical double layers at charged hard walls. These theories
treat the non-hard-sphere part of the functional by means of a wi (1) =wHS(r) +wS(r) (1
second-order density expansion about the density of a refer- !

ence fluid, usually taken to be the homogeneous bulk fluidvhere

far from the substrate. Although this is adequate for many

purposes it is problematical when it comes to liquid-vapor Hs w, r<a

interfaces or to the adsorption of thiGketting films, where WHED=1y  ;>a @
two bulk phases are involved. Indeed, for the case of an '

atomic fluid the corresponding second-order expansion aboind

a homogeneous reference density is known to fail to account

for liquid-vapor coexistence and is inadequate for wetting c €€

problems[20]. We are not aware of attempts to use the ap- wij(r)=—-0(r-a) ()
proaches in Ref§15-19 for the liquid-vapor interface. Nor

are we aware of attempts to use integral-equation theories fQyherer is the interparticle distanc€) is the Heaviside step
that purpose, which have been rather popular in studies afnction, i,je{+,-}, e,=—e_=e is the charge of the
the electrical double layd¢21,19 but may be beset by simi- particles, anck is the dielectric constant of the solvent.

lar problems. The grand-canonical density functional of an inhomoge-

The present approach does not suffer from these difficulneous fluid with number densitigg(r) can be written as
ties, i.e., the uniform limit of the free energy reduces to that

of the MSA for any uniform density, . On the negative side 1
this means that our theory for the interface is prone to the X{pi(r)}1=Fud{pi(N}l+ EZ j d®r d3'pi(r)pi(r’)
same deficiencies as the bulk MSA, namely, the failure to "
incorporate properly the effects of ion pairing, which are 1 c ,
especially pronounced in the vapor, and the consequent poor X fo da Wij(r)g;;(r.r' {pi(r}, @)
estimate of the location of the critical point.

As well as providing a description of the liquid-vapor s
interface of a near-symmetric alkali halide, i.e., one where - f asr wipi(r). 4
the ions have nearly the same diameter, the present theory '

may form the basis for a description of wetting phenomengyere 7, is the free-energy functional of the corresponding
in ionic fluids[22]. The situations one would like to consider hard-sphere reference fluid;,=r—r’, u; is the chemical

are (i) the wetting of a substrate—alkali-halide-vapor inter- potential of species, andg;; denotes the pair distribution

face by the molten salt an) the wetting of the interface  fnction of an inhomogeneous system with the density pro-
between a substrate and, say, the phase dilute in salt by tl?f?es pi(r) and the interaction potentiak"S(r)+ awS(r).
other, salt-rich, phase for an electrolyte that exhibits liquid- ! Y

liquid phase separation such as those considered in [23fs The integration over €[0,1] corresponds to a straight line
and[23]. Since it is well known that wetting properties de- in potential space leading from the hard-sphere reference po-

end sensitively on the range of the interaction otentialstential W to the full potentialw;; . For the present model
P y 9 P this path corresponds to a charging process of the ionic lig-

one might ask if the long-range Coulomb interactions lead tq ;4 Aythough Eq.(4) is formally exact24], the pair distri-
gualitatively new features or if, due to screening, ionic fIU|dsbution function is not known for the inhomogeneous system.

behave as one-component systems with short-range interag- . B : .
tions, e.g., Yukawa fluids. e approximateg;; by the corresponding functiow;; (r

This paper is arranged as follows. In Sec. Il we introduce™ " »P»@) 0f & homogeneougbulk) liquid evaluated at an
the approximate DFT for our particular problem. Section Il appropriate density, for which we choose the mean value
examines the free energy and the second moment correlatiéi the total densities at the pointsandr’:
length that emerge for thbulk fluid, comparing and con-
trasting the results with those of other theories and with ex-
act results for the limifp—0. In Sec. IV we describe the
results for the density profile and surface tension of the
liquid-vapor interface as a function of temperature. These aré similar averaging was used in Rd25] in a DFT for a
compared with those of the earlier square-gradient theor{zennard-Jones fluid in contact with a hard wall. However, in

— — 1
p=p(rr)=52 [pi(D)+pir)]. (5)
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that work the local densities were additionally averaged ovegnd ionic[28] fluids. A nonlocal treatment afy,s would be
spherical regions aroundandr’, which is not necessary in required to describe such oscillatory behavior.

the present case because there are no pronounced densitywe employ the bulk correlation functidm, given by the
oscillations at the liquid-vapor interface. Note that the bulkanalytically solvable MSA13,14], which provides a reason-
pair distribution functiong;; depends only on the total den- able description of the bulk structure and thermodynamics of
sity p=p,+p_, which follows from the requirement of the RPM. Henderson and Smit29] have derived an explicit
electroneutrality,o, =p_, in the bulk.[Strictly speaking, expression fohp:

gij(r—r’,p,a) is not defined for densities that lie within the

two-phase coexistence region of the bulk phase diagram, but Be? 1

this problem does not arise for the approximate pair distri- hp(r,p,T)=——

bution functions we shall actually use in our calculations € (1+al)?
below] [r/a] [(r—na)l]"
By writing g;;=1+h;; the pure Coulombic contribution X 2 g (r—naT
to the functional n=1 (n—=1)!
X[jn—2((r=na)l)=j,—1((r—na)],
C _ 1 3 3,7 ’ C
FUnN=52 [ & apn w6 0

can be separated off. In the bulk, where=p_, FC van- where[r/a] is the largest integer smaller thana, j, de-
ishes. Similarly, due to the sym'metry of thé RPM undernotes the spherical Bessel function of ordeand the inverse
charge inversion, the density distributions that minimize Eq/€ngthl” is given byF:(V1+2Ka2—l)/12/z;1 with the inverse

