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Interaction of ballistic particles with irregular pore walls, Knudsen diffusion,
and catalytic efficiency
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The statistical behavior of ballistic trajectories in irregular two-dimensional systems is studied numerically.
The geometrical irregularity is modeled by specific prefractal shapes. Many statistical distributions arising
from these trajectories are found to obey power laws of theyltgpe with an exponent of ordefr2. This is
the case for the probability distribution of the collision numbers, collision frequencies, trajectory lengths, and
free paths. The results are applied to several physical systems in which these statistics govern the physical
properties. The global absorption of light by irregular, partially absorbing surfaces is found to be weakly
dependent on the geometrical irregularity. In contrast, the mean interaction of a gas with an irregular surface
increases strongly with the irregularity of the surface. Catalytic efficiency is also found to increase strongly
with irregularity. However, surface irregularity has only weak effects on the macroscopic Knudsen diffusion.
These conclusions are not modified when the partially random character of the interaction on the pore wall is
taken into accoun{.S1063-651X98)06706-3

PACS numbd(s): 47.55.Mh, 05.60+w, 82.65.Jv

INTRODUCTION diffusion regime, where the particle paths are limited by the
catalyst geometry11].

Ballistic trajectories are representative of several physical This paper presents a numerical study of ballistic trajec-
phenomena. They correspond to the path of light rays iories in physical or prefractal systems. By this, we mean
reflecting irregular structures when diffraction phenomenaystems of finite sizéor diametey in which the smaller fea-
are neglected. Ballistic trajectories also correspond to th&re size, the smaller cutoff, is finite. It is found that most of
path of atoms or molecules in confined systems or vessels gﬁ_e quantities of interest here follow power law statistical
sufficiently low pressure. This is known as the Knudsen dif-distribution, and averages do not behave as one would gen
fusion regime[1]. It determines the speed of pumping under€rally guess intuitively12]. For instance, the number of col-

so-called molecular or high vacuuff]. The interaction of Iisio.ns., or the collision frequencies, are found to obé_yy_e .
- Statistics, a fact already known for specular reflections in
in heterogeneous catalygi3,4] where porous catalysts have smqqth pOres. Th'S is verified for both specular and rangiom
collisions on the irregular pore walls. This last property is a

often very irregular surfaces down to the molecular Scale(:onsequence of the partially chaotic character of the trajec-

Due to the geometrical irregularity, the small scale structureg oo

of t_he ce_ltalyst may confine reactants and increase the inter- These power law probability distributions, for which the
action with the surface. Recent study of xenon nuclear magsean value is dominated by the so-called rare events, lead to
netic resonancexe NMR) to probe porous structures has specific unusual physical properties for each type of physical
drawn attention to the surface interactions of rare gas atoMshenomenon that is considered. For example, it will be
with solid surfaces and to their dynamiS]. Concerning  shown that the fraction of light that is reflected by such a
light ray trajectories, one can consider whether an irregulastructure is not equal to the reflection coefficient at each
structure could “trap” light, opening the possibility to build reflection elevated to a power equal to the mean number of
an “open” blackbody. We address here the question: Doegollisions. In the same way, the mean collision frequency is
the surface geometrical irregularity play a role in these phevery different from the ratio of the mean collision number to
nomena and why? the mean duration of a trajectory.

The emergence of the concept of fractal geometry has Since Knudsen’s original workl] on molecular diffu-
provided an efficient tool to model the influence of strongsion, several studies have been devoted to the computation of
geometrical irregularity on various physical or chemical pro-the macroscopic diffusivity and its possible dependence on
cesse$6,7]. In the field of heterogeneous catalysis, the pio-geometry[13—21]. These works show that the macroscopic
neering work of Avnir and co-worker$,9] on the possible diffusion coefficient depends on specific averages of the
role of fractals in catalysis has triggered several studies ipaths between collisions. In most of these studies, the rough-
this direction[10]. A frequent and important physical situa- ness of the surface has been ignored. On the other hand, it is
tion occurs when the reactant pressure or the pore size known, at least empirically, that the geometrical structure of
such that the reacting particles collide with the pore wallsa porous catalyst may have an important influence on the
before particle-particle collisions occur. This is the Knudsencatalytic efficiency[3].

The general scope of this study encompasses the statisti-
cal properties of ballistic trajectories in a model irregular
*Unite de recherche assoei@lu C.N.R.S. No. 1254, structure and applications of these probabilistic results to dif-
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_rl_,_ that case, in our geometry, the reflection angleascalcu-
lated from numerical computation of trigonometric func-
Prefractal Gienerator tions, and the necessary reflections do not introduce numeri-

cal errors due to truncation of angle computations. This is the
reason why this particular geometry, with segments parallel
to thex andy axes, has been chosen. The only truncation
errors come from the solution of the linear equations.

