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Liquid-vapor interface of an ionic fluid

B. Groh,1 R. Evans,1,2 and S. Dietrich1
1Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

2H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
~Received 30 October 1997!

We investigate the liquid-vapor interface of the restricted primitive model~RPM! for an ionic fluid using a
density-functional approximation based on correlation functions of the homogeneous fluid as obtained from the
mean-spherical approximation. The ionic interfacial density profiles, which for the RPM are identical for both
species, have a shape similar to those of simple atomic fluids in that the decay towards the bulk values is more
rapid on the vapor side than on the liquid side. This is the opposite asymmetry of the decay to that found in
earlier calculations for the RPM based on a square-gradient theory. The width of the interface is, for a wide
range of temperatures, approximately four times the second moment correlation length of the liquid phase. We
discuss the magnitude and temperature dependence of the surface tension and argue that for temperatures near
the triple point the ratio of the dimensionless surface tension and critical temperature is much smaller for the
RPM than for simple atomic fluids.@S1063-651X~98!13106-9#

PACS number~s!: 68.10.2m, 61.20.Qg
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I. INTRODUCTION

In this paper we develop a density-functional theo
~DFT! for the properties of the liquid-vapor interface of th
simplest model of an ionic fluid, namely, the restricted prim
tive model ~RPM! in which the ions are modeled by equ
sized hard spheres of equal and opposite charge. The R
serves as a simple model for molten salts and electro
solutions. Indeed the measured partial structure fac
Si j (k), with i , j P$1,2%, and the thermodynamic propertie
of several molten alkali halides near their melting points c
be well described by the corresponding quantities of
RPM @1#. In recent years there has been a revival of inter
in the properties of the RPM, stemming from efforts to u
derstand the nature of criticality in ionic fluids@2–4#. For
ionic systems one might suppose that the long-range C
lomb forces could give rise to critical exponents differe
from the Ising ones that are measured and calculated
atomic and molecular fluids. Some recent experiments
certain electrolytes revealed mean-field-like behavior or
some cases, Ising critical regions that are several order
magnitude smaller than in atomic fluids@4#. Since the three-
dimensional RPM is known to exhibit phase separation int
dense, conducting ionic liquid and a very dilute vapor pha
which is also conducting, it is a natural choice for theoreti
and simulation studies of phase coexistence and critica
Although attempts to explain the experimental observati
regarding criticality have so far been unconvincing@esti-
mates of the Ginzburg temperatures for the RPM are sim
to those for simple~atomic! fluids @5,6# and the latest Monte
Carlo finite-size scaling study@7# gives results compatible
with Ising behavior# this does not mean that the RPM do
not warrant further attention. On the contrary, because it
corporates the key features of hard-core repulsion and C
lomb forces it remains the canonical, albeit overidealiz
model for an ionic fluid.

Here we shift attention away from the bulk and focus
the inhomogeneous situation that arises at the planar in
face between the coexisting liquid and vapor of the RP
571063-651X/98/57~6!/6944~11!/$15.00
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We are interested in the ionic density profiles and the surf
tension of such an interface, which can be viewed as a cr
model for the corresponding liquid-vapor interface of a m
ten alkali halide. Compared with the well studied case
simple fluids, modeled by a Lennard-Jones potential@8#,
very little is known about the interface in the RPM. We a
not aware of any corresponding simulation studies, altho
there is one early molecular-dynamics simulation@9# using
the more realistic Born-Mayer-Huggins potential model f
KCl.

Theoretical work was pioneered by Telo da Gamaet al.
@10#, who used the gradient expansion developed in Ref.@11#
to investigate the RPM interface. The special symmetry
the RPM implies that the density profile of the cations sho
be the same as that of the anions, i.e., there should be
electroneutralityr1(z)5r2(z) throughout the interface. Fo
such a ‘‘symmetric’’ situation the gradient expansion of t
free-energy functional involves only gradients of the to
density profiler(z)5r1(z)1r2(z); the charge density pro
file q(z)5r1(z)2r2(z) vanishes identically. The coeffi
cients in this expansion involve moments of the dens
density bulk direct correlation functioncr

(b)(r ;r). If the
expansion is truncated at the square gradient term, a
usual, the corresponding coefficient must be positive if
theory is to yield physical solutions. As was explained
Ref. @10#, it is necessary to utilize a rather sophisticate
self-consistent theory of the bulk correlation functions, t
generalized mean-spherical approximation~GMSA! @12#, in
order to obtain a positive coefficient. The ordinary mea
spherical approximation~MSA! @13,14#, which is often suc-
cessfully employed@1# in studies of the bulk RPM, is insuf
ficient as it yields merely the hard-sphere~Percus-Yevick!
result forcr

(b)(r ;r) which produces anegativecoefficient of
the square-gradient term. That one must supercede the M
to obtain physical interfaces is, at first sight, quite surprisi
given its success in bulk. One suspects that this is an art
of the square-gradient approximation. Here we reinvestig
the liquid-vapor interface using an alternative DFT, whi
6944 © 1998 The American Physical Society
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57 6945LIQUID-VAPOR INTERFACE OF AN IONIC FLUID
does not utilize the gradient expansion and thereby av
the need to employ the GMSA and the ensuing proble
involved with extrapolation into the two-phase region@10#.
Our approach, which is motivated by the MSA treatment
the bulk free energy, involves a local density approximat
for the hard-sphere part of the functional and a nonlo
treatment of the remaining~Coulombic! contributions, which
is obtained by approximating the inhomogeneous pair co
lation functions by their homogeneous counterparts. It diff
from other DFT approaches for ionic fluids@15–19# that
have proved successful in the primitive model description
electrical double layers at charged hard walls. These theo
treat the non-hard-sphere part of the functional by means
second-order density expansion about the density of a re
ence fluid, usually taken to be the homogeneous bulk fl
far from the substrate. Although this is adequate for ma
purposes it is problematical when it comes to liquid-vap
interfaces or to the adsorption of thick~wetting! films, where
two bulk phases are involved. Indeed, for the case of
atomic fluid the corresponding second-order expansion a
a homogeneous reference density is known to fail to acco
for liquid-vapor coexistence and is inadequate for wett
problems@20#. We are not aware of attempts to use the a
proaches in Refs.@15–19# for the liquid-vapor interface. Nor
are we aware of attempts to use integral-equation theorie
that purpose, which have been rather popular in studie
the electrical double layer@21,19# but may be beset by simi
lar problems.