(4) at the free liquid-vapor interface should exhibit local DEPYe screening lengtk= (4 3ep/€)"*. Expressior(10)
charge neutrality, i.eg. (r)=p_(r)=3p(r). Moreover, the IS inconvenient for the numerical calculationtof at larger
symmetry of the RPM implies that the total pair correlation P€cause in this case many terms have to be evaluated and
functions h; must satisfyh, ,=h__ andh, =h_,, so rather large errors may occur due to partial cancellations of

that Eq.(4) reduces to a functional of the total densitr): the terms. On the other hgnd, a very good approximation for
hp for larger can be obtained from the pole analysis of the

1 Fourier transformhp (k) as shown by Leote de Carvalho and
Q{p(N)}=Fudip(H} ]+ EJ d3r d3p(r)p(r’) Evans[28]. It provides the asymptotes of the form
1 e _ Alp,T)
xf da——hp(r 12,p(r,r'"), @) hp(r—,p,T)= exd — ao(x)r]
o €l r
_'“f & p(r), @ for k<k.=1.228& and

B(p,T)

with the difference functionhp=(h,,—h,_)/2 and u ho(r,p,T)= exd — ao(k)r]cod ay(x)r+ 6(«)]
=(u .+ p_)/2. The hard-sphere contribution is treated in a

local density approximation for k> k. with known functionsA, B, aq, a, and 6. Using

these methods we have derived similar but slightly more

}'HS[{p(r)}]zif dBrlp(N{p(r)x3]—-1} complicated expressions fordlgp)hy and @?/dp?)hp,
B which are needed to compute the phase diagram and the
+ Bfe(p(M)]. 8) corrglatlon length(see Sec._IDI. These asymptotic approxi-
mations have been used in the numerical calculations for
rla>12.

\ is the thermal de Broglie wavelength afgds is the non-
ideal gas part of the free-energy density of the bulk hard-

sphere fluid given by the accurate Carnahan-Starling ap- Ill. BULK PHASE DIAGRAM
proximation[26] AND CORRELATION LENGTH
Ay 32 For a constant density(r)=p the density functional
fogp)= 2227 (9  Vields a Helmholtz free-energy density
B (1-7)?
_ _ _ _ Fp) _p 3 1,

with the packing fractiony= (7/6)pa®. Clearly the approxi- ~N E['”(PN )= 1]+ fes(p)+ 5pWo(p),  (11)
mation given by Eq(8) does not take into account the short-
range correlations associated with the packing constrain ith
that give rise to the oscillatory density profiles encountere
for fluids at walls. Nor will it account for the weak oscilla- 5 N
tions that are predicted for low temperatures on the liquid Wo(p)= e_j d3r r—1f de hp(r,p,a). (12)
side of the liquid-vapor density profile in both simgdl27] € 0
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[32,33. The results are given in terms of the reduced density
p* =pa® and the reduced temperatufé =kgTea/e?. The
phase diagram of the RPM is characterized by small values
of the reduced critical density and temperat(fog compari-

son the Lennard-Jones fluid hd§ =1.3 andps=0.3 in
Lennard-Jones reduced unitnd by a strong asymmetry of
0D the coexistence curve. At low temperatures the vapor phase
becomes extremely dilute, e.g., Bt =0.04=TZ/2 one has
p¥=10"7 within the MSA. It is well known that the MSA
overestimates the critical temperature and grossly underesti-
mates the critical density. The cruder MSA1 predicts an even
) ) higher critical temperaturéfor the MSA T} =0.0786, and
. for the MSA1,T% =0.0846) and smaller critical densitfor

P the MSA, p*=0.0145, and for the MSAp* =0.0086).

FIG. 1. Phase diagram of the restricted primitive model in theSimulation results for the coexistence curve have undergone
temperature-density plane as given by the MSA and MSA1substantial revision during recent yeafsee, e.g., Refs.
schemes discussed in the main text. The open symbols denote th2,3]); the latest estimate of the critical point by Cailkl al.
results of Gibbs ensemble Monte Carlo simulatifg]. The solid  [7], using a mixed-field finite-size analysis of Monte Carlo
circle denotes the most recent simulation estimate of the criticatlata, gives T’g =0.0488+0.0002 and p: =0.080+0.005.
point[7]. The vapor-liquid-bce-solid triple point is estimated to lie Clearly quantitatively reliable results cannot be expected
nearT{=0.025 andp ~0.5[33]. The dotted line connecting the from either the MSA or MSAL. Both fail to take proper
Monte Carlo data is a guide to the eye. account of the effects of ion pairing, which is known to be

) ) ) ... very strong in the RPM at low densities and is believed to
S|n2ce hp depends only on the d|m_en5|o_nl<zess quagt't'e%nfluence strongly the location of the critical poif80,2,3.
pe’lea andr/a, the charging integration wite”(¢)=a€”  gince the differences between the coexistence curves ob-
can be replaced by an integration oygr tained from the MSA and MSA1 are relatively minor, we do
not expect to introduce significant additional errors by using
the MSAL. We note that the main contributions to the inte-
gration overa in Eq. (12) stem from the region near=1.

