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Microphase separation in correlated random copolymers: Mean-field theory
and fluctuation corrections
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Physics Department, Moscow State University, Moscow, 117234, Russia

S. V. Panyukov†

Theoretical Department, P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
~Received 24 November 1997!

The behavior of a randomAB multiblock copolymer melt with a Markovian sequence of monomers has
been studied in the region where the spatially homogeneous state loses its stability. We use a generalization of
the weak crystallization theory to the case of a polydisperse system. In the framework of both mean-field and
Brazovski� approximations phase diagrams of such a system are constructed. It is shown that the major
difference of these diagrams from the monodisperse ones is the presence of regions where two phases with
different symmetry of the superlattice~lamellar, hexagonal, and bcc! coexist with each other in the finite
temperature range. We show that the account of fluctuations alters the phase diagram near the critical point in
comparison with the mean-field picture. In particular, in addition to ‘‘windows’’ of direct transitions from
disordered to lamellar and hexagonal phases, three phase lines appear, where one of the two coexisting phases
changes its symmetry. We demonstrate also that the period of the superstructures varies continuously with the
temperature variation.@S1063-651X~98!10206-4#

PACS number~s!: 61.25.Hq, 64.10.1h, 64.70.Ja
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I. INTRODUCTION

Interest in copolymer systems is stimulated by their n
merous technological applications@1#. The majority of theo-
retical and experimental studies have been devoted to
consideration of model copolymer materials with we
defined architectures, such as diblock and triblock copo
mers. Considerable attention has been also given to reg
~alternating! multiblock copolymers. One of the most inte
esting physical phenomena is the formation of microdom
structures~microphase separation transition!. The homoge-
neous state of a heteropolymer is unstable with respec
composition fluctuations with a finite wave vectorq0 below
the critical temperature if different types of monomers ‘‘d
not like each other.’’ Since such monomers are connecte
a single macromolecule, they cannot go apart into differ
macrophases and can only segregate on microscopic sc
In the case of a relatively narrow distribution of block leng
the system forms regular superstructure with the per
about a block size. The phase diagram of such copolym
includes regions with one-dimensional lamellar, tw
dimensional hexagonally close-packed cylinders~hex!, and
three-dimensional body-centered-cubic~bcc! phase@2#.

The formation of copolymers with a regular architectu
is rather a state of the art. They are usually synthesized
polymerization reaction which produces a wide distributi
of macromolecules according to their chemical structu
The randomness of the synthesis process results in cop
mers with ill-defined architecture. The phase diagram o
copolymer depends essentially on correlations in the mo
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mer sequence along the chain. The effect of chemical di
der on the stability of the homogeneous phase was con
ered in Ref.@3#. It was shown that the value of the critica
wave vectorq0 decreases with the disorder and turns to 0
a random copolymer system. A similar behavior was fou
later for more realistic copolymer systems@4,5#.

Consideration of the ordered phases of the random m
block copolymers shows that the period of the superstruc
can exceed the average spatial size of one block becau
the local redistribution of the chain fragments with an exc
of monomers of a given type@6–8#. The mean-field phase
diagram of multiblock copolymer systems is constructed
Ref. @9#. Unfortunately, the possibility of the coexistence
microphases with different symmetries of the superlattice
not been taken into consideration in this work. Such tw
phase regions for random correlated copolymers were l
found in Ref.@10#.

The mean-field picture of the microphase transitio
breaks down near critical points. The presence of lar
amplitude composition fluctuations in the pretransitional d
ordered phase of the model of a regular diblock copolym
was demonstrated in Ref.@11#. These fluctuations are man
fested in small-angle neutron scattering~SANS! experiments
as a peak in the structure factor, the position of which,q0 ,
only weakly varies with the temperature. An important que
tion is how such fluctuation effects affect the mean-field p
ture. There is a very wide spectrum of conjectures about
fluctuation picture of random uncorrelated copolymers. It
supposed@12,13# that thermal fluctuations should prevent th
formation of any superstructure~see also Ref.@14#!, or a
glasslike state should be established because of the quen
randomness in the sequence of monomers along the c
@15,16#. The weakly first-order transition to the microstru
ture in random correlated copolymers was found in Re
6902 © 1998 The American Physical Society
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57 6903MICROPHASE SEPARATION IN CORRELATED RANDOM . . .
@17,18#. The behavior of such copolymers near the Lifsh
point, at whichq0 is first equal to zero, was studied in Ref
@19,20#.

The effect of fluctuations on the phase diagram of sy
metric correlated Markovian copolymers was studied in R
@21#. Here we construct the phase diagram of general n
symmetric Markovian correlated multiblock copolymers a
find the temperature and composition dependences o
possible microphases in the weak segregation regime.
main results of this work were announced in Ref.@22#.

In Sec. II we develop the mean-field theory for nonsy
metric Markovian copolymers. In Sec. III we take into co
sideration fluctuation corrections to the mean-field the
within the framework of the Brazovski� approximation. Our
main predictions are summarized in Sec. IV.

II. MEAN-FIELD THEORY

A. Free energy

We consider a melt of heteropolymer chains with Ma
kovian statistics of monomersA andB for which probability
~transition matrix! n i j that a monomer of typej 5A,B will
follow a monomer of typei along the chain does not depen
on monomers farther removed along the chain. Average d
sities r̄ i of monomers of the given typei and the average
block lengthN of chains can be expressed in terms of e
ments of the transition matrixn @23#:

r̄A5 f r, r̄B5~12 f !r, f 5
nBA

nAB1nBA
,

N5
1

nAB1nBA
. ~1!

