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The behavior of a randomAB multiblock copolymer melt with a Markovian sequence of monomers has
been studied in the region where the spatially homogeneous state loses its stability. We use a generalization of
the weak crystallization theory to the case of a polydisperse system. In the framework of both mean-field and
Brazovski approximations phase diagrams of such a system are constructed. It is shown that the major
difference of these diagrams from the monodisperse ones is the presence of regions where two phases with
different symmetry of the superlattidggamellar, hexagonal, and bccoexist with each other in the finite
temperature range. We show that the account of fluctuations alters the phase diagram near the critical point in
comparison with the mean-field picture. In particular, in addition to “windows” of direct transitions from
disordered to lamellar and hexagonal phases, three phase lines appear, where one of the two coexisting phases
changes its symmetry. We demonstrate also that the period of the superstructures varies continuously with the
temperature variatioS1063-651X98)10206-4

PACS numbgs): 61.25.Hq, 64.106+-h, 64.70.Ja

I. INTRODUCTION mer sequence along the chain. The effect of chemical disor-
der on the stability of the homogeneous phase was consid-
Interest in copolymer systems is stimulated by their nu-ered in Ref[3]. It was shown that the value of the critical
merous technological applicatiopt]. The majority of theo- wave vectoig, decreases with the disorder and turns to O for
retical and experimental studies have been devoted to thee random copolymer system. A similar behavior was found
consideration of model copolymer materials with well- later for more realistic copolymer systef#s5].
defined architectures, such as diblock and triblock copoly- Consideration of the ordered phases of the random multi-
mers. Considerable attention has been also given to regulétock copolymers shows that the period of the superstructure
(alternating multiblock copolymers. One of the most inter- can exceed the average spatial size of one block because of
esting physical phenomena is the formation of microdomairthe local redistribution of the chain fragments with an excess
structures(microphase separation transitjormhe homoge- of monomers of a given typE6—8]. The mean-field phase
neous state of a heteropolymer is unstable with respect tdiagram of multiblock copolymer systems is constructed in
composition fluctuations with a finite wave vecipy below  Ref.[9]. Unfortunately, the possibility of the coexistence of
the critical temperature if different types of monomers “do microphases with different symmetries of the superlattice has
not like each other.” Since such monomers are connected inot been taken into consideration in this work. Such two-
a single macromolecule, they cannot go apart into differenphase regions for random correlated copolymers were later
macrophases and can only segregate on microscopic scalésund in Ref.[10].
In the case of a relatively narrow distribution of block length The mean-field picture of the microphase transitions
the system forms regular superstructure with the periodreaks down near critical points. The presence of large-
about a block size. The phase diagram of such copolymermmplitude composition fluctuations in the pretransitional dis-
includes regions with one-dimensional lamellar, two-ordered phase of the model of a regular diblock copolymer
dimensional hexagonally close-packed cylindéiex, and  was demonstrated in RdfL1]. These fluctuations are mani-
three-dimensional body-centered-culficc) phase 2]. fested in small-angle neutron scatteri®8ANS) experiments
The formation of copolymers with a regular architectureas a peak in the structure factor, the position of whigh,
is rather a state of the art. They are usually synthesized by enly weakly varies with the temperature. An important ques-
polymerization reaction which produces a wide distributiontion is how such fluctuation effects affect the mean-field pic-
of macromolecules according to their chemical structureture. There is a very wide spectrum of conjectures about the
The randomness of the synthesis process results in copolfluctuation picture of random uncorrelated copolymers. It is
mers with ill-defined architecture. The phase diagram of asupposed12,13 that thermal fluctuations should prevent the
copolymer depends essentially on correlations in the moncformation of any superstructurgsee also Ref[14]), or a
glasslike state should be established because of the quenched
randomness in the sequence of monomers along the chain
*Electronic address: igor@polly.phys.msu.su [15,16. The weakly first-order transition to the microstruc-
TElectronic address: sp@crysph.phys.msu.su ture in random correlated copolymers was found in Refs.
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[17,18. The behavior of such copolymers near the Lifshitz ~ 7[y4] 1 d3q -
= f (2_3 (xc—x+aq )‘/’q‘pfq

point, at whichq, is first equal to zero, was studied in Refs. —3-=5 )

[19,20. P
The effect of fluctuations on the phase diagram of sym- A 3 3 d3q;

metric correlated Markovian copolymers was studied in Ref. B f 6 21 Qi |H1 by, 23

[21]. Here we construct the phase diagram of general non-

symmetric Markovian correlated multiblock copolymers and g 4 4 d3g;

find the temperature and composition dependences of all +ﬁJ 5( iZl Qi)iljl b, W

possible microphases in the weak segregation regime. The

main results of this work were announced in Re2]. K d3q d*a" Ygtb_qilq_q
In Sec. Il we develop the mean-field theory for nonsym- + av | 2n)3 (2m)3 a?+(q)?] "

metric Markovian copolymers. In Sec. Il we take into con-

sideration fluctuation corrections to the mean-field theory (4)

within the framework of the Brazovskapproximation. Our

. I : ) HereV is the volume of the system and the temperaflire
main predictions are summarized in Sec. IV.

enters into the free energy through the dimensionless inter-
action parametey. Note that the loss of stability of the spa-
tially homogeneous statipositive definiteness of the qua-
Il. MEAN-FIELD THEORY dratic ¢ term in the free energs)] takes place ay= ., for
A. Free energy zero wave vector. In the_ case of polydisperse polymeric sys-