The chemical potentigl, at coexistence is, for a given
mperature,

0.06 N,

0.04 g

0.02

T*
A

2 B
Wo(P):%J d3r r_ljo dg'hp(r,p,8"). (13

This result demonstrates that the free energy given by Eq§e
(11) and (12) is equal to that obtained by the so-called en-

ergy route starting from the MSA pair correlation function. d F(p) d F(p)
Thus the bulk phase diagram is identical to the usual MSA Mo=o | T ooy | (16)
phase diagram as discussed, e.g., in Rg6,31,10,28,b p o P Py

The explicit expression fowg(p) is [14] . o
wherep, andp, are the densities of liquid and vapor, respec-

tively. Knowledge ofuq(T) is a prerequisite for the subse-
quent analysis of the liquid-vapor interface.

We now turn attention to the bulk correlation length that
(14 follows from the present theory. As we shall see in Sec. IV,

For the reasons discussed in Sec. IV below, we also considdf€ Wwidth of the interface is governed by the correlation
the functional that arises when we refrain from the integral€ngth of the bulk liquid. Every density-functional ansatz de-
tion overa and seta=1 instead, which amounts to replac- fines a direct correlation function via twofold functional dif-

ing the excess free enerds, = F— Fy,s due to the Coulomb ferentiation qf the intrinsic Helmholtz free-energy functional
interactions by the corresponding internal  energy”11Pi(1)}] with respect to densitj24]:

Uey=(9/19B8)(BFey) [see Eq(13)]. We call this approxima- .
tion scheme MSAL. In this case E@.4) is replaced by SF [{pi(N}] n Gijor—r’)
Spi(r)dp;(r') pi(r)

%pzwo(p)=— ! 3[Ka+(Ka)2—Ka\/1+2Ka]. (7
4mpa From the bulk limit of this function a pair distribution func-
(15 tion h;; can then be obtained via the Ornstein-Zernike equa-
Note that, in contrast to Eq14), this expression does not tion. The results will be different from thls;; used for the
reduce to the exact Debye ekel result 1p2wy(p) construction of the functional, in our case th_ose of the MSA.
= —«3/1278 in the low-density ¢—0) limit. However, it This is an |mport§1nt advantage _of the de_n5|ty-funct|ona_l ap-
differs only by a factor of. proach. We require the correlation function for fluctuations
The liquid-vapor phase coexistence curves, which followof the total densityh(™=(h_  +h, _)/2 to exhibit the con-
from the free energy by the usual double tangent construcventional Ornstein-Zernike behavior, i.ehgb) should be-
tion, are shown in Fig. 1 for the MSA and MSAL, together come long ranged near the critical point, with an exponential
with the Gibbs ensemble Monte Carlo simulation resultsdecay described by a diverging correlation length. Such a

1 2 2
Epzwo(p)z— (Ka)2+2Ka+§—§(1+2Ka)3’2 .

Ampad

Cij(r,r’ {pi(nNhH=—-8
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behavior reflects the net interparticle interaction that is nec- 10 Y

essary to obtain liquid-vapor coexistence. However, as re- — g
marked in the Introduction, the original MSA result fo}”) 8 ~- E,
is simply that of hard spherds the Percus-Yevick approxi- --- /4 this work
— &/4 square gradient theory ' . )
— 3/4Lennard-Jonesfluid e <

mation, so there is no manifestation of attraction in this
particular combination of the correlation functions. We de-
fine the second-moment correlation lendtlfor fluctuations

of the total density by the expansion of the structure factor

—

& /a, 3 /(4a)
D

S(k,p) =1+ ph'P(k,p)=S(0,0)/(1+ %K%+ - -), »
(18

wherek is the wave number. This correlation length can be 03 04 05 06 07 08 09 1
obtained rather easily if one again assurmpegr)=p_(r)

=3p(r) and considersF=Q+ u[d%r p(r) [see Eq(7)] as /T,

a functional of the total density(r). Using the bulk limit

(b) . FIG. 2. Second moment correlation lengthsandé, for density
C, of the function

correlations in the vapor and liquid phases at two-phase coexistence
obtained using the MSA1. Also shown is the widfH defined by

Eq. (35)] of the liquid-vapor interface obtained from the present
density-functional theory and from the square gradient theory of
Ref. [10]. All lengths diverge at the critical temperatufe. The
vapor correlation length increases at low temperatures because of

2 et
5f[{p(r)}]+5(r r')

1
Sp(r)dp(r’y  p(r) 19

cp(ror'{p(N}h)=-8

¢ is given by the reduced screening in the very dilute vapor phase. The interfacial
width & is very close to 4, over the whole temperature range. At
1 f d3r rzcﬁ)b)(r,p) the same reduced temperature the interfacial width predicted by the
52:_ , (20) present theory is larger than that obtained from the square-gradient
6 3. (b theory, which in turn is close to the result for a Lennard-Jones fluid
Up— f d°r Cp (r.p) as obtained from a DFT similar to the present ¢88].
which follows straightforwardly from the definition given 1/ pe? \¥4
by Eq. (18) and the Omstein-Zernike equatidif”(k,p) &= %) [1+0(p"?], (22)