Here f is the fraction of monomersA and r is the total
monomer density. We assume that the block lengthN is
small with respect to the average length of the chain; i
each chain contains a large number of blocks. Using
incompressibility conditionrA(x)1rB(x)5r, it is conve-
nient to introduce the dimensionless order parameter

c~x!5DrA~x!/r, r5 r̄A1 r̄B , ~2!

which characterizes the deviationsDrA(x)52DrB(x) of
the density of monomers of the given type from their avera
value. Near the critical pointf 51/2, the free energy of the
system can be expanded in powers of Fourier componen

cq5E dx c~x!exp~ iq•x! ~3!

of this order parameter~2!:
-
f.
n-
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he
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e

F@c#

rT
5

1

2 E d3q

~2p!3 ~xc2x1a2q2!cqc2q

2
l

6 E dS (
i 51

3

qi D)
i 51

3

cqi

d3qi

~2p!3

1
g

24 E dS (
i 51

4

qi D)
i 51

4

cqi

d3qi

~2p!3

1
k

4V E d3q

~2p!3 E d3q8

~2p!3

cqc2qcq8c2q8
a2@q21~q8!2#

.

~4!

Here V is the volume of the system and the temperatureT
enters into the free energy through the dimensionless in
action parameterx. Note that the loss of stability of the spa
tially homogeneous state@positive definiteness of the qua
draticc term in the free energy~4!# takes place atx5xc for
zero wave vector. In the case of polydisperse polymeric s
tems this fact does not imply@6,23# the emergence of a new
spatially homogeneous phase~macrophase separation! as in
the case of monodisperse systems.

The first three terms in expression~4! have the form of
the usual Landau expansion of the free energy, where
coefficientl of the cubic term vanishes in the critical poin
f 51/2. The last ‘‘nonlocal’’ term (;k) describes polydis-
persity effects because of the finite width of the block leng
distribution. This term gives the entropy cost due to the lo
variation of the block length distribution to create the dens
inhomogeneityDrA(x) with characteristic spatial scale o
the order the reciprocal wave vectorq21. Since the forma-
tion of such an inhomogeneity involves only blocks wi
characteristic sizeq21, in effect it ‘‘sucks in’’ chains with
such blocks from the surrounding space. This phenome
depletes the block length distribution outside of this inhom
geneity and, as the consequence, leads to the effec
infinite-range interaction of two~or more! inhomogeneities.

The parametersl, g, and k of the Landau free-energy
expansion ~4! are determined from microscopic theo
@7,23#:

l5
3

4N

122 f

f 2~12 f !2 , g5
3

8N

5216f ~12 f !

f 3~12 f !3 ,

k5
1

4N2

1

f 3~12 f !3 . ~5!

In the case of the symmetric copolymer,f 51/2, the coeffi-
cientl of the cubic term vanishes and the coefficientg of the
quadratic term remains positive for arbitraryf . The param-
etera5b(xcN)1/2 can be expressed in terms of the monom
sizeb and the critical valuexc51/@2N f(12 f )# of the in-
teraction parameterx.

B. Phase diagram

The equilibrium value of the order parameterc~x! in the
microphase-separated system is determined from the co
tion of the minimization of the free energy~4!. We begin our
analysis by considering single-phase states of the polym
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Near the critical point the order parameter can be taken@2# as
the superposition ofn plane waves with wave vectorsqk
which have equal magnitudesuqku5q and are chosen to de
scribe lamellar (n51), hexagonal (n53), and body-
centered-cubic~bcc,n56! phases:

cqun5
An

An
(
k51

n

@eiwkd~q2qk!1e2 iwkd~q1qk!#. ~6!

Constant phaseswk can be taken to zero for all the abov
long-range-ordered structures. Beside these structures
disordered random structure has been considered in R
@6,5,8#. For this structure the wave vectorsqk are selected
uniformly on the sphereuqku5q, thewk are random phases
and the positive integern will later be taken to infinity. Sub-
stituting expression~6! in Eq. ~4! we represent the free en
ergy of the phase with a given numbern of plane waves,

Fn

TrV
5Fn~q,An!1

k

2

An
4

a2q2 , ~7!

by the sum of the local contribution

Fn~q,An![~xc2x1a2q2!An
22lanAn

3/61gbnAn
4/24

~8!

and the nonlocal contribution;k. The coefficientsan and
bn depend on the type of structure:

Structure lamellar hexagonal bcc rando

n 1 3 6 `
an 0 4/) 8/A6 0
bn 6 10 15 12

~9!

For ordered structures these coefficients had been calcu
in Ref. @2#. The value ofb` for the random wave structur
can be determined from the following estimation:

bn56~2n21!/n1bosc$wk%, ~10!

wherebosc is the contribution of configurations of four vec
tors qk ((k51

4 qk50), the directions6qk /uqku of which are
all different each from other. This contribution is a strong
oscillating function of randomly distributed phaseswk with
zero average. In the limitn→` we can substitute this aver
age for the functionbosc$wk% and findb`512.

Minimizing the resulting free energy~7! with respect to
the amplitudeAn and the wave vectorq we get

An5
3

gbn
H lan/223~2k!1/21F @lan/223~2k!1/2#2

1
4

3
gbn~x2xc!G1/2J , a2q25~k/2!1/2uAnu. ~11!

Consequently, in the single-phase region both the amplit
and the wave vector of the superstructure increase mono
cally with the interaction parameterx. For sufficiently large
valuesx the period of structure becomes of the order of
block length and the single-harmonic approximation~6! be-
the
fs.

ted

e
ni-

e

comes inadequate for the description of such structures. C
sideration of this strong segregation regime is beyond
scope of this work.