] ] ) tems this fact does not impl,23] the emergence of a new
kovian statistics of monome#s andB for which probability  the case of monodisperse systems.
(transition matrix »;; that a monomer of typg=A,B will The first three terms in expressi¢d) have the form of
follow a monomer of typé along the chain does not depend the usual Landau expansion of the free energy, where the
on monomers farther removed along the chain. Average dercoefficient\ of the cubic term vanishes in the critical point
sities p; of monomers of the given type and the average f=1/2. The last “nonlocal” term k) describes polydis-
block lengthN of chains can be expressed in terms of ele-persity effects because of the finite width of the block length

ments of the transition matrix [23]: distribution. This term gives the entropy cost due to the local
variation of the block length distribution to create the density
— — VBA inhomogeneityAp,(x) with characteristic spatial scale of
pa=fp, pe=(1-1)p, f= gt Ve the order the reciprocal wave vectgr . Since the forma-

tion of such an inhomogeneity involves only blocks with
characteristic size™ %, in effect it “sucks in” chains with

1 such blocks from the surrounding space. This phenomenon
N= ——. ) depletes the block length distribution outside of this inhomo-
vasT VA geneity and, as the consequence, leads to the effective

infinite-range interaction of tw¢or more inhomogeneities.
The parameters, g, andk of the Landau free-energy

Here f is the fraction of monomer&\ and p is the total  expansion (4) are determined from microscopic theory
monomer density. We assume that the block len§ths  [7,23):

small with respect to the average length of the chain; i.e.,

each chain contains a large number of blocks. Using the 3 1-2f 3 5-16f(1-f)
incompressibility conditionpa(x) + pg(X)=p, it is conve- FNW' 9=@W,
nient to introduce the dimensionless order parameter

1 1

AN a1

. 5
P(X)=Apa(X)/p, p=patps, (2

In the case of the symmetric copolymér1/2, the coeffi-
cient\ of the cubic term vanishes and the coefficigrdf the
équadratic term remains positive for arbitrafry The param-
etera=b(x.N)*¥? can be expressed in terms of the monomer
sizeb and the critical valuge,=1[2Nf(1—f )] of the in-
teraction parametey.

which characterizes the deviatiodspa(X)=—Apg(x) of
the density of monomers of the given type from their averag
value. Near the critical point=1/2, the free energy of the
system can be expanded in powers of Fourier components

B. Phase diagram

¢q=J dx ¢(x)expiq-x) ©)

The equilibrium value of the order paramei#ix) in the
microphase-separated system is determined from the condi-
tion of the minimization of the free enerdgg). We begin our
of this order parametg®): analysis by considering single-phase states of the polymer.
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Near the critical point the order parameter can be tdR¢éas comes inadequate for the description of such structures. Con-
the superposition of plane waves with wave vectorg,  sideration of this strong segregation regime is beyond the
which have equal magnitudég,|=q and are chosen to de- scope of this work.
scribe lamellar §=1), hexagonal §=3), and body- Several phases with different symmetries of the superlat-
centered-cubi¢bcc, n=6) phases: tice can coexist one with the other. In contrast to monodis-
perse systems, where each of the coexisting phases can be
n ! i i considered separately, in polydisperse systems one has to
¢q|n:ﬁ k§=:1 [e'*ko(q—a+e *ké(q+aw].  (6)  take into account the exchange of chains between these
phases. Consider a two-phase state with volume fracions
Constant phaseg, can be taken to zero for all the above @nd 1— ¢ occupied by phases andm, respectively. Substi-
long-range-ordered structures. Beside these structures, théling the order paramete6) with the numbersy andm of
disordered random structure has been considered in RefBlane waves in each of these phases into(Eg.we find the
[6,5,8. For this structure the wave vectogg are selected free energy of the two-phase state:
uniformly on the spherég,|=q, the ¢, are random phases,

and the positive integer will later be taken to infinity. Sub- "M_ bF A+ (1—d)F A
stituting expressiori6) in Eq. (4) we represent the free en- v PFa(Gn An)+ (1= ) FnlGin Ar)
ergy of the phase with a given numberof plane waves,

PPAL 24(1— H)A2AZ  (1-¢)%Ar,

+k + +
Fo e anys X An @ 2a%q;  a’(dp+dn) 2a%qp,
TPV n ql n 2 a2q21 (12)
by the sum of the local contribution The first two terms of Eq(12) give local contributiong8) of

. 2 2 A2 3 4 each phase to the free energy and are proportional to the
Fn(0,An)=(xc— x+a°07) Ay = hanAn/6+98,A0/24 g volumesV,= ¢V and V,,=(1— ¢)V of these phases. The
(8) last term (~K) describes the effects of the redistribution of
and the nonlocal contributionk. The coefficients,, and chains with different block lengths between the two coexist-

8, depend on the type of structure: ing phases. The minimization of the free enefd®) with
respect to parameters of the phases is performed in Appendix
Structure lamellar hexagonal bce random A, Wwhere we show that both coexisting phases have identical
wave vectorsj=q,=(,, and their amplitudes,, andA,, do
n 1 3 6 0 not depend ory and ¢. The dependences of the wave vector
a, 0 4n3 8/\/6 0 g and the volume fractio of the phase on the interaction
B 6 10 15 12 parametery (temperaturgare defined by the equations
9 3a%q%= x — xet+ NanAnld— gB.AZ12, (13

For ordered structures these coefficients had been calculated
in Ref.[2]. The value ofB., for the random wave structure
can be determined from the following estimation:

b= (2a"q*k—A%)/I(AZ—-AL). (14)