The present approach does not suffer from these diffi
ties, i.e., the uniform limit of the free energy reduces to t
of the MSA for any uniform densityrb . On the negative side
this means that our theory for the interface is prone to
same deficiencies as the bulk MSA, namely, the failure
incorporate properly the effects of ion pairing, which a
especially pronounced in the vapor, and the consequent
estimate of the location of the critical point.

As well as providing a description of the liquid-vapo
interface of a near-symmetric alkali halide, i.e., one wh
the ions have nearly the same diameter, the present th
may form the basis for a description of wetting phenome
in ionic fluids@22#. The situations one would like to conside
are ~i! the wetting of a substrate–alkali-halide-vapor inte
face by the molten salt and~ii ! the wetting of the interface
between a substrate and, say, the phase dilute in salt b
other, salt-rich, phase for an electrolyte that exhibits liqu
liquid phase separation such as those considered in Refs@4#
and @23#. Since it is well known that wetting properties d
pend sensitively on the range of the interaction potenti
one might ask if the long-range Coulomb interactions lead
qualitatively new features or if, due to screening, ionic flu
behave as one-component systems with short-range inte
tions, e.g., Yukawa fluids.

This paper is arranged as follows. In Sec. II we introdu
the approximate DFT for our particular problem. Section
examines the free energy and the second moment correl
length that emerge for thebulk fluid, comparing and con-
trasting the results with those of other theories and with
act results for the limitr→0. In Sec. IV we describe the
results for the density profile and surface tension of
liquid-vapor interface as a function of temperature. These
compared with those of the earlier square-gradient the
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@10# and with corresponding results for simple atomic fluid
We conclude in Sec. V with a summary and discussion
our results.

II. DENSITY-FUNCTIONAL THEORY FOR IONIC FLUIDS

We study the simplest model for an ionic fluid, the s
called restricted primitive model, which consists of charg
hard spheres with equal diametersa for both species. It can
be considered as a model of a molten salt, but also of
electrolyte solution with the solvent treated as a dielec
continuum. The interaction potential is given by

wi j ~r !5wHS~r !1wi j
C~r ! ~1!

where

wHS~r !5H `, r ,a

0, r .a
~2!

and

wi j
C~r !5

eiej

er
Q~r 2a! ~3!

wherer is the interparticle distance,Q is the Heaviside step
function, i , j P$1,2%, e152e25e is the charge of the
particles, ande is the dielectric constant of the solvent.

The grand-canonical density functional of an inhomog
neous fluid with number densitiesr i(r ) can be written as

V@$r i~r !%#5FHS@$r i~r !%#1
1

2(i , j E d3r d3r 8r i~r !r j~r 8!

3E
0

1

da wi j
C~r 12!gi j „r ,r 8,$r i~r !%,a…

2(
i
E d3r m ir i~r !. ~4!

HereFHS is the free-energy functional of the correspondi
hard-sphere reference fluid,r125r2r 8, m i is the chemical
potential of speciesi , and gi j denotes the pair distribution
function of an inhomogeneous system with the density p
files r i(r ) and the interaction potentialwHS(r )1awi j

C(r ).
The integration overaP@0,1# corresponds to a straight lin
in potential space leading from the hard-sphere reference
tential wHS to the full potentialwi j . For the present mode
this path corresponds to a charging process of the ionic
uid. Although Eq.~4! is formally exact@24#, the pair distri-
bution function is not known for the inhomogeneous syste
We approximategi j by the corresponding functiongi j (r
2r 8,r̄,a) of a homogeneous~bulk! liquid evaluated at an
appropriate densityr̄, for which we choose the mean valu
of the total densities at the pointsr and r 8:

r̄5 r̄~r ,r 8!5
1

2(i
@r i~r !1r i~r 8!#. ~5!

A similar averaging was used in Ref.@25# in a DFT for a
Lennard-Jones fluid in contact with a hard wall. However,
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6946 57B. GROH, R. EVANS, AND S. DIETRICH
that work the local densities were additionally averaged o
spherical regions aroundr andr 8, which is not necessary in
the present case because there are no pronounced de
oscillations at the liquid-vapor interface. Note that the bu
pair distribution functiongi j depends only on the total den
sity r5r11r2 , which follows from the requirement o
electroneutrality,r15r2 , in the bulk. @Strictly speaking,
gi j (r2r 8,r̄,a) is not defined for densities that lie within th
two-phase coexistence region of the bulk phase diagram
this problem does not arise for the approximate pair dis
bution functions we shall actually use in our calculatio
below.#

By writing gi j 511hi j the pure Coulombic contribution
to the functional

FC@$r i~r !%#5
1

2(i , j E d3r d3r 8r i~r !r j~r 8!wi j
C~r 12! ~6!

can be separated off. In the bulk, wherer15r2 , FC van-
ishes. Similarly, due to the symmetry of the RPM und
charge inversion, the density distributions that minimize E
~4! at the free liquid-vapor interface should exhibit loc
charge neutrality, i.e.,r1(r )5r2(r )5 1

2 r(r ). Moreover, the
symmetry of the RPM implies that the total pair correlati
functions hi j must satisfyh115h22 and h125h21 , so
that Eq.~4! reduces to a functional of the total densityr(r ):

V@$r~r !%#5FHS@$r~r !%#1
1

2E d3r d3r 8r~r !r~r 8!