Several phases with different symmetries of the super
tice can coexist one with the other. In contrast to monod
perse systems, where each of the coexisting phases ca
considered separately, in polydisperse systems one ha
take into account the exchange of chains between th
phases. Consider a two-phase state with volume fractionf
and 12f occupied by phasesn andm, respectively. Substi-
tuting the order parameter~6! with the numbersn andm of
plane waves in each of these phases into Eq.~4!, we find the
free energy of the two-phase state:

Fnm

TV
5fFn~qn ,An!1~12f!Fm~qm ,Am!

1kF f2An
4

2a2qn
2 1

2f~12f!An
2Am

2

a2~qn
21qm

2 !
1

~12f!2Am
4

2a2qm
2 G .

~12!

The first two terms of Eq.~12! give local contributions~8! of
each phase to the free energy and are proportional to
volumesVn5fV and Vn5(12f)V of these phases. Th
last term (;k) describes the effects of the redistribution
chains with different block lengths between the two coex
ing phases. The minimization of the free energy~12! with
respect to parameters of the phases is performed in Appe
A, where we show that both coexisting phases have ident
wave vectorsq[qn5qm and their amplitudesAn andAm do
not depend onx andf. The dependences of the wave vect
q and the volume fractionf of the phasen on the interaction
parameterx ~temperature! are defined by the equations

3a2q25x2xc1lanAn/42gbnAn
2/12, ~13!

f5~2a4q4/k2Am
2 !/~An

22Am
2 !. ~14!

Inspection of Eq.~14! shows thatf varies from 0 to 1 as the
interaction parameter varies in the finite temperature inter
This behavior is different from that of monodisperse diblo
copolymer melts where there is only one temperature
which the transition between microphases with differe
symmetries takes place@2#.

The resulting phase diagram of the system~Fig. 1! dis-
plays different types of phases: 0, isotropic; 1, lamellar;
hexagonal; and 6, bcc. We found no regions of the existe
of the random wave structure which has a larger energy t
that for regular wave structures. In the case of a symme
copolymer,f 51/2, the lamellar phase appears by the thi
order transition@the free energy of the ordered phaseF
;(xc2x)3#. The amplitudeA1 changes continuously from
zero in the isotropic phase to a finite value in the lame
microphase. Note the presence of two-phase ‘‘windows’’
the phase diagram of the unsymmetrical copolymer,f Þ1/2,
where different phases coexist each with other. For the
time the presence of such two-phase regions in polydisp
heteropolymers was predicted in Ref.@24#. Note also the
broad domain of coexistence of the isotropic and bcc pha
and relatively narrowness of the domain of coexistence of
other phases. More detailed information on the propertie
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57 6905MICROPHASE SEPARATION IN CORRELATED RANDOM . . .
the coexisting phases can be obtained from an investiga
of the temperature dependence of their parameters—w
vector q and amplitudesAi of superstructures. The depe
dence of the wave vector on the parameterx in the case
f 50.3 is shown in Fig. 2 in variables (q2b2N2xN). Verti-
cal lines indicate the values ofx for the beginning and the
end@f50 andf51, respectively—see Eq.~14!# of the cor-
responding transitions between various phases. Note thq
increases continuously, with the rise ofx becoming of the
order of the Gaussian block length for largex. The depen-
dences of amplitudesAi for all phases onx in the case
f 50.3 are shown in Fig. 3. In the single-phase regions a
plitudes increase monotonically withx and in the two-phase
regions they are independent ofx and take two valuesAn
and Am , corresponding to the two coexisting phasesn and
m. The volume fractions occupied by each phase are dr
in Fig. 4 as functions of the interaction parameterx.

The influence of a variation of the monomer densities
coexisting phases on the phase diagram ofdiblock (nbl52)
copolymers has been studied in Ref.@27# in the mean-field

FIG. 1. Mean-field phase diagram of the melt of Markovi
polyblock copolymers in variables (xN2 f ), wherex is the inter-
action parameter,N is the average number of monomers per blo
and f is the monomer fraction. The numbers alongside the cur
indicate the different types of phases: 0, isotropic; 1, lamellar
hexagonal; and 6, bcc.

FIG. 2. Mean-field dependence of the wave vectorq of periodic
superlattice on the interaction parameterx ~temperature! for f
50.3. The same designations as in Fig. 1.
on
ve

-

n

f

approach. We show in Appendix B that the variation of t
average monomer density in each coexisting phase ca
neglected in the case of polyblock copolymers with avera
molecular lengthL@N.

III. FLUCTUATION THEORY

A. Brazovski� approximation

We now discuss how the above mean-field picture
phase transitions is affected by fluctuations of the order
rameterc(r ). In order to recast the functional~4! to the
standard Brazovski� form @25#, we use the Hubbard
Stratonovich transformation which ‘‘splits’’ the quadrat
nonlocal item at the expense of the introduction of ‘‘chem
cal potentials’’m l of blocks with l monomers:

F@m,c#

Tr
52VE

0

`

dl
m l

2

4k
1

1

2 E d3q

~2p!3 ~xc2x1tq

1a2q2!cqc2q2
l

6 E dS (
i 51

3

qi D)
i 51

3

cqi

d3qi

~2p!3

1
g

24 E dS (
i 51

4

qi D)
i 51

4

cqi

d3qi

~2p!3 ,

,
s
,

FIG. 3. Mean-field dependence of amplitudesAn of superlattice
on the interaction parameterx for f 50.3. The same designation a
in Fig. 1.

FIG. 4. Volume fractionsf occupied by each of the phases
f 50.3. The same designations as in Fig. 1.
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tq[E
0

`

dlm lexp~2a2q2l !. ~15!

The fieldsm l do not fluctuate in the thermodynamic limit an
can be found from the condition of minimization of the fre
energy~15!.