=cP)(k,p)/[1—pc”(Kk,p)]. Within the MSAL one finds
a result that also follows from the hypernetted-chain approxi-
_1b) mation [36,35. If one assumes that for low densities the
B c, (r’P):_&r)ﬁfCS(P)_ | Mo(r.p) MSA correlation functionhp tends to— (Be?/er)e™*", all
P the algebra can be performed analytically and the MSA1
yields in leading order

7 K)llz \/7( ,882 )1/4

1927 p| 4 | 36mep

9? e?

d 1 52
+p——hp(r,p)+ 7 p*—hp(r,p) | = &(r)
ap 4" 9p?

&= (23

el 9 4
< [ '—(p—hDu',p) o | |
er'\" dp which is in accordance with our numerical results. Thus, for
p—0 the MSAL correlation length diverges with the correct
power law, but the amplitude is too large by a factor,oF.
We can also carry through the algebra using the original
functional (7) (including the« integration. In this case we
Note that the equivalent result for a simple atomic fluid wasobtain
derived in Ref[34]. The resulting correlation lengths of the
coexisting liquid and vapor phases are plotted in Fig. 2. In _ V14 Be?
accordance with the mean-field character of the present ap- T4 36mep
proach they diverge near the critical point proportional to
(T.—T)¥2 ¢ also diverges upon approaching the spinodalsfor p—0. Once again the power law is correct, but the am-
which are determined b§?F (p)/dp?=0 or, equivalently, by  plitude is again too large. These results suggest that the func-
the vanishing of the denominator in EQO). Upon lowering  tionals capture the essential features of density-density cor-
the temperature the correlation length in the liquid phaseelations in thep— 0 limit. This is a nontrivial observation.
decreases to about one particle diameter, whereas that of tRecall that the GMSA, which assumes a particugingle
vapor phase increases again as a consequence of the redud@tkawa form for the non-Coulomb part of the direct corre-
screening at very low densities. lation functionsc;;(r) and then enforces consistency among
It is instructive to examine the limiting behavior @ three routes to bulk thermodynamic functions, yields a finite
—0. The exact low-density behavior of the second momentalue asp—0 [35]. Thus our present MSA1 and MSA re-
correlation length is believed to 85] sults, Eg.(23) and (24), improve upon the GMSA in the

1, ,
P a_F,ZhD(r P) |- (21)

1/4
(24)
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low-density limit. Finally we should emphasize that the re-which also follows from the small coupling expansion of the
sults described here refer to the second moment correlaticthecay length and of the expression for the amplitude ob-
length ¢ as defined by Eqg18) or (20). The so-called true tained from the pole analysi28] mentioned in Sec. lII.
correlation lengthé,, that determines the ultimate exponen- From Eqs.(26) and (27) one finds

tial decay of the density-density correlation function

h®)(r ) is determined by the poles of the Fourier transform d 2mwBe* [1 _
P (r.p) y p B f da ae Va2 (28)

h{P(k,p) [28]. In general.,. differs from &; they become 2z V(Z—ep)= 27

identical (within mean-field theory in the vicinity of the
critical point. Calculating the poles from the present DFTand hence

approach is not straightforward as the Fourier transform of

Eq. (21) cannot be performed analytically, so we cannot eas- 6mpe’
ily compute &,,. However, we are able to compare our re- W(z—®,p)=—
sults for¢ with £, gusaObtained in Ref[28]. For subcritical
liquidlike states that turn out to be relevant for the interface
the correlation lengthgysa and éysa both differ by less
than a factor of 2 fromé, gusa. In the very-low-density
vapor phase the exact limiting behavioréis=1/2« [36,35,

0

—62K4Z4 . (29

Thus w, which corresponds to the effective interaction be-
tween two fluid layers a distance apart, is predicted to
decay algebraically with the same exponent as for a Lennard-
; . ) Jones fluid, where the interatomic potential decays &5

1/2 ’

wh|chdd|vergestas'l(/q)t_ folr p;]o’. |.e.,bfaster than the g unexpected result implies an algebraic decay for the
second moment correlation length given by E2p). density profiles too. More specifically one would expect

In summary, we conclude that the present densityap/d2~_|z|—4 as z— +w. This behavior can be traced

functional theory provides a re_asonable d_escriptipn of th%ack to the fact that within the MSA density-functional
long-wavelengthismall k) behavior of density-density cor- theory the bulk direct correlation functia)®(r; p), which is

relations in the bulk RPM. This is a necessary prerequisite .