3E
0

1

da
e2

er 12
hD„r 12,r̄~r ,r 8!,a…

2mE d3r r~r !, ~7!

with the difference functionhD5(h112h12)/2 and m
5(m11m2)/2. The hard-sphere contribution is treated in
local density approximation

FHS@$r~r !%#5
1

bE d3r †r~r !$ ln@r~r !l3#21%

1b f CS„r~r !…‡. ~8!

l is the thermal de Broglie wavelength andf CS is the non-
ideal gas part of the free-energy density of the bulk ha
sphere fluid given by the accurate Carnahan-Starling
proximation@26#

f CS~r!5
r

b

4h23h2

~12h!2
, ~9!

with the packing fractionh5(p/6)ra3. Clearly the approxi-
mation given by Eq.~8! does not take into account the sho
range correlations associated with the packing constra
that give rise to the oscillatory density profiles encounte
for fluids at walls. Nor will it account for the weak oscilla
tions that are predicted for low temperatures on the liq
side of the liquid-vapor density profile in both simple@27#
r
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and ionic@28# fluids. A nonlocal treatment ofFHS would be
required to describe such oscillatory behavior.

We employ the bulk correlation functionhD given by the
analytically solvable MSA@13,14#, which provides a reason
able description of the bulk structure and thermodynamics
the RPM. Henderson and Smith@29# have derived an explicit
expression forhD :

hD~r ,r,T!52
be2

er

1

~11aG!2

3 (
n51

[ r /a]

e2~r 2na!G
@~r 2na!G#n

~n21!!

3@ j n22„~r 2na!G…2 j n21„~r 2na!G…#,

~10!

where @r /a# is the largest integer smaller thanr /a, j n de-
notes the spherical Bessel function of ordern and the inverse
lengthG is given byG5(A112ka21)/2a with the inverse
Debye screening lengthk5(4pbe2r/e)1/2. Expression~10!
is inconvenient for the numerical calculation ofhD at larger
because in this case many terms have to be evaluated
rather large errors may occur due to partial cancellations
the terms. On the other hand, a very good approximation
hD for larger can be obtained from the pole analysis of t
Fourier transformhD(k) as shown by Leote de Carvalho an
Evans@28#. It provides the asymptotes of the form

hD~r→`,r,T!5
A~r,T!

r
exp@2a0~k!r #

for k,kc51.228/a and

hD~r ,r,T!5
B~r,T!

r
exp@2a0~k!r #cos@a1~k!r 1u~k!#

for k.kc with known functionsA, B, a0, a1, andu. Using
these methods we have derived similar but slightly m
complicated expressions for (]/]r)hD and (]2/]r2)hD ,
which are needed to compute the phase diagram and
correlation length~see Sec. III!. These asymptotic approxi
mations have been used in the numerical calculations
r /a.12.

III. BULK PHASE DIAGRAM
AND CORRELATION LENGTH

For a constant densityr(r )5r the density functional
yields a Helmholtz free-energy density

F~r!

V
5

r

b
@ ln~rl3!21#1 f CS~r!1

1

2
r2w0~r!, ~11!

with

w0~r!5
e2

e E d3r r 21E
0

1

da hD~r ,r,a!. ~12!
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57 6947LIQUID-VAPOR INTERFACE OF AN IONIC FLUID
Since hD depends only on the dimensionless quantit
be2/ea and r /a, the charging integration withe2(a)5ae2

can be replaced by an integration overb:

w0~r!5
e2

beE d3r r 21E
0

b

db8hD~r ,r,b8!. ~13!

This result demonstrates that the free energy given by E
~11! and ~12! is equal to that obtained by the so-called e
ergy route starting from the MSA pair correlation functio
Thus the bulk phase diagram is identical to the usual M
phase diagram as discussed, e.g., in Refs.@30,31,10,28,5#.
The explicit expression forw0(r) is @14#

1

2
r2w0~r!52

1

4pba3S ~ka!212ka1
2

3
2

2

3
~112ka!3/2D .

~14!

For the reasons discussed in Sec. IV below, we also cons
the functional that arises when we refrain from the integ
tion overa and seta51 instead, which amounts to repla
ing the excess free energyFex5F2FHS due to the Coulomb
interactions by the corresponding internal ener
Uex5(]/]b)(bFex) @see Eq.~13!#. We call this approxima-
tion scheme MSA1. In this case Eq.~14! is replaced by

1

2
r2w0~r!52

1

4pba3
@ka1~ka!22kaA112ka#.

~15!

Note that, in contrast to Eq.~14!, this expression does no
reduce to the exact Debye-Hu¨ckel result 1

2 r2w0(r)
52k3/12pb in the low-density (k→0) limit. However, it
differs only by a factor of32.

The liquid-vapor phase coexistence curves, which foll
from the free energy by the usual double tangent const
tion, are shown in Fig. 1 for the MSA and MSA1, togeth
with the Gibbs ensemble Monte Carlo simulation resu

FIG. 1. Phase diagram of the restricted primitive model in
temperature-density plane as given by the MSA and MS
schemes discussed in the main text. The open symbols denot
results of Gibbs ensemble Monte Carlo simulations@32#. The solid
circle denotes the most recent simulation estimate of the crit
point @7#. The vapor-liquid-bcc-solid triple point is estimated to l
nearTt* .0.025 andr t* .0.5 @33#. The dotted line connecting th
Monte Carlo data is a guide to the eye.
s
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@32,33#. The results are given in terms of the reduced den
r* 5ra3 and the reduced temperatureT* 5kBTea/e2. The
phase diagram of the RPM is characterized by small val
of the reduced critical density and temperature~for compari-
son the Lennard-Jones fluid hasTc* .1.3 andrc* .0.3 in
Lennard-Jones reduced units! and by a strong asymmetry o
the coexistence curve. At low temperatures the vapor ph
becomes extremely dilute, e.g., atT* 50.04.Tc* /2 one has
rv* .1027 within the MSA. It is well known that the MSA
overestimates the critical temperature and grossly under
mates the critical density. The cruder MSA1 predicts an e
higher critical temperature~for the MSA Tc* 50.0786, and
for the MSA1,Tc* 50.0846) and smaller critical density~for
the MSA, rc* 50.0145, and for the MSArc* 50.0086).
Simulation results for the coexistence curve have underg
substantial revision during recent years~see, e.g., Refs
@2,3#!; the latest estimate of the critical point by Caillolet al.
@7#, using a mixed-field finite-size analysis of Monte Car
data, gives Tc* 50.048860.0002 and rc* 50.08060.005.
Clearly quantitatively reliable results cannot be expec
from either the MSA or MSA1. Both fail to take prope
account of the effects of ion pairing, which is known to b
very strong in the RPM at low densities and is believed
influence strongly the location of the critical point@30,2,3#.
Since the differences between the coexistence curves
tained from the MSA and MSA1 are relatively minor, we d
not expect to introduce significant additional errors by us
the MSA1. We note that the main contributions to the in
gration overa in Eq. ~12! stem from the region neara51.