We first examine single-phase states of the system.
thermodynamic average of the order parameter^c(r )& van-
ishes in the isotropic phase and can be taken as the sup
sition of plane waves~6! in each microphase-separate
phase. It is shown in Appendix B that we can neglect
zero Fourier component of the order parameter in this su
position and the fluctuating order parameterc can be written
down in the form

cq5
An

An
(
k51

n

@eiwkd~q2qk!1e2 iwkd~q1qk!#1dcq ,

uqku5q0 . ~16!

The functiondcq (^dcq&50) describes fluctuations of th
order parameter around its average value. Substituting
~16! into Eq. ~15! and integrating overdcq using the one-
loop approximation, we get the following expression for t
free energy:

F
TrV

52E
0

`

dl
m l

2

4k
1F@m,An ,G#,

F@m,An ,G#[
1

2 E d3q

~2p!3 ~xc2x1tq1a2q2!

3@2~2p!3d~q2qn!An
21a3Gq#2lanAn

3/6

1
g

24 S bnAn
4112An

2E d3~qa!

~2p!3 Gq

13F E d3~qa!

~2p!3 GqG2D
2

1

2 E d3~qa!

~2p!3 ln Gq , ~17!

where Gq is the correlation function of fluctuations
^dcqdcq8&5a3Gqd(q1q8).

To describe the transition from the microphasen to the
other onem, we write down the free energy of the tw
coexisting phases:

Fnm

TrV
52E

0

`

dl
m l

2

4k
1fF@m,An ,Gn#

1~12f!F@m,Am ,Gm#. ~18!

Heref and 12f are volume fractions of phasesn andm,
respectively, and the free-energy functionalF is defined by
expression~17!. If one of the coexisting phases (n) is isotro-
pic, one has to substituteAn505qn5050. Minimization of
the free energy~18! with respect to parameters of bo
phases is performed in Appendix C. Before proceeding to
solution of Eqs.~C8! which define the dependence of para
he

po-

e
r-

q.

e
-

eters of the two-phase state onx ~see Appendix C!, we will
find the region of applicability of the mean-field approac
We first consider the transition from the isotropic phase w
An5050 to the microphasem with AmÞ0 and 12f!1. It
is easy to check that Eqs.~C8! turn to the mean-field equa
tions ~Appendix A! for

~12f!Am
2 @a2q0

2r n
21/2. ~19!

Substituting the mean-field estimationAm;l/g for the
amplitude of the microphase in the two-phase region we
q0

4a4;(12f)kAm
2 , r n;l2/g, and the inequality~19! can be

recast in the form

~122 f !4N~12f!@1. ~20!

For N@1 the mean-field approximation remains valid f
those values off which lay far enough from the critical poin
value f c51/2. A similar estimation can be carried out for th
transitions from one microphase,AnÞ0, to another one,Am

Þ0. Now we haveq0
4a4;kAn

2 and the condition of applica
bility of the mean-field approach,An

2@a2q0
2r n

21/2, can be
written as

~122 f !4N@1. ~21!

Inspection of inequalities~20! and ~21! shows that the
region of applicability of the mean field for the transitio
between two microphases is wider than that for the transi
from the isotropic phase to a microphase. In each of th
cases the fluctuations are only important in the interval
2 f G, f ,1/21 f G . The valuef G;N21/4 plays the role of
the Ginzburg parameter and it is small for large values ofN.

B. Two-phase state of symmetric copolymers

In the case of the symmetric copolymer,f 51/2, the ac-
count of fluctuations of the order parameter changes
mean-field picture of the third-order phase transition. First
all ~see Appendix D for details! the continuous transition is
replaced by the sequence of first-order transitions and
single-phase state of the system can exist only in the c
x,x (0) andx.x (1), where the parametersx (0) andx (1) are
defined by

x~0!N5212.78N21/412.35N21/2,

x~1!N5213.58N21/412.74N21/2. ~22!

The casex,x (0) corresponds to the isotropic phase, a
x.x (1) to the lamellar one. In the intermediate regionx (0)

,x,x (1) these phases coexist with each other. We find t
the energy of the lamellar phase is always smaller than
energy of the hexagonal phase, and equations of the t
phase state, Eqs.~C8!, have no solution for the bcc and fo
the random wave structure. In the transition pointx5x (0),
from the isotropic phase to the two-phase state the amplit
A1 jumps from zero up to the value

A1
~0!50.35~k/g!1/450.32N21/4. ~23!

In the coexistence regionx (0),x,x (1) the amplitudeA1
increases monotonically withx up to the value
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A1
~1!50.38~k/g!1/450.35N21/4. ~24!

In contrast to the mean-field picture of the phase tran
tion from the isotropic to the lamellar phase, which tak
place for zero wave vectorq050, fluctuations lead to the
appearance of the microphase with finite periodD
52p/q0 . In the corresponding transition pointsx (0) and
x (1), the wave vectors are~see Appendix D!

bq0
~0!50.25~k3/g!1/850.48N25/8,

bq0
~1!50.29~k3/g!1/850.55N25/8. ~25!

Note that the period of the appearing microstructureD
'bN5/8 exceeds the average Gaussian size of the blo
which is a consequence of the polydispersity of the sys
under consideration. This result was first predicted in R
@17#. Remember that in the theory of monodisperse copo
mers@2,26# the period does not depend on the Flory para
eter x and near the transition pointD'bN1/2. In our poly-
disperse system the wave vectorq0 of the density
fluctuations in the isotropic phase does not vanish
strongly depends on the temperature. In approaching
transition point to the microphase the spatial scale of
fluctuation R;1/q0 in the isotropic phase decreases~it is
‘‘tuned up’’ to the period of microphase! and it becomes of
the order of the period of the superstructure in the very tr
sition point. The arising droplet of the ordered phase in
isotropic phase~the so-called crystallite island in the poly
mer liquids! is in equilibrium; i.e., it exists in the finite tem
perature intervalx (0),x,x (1) and occupies a macroscop
fraction f of the system. The volume of this droplet grow
with x until the crystal phase occupies the whole volume
the system.