Inspection of Eq(14) shows thaip varies from 0 to 1 as the
Brn=6(2n—1)/n+ Bosd i} (10) intgraction parameter varies in the finite temperature interval.
This behavior is different from that of monodisperse diblock
where B, is the contribution of configurations of four vec- copolymer melts where there is only one temperature at
tors gy (Zp_,9¢=0), the directions*+q,/|q,| of which are ~ which the transition between microphases with different

all different each from other. This contribution is a strongly Symmetries takes pla¢e].

oscillating function of randomly distributed phaseg with The resulting phase diagram of the systéfig. 1) dis-
zero average. In the limit—c we can substitute this aver- Plays different types of phases: 0, isotropic; 1, lamellar; 3,
age for the functionB,d ¢} and findB,.=12. hexagonal; and 6, bcc. We found no regions of the existence
Minimizing the resulting free energg7) with respect to of the random wave structure which has a larger energy than
the amplitudeA,, and the wave vectay we get that for regular wave structures. In the case of a symmetric

copolymer,f=1/2, the lamellar phase appears by the third-
1212 order transition[the free energy of the ordered phaBe
[N an/2—3(2k)™] ~(xe—x)%]. The amplitudeA; changes continuously from
zero in the isotropic phase to a finite value in the lamellar
4 12 - s microphase. Note the presence of two-phase “windows” on
+ 3 9Bn(X~ Xc) ;o agt=(ki) A (1) the phase diagram of the unsymmetrical copolynerl/2,
where different phases coexist each with other. For the first
Consequently, in the single-phase region both the amplitudéme the presence of such two-phase regions in polydisperse
and the wave vector of the superstructure increase monotonieteropolymers was predicted in R¢24]. Note also the
cally with the interaction parametgt For sufficiently large  broad domain of coexistence of the isotropic and bcc phases
valuesy the period of structure becomes of the order of theand relatively narrowness of the domain of coexistence of all
block length and the single-harmonic approximatiéhbe-  other phases. More detailed information on the properties of

An:i {mn/z— 3(2k)Y2+
98n
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FIG. 1. Mean-field phase diagram of the melt of Markovian  FIG. 3. Mean-field dependence of amplitudgsof superlattice
polyblock copolymers in variables((N—f ), wherey is the inter-  on the interaction parametgrfor f=0.3. The same designation as
action parametef\ is the average number of monomers per block, in Fig. 1.
and f is the monomer fraction. The numbers alongside the curves
indicate the different types of phases: 0, isotropic; 1, lamellar; 3approach. We show in Appendix B that the variation of the
hexagonal; and 6, bcc. average monomer density in each coexisting phase can be

neglected in the case of polyblock copolymers with average

the coexisting phases can be obtained from an investigatiofolecular lengtiL.>N.
of the temperature dependence of their parameters—wave
vector g and amplitudesA; of superstructures. The depen- ll. FLUCTUATION THEORY
dence of the wave vector on the parametem the case
f=0.3 is shown in Fig. 2 in variablesitb?N— yN). Verti-
cal lines indicate the values qf for the beginning and the =~ We now discuss how the above mean-field picture of
end[¢=0 and¢$= 1, respectively—see E§14)] of the cor-  Phase transitions is affected by fluctuations of the order pa-
responding transitions between various phases. Notegthat Fameter(r). In order to recast the functiona) to the
increases continuously, with the rise pfbecoming of the standard Brazovski form [25], we use the Hubbard-
order of the Gaussian block length for large The depen- Stratonovich transformation which “splits” the quadratic
dences of amplituded, for all phases ony in the case nonlocal item at the expense of the introduction of “chemi-
f=0.3 are shown in Fig. 3. In the single-phase regions amcal potentials”u, of blocks withl monomers:
plitudes increase monotonically wighand in the two-phase 3
regions they are independent gfand take two value#, Flup.yl __Vf dr =L l f d*q (Xe— X+ 7
andA,,, corresponding to the two coexisting phaseand ~ Tp 4k 2] @mp3 XX
m. The volume fractions occupied by each phase are drawn
in Fig. 4 as functions of the interaction parameger

The influence of a variation of the monomer densities of
coexisting phases on the phase diagrandibfock (n,,=2)

A. Brazovskii approximation

. . . . 4
copolymers has been studied in RgZ7] in the mean-field f 2 d3q;
2 4L Ve oy
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FIG. 2. Mean-field dependence of the wave vectaf periodic
superlattice on the interaction parameter(temperature for f FIG. 4. Volume fractionsp occupied by each of the phases at
=0.3. The same designations as in Fig. 1. f=0.3. The same designations as in Fig. 1.
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o - eters of the two-phase state gr(see Appendix ¢ we will
Tq= Jo dlpexp(—aq). (15  find the region of applicability of the mean-field approach.
We first consider the transition from the isotropic phase with
The fields, do not fluctuate in the thermodynamic limit and An=0=0 t0 the microphasen with A,#0 and - ¢<1. It
can be found from the condition of minimization of the free IS €asy to check that EqEC8) turn to the mean-field equa-
energy(15). tions (Appendix A for
We first examine single-phase states of the system. The
thermodynamic average of the order paraméti(r)) van-
is:hes in the isotropic phase_ and can bt_a taken as the SUPerpo-sypstituting the mean-field estimatiohy,~\/g for the
sition of plane waves(6) in each microphase-separated ympitude of the microphase in the two-phase region we get

phase. It 'is shown in Appendix B that we can_neg_lect theqéa4~(1— S)KAZ, r ~\2/g, and the inequality19) can be
zero Fourier component of the order parameter in this SUpelacast in the form

position and the fluctuating order paramegetan be written

(1-p)AL=a’gor, 2. (19

down in the form (1-2f)*N(1-¢)>1. (20)
An " i e For N>1 the mean-field approximation remains valid for
’/’q:_n gfl [e'¥ké(q—qq) +e " *é(q+aw ]+ 6y, those values of which lay far enough from the critical point
valuef.=1/2. A similar estimation can be carried out for the
19 = o (16) transitions from one microphasA,+ 0, to another oneA,
#0. Now we havegga*~kA?2 and the condition of applica-