The chemical potentialm0 at coexistence is, for a given
temperature,

m05
]

]r

F~r!

V U
r l

5
]

]r

F~r!

V U
rv

, ~16!

wherer l andrv are the densities of liquid and vapor, respe
tively. Knowledge ofm0(T) is a prerequisite for the subse
quent analysis of the liquid-vapor interface.

We now turn attention to the bulk correlation length th
follows from the present theory. As we shall see in Sec.
the width of the interface is governed by the correlati
length of the bulk liquid. Every density-functional ansatz d
fines a direct correlation function via twofold functional di
ferentiation of the intrinsic Helmholtz free-energy function
F@$r i(r )%# with respect to density@24#:

ci j „r ,r 8,$r i~r !%…52b
d2F @$r i~r !%#

dr i~r !dr j~r 8!
1

d i j d~r2r 8!

r i~r !
.

~17!

From the bulk limit of this function a pair distribution func
tion hi j can then be obtained via the Ornstein-Zernike eq
tion. The results will be different from thehi j used for the
construction of the functional, in our case those of the MS
This is an important advantage of the density-functional
proach. We require the correlation function for fluctuatio
of the total densityhr

(b)5(h111h12)/2 to exhibit the con-
ventional Ornstein-Zernike behavior, i.e.,hr

(b) should be-
come long ranged near the critical point, with an exponen
decay described by a diverging correlation length. Suc

e
1
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6948 57B. GROH, R. EVANS, AND S. DIETRICH
behavior reflects the net interparticle interaction that is n
essary to obtain liquid-vapor coexistence. However, as
marked in the Introduction, the original MSA result forhr

(b)

is simply that of hard spheres~in the Percus-Yevick approxi
mation!, so there is no manifestation of attraction in th
particular combination of the correlation functions. We d
fine the second-moment correlation lengthj for fluctuations
of the total density by the expansion of the structure fact

S~k,r!511rhr
~b!~k,r!5S~0,r!/~11j2k21••• !,

~18!

wherek is the wave number. This correlation length can
obtained rather easily if one again assumesr1(r )5r2(r )
5 1

2 r(r ) and considersF5V1m*d3r r(r ) @see Eq.~7!# as
a functional of the total densityr(r ). Using the bulk limit
cr

(b) of the function

cr~r ,r 8,$r~r !%!52b
d2F@$r~r !%#

dr~r !dr~r 8!
1

d~r2r 8!

r~r !
, ~19!

j is given by

j25
1

6

E d3r r 2cr
~b!~r ,r!

1/r2E d3r cr
~b!~r ,r!

, ~20!

which follows straightforwardly from the definition give
by Eq. ~18! and the Ornstein-Zernike equationhr

(b)(k,r)
5cr

(b)(k,r)/@12rcr
(b)(k,r)#. Within the MSA1 one finds

b21cr
~b!~r ,r!52d~r !

]2

]r2
f CS~r!2

e2

er S hD~r ,r!

1r
]

]r
hD~r ,r!1

1

4
r2

]2

]r2
hD~r ,r!D 2d~r !

3E d3r 8
e2

er 8
S r

]

]r
hD~r 8,r!

1
1

4
r2

]2

]r2
hD~r 8,r!D . ~21!

Note that the equivalent result for a simple atomic fluid w
derived in Ref.@34#. The resulting correlation lengths of th
coexisting liquid and vapor phases are plotted in Fig. 2.
accordance with the mean-field character of the present
proach they diverge near the critical point proportional
(Tc2T)1/2. j also diverges upon approaching the spinoda
which are determined by]2F(r)/]r250 or, equivalently, by
the vanishing of the denominator in Eq.~20!. Upon lowering
the temperature the correlation length in the liquid ph
decreases to about one particle diameter, whereas that o
vapor phase increases again as a consequence of the re
screening at very low densities.

It is instructive to examine the limiting behavior asr
→0. The exact low-density behavior of the second mom
correlation length is believed to be@35#
-
e-

-

e

s

n
p-

,

e
the
ced

t

j5
1

4S be2

36per D 1/4

@11O~r1/2!#, ~22!

a result that also follows from the hypernetted-chain appro
mation @36,35#. If one assumes that for low densities th
MSA correlation functionhD tends to2(be2/er )e2kr , all
the algebra can be performed analytically and the MS
yields in leading order

j5S 7

192p

k

r D 1/2

5
A7

4 S be2

36per D 1/4

, ~23!

which is in accordance with our numerical results. Thus,
r→0 the MSA1 correlation length diverges with the corre
power law, but the amplitude is too large by a factor ofA7.
We can also carry through the algebra using the origi
functional ~7! ~including thea integration!. In this case we
obtain

j5
A14

4 S be2

36per D 1/4

~24!

for r→0. Once again the power law is correct, but the a
plitude is again too large. These results suggest that the f
tionals capture the essential features of density-density
relations in ther→0 limit. This is a nontrivial observation
Recall that the GMSA, which assumes a particular~single
Yukawa! form for the non-Coulomb part of the direct corre
lation functionsci j (r ) and then enforces consistency amo
three routes to bulk thermodynamic functions, yields a fin
value asr→0 @35#. Thus our present MSA1 and MSA re
sults, Eq.~23! and ~24!, improve upon the GMSA in the

FIG. 2. Second moment correlation lengthsjv andj l for density
correlations in the vapor and liquid phases at two-phase coexist
obtained using the MSA1. Also shown is the widthd @defined by
Eq. ~35!# of the liquid-vapor interface obtained from the prese
density-functional theory and from the square gradient theory
Ref. @10#. All lengths diverge at the critical temperatureTc . The
vapor correlation length increases at low temperatures becaus
the reduced screening in the very dilute vapor phase. The interfa
width d is very close to 4j l over the whole temperature range. A
the same reduced temperature the interfacial width predicted by
present theory is larger than that obtained from the square-grad
theory, which in turn is close to the result for a Lennard-Jones fl
as obtained from a DFT similar to the present one@39#.
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57 6949LIQUID-VAPOR INTERFACE OF AN IONIC FLUID
low-density limit. Finally we should emphasize that the r
sults described here refer to the second moment correla
lengthj as defined by Eqs.~18! or ~20!. The so-called true
correlation lengthj` that determines the ultimate expone
tial decay of the density-density correlation functio
hr