Still, because of the existence of these errors, there could
appear in our calculations, besides the normal ray splitting
between close trajectories hitting salient corners, trajectories
that may be modified by a “spurious” splitting due to num-
ber truncation. To avoid spurious beam splitting, we calcu-
late the cumulative error on the point of collision due to the
numerical precision of the computer. If this error becomes
greater than the distance between the point of collision and
the nearest corner, we eliminate that trajectory. These
“eliminated” trajectories are very few. Examples of specular
trajectories are shown in Fig. 1.

The geometry that is used here is purely deterministic,
and it is not obvious whether our computation can describe
real systems. For this reason, we have also computed trajec-
tories when the reflection on the walls is not purely specular
but possesses a partial random character. In the case of light
reflection, this may take into account a roughness of the in-
dividual elements building the geometrical structure. For
and the length of the smallest slitat1 is equal to 4. These values particle-wall CO".ISIOn It I.S l.(nown t.hat’ due to the detailed
determine the computer unit length. The dotted line represents thigature ‘?f the microscopic 'nterac_t'c_m of an atom or a mol-
source. Two trajectories generated by the computer code witfCUl® With @ surface, the real collision process is a complex
specular reflections are shown. The pore aspect ratio is kept con€nomenoi23]. When the particle hits the surface, it may

FIG. 1. Schematic representation of the firgt1) and second
(v=2) generations of the prefractal pore. The generator is shown o
the top. The pore deptti28) is twice the width or diamete=64,

stant. stay adsorbed for some time and then may desorb, exchang-
ing momentum with the pore wall. For this reason, the par-
ferent simplified physical problems. ticle reflection is nonspecular and presents a random charac-

ter that may depend on the nature and temperature of the

pore wall[23]. The random character of the trajectories may
NUMERICAL METHOD also come from the microroughness of the pore wall. In order

In our computations, only point trajectories are studied.to mimic the partial random character of each collision, the

Atoms are taken to be point mass particles and light beam@ngle of reflections, is related to the angle of incidena®
are taken to have a very narrow diameter as compared to tHy
size of the structural features. The ballistic trajectories are
studied in prefractal pores built from the generator of a Koch

curve of fractal dimensio=3/2. The first ¢=1) and the  \yhere 50 is a random angle distributed uniformly over a
second ¢=2) pore generations are shown in Fig. 1. Thergnge +I'. This range describes qualitatively the random
“degree of irregularity” of the pore at any generation can becnpgracter of the collisions.
simply characterized by the ratt of the perimeter length The phenomena have been studied up to the fourth pre-
Lp,, t0 Lpo, the perimeter length of a smooth p¢@2]. For  fractal generation=4) of the pore geometry. The random-
our prefractal shapess=2". It varies fromS=1 for the  ness parametd? is varied from 0° for specular reflection to
smooth pore to infinity for a mathematical fractal with  10° in steps of 2° for each generation. The various trajecto-
—o. In the ordinary language of the studies of porous sysries are indexed by the labal For a trajectoryn, we mea-
tems, the so-called specific surface of the porous catalysire the successive free path lendths between collisions,
(measured for instance in*g) is proportional toSL o. the total trajectory length,=3;l,, ;, and we count the total

A source of 2° equally spaced particlesr rays is fixed  number of collisions\,, before the exit of the particle. In the
at the top of the pore. The smooth pore width or diameer  fo|lowing, () indicates the average over the different trajec-

is chosen equal to 64 computer units and the pore deptfyriesn. These data are discussed and applied to different
equal to 128 computer units. The small feature size is equgdhysical situations.

to 4277, The initial incidence angle is randomly chosen from
a uniform distribution of angles between 2° and 178°. A
particle trajectory is described by the successive collisions. A
point of collision is determined by solving the linear equa- The average collision numbefiN,)), is given as a func-
tions of the particle trajectory, taking into account the ele-tion of the randomness parametéfor different generations
ments of the prefractal surface. For purely specular reflecin Fig. 2. First and foremost, the number of collisions is
tion, the reflection angle is equal to the angle of incidence. Ifound essentially independent of the randomness parameter

0,= 6,+ 56, (1)

COLLISION NUMBER, CHAOTIC ASPECTS
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FIG. 2. Average number of collisiond\,) vs the randomness
parametef” for different generations. Circles!=0 (smooth sur- FIG. 4. lllustration of the “chaotic” behavior of a trajectory due
face); squaresy=1; diamondsw=2; up triangles»=3; and down to the introduction of a small randomned3=2°) in the collision
triangles:v=4. angle. The figure shows the sensitivity of a given trajectory to col-

lision randomness.
I'. Second, the average collision number increases with the

irregularity. This is explained schematically in Fig. 3. In the succes-

The quasi-independence on the collision randomness Isive collisions process, the random angles do not cumulate in
due t ?h . Ip itV in th v that ” 3 linear way. The figure indicates qualitatively why a small
ue 1o the irreguiarity in the geometry thal we Consiter.yqiation in a particular reflection can trigger a strong modi-