for a reliable treatment of the liquid-vapor interface. gllven by Eq. (2) with hD(r’f’) replgced by
Joda hp(r,p,a), also decays algebraically. Using an argu-

ment similar to the one above one find$(r,p)~r ¢ as
r—oo, which is the same as for a Lennard-Jones fluid. This
A. Density profiles would in turn imply that h{’(r;p) as obtained from
The average density profile of the liquid-vapor interfacec’’(r,p) via the Ornstein-Zernike equation should also de-
varies only in the direction normal to the interface, which wecay asr~°. In other words, the theory generates effective
take as the direction. In the following we assume that the potentials for density-density correlations that mimic those
bulk liquid densityp, is obtained forz— —o and the bulk  of genuine dispersion forces. While this observation is cer-
vapor densityp, for z—o. The application of the density- tainly intriguing it is likely to be an artifact of the present
functional theory outlined in Sec. Il to this situation allows MSA scheme. The bulk pair correlation functi@rﬁb)(r;p)
one to carry out the lateral integrations in Ed). yielding the  should decay exponentially for the RP[@6,28. Moreover,
following grand-canonical functional per surface arfedor general arguments for the decay of density profiles near

IV. LIQUID-VAPOR INTERFACE

the total density(z) =2p_(2)=2p (2): walls[27,28,37 show that the ultimate decay p{z) should
. . . mimic that ofh{”’ . For examplep,—p(2) should decay as
0 _ - +>| dz a7 / exp@Eé,) asz— — o, whereé,, is the true correlation length
A Hp(2)}] AJ:HSHP(Z)}] 2[ 2 d2p(2)p(2') of the bulk liquid. If, on the other hand, we ignore the

integration and sek=1 (see also the discussion in Sec),ll|
Xw(z—z’,;(z,z’))—,uof dz p(2), then—ow(z,p)/dz~hp(z,p) and there is no longer an alge-
braic decay of the direct correlation function and of the pro-
(25  file. Henceforward we describe results based on both MSA
and MSAL.
with By functional differentiation of Eq(25) one derives the

Euler-Lagrange equation
2me? grange q

W(Z12,p) = —

0 1
jzlzdrfo daho(fpo). (20 In P23+ f(p(2))= po—P(2), (30

For densities not too large the functidry, exhibits its  with
slowest decay as a function ofllowest value ofxy(«), the
imaginary part of the leading pdldéor small values of the -
charge, i.e., for smalle [see Fig. 4b) in Ref.[28]]. There- p(z)zf dz'p(z')
fore, in contrast to the bulk free energy, the large distance
behavior ofw(z,,,p) is dominated by the contributions from
small «. In this region the correlation function is expected to
take on the Debye-Fukel form
) (The primes orf.g andw denote derivatives with respect to
ho(r,p,a)=— ﬁ_eaefwar 27) the density. In contrast to similar theories for Lennard-Jones
othsp er ' [38] or dipolar[39] fluids the kernel in Eq(31) depends on

w(z—2',p(2,2'))

. (3D

1 —
+ EP(Z)W/(Z_Z,!p(Z!Z,))
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FIG. 3.. Total density profile of the quuid-vapor interface of the  FIG. 4. Density profiles, as obtained from MSAL, plotted in

RPM at different temperatures, as obtained from MSAL. scaled form[see Eq.33)] as a function ofz/&, . The parametet
=1-T/T, measures the deviation from the critical temperature.

z and z’ separately due to the density dependence of th&ort—0 the scaled profiles approach the universal scaling function
approximated pair distribution function. However, in the —tanh@2é).
present case one can still show that if a profil@) solves ]
Eq. (30) any shifted profilep(z—z,) will be a solution as ~ tween the phases decreases. These obvious features can be
well because the position of the interface is not fixed by théncorporated by introducing a scaling functigg.(z/¢,T)
boundary conditions. In order to select a unique profile walith pse (£, T)=+1:
have imposed the additional requiremep{z=0)=(p, 1 1
—pv)/2 and haye shifted the profiles accordingly during the p(ZT)=2(p+py) + =(p1— py)pecl(ZIET). (33
numerical solution. 2 2

Equation(30) was solved using the usual Picard iteration . . .
scheme. In each iteratiom) the functionp(z) is calculated For T—T, the scaling function should reduce to a universal
from the density profile pi,(z) in the region ze function of the single variable/ &, which, within mean-field
[—L/2L/2] and a newp,ey(2z) is obtained by numerical theory, is given by
inversion of Eq.(30) for each value o. In order to achieve ,
convergence the profile for the next iteration is calculated 2ET—T.)=—tan 34
according to the mixing rule Pscll 2/, 2 h2_§ (34

Such a plot is given in Fig. 4 using the second-moment cor-
P(n+1)= @Pnewt (1= @)pn), (B2 relation lengthé,(T) for the bulk liquid phase, obtained from

Egs.(20) and(21). This demonstrates that the scaling behav-
where typically w=0.2. The process is repeated until IOf remains valid even relatively far outside the critical re-
max|pg: 1(2)—pe(@)| is smaller than a prescribed accuracy. 910"- In order to make a comparison with the behavior of
Since the functionsv(z,,,p) and w'(z1,,p) have discon- simple atomic fluids we present in Fig. 5 the density profiles
tinuous derivatives at,,— *+a the integration in Eq(31) is of a Lennard-Jones fluid scaled in the same manner. These
divided into the three subintervals-L/2z—a], [z—a,z
+a], and[z+a,L/2]. The Milne rule, which effectively in- 1

terpolates the integrand piecewise by third-order polynomi- = % 0007 t=0419
als, is used for all integrations. Asymptotic contributions to 05 --- t=0.300
p(z) from the regiongz’|>L/2 are calculated by replacing : — t=0.179
p(z') by the bulk limitsp(z' <—L/2)=p, and p(z'>L/2) — :=g.(1)2:3