(b)(r ,r) is determined by the poles of the Fourier transfo
hr

(b)(k,r) @28#. In general,j` differs from j; they become
identical ~within mean-field theory! in the vicinity of the
critical point. Calculating the poles from the present DF
approach is not straightforward as the Fourier transform
Eq. ~21! cannot be performed analytically, so we cannot e
ily computej` . However, we are able to compare our r
sults forj with j`,GMSAobtained in Ref.@28#. For subcritical
liquidlike states that turn out to be relevant for the interfa
the correlation lengthsjMSA and jMSA1 both differ by less
than a factor of 2 fromj`,GMSA. In the very-low-density
vapor phase the exact limiting behavior isj`.1/2k @36,35#,
which diverges as (T/r)1/2 for r→0, i.e., faster than the
second moment correlation length given by Eq.~22!.

In summary, we conclude that the present dens
functional theory provides a reasonable description of
long-wavelength~small k) behavior of density-density cor
relations in the bulk RPM. This is a necessary prerequi
for a reliable treatment of the liquid-vapor interface.

IV. LIQUID-VAPOR INTERFACE

A. Density profiles

The average density profile of the liquid-vapor interfa
varies only in the direction normal to the interface, which w
take as thez direction. In the following we assume that th
bulk liquid densityr l is obtained forz→2` and the bulk
vapor densityrv for z→`. The application of the density
functional theory outlined in Sec. II to this situation allow
one to carry out the lateral integrations in Eq.~7! yielding the
following grand-canonical functional per surface areaA for
the total densityr(z)52r2(z)52r1(z):

1

A
V@$r~z!%#5

1

A
FHS@$r~z!%#1

1

2E dz dz8r~z!r~z8!

3w„z2z8,r̄~z,z8!…2m0E dz r~z!,

~25!

with

w~z12,r!5
2pe2

e E
uz12u

`

drE
0

1

da hD~r ,r,a!. ~26!

For densities not too large the functionhD exhibits its
slowest decay as a function ofr @lowest value ofa0(k), the
imaginary part of the leading pole# for small values of the
charge, i.e., for smalla @see Fig. 4~b! in Ref. @28##. There-
fore, in contrast to the bulk free energy, the large dista
behavior ofw(z12,r) is dominated by the contributions from
smalla. In this region the correlation function is expected
take on the Debye-Hu¨ckel form

hD~r ,r,a!.2
be2

er
ae2kAar , ~27!
-
on

f
-

,

-
e

te

e

which also follows from the small coupling expansion of t
decay length and of the expression for the amplitude
tained from the pole analysis@28# mentioned in Sec. III.
From Eqs.~26! and ~27! one finds

]

]z
w~z→`,r!.

2pbe4

e2z
E

0

1

da ae2kAaz ~28!

and hence

w~z→`,r!.2
6pbe4

e2k4z4
. ~29!

Thus w, which corresponds to the effective interaction b
tween two fluid layers a distancez apart, is predicted to
decay algebraically with the same exponent as for a Lenn
Jones fluid, where the interatomic potential decays asr 26.
This unexpected result implies an algebraic decay for
density profiles too. More specifically one would expe
dr/dz;2uzu24 as z→6`. This behavior can be trace
back to the fact that within the MSA density-function
theory the bulk direct correlation functioncr

(b)(r ;r), which is
given by Eq. ~21! with hD(r ,r) replaced by
*0

1da hD(r ,r,a), also decays algebraically. Using an arg
ment similar to the one above one findscr

(b)(r ,r);r 26 as
r→`, which is the same as for a Lennard-Jones fluid. T
would in turn imply that hr

(b)(r ;r) as obtained from
cr

(b)(r ,r) via the Ornstein-Zernike equation should also d
cay asr 26. In other words, the theory generates effecti
potentials for density-density correlations that mimic tho
of genuine dispersion forces. While this observation is c
tainly intriguing it is likely to be an artifact of the presen
MSA scheme. The bulk pair correlation functionhr

(b)(r ;r)
should decay exponentially for the RPM@36,28#. Moreover,
general arguments for the decay of density profiles n
walls @27,28,37# show that the ultimate decay ofr(z) should
mimic that of hr

(b) . For example,r l2r(z) should decay as
exp(z/j`) asz→2`, wherej` is the true correlation length
of the bulk liquid. If, on the other hand, we ignore thea
integration and seta51 ~see also the discussion in Sec. III!,
then2]w(z,r)/]z;hD(z,r) and there is no longer an alge
braic decay of the direct correlation function and of the p
file. Henceforward we describe results based on both M
and MSA1.

By functional differentiation of Eq.~25! one derives the
Euler-Lagrange equation

ln r~z!l31 f CS8 „r~z!…5m02p~z!, ~30!

with

p~z!5E dz8r~z8!Fw„z2z8,r̄~z,z8!…

1
1

2
r~z!w8„z2z8,r̄~z,z8!…G . ~31!

~The primes onf CS andw denote derivatives with respect t
the density.! In contrast to similar theories for Lennard-Jon
@38# or dipolar @39# fluids the kernel in Eq.~31! depends on
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6950 57B. GROH, R. EVANS, AND S. DIETRICH
z and z8 separately due to the density dependence of
approximated pair distribution function. However, in th
present case one can still show that if a profiler(z) solves
Eq. ~30! any shifted profiler(z2z0) will be a solution as
well because the position of the interface is not fixed by
boundary conditions. In order to select a unique profile
have imposed the additional requirementr(z50)5(r l
2rv)/2 and have shifted the profiles accordingly during t
numerical solution.