The mean-field picture of the phase transition is rep
duced if one takes the limitN→`, xN5const. The region
of the coexistence of different phases disappears in this l
and the transition to the lamellar phase takes place on
spinodalxcN52 @Eq. ~22!#. Such a transition becomes co
tinuous, since the amplitude of the ordered phase, Eqs.~23!
and ~24!, vanishes in the transition point.

Note that the renormalized susceptibility 1/r diverges in
the random microphase@see first equation of Eqs.~C8! with
a`50 andb`512, Eq.~9!#. This means that the compos
tion fluctuations prevent the formation of such a rand
wave structure.

C. Phase diagram

To construct a complete phase diagram, where both t
sitions from the isotropic phase to microphases and tra
tions between different microphases are taken into acco
we should not restrict our attention to only Eq.~C8! of two-
phase states. It is shown in Appendix E that there are
lines on the phase diagram where one of the two coexis
phases changes its symmetry.

The phase diagram of the random copolymer with an
erage number of monomers in the blockN5100 is shown in
Fig. 5. In contrast to the mean-field phase diagram, Fig
where for f Þ1/2 the isotropic phase can undergo only t
transition to bcc structure, direct ‘‘windows’’ of transition
i-
s

k,
m
f.
-
-

d
he
e

-
e

f

-

it
he

n-
i-

nt,

so
g

-

1,

from the isotropic to the lamellar and also to the hexago
phases appear on the fluctuation phase diagram. Such a
ture of transitions resembles that for monodisperse cop
mers@26#, where similar ‘‘windows’’ of direct transitions to
lamellar and hexagonal phases exist. However, the regio
stability of the two-phase states always takes precedence
the appearance of each of the crystal phases for random
polymers. Note that the coexistingisotropic and lamellar
and isotropic and hexagonalphases are absent in the mea
field phase diagram. For rather long blocksN>104 the size
of these two-phase regionsDxN;N21/4, D f ;N21/4 be-
comes smaller than the sizeDxN;1, D f ;1 of the other
coexisting phases and in the limitN→` the two-phase re-
gions shrink to the point~f 51/2, xN52! on the phase dia-
gram.

One of the tree phase lines,ab, is defined by the equation
~see Appendix E!

xN5xeN1297N~l6/g5!1/216.4Nl2/g. ~26!

When crossing this line the transition can be observed ei
from the hexagonal to lamellar phase at the presence of
isotropic phase, or from the hexagonal to isotropic phas
the presence of the lamellar phase~see Fig. 6!, depending on
the compositionf on this line. The values of the monome
fraction f for each of the coexisting phases on the tree ph
line are defined by the equation

2.61f110.47f357267l4/g3k. ~27!

Heref1 andf3 are volume fractions of the lamellar and th
hexagonal phases~the volume fraction of the isotropic phas
is f0512f12f3!. This line begins at the pointf15f3
50, where there is only an isotropic phase, and ends at
point f151. For intermediate values off , Eq. ~27! defines
the value of the jump of the volume fraction of those pha
which change their symmetry; see Fig. 6. Similar equatio
are found for the second three-phase linecd.

The fluctuation region increases with the decrease of
block lengthN and, therefore, regions of coexistence of is
tropic and lamellar as well as of isotropic and hexago
phases become larger.

FIG. 5. Fluctuation phase diagram of the melt of Markovi
polyblock copolymers with an average number of block monom
N5100; (ab) and (cd) are the three phase lines, and other des
nations are the same as in Fig. 1.
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IV. DISCUSSION

We have shown that the account of the possibility of
coexistence of phases with different symmetry of the sup
lattice significantly changes the phase diagram of the sys
with respect to studies@9# where this effect had not bee
taken into consideration. We have shown in the se
consistent field approximation that as the temperature is
ied, the melt of polyblock copolymers undergoes a succ
sion of first-order transitions into microphase-separa
states with a wave vector of finite amplitude, which var
continuously from zero to the characteristic block leng
aN1/2; see Fig. 2. Note that a similar conclusion in Re
@6,23# has been made on the assumption of a third-or
phase transition from the isotropic state to the microstr
ture. This microphase state actually corresponds to m
stable conditions and the corresponding transition descr
spinodal decomposition of the isotropic state. It is read
shown that the free energy of two-phase states lies below
free energy of the above single-phase state. Consequen
thermodynamic transition with the formation of
microphase-separated phase takes place through the fo
tion of an equilibrium droplet of a new phase in the old on
The volume of this droplet grows with the increase of t
interaction parameterx until the new phase occupies the e
tire volume of the system; see Fig. 4. We therefore hav
finite temperature interval in which both phases coexist.

We have shown that in the mean-field approximation
random wave structure has a higher energy than the reg
wave structures. Based on such a mean-field picture we
expect that this structure can be observed at least as a m
stable state. However, our study~see Sec. III C! shows that
thermodynamic fluctuations prevent the formation of t
random microstructure.