=p, and integrating numerically wittw(]z—z'|>20a)=0. & 0

The functionsw andw’ are given by integrals over the
functionshy andhj; whose evaluation already requires sig-
nificant numerical efforts. Sinc&(z,,,p) and w’(z4,p)
have to be evaluated many times during the iteration schem:
the algorithm can be accelerated considerably by using two- -1
dimensional spline interpolations for these functions, which 6 4 2 0 2 4 6
require their evaluation only at, e.g., 20Q00 grid points /
before the main algorithm starts. 2/

In Fig. 3 we plot the density profiles obtained from the g 5. Same plot as Fig. 4 but for a Lennard-Jones fluid. The
MSAI for a series of different temperatures. Upon increasingesuits were obtained using the density-functional theory of Frodl
the temperature towards the critical poinfy(=0.084 65)  and Dietrich[39]. Note that the approach to the scaling limit is
the interface broadens and the density differemcep, be-  slower and the profiles are more asymmetric than for the ionic fluid.

-tanh(z /(28))
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results have been obtained using the density-functional ararctanh(0.8% 1.0986 than the quantit§ defined in Eq(35).
satz of Frodl and Dietrich39]. At low temperatures the pro- The data taken from Ref10] have been divided by this
files of the ionic fluid deviate weakly from antisymmetry, factor. For the actual profiles shown in Fig. 3 the two defi-
approaching the bulk limit faster on the vapor side than omitions for the width yield values that differ by about 10%
the liquid side. The same trend can be observed in theyo.

Lennard-Jones system, where it is even more pronounced: The density profiles obtained from the MSicluding
Compare profiles corresponding to the same reduced tenthe « integration are, for a given value of=1—-T/T,,
peraturet=1—T/T.. In the case of a Lennard-Jones fluid similar to those obtained from the MSA1. When plotted in
the deviation from antisymmetry is attributgth] to the fact  terms of scaled variablé&q. (33)], the profiles from the two
that¢, <¢ at low temperatures. The situation is different for theories can hardly be distinguished on the scale of Fig. 4.
the ionic case where, away from ,£,> ¢ (see Fig. 2 This  Moreover, identifying the ultimate algebraic decay from the
would imply that within a square-gradient theory therenumerical results for the tails of the profiles was not feasible.
should be aslowerdecay of the profiles on theaporside.  The interfacial widthss calculated from the MSA profiles
The results of Refl10] are in accordance with this expecta- are close to 4, with & obtained within the MSA approach.
tion. However, compared to the square-gradient theory, outhese widths are in turn close to those from the MSAL,

present nonlocal theory clearly predicts the opposite asymprovided we make a comparison at the same value of
metry: The decay on the vapor sidefasterthan that on the

liquid side, althoughé,>¢,. In order to understand these )

features it is important to distinguish between the intermedi- B. Surface tension

ate range decay that is apparent from Figs. 3-5 and the ul- |n this subsection we present results of calculations of the
timate asymptotic decay into the bulk. As mentioned previdiquid-vapor surface tensiof. First we derive an expression
OUS'y, for the ionic fluid the ultimate decay should be for y in terms of the density prof”@(z), which is conve-
exponential with a decay length equal to the true correlatiomjent for numerical work. Since it is necessary to cut off the
length£.. of the bulk. We attempted to analyze the numericalsystem atz=+L/2, this generates artificial fluid-vacuum
results for the tails of our profiles, but this is rather difficult gyrface tensiony ,ac andy, ,ac, Which must be subtracted
because the variations are very small. When curves of thg, order to obtain the liquid-vapor surface tension. Therefore,
form C exp(~|24/¢) or (C/z)exp(—|2/¢) are fitted to the tails  y is given by

of the MSAL profiles one finds larger values féron the

vapor side, as expected, but the actual values depend very QL) Qpui

strongly on thez interval used for the fitting. Finally, we note Y= ._“mx A T A | Vwac” Yooacr (30
that the density profiles in a Lennard-Jones fluid approach, as -
a function of temperature, the universal scaling function

monotonically from below on the vapor side and from abovewhere) (L) is the grand-canonical functional evaluated for a
on the liquid sidgsee Fig. 5. On the other hand, in the ionic finite system of size.. It is convenient to express the bulk
fluid the density profile on the vapor side is below the uni-free energy[Eq. (11)] as a double integral over and z’'
versal profile at low temperature but is above it for lamje analogous to Eq25). A straightforward calculation yields
close andr to T, (see Fig. 4 fot=1—-T/T.=0.0313). We

interpret this as a consequence of the facts #até and L2 L2 L L2

that the vapor becomes more important n&ardue to its f dz dzZ’w(z—2z',p)= —Wo(p)—zf dz 1(z,p)
increasing density. At the same reduced temperature the /0 0 2 0

scaled interfacial profiles in a Lennard-Jones fluid are steeper (37)
than those of the ionic fluid.
We define the interfacial widtld as with t(z,p)=fZdy w(y,p) and, from Egs(13) and(26),

d
5=—<p|—pu>(d—‘;