Equation~30! was solved using the usual Picard iterati
scheme. In each iteration (n) the functionp(z) is calculated
from the density profile r (n)(z) in the region zP
@2L/2,L/2# and a newrnew(z) is obtained by numerica
inversion of Eq.~30! for each value ofz. In order to achieve
convergence the profile for the next iteration is calcula
according to the mixing rule

r~n11!5vrnew1~12v!r~n! , ~32!

where typically v50.2. The process is repeated un
maxzur(n11)(z)2r(n)(z)u is smaller than a prescribed accurac
Since the functionsw(z12,r) and w8(z12,r) have discon-
tinuous derivatives atz1256a the integration in Eq.~31! is
divided into the three subintervals@2L/2,z2a#, @z2a,z
1a#, and@z1a,L/2#. The Milne rule, which effectively in-
terpolates the integrand piecewise by third-order polyno
als, is used for all integrations. Asymptotic contributions
p(z) from the regionsuz8u.L/2 are calculated by replacin
r(z8) by the bulk limitsr(z8,2L/2)5r l and r(z8.L/2)
5rv and integrating numerically withw(uz2z8u.20a)50.

The functionsw and w8 are given by integrals over th
functionshD andhD8 whose evaluation already requires si
nificant numerical efforts. Sincew(z12,r) and w8(z12,r)
have to be evaluated many times during the iteration sch
the algorithm can be accelerated considerably by using t
dimensional spline interpolations for these functions, wh
require their evaluation only at, e.g., 1003100 grid points
before the main algorithm starts.

In Fig. 3 we plot the density profiles obtained from th
MSA1 for a series of different temperatures. Upon increas
the temperature towards the critical point (Tc* 50.084 65)
the interface broadens and the density differencer l2rv be-

FIG. 3. Total density profile of the liquid-vapor interface of th
RPM at different temperatures, as obtained from MSA1.
e

e
e

d

.
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e
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h
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tween the phases decreases. These obvious features c
incorporated by introducing a scaling functionrscl(z/j,T)
with rscl(6`,T)571:

r~z,T!5
1

2
~r l1rv!1

1

2
~r l2rv!rscl~z/j,T!. ~33!

For T→Tc the scaling function should reduce to a univers
function of the single variablez/j, which, within mean-field
theory, is given by

rscl~z/j,T→Tc!52tanh
z

2j
. ~34!

Such a plot is given in Fig. 4 using the second-moment c
relation lengthj l(T) for the bulk liquid phase, obtained from
Eqs.~20! and~21!. This demonstrates that the scaling beha
ior remains valid even relatively far outside the critical r
gion. In order to make a comparison with the behavior
simple atomic fluids we present in Fig. 5 the density profi
of a Lennard-Jones fluid scaled in the same manner. Th

FIG. 4. Density profiles, as obtained from MSA1, plotted
scaled form@see Eq.~33!# as a function ofz/j l . The parametert
512T/Tc measures the deviation from the critical temperatu
For t→0 the scaled profiles approach the universal scaling func
2tanh(z/2j l).

FIG. 5. Same plot as Fig. 4 but for a Lennard-Jones fluid. T
results were obtained using the density-functional theory of Fr
and Dietrich @39#. Note that the approach to the scaling limit
slower and the profiles are more asymmetric than for the ionic flu
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57 6951LIQUID-VAPOR INTERFACE OF AN IONIC FLUID
results have been obtained using the density-functional
satz of Frodl and Dietrich@39#. At low temperatures the pro
files of the ionic fluid deviate weakly from antisymmetr
approaching the bulk limit faster on the vapor side than
the liquid side. The same trend can be observed in
Lennard-Jones system, where it is even more pronoun
Compare profiles corresponding to the same reduced
peraturet512T/Tc . In the case of a Lennard-Jones flu
the deviation from antisymmetry is attributed@40# to the fact
thatjv,j l at low temperatures. The situation is different f
the ionic case where, away fromTc ,jv@j l ~see Fig. 2!. This
would imply that within a square-gradient theory the
should be aslower decay of the profiles on thevapor side.
The results of Ref.@10# are in accordance with this expect
tion. However, compared to the square-gradient theory,
present nonlocal theory clearly predicts the opposite as
metry: The decay on the vapor side isfasterthan that on the
liquid side, althoughjv@j l . In order to understand thes
features it is important to distinguish between the interme
ate range decay that is apparent from Figs. 3–5 and the
timate asymptotic decay into the bulk. As mentioned pre
ously, for the ionic fluid the ultimate decay should b
exponential with a decay length equal to the true correla
lengthj` of the bulk. We attempted to analyze the numeri
results for the tails of our profiles, but this is rather difficu
because the variations are very small. When curves of
form C exp(2uzu/j) or (C/z)exp(2uzu/j) are fitted to the tails
of the MSA1 profiles one finds larger values forj on the
vapor side, as expected, but the actual values depend
strongly on thez interval used for the fitting. Finally, we not
that the density profiles in a Lennard-Jones fluid approach
a function of temperature, the universal scaling funct
monotonically from below on the vapor side and from abo
on the liquid side~see Fig. 5!. On the other hand, in the ioni
fluid the density profile on the vapor side is below the u
versal profile at low temperature but is above it for largez
close andT to Tc ~see Fig. 4 fort512T/Tc50.0313). We
interpret this as a consequence of the facts thatjv.j l and
that the vapor becomes more important nearTc due to its
increasing density. At the same reduced temperature
scaled interfacial profiles in a Lennard-Jones fluid are stee
than those of the ionic fluid.

We define the interfacial widthd as

d52~r l2rv!S dr

dzU
z50

D 21

. ~35!

For the tanh profile in Eq.~34! one hasd54j, so that in the
critical region d/4 should diverge in the same way as t
correlation length. Remarkably, Fig. 2 shows that atall tem-
peratures this width is determined by theliquid correlation
length j l . At T* 50.03, which is a little higher than th
estimated triple point temperature@33#, d/a.3.0. This value
is slightly higher than the estimates of the equivalent ra
for simple atomic fluids near their triple points@8#. Also
shown in Fig. 2 are the results of Ref.@10#, which exhibit a
similar variation withT, but at lowT the widths are about a
factor of 2 smaller. The ‘‘10–90’’ interfacial thickness use
in Ref. @10# is defined as the distance over which the to
density changes fromrv10.9(r l2rv) to rv10.1(r l2rv).
For the tanh profile it gives a width that is larger by a fac
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arctanh(0.8)51.0986 than the quantityd defined in Eq.~35!.
The data taken from Ref.@10# have been divided by this
factor. For the actual profiles shown in Fig. 3 the two de
nitions for the width yield values that differ by about 10
too.