Note that from the standpoint of the general theory
phase transitions a melt of Markovian copolymers is the s
tem with the frozen-in or ‘‘quenched’’ randomness. It is we
known that in the case of solids having a random distribut
of interactions that is fixed in three-dimensional space, s
systems exhibit a localization or nonergodic glass type
behavior. A fundamental distinction of polymer systems
the fact that only a one-dimensional sequence of monom
along the chain is random, whereas the chain can ass

FIG. 6. Temperature dependence of the volume fractionf of
phases for the caseN5100 and f 50.542 @corresponding to the
crossing of the three-phase line (ab) on the phase diagram, Fig. 5#.
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arbitrary spatial conformations and it can be located in a
region of the space occupied by the system. The presenc
such translational invariance leads to the possibility of
formation of regular three-dimensional structure in polym
with a random sequence of monomers along the chain.
shall not discuss here the effect of the usual thermodyna
fluctuations, which lead to the breakdown of long-ran
crystal ordering on large scales, similar to liquid crystal s
tems@28#.

Finally, we should comment on the accuracy of the a
proximations used. Expression~4! for the free energy is writ-
ten in the ‘‘infinitely long chain’’ approximation, when the
characteristic wave vectorq@1/(bL1/2), whereL is the av-
erage number of monomers in the molecule. For finiteL the
curve in Fig. 2 will not begin withq50 but with finite
qmin'1/(bL1/2). In our situation of a large number of block
nbl5L/N per one chain, we can disregard this finite-size
fect. The finiteness of the chain lengths can also be esse
for the study of the effects of macrophase separation. We
estimate the variation of densities in coexisting macropha
asDrA'(r/L)(Nnbl

1/2)5r/nbl
1/2, wherer/L is the chain con-

centration andNnbl
1/2 is the dispersion of the number o

monomers of a given type. For smallnbl and a large interac-
tion parameterx the macrophase separation becomes fav
able; in the opposite limit of largenbl@1 the variation of the
density of two ~or more! coexisting phases can be disr
garded.

In deriving the free-energy expression~4! we have also
disregarded the dependence ofl andg on the wave vectors
This approximation is admissible because in the region
validity of the Landau expansion~4! typical values of the
wave vector of the superstructure are small in compari
with the reciprocal Gaussian block length. When develop
the fluctuation theory in the Brazovski� approximation~Sec.
III A ! we expected that the correlation functionGnq, Eq.
~C6!, has a sharp maximum (cq0

2@r n) in the pointq5q0 . It
is shown in Appendix D that this approximation is valid on
for rather large values ofN@1 since we haver n /cq0

2

;1/N1/4.
Our general expression~4! used for the free-energy func

tional is not bound to any specific choice of model of Ma
kovian copolymers, for which the parameters of t
Ginzburg-Landau functional are given by expressions~5!.
Consequently, the main results of the present study rem
valid for a multiblock copolymer of arbitrary structure.

We now discuss the possibility of experimental verific
tion of our theory. The most interesting observation is t
existence of two-phase regions and three-phase lines on
phase diagram of a random multiblock copolymer. The sy
metry of one of the coexisting phases changes when cros
the linesab and cd in Fig. 5. The volume fractions of the
phases undergo jumps on these lines. For a copolymer
N5100 the width of the region, where such an effect can
observed~line cd!, is aboutD f '0.02. The next type of ex-
periments which can confirm the predictions of our fluctu
tion theory are neutron scattering experiments on the iso
pic phase near the transition point. The intensity of dens
fluctuations,G0q , reaches its maximum in the point of th
first-order transition. For a symmetric copolymer it is es
mated in Appendix D:
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~G0q0
!max51/r 0583.8N3/2. ~28!

This dependence can be checked using copolymers with
ferent average lengths of blocks.
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APPENDIX A: MINIMIZATION OF THE MEAN-FIELD
FREE ENERGY

We minimize the free energy~12! with respect to the
parameters of both coexisting phasesn andm. In the event
of a transition from the isotropic phase withn50 we have
q050, A050, and the value of the wave vector in the ne
microphasem is given by the expression

qm
4 5k~12f!Am

2 /~2a4!. ~A1!

The amplitudeAm and the dependence of the volume fra
tion f of the isotropic phase onx are given by

Am52
lam

gbm
, x5xc13A2k~12f!

lam

gbm
2

l2am
2

6gbm
.

~A2!

The beginning and end of the phase transitions from
isotropic phase to the microstructure correspond to the
uesf51 andf50, respectively. It is easy to show that th
bcc microphase is favorable at such a transition.

We now turn to consider the case of a transition betw
two microphasesnÞ0 andmÞ0. Minimization of the free
energy with respect to wave vectorsqn andqm gives

kfAn
2

2a4qn
4 1

2k~12f!Am
2

a4~qn
21qm

2 !2 51,

k~12f!Am
2

2a4qm
4 1

2kfAn
2

a4~qn
21qm

2 !2 51. ~A3!

A solution of these equations is readily found:

q4[qn
45qm

4 5k@fAn
21~12f!Am

2 #/~2a4!. ~A4!

Note that Eq.~A1! can be regarded as a special case of
~A4! sinceA050 in the isotropic phase. Keeping in mind th
equality of the wave vectors in the coexisting phases w
nÞ0 andmÞ0 along with Eq.~A4!, the conditions for the
minimum of the free energy~4! with respect toAi , i 5n,m
assume the form

2~x2xc13a2q2!2la iAi /21gb iAi
2/650 ~A5!

and the minimization of the free energy with respect tof
gives the equation

~x2xc13a2q2!An
22lanAn

3/61gbnAn
4/24

5~x2xc13a2q2!Am
2 2lamAm

3 /61gbmAm
4 /24. ~A6!
if-

he

-

e
l-

n

.

h

Substituting the combinationx2xc13a2q2 from the two
equations~A5! into the right and left hand sides of Eq.~A6!,
we find equations for amplitudesAn andAm :

23lanAn1gbnAn
2523lamAm1gbmAm

2 ,

22lanAn
31gbnAn

4522lamAm
3 1gbmAm

4 . ~A7!