The function 6y ({S¢q) =0) describes fluctuations of the bility of the mean-field approachd?>a2qir, %, can be

order parameter around its average value. Substituting Egvritten as
(16) into Eq. (15 and integrating ovebi, using the one- 4
loop approximation, we get the following expression for the (1-21)"N>1. (21)

free energy: Inspection of inequalitieg20) and (21) shows that the

F o M|2 region of appligability of the mean field for the transitipn
TV f dl ﬂﬂt F[w,A,,Gl, between two microphases is wider than that for the transition
p 0 from the isotropic phase to a microphase. In each of these
cases the fluctuations are only important in the interval 1/2
—fg<f<1/2+fg. The valuefg~N~* plays the role of

3
q
) the Ginzburg parameter and it is small for large valuebl of

1 d -
F[M,An,G]EEJ (z—ws(Xc—X+Tq+a q“)

X[2(2m)33(q— gy Ai+ @Gyl — N a,Al
[2(2m)75(a=dn) A +2°Gql ~ N anAi/6 B. Two-phase state of symmetric copolymers

L9 BAY+ 1272 d*(qa) In the case of the symmetric copolymérs:1/2, the ac-
24\ n (2m)° 4 count of fluctuations of the order parameter changes the
3 5 mean-field picture of the third-order phase transition. First of
3“ d*(qa) G } ) all (see Appendix D for detailshe continuous transition is
(2m)® A replaced by the sequence of first-order transitions and the
1 d(qa) single-phase state of the system can exist only in the cases
2| =5 InG,, 17 x<x?andx>x", where the parametesg® andx*) are
2) (2m) a defined by
where G, is the correlation function of fluctuations, X ON=2+27aN"V4+2.3N "2
<5¢q5¢q’>:a36q5(q+q,)-
To describe the transition from the microphaseo the Y PIN=2+350N"V44+2.74N" 12, (22)
other onem, we write down the free energy of the two
coexisting phases: The casey< x{?) corresponds to the isotropic phase, and
x>xY to the lamellar one. In the intermediate regigf?’
Fom = uf <x<xW these phases coexist with each other. We find that
TpV - fo di ﬂ+¢F[“’An .Gl the energy of the lamellar phase is always smaller than the
energy of the hexagonal phase, and equations of the two-
+(1—=)F[ u,An,Gpl (18 phase state, Eq$C8), have no solution for the bcc and for

. the random wave structure. In the transition pojat x(©),
Here ¢ and 1- ¢ are volume fractions of phasesandm,  from the isotropic phase to the two-phase state the amplitude
respectively, and the free-energy functiofials defined by A, jumps from zero up to the value

expression(17). If one of the coexisting phaser)(is isotro-

pic, one has to substitut®,_,=q,-o=0. Minimization of A®=0.35k/g)¥4=0.3N"14, (23)
the free energy(18) with respect to parameters of both

phases is performed in Appendix C. Before proceeding to thén the coexistence regioy V< y<x® the amplitudeA,
solution of Egqs(C8) which define the dependence of param-increases monotonically witl up to the value
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AM=0.38k/g)¥4=0.3N"14 (24) XN

In contrast to the mean-field picture of the phase transi-
tion from the isotropic to the lamellar phase, which takes
place for zero wave vectay,=0, fluctuations lead to the
appearance of the microphase with finite perida
=2m/qy. In the corresponding transition poingg® and
V), the wave vectors aresee Appendix D

bay” =0.25Kk%/g)8=0.4aN 5",

bat =0.29 k% g)¥8=0.55N 5%, (25) e

Note that the period of the appearing microstructre " o " o oy M

~bN>® exceeds the average Gaussian size of the block, _ _ _
which is a consequence of the polydispersity of the system FIG. 5. Fluctuation phase diagram of the melt of Markovian
under consideration. This result was first predicted in Refﬁo_lyblo?k copolymers with an average number of block monomers
[17]. Remember that in the theory of monodisperse copoly- =100; (ab) and (cd) are th? three phase lines, and other desig-
mers[2,26] the period does not depend on the Flory param-natlons are the same as in Fig. 1.
eter y and near the transition poi~bN¥2 In our poly-
disperse system the wave vecta), of the density
fluctuations in the isotropic phase does not vanish an
strongly depends on the temperature. In approaching th
transition point to the microphase the spatial scale of th
fluctuation R~ 1/q, in the isotropic phase decreasg@sis
“tuned up” to the period of microphasend it becomes of
the order of the period of the superstructure in the very tran
sition point. The arising droplet of the ordered phase in th
isotropic phasdthe so-called crystallite island in the poly- fi
mer liquidsg is in equilibrium; i.e., it exists in the finite tem-
perature intervak )< y<x‘) and occupies a macroscopic comes smaller than the sizZeyN~1, Af~1 of the other

fraction ¢ of the system. The volume of this droplet grows coexisting phases and in the limiit—o the two-phase re-

m;h;;;:g:: the crystal phase occupies the whole volume Ofgions shrink to the pointf =1/2, yN=2) on the phase dia-