The density profiles obtained from the MSA~including
the a integration! are, for a given value oft512T/Tc ,
similar to those obtained from the MSA1. When plotted
terms of scaled variables@Eq. ~33!#, the profiles from the two
theories can hardly be distinguished on the scale of Fig
Moreover, identifying the ultimate algebraic decay from t
numerical results for the tails of the profiles was not feasib
The interfacial widthsd calculated from the MSA profiles
are close to 4j l , with j l obtained within the MSA approach
These widths are in turn close to those from the MSA
provided we make a comparison at the same value oft.

B. Surface tension

In this subsection we present results of calculations of
liquid-vapor surface tensiong. First we derive an expressio
for g in terms of the density profiler(z), which is conve-
nient for numerical work. Since it is necessary to cut off t
system atz56L/2, this generates artificial fluid-vacuum
surface tensionsg l ,vac andgv,vac , which must be subtracted
in order to obtain the liquid-vapor surface tension. Therefo
g is given by

g5 lim
L→`

FV~L !

A
2

Vbulk

A G2g l ,vac2gv,vac , ~36!

whereV(L) is the grand-canonical functional evaluated fo
finite system of sizeL. It is convenient to express the bul
free energy@Eq. ~11!# as a double integral overz and z8
analogous to Eq.~25!. A straightforward calculation yields

E
0

L/2

dzE
0

L/2

dz8w~z2z8,r!5
L

2
w0~r!22E

0

L/2

dz t~z,r!

~37!

with t(z,r)5*z
`dy w(y,r) and, from Eqs.~13! and ~26!,

w0~r!52E
0

`

dy w~y,r!52t~0,r!. ~38!

The surface tensions with the vacuum follow from assum
constant density profilesr(z)5rb , with b5v,l , which leads
to ~there are two equal interfaces!

gb,vac5
1

2
lim

L→`

1

2
rb

2F E
2L/2

L/2

dzE
2L/2

L/2

dz8w~z2z8,rb!

2Lw0~rb!G . ~39!

Using Eq.~37! and the symmetryw(2y)5w(y) gives
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gb,vac5
1

2
rb

2 lim
L→`

F E
0

L/2

dzE
2L/2

0

dz8w~z2z8,rb!

22E
0

L/2

dz t~z,rb!G
5

1

2
rb

2 lim
L→`

F E
0

L/2

dz@ t~z,rb!2t~L/21z,rb!#

22E
0

L/2

dz t~z,rb!G
52

1

2
rb

2E
0

`

dz t~z,rb!. ~40!

Thus the final expression for the surface tension follows
inserting Eqs.~11!, ~37!, and~40! into Eq. ~36!:

g5E
2`

`

dz@ f HS„r~z!…2 f HS„rSK~z!…#2m0E
2`

`

dz@r~z!

2rSK~z!#1
1

2E0

`

dzE
0

`

dz8@r~z!r~z8!w„z2z8,r̄~z,z8!…

2rv
2w~z2z8,rv!#1

1

2E2`

0

dzE
2`

0

dz8@r~z!r~z8!

3w„z2z8,r̄~z,z8!…2r l
2w~z2z8,r l !#

1E
2`

0

dzE
0

`

dz8r~z!r~z8!w„z2z8,r̄~z,z8!…

2
1

2
rv

2E
0

`

dz t~z,rv!2
1

2
r l

2E
0

`

dz t~z,r l !, ~41!

with the sharp-kink profile

rSK~z!5H r l , z,0

rv , z.0
~42!

and f HS(r)5(r/b)@ ln(rl3)21#1fCS(r). All integrals occur-
ring in Eq. ~41! are convergent.

Since the surface tension is the surface excess grand
tential per unit area, an alternative starting point is the f
mula

g5E
2`

`

dz@v~z!1p# ~43!

with the grand-canonical potential density

v~z!5 f HS~z!2m0r~z!1
1

2
r~z!

3E
2`

`

dz8r~z8!w„z2z8,r̄~z,z8!… ~44!

and the vapor pressure

p52 f HS~rb!1m0rb2
1

2
rb

2w0~rb!, b5 l ,v. ~45!
y

o-
-

It is straightforward to show that Eq.~43! also leads to Eq.
~41!.

The surface tensions obtained from the MSA1 and M
theories are displayed in Fig. 6 as a function ofT/Tc and are
compared with the results of the square-gradient theory@10#.
Since the MSA1 has a higher critical temperatureTc than the

MSA we plot the ratiog̃5ga2/kBTc rather than the reduce
tensiong* 5gea3/e2, which is displayed in Ref.@10#. The

MSA results for g̃ are larger than the values predicted
MSA1, which in turn are larger than those obtained from t
square-gradient theory, with the differences becoming lar
at low temperatures. NearTc all three theories yield the stan

dard mean-field critical behavior, i.e.,g̃;(12T/Tc)
3/2. At

lower temperatures the square-gradient theory gives a ne

linear variation ofg̃ with T/Tc , whereas in the MSA1 the
(12T/Tc)

3/2 behavior appears to persist further fromTc ,
which is consistent with the earlier observation that the d
sity profiles follow the scaling behavior even for temper
tures well removed fromTc .

The present MSA1 results predictg̃(T/Tc50.6).0.09.
This estimate should be contrasted with the correspond
result for a Lennard-Jones fluid where simulations and th
ries yieldg̃(T/Tc50.6).0.6 @8#. The physical origin of such
a large difference is not obvious and it is important to a
whether it is an artefact of the present approximations.
though our theories overestimateTc they should make a
compensating overestimation of the surface tensiong. It is
conceivable that since MSA1 and MSA grossly undere
mate, for a given value ofT/Tc , the simulation results for
the liquid densities at coexistence~see Fig. 1! they also un-
derestimate the magnitude ofg. On the other hand, if one
takes experimental data for the surface tension of mo
alkali halides near the melting points and makes some
sonable estimates of the~average! diametera the values of
the resulting reduced tensiong* @10# are similar to those
obtained by extrapolating the present results to the appro
ate reduced temperaturesT* . This would suggest that the
present theories yield at least the correct order of magnit
for the surface tenstiong.