The most important consequence of these equations is
fact that neither of the amplitudes depends onf andx. We
arrive at the conclusion that the amplitudes of the two co
isting phases do not vary with the temperature. Equati
~A7! can be solved if one introduces the new variablesAn
5xAm :

Am53
l

g

anx2am

bnx22bm
, ~A8!

2~anx32am!~bnx22bm!53~anx2am!~bnx42bm!.
~A9!

In the case of a transition from the lamellar to the he
agonal phase,a150, and the solution of Eqs.~A8! and~A9!
can be found analytically:

A15
la3

gb3
F15

2
~713A6!G1/2

.10.37
la3

gb3
,

A35
la3

gb3
S 61

3

2
A6D 1/2

.9.67
la3

gb3
. ~A10!

The amplitudesA3 and A6 for the transition from the hex-
agonal to the cubic phase can be found by solving Eqs.~A8!
and ~A9! numerically:

A3.3.48la3 /~gb3!, A6.3.17la3 /~gb3!. ~A11!

Solving the second equation of Eq.~A5! with respect toq
we find the temperature dependence of the wave vecto
the superstructure: see expression~13! in Sec. III. Expression
~14!, which together with Eq.~13! describes the dependenc
of the volume fractionf on x, is determined by solving Eq
~A4! with respect tof.

APPENDIX B: ESTIMATION OF CHANGE
OF THE AVERAGE DENSITY IN COEXISTING PHASES

We now demonstrate that the variation of the avera
density in coexisting phases can be ignored for polymer m
ecules containing a large number of blocks,nbl5L/N@1. To
describe such a variation of the density on macrosco
scales it is necessary to include the zeroth harmonic in
expansion of the order parameter~6! in each phase:

cqun5Dnd~q!1
An

An
(
k51

n

@d~q2qk!1d~q1qk!#. ~B1!

The amplitudesDn andDm determine the variation of the
average density in each of the coexisting phasesn andm and
they are related by the condition of invariance of the to
number of molecules,
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fDn1~12f!Dm50, ~B2!

which allows one to parametrize these amplitudes with
single parameterD:

Dn5~12f!D, Dm52fD. ~B3!

Here f and 12f are the volume fractions occupied b
phasesn andm, respectively. The account of the finitene
of the length of the polymer chain ‘‘removes’’ the singulari
of the nonlocal term in the free energy~4! for zero wave
vectorq50 ~see Sec. II and Ref.@7#!. Consequently, substi
tuting the order parameter for each of the coexisting pha
in the form~B1! and~B3! into the functional~4!, we get the
expression for the free energy of the two-phase system:

Fnm /TV5Fnm1dF~D!, Fnm[Fnm /TVuL→` ,

dF~D!52lf~12f!~An
22Am

2 !D1
k

4

f2~12f!2D4

a2qmin
2 1¯ ,

~B4!

where the free energyFnm in the limit L→` is calculated in
Eq. ~12!, qmin

2 51/(b2L), and the expansion ofdF is written
in the principal approximation with respect toD and L.
Minimizing dF with respect toD and using expression~A4!
for q ~Appendix A!, we obtain the estimates

Fnm;k1/2@fAn
21~12f!Am

2 #3/2,

dF;~Lk!21/3l4/3@f~12f!#2/3uAn
22Am

2 u4/3. ~B5!

The variation of the average density in the coexisting pha
can be ignored if the following inequality holds:

Fnm@dF. ~B6!

For a transition from the isotropic phase to the m
crophase we have to setAn50, Am'l/g, and 12f!1.
Inequality ~B6! therefore takes the form

12f@~N/L !2/5u122 f u6/5. ~B7!

In the limit of infinitely long molecules inequality~B7! is
always satisfied, and the variation of the average densit
this limit can be ignored. In the transition from one m
crophase (n) to another one (m), inequality ~B6! takes the
form

12f!~L/N!1/2u122 f u23/2, ~B8!

and is always satisfied for sufficiently long molecules~with
L@N!.

APPENDIX C: EQUATIONS
OF THE TWO-PHASE STATE

Minimizing the fluctuation free energy of the two-pha
state~18! with respect to wave vectorsqi , amplitudesAi , f,
and functionsm l andGiq of the microphasesi 5n,m we get

q[qn5qm , E
0

`

dl lm lexp~2a2q2l !51, ~C1!
a

es

es

in

xc2x1tq1a2q22
la i

4
Ai1

gb i

12
Ai

21
g

2 E d3~q8a!

~2p!3 Giq8

50, ~C2!

F@m,An ,Gn#5F@m,Am ,Gm#, ~C3!

m l /k52@fAn
21~12f!Am

2 #exp~2a2q2l !

1E d3~q8a!

~2p!3 @fGnq81~12f!Gmq8#

3exp@2a2~q8!2l #, ~C4!

Giq
215xc2x1tq1a2q21gAi

21
g

2 E d3~q8a!

~2p!3 Giq8 .

~C5!

Inspection of Eq.~C5! shows that the functionsGiq
21 can

be taken in the Brazovski� form @25#

Giq
215r i1c~q2q0!2, ~C6!

where the parametersr i , q0 , andc are defined by

r i5Giq
21uq5q0

,
]Giq

21

]q
U

q5q0

50, c5
1

2

]2Giq
21

]q2 U
q5q0

.

~C7!