The mean-field picture of the phase transition is repro-gram'
duced if one takes the limN—o. yN=const. The region One of the tree phase linesb, is defined by the equation

of the coexistence of different phases disappears in this Iimi&See Appendix

and the transition to the lamellar phase takes place on the YN= xeN+29MN(N8/g%) Y2+ 6.4NN?/g. (26)
spinodaly.N=2 [Eq. (22)]. Such a transition becomes con-
tinuous, since the amplitude of the ordered phase, 8. When crossing this line the transition can be observed either
and(24), vanishes in the transition point. from the hexagonal to lamellar phase at the presence of the
Note that the renormalized susceptibility Miverges in  isotropic phase, or from the hexagonal to isotropic phase at
the random microphadeee first equation of Eq$C8) with  the presence of the lamellar phasee Fig. 6, depending on
a,=0 andB,.=12, Eq.(9)]. This means that the composi- the compositionf on this line. The values of the monomer
tion fluctuations prevent the formation of such a randomfractionf for each of the coexisting phases on the tree phase
wave structure. line are defined by the equation

from the isotropic to the lamellar and also to the hexagonal
hases appear on the fluctuation phase diagram. Such a pic-
ure of transitions resembles that for monodisperse copoly-
ﬁ]ers[26], where similar “windows” of direct transitions to
famellar and hexagonal phases exist. However, the region of
stability of the two-phase states always takes precedence for
the appearance of each of the crystal phases for random co-
polymers. Note that the coexistingotropic and lamellar
ndisotropic and hexagongbhases are absent in the mean-
eld phase diagram. For rather long blodks 10* the size
of these two-phase regions yN~N"Y4 Af~N~4 pe-

C. Phase diagram 2.6+ 1+ 0.47h;=T726*/gk. (27)
To construct a complete phase diagram, where both trarHere ¢, and ¢3 are volume fractions of the lamellar and the

sitions from the isotropic phase to microphases and transhexagonal phasdthe volume fraction of the isotropic phase

tions between different microphases are taken into accounis ¢o=1— ¢1— ¢3). This line begins at the poinp;= ¢

we should not restrict our attention to only E.8) of two- =0, where there is only an isotropic phase, and ends at the

phase states. It is shown in Appendix E that there are alspoint ¢»;=1. For intermediate values df Eq. (27) defines

lines on the phase diagram where one of the two coexistinghe value of the jump of the volume fraction of those phases

phases changes its symmetry. which change their symmetry; see Fig. 6. Similar equations
The phase diagram of the random copolymer with an avare found for the second three-phase Itk
erage number of monomers in the bldgk= 100 is shown in The fluctuation region increases with the decrease of the

Fig. 5. In contrast to the mean-field phase diagram, Fig. 1block lengthN and, therefore, regions of coexistence of iso-
where forf#1/2 the isotropic phase can undergo only thetropic and lamellar as well as of isotropic and hexagonal
transition to bcc structure, direct “windows” of transitions phases become larger.
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15 arbitrary spatial conformations and it can be located in any
region of the space occupied by the system. The presence of
such translational invariance leads to the possibility of the
formation of regular three-dimensional structure in polymers
¢ 1 with a random sequence of monomers along the chain. We
shall not discuss here the effect of the usual thermodynamic
fluctuations, which lead to the breakdown of long-range
crystal ordering on large scales, similar to liquid crystal sys-
051 0 0+3 0+1 1 tems[28].

Finally, we should comment on the accuracy of the ap-
proximations used. Expressié) for the free energy is writ-
ten in the “infinitely long chain” approximation, when the
= - - - characteristic wave vectar>1/(bL'?), whereL is the av-

XN erage number of monomers in the molecule. For fihitihe
curve in Fig. 2 will not begin withq=0 but with finite
Amin=1/(bLY?). In our situation of a large number of blocks,
ny=L/N per one chain, we can disregard this finite-size ef-
fect. The finiteness of the chain lengths can also be essential
IV. DISCUSSION for the study of the effects of macrophase separation. We can
We have shown that the account of the possibility of theestimate the variation of densities in coexisting macrophases

N VA _ 12 : - )
coexistence of phases with different symmetry of the super‘:’lSApA_N(p/L)(an,'j) =piny”, wherep/L is the chain con
tration andNn,“ is the dispersion of the number of