FIG. 6. Comparison of the liquid-vapor surface tensiong of the
RPM as given by the present MSA and MSA1 theories and by
square gradient theory of Ref.@10#. The data have been reduce
using the critical temperatureTc appropriate for each theory.
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57 6953LIQUID-VAPOR INTERFACE OF AN IONIC FLUID
V. SUMMARY AND DISCUSSION

We have developed two, closely related, dens
functional theories for the liquid-vapor interface of the RP
Both the MSA and the MSA1 are based on approximat
the inhomogeneous pair correlation function by that of a

mogeneous bulk liquid at some mean densityr̄. The MSA1
involves an additional approximation, i.e., the integrati
over the coupling constant~charge! is ignored. The results
that have emerged from this analysis can be summarize
follows.

~i! The MSA and MSA1 yield similar bulk phase dia
grams, with the latter overestimating the critical temperat
Tc and underestimating the critical densityrc to a further
extent than the MSA~Fig. 1!.

~ii ! The two theories yield similar second moment cor
lation lengths for the density-density correlations in the b
fluid ~Fig. 2!. They exhibit the correct power-law depe
dences in the low-density limit but overestimate their n
merical prefactors@Eqs.~22!–~24!#.

~iii ! When suitably scaled to take into account the diff
ences in the bulk phase diagram the total density profiles
similar in both theories. Both predict that for low temper
tures and on intermediate length scales the profile
proaches its bulk limits faster on the vapor side than on
liquid side~Figs. 3 and 4!. This is opposite to what is found
in the square-gradient theory of Ref.@10#. However, the ul-
timate decay into bulk should be determined by the b
correlation length, which is larger on the vapor side.

~iv! The interfacial widthd, defined by Eq.~35!, is close
to four times theliquid correlation length over the whol
temperature range. It is larger but has a similar variat
compared to that of a simple liquid with temperature~Fig. 2!.

~v! For T→Tc the density profiles approach a univers
scaling form. In contrast to simple fluids, this approach is
monotonic as a function of temperature~Figs. 4 and 5!.

~vi! The surface tensions calculatedg from the present
theories are larger than those obtained in Ref.@10# and the
temperature dependence is not as linear~Fig. 6!.

~vii ! All theories for the RPM find that forT/Tc.0.6 the
scaled surface tensiong̃5g* /Tc* is considerably smalle
than the corresponding ratio for simple atomic liquids. W
surmise that this is a genuine feature of ionic fluids.

Certain aspects of our theory warrant further discuss
The basis of our approach is the approximation for the in
mogeneous pair distribution functiongi j „r ,r 8,$r i(r )%,a…,
which is the key input for the theory. This has two intriguin
consequences for the asymptotics of the correlation funct
generated from the density functional. The first concerns
low-density behavior of the second moment correlat
lengthj, referred to above. That the MSA and MSA1 do n
yield the exact limiting behavior forj reflects the fact tha
even at low densities our approximation forgi j does not
capture the proper long-wavelength variation, i.e., the cor
coefficient ofk2 in the structure factor@Eq. ~18!#. A possible
improvement upon the present approximation
gi j „r ,r 8,$r i(r )%,a… may be given by the ‘‘mean density ap
proximation’’ used in Refs.@34# and@41# in which the inho-
mogeneous pair distribution function is expanded around
homogeneous limit up to second order in the deviat
r(r )2rb . However, as for DFTs based on a density exp
-
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sion of the excess free energy, this approach cannot be
plied straightforwardly to the liquid-vapor interface due
the lack of a unique bulk density that could serve as a st
ing point for the expansion. The second intriguing con
quence is that the MSA, through its integration overa in
function space@Eq. ~4!#, yields algebraically decaying bulk
correlation functions and liquid-vapor density profile
whereas the correct ultimate decay should be exponentia
both cases. Once again this failure must be attributed to
simple approximation employed for the inhomogeneous p
correlation function. However, it is not clear what modific
tions to the theory should be introduced~other than simply
omitting thea integration as was done in the MSA1! in order
to eliminate this feature.

We should also emphasize that the present DFT of
liquid-vapor interface is a mean-field treatment in that it do
not incorporate the effects of either bulk critical fluctuatio
or interfacial capillary-wave-like fluctuations. In keepin
with treatments of simple atomic fluids we argue that t
density profiles and surface tensions we calculate from
theory are those of the bare orintrinsic interface. In order to
estimate the additional broadening of the density profile a
ing from the interfacial fluctuations one could perform t
standard Gaussian unfreezing of these fluctuations on th
trinsic interface given by the present theory@42,38#. The
‘‘stiffness’’ of the interface is determined by the dimensio
less ratiov5kBT/4pgj2, i.e., the larger the surface tensio
g, the smaller the interfacial broadening. Since we pred

that in the RPM the ratiog̃5ga2/kBT is much smaller than
for an atomic fluid at the same reduced temperatureT/Tc ,
this implies that the broadening due to fluctuations is sign
cantly more pronounced for the RPM.

There are two other interesting problems to which t
present theory could be applied. The first is the interfa
between an ionic fluid and a charged wall. Although this h
been investigated using several theoretical techniq
@21,19# the advantage of the present approach is that it
corporates two coexisting phases and thus can describe
ting phenomena. The second is the liquid-vapor interface
an ionic fluid in which cations and anions have unequal
ameters. These more realistic systems have only been tac
within the context of the gradient expansion@43#. In both
cases electrical double layers will form, giving a local viol
tion of electroneutrality. However, the bulk correlation fun
tions used as input to the DFT are only available for neu
systems. Nevertheless, one might still hope to capture
essential features by employing Eq.~5! for the mapping to
the bulk system and by taking account of the nonzero lo
charge density only via the Coulomb contribution to the fr
energy, Eq.~6!. A similar assumption has proved success
for the electrolyte-wall interface in the density-function
theories of Refs.@15–18#.
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