-1
) : (35) s
2=0 WO(P):ZL dy wy,p)=2t(0,p). (38)

For the tanh profile in Eq.34) one hass=4¢, so that in the
critical region 6/4 should diverge in the same way as the
correlation length. Remarkably, Fig. 2 shows thaalatem-
peratures this width is determined by theguid correlation
length &,. At T*=0.03, which is a little higher than the
estimated triple point temperatur@3], 6/a=3.0. This value

is slightly higher than the estimates of the equivalent ratio 1 1 (L2 Lz ,

for simple atomic fluids near their triple poinf§]. Also Yowac=5 M5 py f_uzdz _L/Zdz w(z—2",pp)
shown in Fig. 2 are the results of R¢10], which exhibit a Lo

similar variation withT, but at lowT the widths are about a

factor of 2 smaller. The “10—90” interfacial thickness used —Lwo(pp)
in Ref.[10] is defined as the distance over which the total

density changes fromp,+0.9(p,—p,) to p,+0.1(p;—p,).

For the tanh profile it gives a width that is larger by a factorUsing Eq.(37) and the symmetrw(—y)=w(y) gives

The surface tensions with the vacuum follow from assuming
constant density profilgs(z) = p,,, with b=v,l, which leads
to (there are two equal interfades

. (39
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L/2
—Zf dz t(Z,Pb)}
0

L/2
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Li2
—2| dz t(Z:Pb)}
0

1 ©
=- 5p§JO dz t(z,pp). (40)
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FIG. 6. Comparison of the liquid-vapor surface tensjoof the

Thus the final expression for the surface tension follows byRPM as given by the present MSA and MSAL theories and by the

inserting Eqs(11), (37), and (40) into Eq, (36):
~ |7 ddttuslp(@)~ fustosi @Dl |~ dip(2
—psk(2)]+ 5 fd2f dz'[p(2)p(z' )W(z—2',p(2,2"))
~piwe—z p 143 dz[ azlp@i)

xw(z—2',p(2,2'))— ptw(z—2',p))]

0 o —
+ J_mdzfo dz'p(z)p(z’ )w(z—2',p(2,2"))

1,(- 1,(-
—EPUJ dz t(2,pu)—§p|f dz t(z,p), (41)
0 0
with the sharp-kink profile
p, z<0
psk(2)= —— (42

andfys(p)=(p/ B)[In(p\3)—1]+fcp). All integrals occur-
ring in Eq. (41) are convergent.

Since the surface tension is the surface excess grand p
tential per unit area, an alternative starting point is the for-

mula
y= f dZ w(2)+p] (43)
with the grand-canonical potential density
1
o(2)=fys(2) = uoep(z) + EP(Z)
XJ’ dz'p(z" )yw(z— z',;(z,z’)) (44)
and the vapor pressure
1 2
P=—fhus(pp) + mopp— prWO(Pb)y b=Il,v. (49

square gradient theory of Ref10]. The data have been reduced
using the critical temperaturg, appropriate for each theory.

It is straightforward to show that E¢43) also leads to Eq.
(41).

The surface tensions obtained from the MSA1 and MSA
theories are displayed in Fig. 6 as a functionTéT ;. and are
compared with the results of the square-gradient thEbdy
Since the MSA1 has a higher critical temperatligghan the

MSA we plot the ratioy= ya?/ kg T, rather than the reduced
tensiony* = yea®/e?, which is displayed in Refl10]. The
MSA results fory are larger than the values predicted by
MSAL1, which in turn are larger than those obtained from the
square-gradient theory, with the differences becoming larger
at low temperatures. Neadr. all three theories yield the stan-

dard mean-field critical behavior, i.ey~(1—T/T.)%% At
lower temperatures the square-gradient theory gives a nearly

linear variation ofy with T/T., whereas in the MSA1 the
(1—-T/T.)%2 behavior appears to persist further frofg,
which is consistent with the earlier observation that the den-
sity profiles follow the scaling behavior even for tempera-
tures well removed fronT, .

The present MSAL results predigi{T/T.=0.6)=0.09.
This estimate should be contrasted with the corresponding
Pesult for a Lennard-Jones fluid where simulations and theo-

ries yieldy(T/T,=0.6)=0.6[8]. The physical origin of such

a large difference is not obvious and it is important to ask
whether it is an artefact of the present approximations. Al-
though our theories overestimaie they should make a
compensating overestimation of the surface tengiollt is
conceivable that since MSA1l and MSA grossly underesti-
mate, for a given value of /T, the simulation results for
the liquid densities at coexisten¢gee Fig. 1 they also un-
derestimate the magnitude gf On the other hand, if one
takes experimental data for the surface tension of molten
alkali halides near the melting points and makes some rea-
sonable estimates of tHaveragg diametera the values of

the resulting reduced tensioy* [10] are similar to those
obtained by extrapolating the present results to the appropri-
ate reduced temperaturd® . This would suggest that the
present theories yield at least the correct order of magnitude
for the surface tenstiowy.