From th? point of view of .ChaOt'C systems, this ggqmetry Cali ation of the trajectory due to the presence of salient angles
be considered as giving rise to the strong sensitivity to initial

conditions, which is characteristic of deterministic chaosIn the geometry. The deviatioax in the collision position
L ' . ) . ~due to the changé@ in the reflection angle can be estimated
This is due to the existence of salient zones or angles in th

structure. For example, two close trajectories may hit twol‘-F1 the situation of Fig. 3. The deviatiodx along the pore

different sides of a salient corner and will have very different®'S 'S of order
future paths. This is shown schematically in Fig. 3. ox~350 1, ;/cos 6, 2
From the point of view of the study of dynamical systems, . o .
our pores belong to the category of pseudointegrable bilwherel,; is the path length between collisionsandj + 1.
liards in the sense of Richens and Bef#]. By going from  The path length,,; is in this case of the order of the pore
one prefractal generation to the next, more and more salieffiameter(64 in our unit3 and the value of cog can be
corners are created, increasing the chaotic aspect of the sylgken of order 1/2. The chang® then introduces a deviation
tem. It is, however, interesting to note that the statistics ofoXx~12856, which can be greater than the smallest slit length
the collision number are approximately the same for specula¢ units for the first generatigrof the pore. If the deviation
and partially random reflection. The collision number de-is greater than the slit length, it will trigger a 180° change in
pends slightly o, but the main effect is already obtained the trajectory direction at the next collision. This effect is
for small values of. The weak effect of the randomness on more drastic for higher generations. It explains why the re-

the collision number has already been observed in a differerfiults are essentially insensitive to large randomness. An il-
geometry[25]. lustration of the sensitivity of a particular trajectory on a

small randomness in the reflection angle is shown on Fig. 4.

One should note that in the mathematical limit of fractality,

that is when the smallest feature size goes to zero, any two
I_ close trajectories explode at the first collision.

The second result of importance is the increase of the
collision numberN,)) with the irregularity. It is found to be
roughly proportional toL, ,, the perimeter length of the
pore. This is true from one generation to the next, but it is
also true for a given generation if one changes the global
aspect ratio. This has been verified by changing the depth of
the pore for the first generation. The increase of the collision
number with irregularity suggests that an irregular surface
8 x submitted to light will be more absorbing since energy is
absorbed at each reflection. This is discussed below.

NATURE OF THE COLLISION STATISTICS: THE
QUESTION OF A HYPOTHETIC “OPEN” BLACKBODY

-

FIG. 3. Schematic illustration of the deviation of a trajectory A blackbody is defined as an ideal body that alladighe
due to a small deviatio@d from specular reflection. incident radiation to pass into {no reflected energyand
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FIG. 5. Computed absorption coefficient for a surface reflection  FIG. 6. Probability distributiorP(N) of the collision numbeN.
coefficientr=0.9. The circles represent an absorption estimatedrhe P(N) values for several systems are shown. Circles are for
from the average collision numbers using E8), and the squares »=3 andI'=0°; squares are for=4 andI’=0°; and triangles are
represent the effective absorption computed using(&qg. for v=4 andI'=2°.

absorbs internalhall the incident radiatior(no transmitted The reason for this discrepancy lies in the particular sta-
energy [26,27). Physically it is built as a closed cavity with tistics of the number of reflections. Although it is true that
a small hole such that any light ray that enters the cavity i§he meannumber of collisions is strongly increased by the
reflected a sufficient number of times to be totally absorbedmegmarity, this statistical mean is dominated by a few rays
It is known that the roughness of a surface can have promat see a very large number of reflections. In other words,
found effects on the radiative properties and will indeed beost of the light rays see only a moderate increase in the
come a controlling factor when the roughness is large imymber of reflections, and consequently, the effect of the
comparison with the wavelength of the radiation being CON4rregularity on the global absorption is weak.
sidered[27]. _ _ ~ The knowledge of the probability distribution of the re-
We address here the following question: suppose light igjection number helps one to understand this behavior. The
reflected by the prefractal irregular surface in such a way thaﬁ)robability P(N) to haveN collisions is shown in Fig. 6.
light rays undergo many reflections before being finally re-the gistribution ofN appears to be essentially independent
flected from the system. One could guess intuitively thatyf ;, andT. Secondly, the tail of the distribution is a power
becaus_e of the irregular structure of the reflecting geometry, with an exponent-1.98, approximately equal te-2.
shown in Fig. 1, the number of reflections will be increased;This is a Levy-type distribution[12], which has in principle

increasing the system absorbing power. If this were true, thg, second moment in the limN— . In the same limit. the
system would behave as an “open” blackbody, which couldfjrst moment of the distribution ’

have practical applications. If the reflection coefficienis
supposed for simplicity to be isotropic, a rough estimation of
the effective absorption would be <Nn>:f NP(N)dN (5)