lattice significantly changes the phase diagram of the systefff" _ !
with respect to studief9] where this effect had not been Monomers of a given type. For smal} and a large interac-
taken into consideration. We have shown in the selfion parametey the macrophase separation becomes favor-
consistent field approximation that as the temperature is va@Pl€; in the opposite limit of large,,>1 the variation of the
ied, the melt of polyblock copolymers undergoes a succesdensity of two (or morg coexisting phases can be disre-
sion of first-order transitions into microphase-separated@arded. .
states with a wave vector of finite amplitude, which varies I deriving the free-energy expressiéd) we have also
continuously from zero to the characteristic block lengthdisregarded the dependencehoindg on the wave vectors.
aNY2 see Fig. 2. Note that a similar conclusion in Refs. This approximation is admissible because in the region of
[6,23) has been made on the assumption of a third-ordeYalidity of the Landau expansiofd) typical values of the
phase transition from the isotropic state to the microstrucWave vector of the superstructure are small in comparison
ture. This microphase state actually corresponds to metdVith the reciprocal Gaussian block length. When developing
stable conditions and the corresponding transition describdbe fluctuation theory in the Brazovskapproximation(Sec.
spinodal decomposition of the isotropic state. It is readily!ll A) we expected that the correlation functi@y,q, Eq.
shown that the free energy of two-phase states lies below tH&E®), has a sharp maximunt ¢5>r ) in the pointq=g. It
free energy of the above single-phase state. Consequentlyjsshown in Appendix D that this approximation is valid only
thermodynamic transition with the formation of a for rather large values oN>1 since we haver,/cqj
microphase-separated phase takes place through the forma1/NY4,
tion of an equilibrium droplet of a new phase in the old one. Our general expressidd) used for the free-energy func-
The volume of this droplet grows with the increase of thetional is not bound to any specific choice of model of Mar-
interaction parametey until the new phase occupies the en- kovian copolymers, for which the parameters of the
tire volume of the system; see Fig. 4. We therefore have &inzburg-Landau functional are given by expressig¢bs
finite temperature interval in which both phases coexist. Consequently, the main results of the present study remain
We have shown that in the mean-field approximation thevalid for a multiblock copolymer of arbitrary structure.
random wave structure has a higher energy than the regular We now discuss the possibility of experimental verifica-
wave structures. Based on such a mean-field picture we cdion of our theory. The most interesting observation is the
expect that this structure can be observed at least as a megxistence of two-phase regions and three-phase lines on the
stable state. However, our stu@see Sec. Ill ¢ shows that phase diagram of a random multiblock copolymer. The sym-
thermodynamic fluctuations prevent the formation of thismetry of one of the coexisting phases changes when crossing
random microstructure. the linesab andcd in Fig. 5. The volume fractions of the
Note that from the standpoint of the general theory ofphases undergo jumps on these lines. For a copolymer with
phase transitions a melt of Markovian copolymers is the sysN= 100 the width of the region, where such an effect can be
tem with the frozen-in or “quenched” randomness. It is well observedline cd), is aboutAf~0.02. The next type of ex-
known that in the case of solids having a random distributiorperiments which can confirm the predictions of our fluctua-
of interactions that is fixed in three-dimensional space, suckion theory are neutron scattering experiments on the isotro-
systems exhibit a localization or nonergodic glass type opic phase near the transition point. The intensity of density
behavior. A fundamental distinction of polymer systems isfluctuations,Gy,, reaches its maximum in the point of the
the fact that only a one-dimensional sequence of monomerf&rst-order transition. For a symmetric copolymer it is esti-
along the chain is random, whereas the chain can assummeated in Appendix D:

FIG. 6. Temperature dependence of the volume fracthoof
phases for the casd=100 andf=0.542 [corresponding to the
crossing of the three-phase linek) on the phase diagram, Fig].5
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(Gogy) max= 1/r y=83.8N°%2, (28)  Substituting the combinatio — x.+3a?g? from the two

equationgA5) into the right and left hand sides of E@\6),
This dependence can be checked using copolymers with dive find equations for amplitude, andA,:

ferent average lengths of blocks. ) )
=3\ AL+ 9B AL = — 3N anAm T 9BmAn
ACKNOWLEDGMENTS 3 4 3 4

—2Na AL+ 9B A= — 2N At 9BmA (A7)
One of the author§S.V.P) is grateful to L. Leibler and J.
F. Joanny for stimulated discussions. I.I.P. acknowledges th€he most important consequence of these equations is the

financial support of the Robert Havemann Foundation. fact that neither of the amplitudes dependsdand y. We
arrive at the conclusion that the amplitudes of the two coex-
APPENDIX A: MINIMIZATION OF THE MEAN-FIELD isting phases do not vary with the temperature. Equations
FREE ENERGY (A7) can be solved if one introduces the new variabigs
=XAn:
We minimize the free energyl2) with respect to the "
parameters of both coexisting phaseandm. In the event N aX—an
of a transition from the isotropic phase with=0 we have An=3— 57—, (A8)
. 9 BnX"— Bm
0o=0, Ay;=0, and the value of the wave vector in the new
microphasem is given by the expression 2(apX®— ) (BaX2— Bm) =3(ayX— ay) (BX*— Bm)(Ag)
Im=k(1— ¢)A7/(2a%). (A1)

In the case of a transition from the lamellar to the hex-

The amplitudeA,, and the dependence of the volume frac- agonal phasey,=0, and the solution of Eq$A8) and(A9)
tion ¢ of the isotropic phase og are given by can be found analytically:

)\Ofm )\C!m )\zafn N 15 1/2 N
An=2—"", x=xct+3V2k(1—¢) —— : N3 29 ~ ki
m=2g5, " X~Xe (1=9) 35~ 69, A=05. |2 (7+3J€)} =1037 -,
(A2)
i i 111 )\a3 3 12 )\Ofg
The beginning and end of the phase transitions from the As=—— |6+ = 6| =9.67T— (A10)
isotropic phase to the microstructure correspond to the val- % 0B; 2 T gBs’

ues¢p=1 and¢=0, respectively. It is easy to show that the

bcc microphase is favorable at such a transition. The amplitudesA; and Ag for the transition from the hex-
We now turn to consider the case of a transition betweer@gonal to the cubic phase can be found by solving E48)

two microphases#0 andm=0. Minimization of the free and(A9) numerically:

energy with respect to wave vectays and ives
o P @5 antdm 9 A;=3.48\a3/(9B3), As=3.1Ta3/(gBs). (All)

kpAZ  2k(1— $)A2
2a%qy  aY(dhtan)?