The above statement~C6! is valid only if the functionGiq
has a sharp maximum at the pointq5q0 , when the condition
cq0

2@r i is satisfied. Substituting correlation functions in th
form ~C6! into Eqs.~C1!–~C5! and taking into account Eqs
~C7!, we arrive at the following algebraic equations:

r i5la iAi /41g~12b i /12!Ai
2, i 5n,m,

r n2r m5g~An
22Am

2 !1gsa2q0
2~r n

21/22r m
21/2!/2,

x2xc53a2q0
22lanAn/41gbnAn

2/121gsa2q0
2r n

21/2/2,

4a4q0
4/k5f~2An

21sa2q0
2r n

21/2!

1~12f!~2Am
2 1sa2q0

2r m
21/2!,

~r n
22r m

2 !/g1sa2q0
2~r n

1/22r m
1/2!

5l~anAn
32amAm

3 !/31g@~12bn/12!An
4

2~12bm/12!Am
4 #, ~C8!

where the numerical coefficients51/2p& and all integrals
of the functionsGiq andGmq are calculated in the principa
approximation in the small parameterr i /cq0

2.

APPENDIX D: COEXISTENCE OF THE ISOTROPIC
AND LAMELLAR PHASES

Analytical solution of Eqs.~C8! can be found in the cas
of coexisting isotropic and lamellar phases witha150. In-
troducing the new dimensionless variablespn , an , andQ by
the equations
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r n5pn~kg!1/2, An5an~k/g!1/4, a2q0
25Q~k3/g!1/4,

~D1!

we get the following equations:

p15a1
2/2,

p12p05a1
21~sQ/2!~p1

21/22p0
21/2!,

~D2!

p1
22p0

21sQ~p1
1/22p0

1/2!5a1
4/2,

4Q25f~2a1
21sQp1

21/2!1~12f!sQp0
21/2.

Note that they do not depend on the monomer fractionf .
The temperature dependence of the volume fractionf of the
lamellar phase is defined by the equation

x2xc53Q~k3/g!1/41~gk!1/2~a1
21sQp1

21/2!/2. ~D3!

Excluding a1 from Eqs. ~D2! and introducing the new
variablez5p1 /p0 , we get the following dependence of th
parameters of coexisting phases on the volume fractionf:

p05
s

2

z1/221

z211 F z211

z1/221
12f~z21!G1/2

,

Q5
p0

3/2

s

z211

z1/221
, a15A2zp0, ~D4!

where z'5.27 is the root of the equation 2Az(11z)51
1z2.

The value ofx, corresponding to the appearance of t
lamellar phase of the infinitesimally small~but macroscopic!
volume,f→0, is determined from Eq.~D3! taking into ac-
count Eqs.~D4!,

x~0!5xc10.77~k3/g!1/410.12~gk!1/2, ~D5!

and for the symmetric copolymer,f 51/2, we get

x~0!N5212.78N21/412.35N21/2. ~D6!

The lamellar phase is extended to the whole volume of
sample,f→1, at

x~1!5xc10.99~k3/g!1/410.14~gk!1/2. ~D7!

This condition for the symmetric copolymer looks like

x~1!N5213.58N21/412.74N21/2. ~D8!

APPENDIX E: THREE-PHASE LINE „ab…
ON THE PHASE DIAGRAM

To find the line on the phase diagram~Fig. 5!, where one
of the two coexisting phases changes its symmetry, we w
down the free energy of the three-phase state:

F123

TrV
52E

0

`

dl
m l

2

4k
1f1F@m,A1 ,G1#1f3F@m,A3 ,G3#
e

te

1~12f12f3!F@m,0,G0#. ~E1!

Heref1 andf3 are the volume fractions of the lamellar an
the hexagonal phases~the fraction of the isotropic phase i
f0512f12f3!, and the free energyF is defined in Eq.
~17!. The minimization of this free energy with respect to t
amplitudesAi , wave vectorsqi , volume fractionsf i , and
functionsGi of the coexisting phases and the chemical p
tentialsm l is similar to that for the two-phase state. We fin
that the wave vectors for all the phases coincide and
functionsGi reach their maximum on the same wave vect
Taking these functions in the Brazovski� form ~C6! and in-
troducing the variables~D1!, we get the following equations

p15a1
2/2, p35va3a3/41a3

2/6,

p12p05a1
21~sQ/2!~p1

21/22p0
21/2!,

p32p05a3
21~sQ/2!~p3

21/22p0
21/2!,

p1
22p0

21sQ~p1
1/22p0

1/2!5a1
4/2,

p3
22p0

21sQ~p3
1/22p0

1/2!5va3a3
3/31a3

4/6,

4Q25f1~2a1
21sQp1

21/2!1f3~2a3
21sQp3

21/2!

1~12f12f3!sQp0
21/2. ~E2!

Here the only factorv5l/(g3k)1/4 depends on the monome
fraction f , a354/), and the dependence of the interacti
parameterx on f looks like

x2xc53Q~k3/g!1/41~gk!1/2~a1
21sQp1

21/2!/2. ~E3!

It is convenient to introduce the new variablesz5p1 /p0
and w5p3 /p0 . Then from Eqs.~E2! and ~E3! we can find
the parameters of all the phases and the transition temp
ture as the functions of the monomer fractionf ,

p05
v2a3

2@w211u~12w21/2!/2#

16~w2@w211u~12w21/2!/2#/6!2 ,

Q5p0
3/2u/s, u5~z211!/~z1/221!,

a3
25p0@w211u~12w21/2!/2#,

x2xc53S k3

g D 1/4 p0
3/2u

s
1~gk!1/2p0

z3/211

z1/221
, ~E4!

and also the jump of the volume fraction:

p05
s

2u
@u12f1~z21!12f3~w21!#1/2. ~E5!

The variablesz andw are defined by the equations

2Az~11z!511z2,

@u~12w21/2!/2211w21#2518@7w2112u~w1/221!#,
~E6!

the numerical solution of which givesz'5.27,w'2.99.
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