57 LIQUID-VAPOR INTERFACE OF AN IONIC FLUID 6953

V. SUMMARY AND DISCUSSION sion of the excess free energy, this approach cannot be ap-
" plied straightforwardly to the liquid-vapor interface due to

We have developed two, closely related, density- . .
. . - : the lack of a unique bulk density that could serve as a start-
functional theories for the liquid-vapor interface of the RPM. . : . AR
ing point for the expansion. The second intriguing conse-

BOth the MSA and the. MSAL are based_ on e“:)pm)('matlngquence is that the MSA, through its integration owerin
the inhomogeneous pair correlation function by that of a ho-

T — function spacdEq. (4)], yields algebraically decaying bulk
mogeneous bulk liquid at some mean dengitythe MSAL  cqrrejation functions and liquid-vapor density profiles,

involves an additional approximation, i.e., the integration,yhereas the correct ultimate decay should be exponential in

over the coupling constar(t_:harge IS ignored. The resglts both cases. Once again this failure must be attributed to the

ﬁgﬁéxgve emerged from this analysis can be summarized %ﬁﬂple approximation employed for the inhomogeneous pair
. correlation function. However, it is not clear what modifica-

(i) The MSA and MSAL yield similar bulk phase dia- . .
grams, with the latter overestimating the critical temperaturetlons o the theory should be introducéather than simply

T. and underestimating the critical densijty to a further omitting the Integration as was done in the MSpih order
extent than the MSAFig. 1). to eliminate this feature. _

(i) The two theories yield similar second moment corre- W& should also emphasize that the present DFT of the
lation lengths for the density-density correlations in the bulkliuid-vapor interface is a mean-field treatment in that it does
fluid (Fig. 2. They exhibit the correct power-law depen- NOt incorporate thg effects of glther bulk (?ntlcal fluctuatl_ons
dences in the low-density limit but overestimate their nu-Or interfacial capillary-wave-like fluctuations. In keeping
merical prefactor$Eqs. (22)—(24)]. with treatments of simple atomic fluids we argue that the

(iii) When suitably scaled to take into account the differ-density profiles and surface tensions we calculate from our
ences in the bulk phase diagram the total density profiles ardeory are those of the bare intrinsic interface. In order to
similar in both theories. Both predict that for low tempera-estimate the additional broadening of the density profile aris-
tures and on intermediate length scales the profile aping from the interfacial fluctuations one could perform the
proaches its bulk limits faster on the vapor side than on thetandard Gaussian unfreezing of these fluctuations on the in-
liquid side (Figs. 3 and # This is opposite to what is found trinsic interface given by the present thedd?,38. The

in the square-gradient theory of R¢10]. However, the ul-  “stiffness” of the interface is determined by the dimension-
timate decay into bulk should be determined by the bulkess ratiow=kgT/4my¢?, i.e., the larger the surface tension
correlation length, which is larger on the vapor side. v, the smaller the interfacial broadening. Since we predict

(iv) The interfacial widths, defined by Eq(35), is close

to four times theliquid correlation length over the whole . :
temperature range. It is larger but has a similar variatio for an atomic fluid at the same reduced temperaife;,

compared to that of a simple liquid with temperat(Féy. 2). r{his implies that the broadening due to fluctuations is signifi-

(v) For T—T, the density profiles approach a universal CaNtly more pronounced for the RPM.

scaling form. In contrast to simple fluids, this approach is not There are two other intere_sting prob_lem; to WhiCh the
monotonic as a function of temperatuieigs. 4 and & present theory could be applied. The first is the interface

(vi) The surface tensions calculatedfrom the present betwee_n an ipnic fluid apd a charged wall. AIFhough this. has
theories are larger than those obtained in R&6] and the been investigated using several theoretical techniques
temperature dependence is not as lin@ag. 6). [21,19 the advantage of the present approach is that it in-

(vii) All theories for the RPM find that fof/T,~0.6 the  corporates two coexisting phases and thus can describe wet-
scaled surface tensioy=y*/T* is considerably smaller ting phenomena. The second is the liquid-vapor interface of

than the corresponding ratio for simple atomic liquids. We&" ionic fluid in which cations and anions have unequal di-

surmise that this is a genuine feature of ionic fluids. ameters. These more realistic systems have only been tackled
Certain aspects of our theory warrant further discussionWithin the context of the gradient expansip43]. In both

The basis of our approach is the approximation for the inhocases electrical double layers will form, giving a local viola-

mogeneous pair distribution functiog;;(r,r',{pi(r)},), tion of electroneutrality. However, the bulk correlation func-

which is the key input for the theory. This has two intriguing tions used as input to the DFT are only available for neutral

consequences for the asymptotics of the correlation functionsystems. Nevertheless, one might still hope to capture the

generated from the density functional. The first concerns thessential features by employing E&) for the mapping to

low-density behavior of the second moment correlationthe bulk system and by taking account of the nonzero local

lengthé, referred to above. That the MSA and MSA1 do not charge density only via the Coulomb contribution to the free

yield the exact limiting behavior fo¢ reflects the fact that energy, Eq(6). A similar assumption has proved successful

even at low densities our approximation fg;; does not for the electrolyte-wall interface in the density-functional

capture the proper long-wavelength variation, i.e., the correaheories of Refs[15—-19.

coefficient ofk? in the structure factofEq. (18)]. A possible

improvement upon the present approximation for

gij(r.r",{pi(r)},@) may be given by the “mean density ap- ACKNOWLEDGMENTS
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