Solving the second equation of H&\5) with respect ta
we find the temperature dependence of the wave vector of
the superstructure: see expressibd in Sec. Ill. Expression
1 (A3) (14), which together with Eq(13) describes the dependence
' of the volume fractionp on y, is determined by solving Eq.
(A4) with respect tog.

k(1— ¢)A2 2kpA2
+ =
2a'qy,  a*(gn+dm)?

A solution of these equations is readily found:

APPENDIX B: ESTIMATION OF CHANGE

4 A_ A _ 2 _ 2 4
q'=0r=dn=Kl¢A+ (1= )Ap]/(2a%).  (Ad) OF THE AVERAGE DENSITY IN COEXISTING PHASES

Note that Eq(Al) can be regarded as a special case of Eq. We now demonstrate that the variation of the average
(A4) sinceA,=0 in the isotropic phase. Keeping in mind the density in coexisting phases can be ignored for polymer mol-
equality of the wave vectors in the coexisting phases withecules containing a large number of blockg=L/N>1. To

n#0 andm#0 along with Eq.(A4), the conditions for the describe such a variation of the density on macroscopic

minimum of the free energy4) with respect toA;, i=n,m  scales it is necessary to include the zeroth harmonic in the
assume the form expansion of the order parameté) in each phase:
2(x—xc+38%0%) — N A2+ gBAY6=0  (A5) A, &
o , Yoln=2nd(a)+ —= 2 [8(a—a0)+8(a+a0]. (BD)
and the minimization of the free energy with respect¢to Jn 51

gives the equation ) ) o
The amplitudes\ , andA ,, determine the variation of the

(X — Xct+32%0%) A2— N A6+ g B, Anl24 average density in each of the coexisting phasasdm and

5 o2 3 4 they are related by the condition of invariance of the total
=(X—XcT3a°0)AL~ NanAL/6+9BnAL24.  (AB)  number of molecules,
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¢Ant+(1-¢)An=0, (B2)

which allows one to parametrize these amplitudes with a

single parameteA:

An=(1-¢)A, Ap (B3)

=—@A.
Here ¢ and 1- ¢ are the volume fractions occupied by
phases andm, respectively. The account of the finiteness
of the length of the polymer chain “removes” the singularity
of the nonlocal term in the free enerdy) for zero wave
vectorq=0 (see Sec. Il and Ref7]). Consequently, substi-

tuting the order parameter for each of the coexisting phases

in the form(B1) and(B3) into the functionak4), we get the
expression for the free energy of the two-phase system:

Faml TV=Fpm+ SF(A),  Fpm=Fam! TV|| 0.
k ¢*(1—¢)%A*
Z—h_l_... ,

SF(A)=—N(1— ) (AT-AT)A+ 2
a"Qmin

(B4)
where the free enerdy,,,, in the limit L—« is calculated in
Eq. (12), qﬁqin=1/(b2L), and the expansion afF is written
in the principal approximation with respect th and L.
Minimizing SF with respect taA and using expressioi\4)
for q (Appendix A), we obtain the estimates

Fom~ KL oALH (1= )AL

SF~ (LK)~ "\ p(1- ) PAAT- AT (BD)

The variation of the average density in the coexisting phas
can be ignored if the following inequality holds:
Foms OF. (B6)

For a transition from the isotropic phase to the mi-
crophase we have to sé,=0, A,,=~\/g, and 1- ¢<<1.
Inequality (B6) therefore takes the form

1—¢>(N/L)2H1—2£|55. (B7)

In the limit of infinitely long molecules inequalityB7) is

always satisfied, and the variation of the average density in

this limit can be ignored. In the transition from one mi-
crophase 1) to another onerfl), inequality (B6) takes the
form

1- p<(LIN)YJ1—2f| 372 (B8)
and is always satisfied for sufficiently long molecul@sth
L>N).

APPENDIX C: EQUATIONS
OF THE TWO-PHASE STATE

Minimizing the fluctuation free energy of the two-phase
state(18) with respect to wave vectorg, amplitudesh; , ¢,
and functionsu; andG;, of the microphases=n,m we get

0=0n=0, fdllmexp(—azqzl)ﬂ, (C1
0
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d3(q'a

gﬁi 2 g )
Ai+§f WGW

Aa;
2~2 !
Xc— Xt 7gtaq —TAi-i- 12

=0, (C2
Flw,An,Grl=F[ #,An,Gnl, (C3
i 1k=2[ pAL+(1— ¢)AZlexp( —a?q?l)
d(q’a)
+ f (ZT):% [¢Gnq’+(1_ ¢’)qu’]
xexg —a?(q")?], (CH
d3(q’'a
Gi:;]l:XC_X+Tq+a2q2+gAi2+g f (21)3) iq" -
(CH

Inspection of Eq(C5) shows that the function@i;l can
be taken in the Brazovskform [25]

Gig'=ri*+c(q—do)?, (Co)
where the parameters, q,, andc are defined by
-1 2~—1
(=Giglaay o =0, o=j s
° aq q=dg 2 ﬁq q=dg
(C7

The above statemeriC6) is valid only if the functionG;,
has a sharp maximum at the poipt gy, when the condition
cq(2,>ri is satisfied. Substituting correlation functions in the

Sform (C6) into Egs.(C1)—(C5) and taking into account Egs.

(C7), we arrive at the following algebraic equations:

r=\aAl4+g(1- Bi/12A?, i=nm,

—1/2_

= rm=0(A2—A2)+gaa?qi(r, *—r,"9/2,

X~ Xc=38°05— NanAn/4+ g BrAT/12+ goa’qsr, Y412,
+(1- ¢)(2A% + 0a?glr ),

12_

(re—ra)/g+oaqg(ry®=re?)

=N(anA— anAN)/3+0[(1- By/12 A7

—(1-Bn/12)A7], ()
where the numerical coefficient=1/27v2 and all integrals
of the functionsG;q and G4 are calculated in the principal
approximation in the small parameuedcqg.

APPENDIX D: COEXISTENCE OF THE ISOTROPIC
AND LAMELLAR PHASES

Analytical solution of Eqs(C8) can be found in the case
of coexisting isotropic and lamellar phases with=0. In-
troducing the new dimensionless variabfgs a,, andQ by
the equations
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n=pn(kg) % Ar=an(kig)™,  a’g5=Q(k%g)"", T(1= 1~ ¢3)F[1,0Go]. (ED
(b1) Here ¢, and ¢4 are the volume fractions of the lamellar and
we get the following equations: the hexagonal phaséthe fraction of the isotropic phase is
) $o=1—¢1— ¢b3), and the free energ¥ is defined in Eqg.
p1=ai/2, (17). The minimization of this free energy with respect to the
1/2 amplitudesA;, wave vectorgy;, volume fractionse;, and
p1—Po=ai+(sQ/2)(p; ), (D2)  functionsG; of the coexisting phases and the chemical po-
2 ,2 4 tentialsu, is similar to that for the two-phase state. We find
pi—p§+oQ(pr*~pg?)=ail2, that the wave vectors for all the phases coincide and the
_12 —12 functionsG; reach their maximum on the same wave vector.
4Q°=p(2a3+Qp; ") +(1— $)aQpy . Taking these functions in the Brazovskorm (C6) and in-

Note that they do not depend on the monomer fracfion troducing the variable€D1), we get the following equations:

The temperature dependence of the volume fracfiai the p1=ail2, ps3=wasasl4+ajl6,
lamellar phase is defined by the equation

p1—Ppo=az+(aQ/2)(p; *?—py 1),

P3—Po=a3+ (0 Q/2)(ps ¥~ py 3,

x— xc=3Q(K¥9)Y*+ (gk) Y4 ai+oQp; Y3/2. (DI)

Excluding a; from Egs.(D2) and introducing the new

variablez=p,/py, we get the following dependence of the 2_ .2 Y2_ 12y _ 4
parameters of coexisting phases on the volume fragtion PI=Po+ o QP ™= Po)=au/2,

o A2 1 241 roiz 1 112 p2— p2+ o Q(pY2— pb?) = wazad/3+ ¥,

Po=7 Sz 7 | 5127 T49(Z— , _ _
2zl el 4Q%= ¢1(2a7+0Qp; M)+ da(2a5+ 0Qp; 1Y)
32 _2 -1/2
Po” z°+1 + (1= 1= ¢3)0Qpy . (E2
—TZ—lfq, a;= \/22po, (D4) ! 3 0

Here the only factot=\/(g%k)*"* depends on the monomer
where z~5.27 is the root of the equation\2(1+2z)=1 fraction f, az=4N3, and the dependence of the interaction
+72 parametery on f looks like

The value ofy, corresponding to the appearance of the 30(k3/ o) Y4+ (ak) Y2 a2+ “125  (E
lamellar phase of the infinitesimally sméliut macroscopic X~ xe=3Q(k7g) (gl ai+oQp /2. (EY

volume, $—0, is determined from EqD3) taking into ac- It is convenient to introduce the new variabtes p, /p,
count Eqs.(D4), andw=p;/p,. Then from Eqs(E2) and (E3) we can find
the parameters of all the phases and the transition tempera-
(0) — 3 1/4 1/2
X' =Xc+0.77k%g)™+0.12gk) ™, (DS)  ture as the functions of the monomer fractitn
and for the symmetric copolymef=1/2, we get wzaé[w—1+u(1—w‘1’2)/2]
Po= =17 2
16w—[w—1+u(l—w 12]16
X ON=2+278N"V4+2.33:N "2 (D6) -1 ( /2116)

_ 32 — (52 1/2
. = lo, u=(z°+1)/ -1),
The lamellar phase is extended to the whole volume of the Q=poulo, u=(z V(2 )

sample,¢—1, at a3=po[w—1+u(1—w~*3)/2],
(1) — 3 1/4 1/2 3\ 14 »3/2 3/2
xP=xe+0.99k%g)¥4+0.14 gk) Y2 (D7) k Jau 2%7+1
i X=xe=3 5| g T e g, (B4

This condition for the symmetric copolymer looks like

and also the jump of the volume fraction:
(UN=2+3.58N" Y4+ 2. 74N 12 (D8) Jump

1/2
APPENDIX E: THREE-PHASE LINE (ab) Po=54 [u+2¢1(2 D+2¢s(w=1)] (E9)

ON THE PHASE DIAGRAM ) ) )
The variablez andw are defined by the equations

To find the line on the phase diagraffig. 5), where one )
of the two coexisting phases changes its symmetry, we write 2\z(1+2)=1+72,

down the free energy of the three-phase state:
9y P [U(1—w~¥3)/2— 11w—1]2= 18 7w+ 1— u(w?— 1)],

F123 * ] (E6)

M
—=— dl —+ F[u,A1,G1]+ d3F[ ,A3,G ) . . .
TpV fo ak T PPl AL Gult doFLiAs Gl the numerical solution of which gives~5.27,w~2.99.
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