Aes=1— rN, )
diverges logarithmically. This means that the majority of the
where(N) is the mean number of collisions. rays has a small number of reflections, but the average num-
One of our main results is that this estimate is grosslyber of reflections is dominated by the few rays that undergo
wrong. Indeed, the fraction of energy really absorbed isa large number of collisions. In such a case, the usual arith-
given by metic average is not representative of the phenomenon.
One should recall that the irregularity is not the cause for
1 N a Levy-type power law[17]. For example, it is easy to show
A=1 (UN”)E,]: r @ that the probabilityP(N) of the collision number for specu-
lar reflections in a smooth pore/=0) is a power law of
whereN,, is the total number of trajectories that have beenexponent—2. In this case the number of collisioh§ ¢) for
computed. an angle of incidenc® is given byN(#)=C/tan(f) where
The result of the calculation of expressioi® and(4) is ~ C~2L, o/W. The factor 2 comes from the fact that our pore
given in Fig. 5. A strong discrepancy between the two valuess closed at the bottom. For specular reflections this is
is observed. This shows that the intuitive guess expressed ®guivalent to an open pore of double length. Bemiformly
Eq. (3) is wrong. Indeed, this particular geometry increasedlistributed between 0 andm, this leads to P(N)
the absorbing power, but not to the extent that is guessee 7~ 1|d8/dN|=7"1C/(C?+N?)«N~2 for N>C. This is
from Eq. (3). The effect is only partial and does not, for this why there is already a large difference between the global
particular geometry, justify the idea of an “open” black- absorption coefficients calculated from E¢3) and (4) for
body. v=0.
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FIG. 7. Knudsen diffusivity: dependence @ (circles andA FIG. 8. Probability distributionP(\) of the individual mean

(squareson the irregularity(computer units The diffusivity, pro-  free paths\ (computer units for generationsy=1 (circles and
portional to Ap, is found to be nearly independent of the pore v=2, (squares The relative number of small paths increases rap-
irregularity. idly with the irregularity. The hump in the distribution corresponds
to path lengths of the order of the pore diameter, here 64.
The median value of the collision number, which mea-
sures the number of reflections of the majority of the rays, is The result is striking: although the ordinary mean free
of more use here. It is found of order 4 to 8 for our geom-path(\) decreases witl$ and seems to saturate, the diffusiv-
etries. If one uses the median value in E), the agreement ity proportional toAp=(\2)/()\), is essentially independent
is much better. of the irregularity. The length  is found of the order of the
One should note that, from the data in Fig. 6, it seems thapore diameter, here equal to 64, independently of the colli-
for specular reflection, the maximum number of collisions ission randomness and the irregularity. To understand this fact,
larger than in the case of partial randomness in the collisioiit is useful to consider the probability distributid®(\) of
process. This may be due to a geometrical resonance thtte individual free paths of lengtk, which is shown in Fig.
could be blurred by the random character of the collisions8. The first observation is that the distribution corresponds
Ascertaining this fact would require extremely large simula-approximately to Ley flights with an upper cutoff of the
tions, which are beyond the scope of this paper. order of the pore size. Secondly, the relative number of short
It should also be noted that the results on the collisiorfree paths increases enormously when the irregularity is in-
number and distribution cannot be extended from two tocreased. This is to be contrasted with the case of the smooth
three-dimensional trajectories. The number of collisions ispore. In this case.=W/cos@) and, asP(\)d\=="1d#,
increased by going to three dimensions but the role of ane can write
geometrical irregularity is unknown. The possibility of a real
open blackbody in three dimensions remains unanswered. P(N) =7 Y(WIN)(1-W?/\2)~ 12 ®

of order =~ Y(W/\?) for A>W. The existence of a vy
distribution for paths much smaller than the pore width is a
To calculate the macroscopic diffusiviy, we use the specific consequence of the pore irregularity.

KNUDSEN DIFFUSIVITY

expression given by Derjaguifl2] for a pore network in These values, however, do not contribute significantly to
three dimensions the average$\) and(\2). One can write

D=(e/6(M)( Inalna+2 X larhi) (O <x>=J AP(N)dN, 9)

j=2—»
wherec is the average velocity an@) the usual arithmetic o\ 2
average of the free path between collisidhg|. Assuming (A= | AP (10
that the consecutive paths are mutually independent, Der-
jaguin’s formula simplifies to The integrands of these integrals are shown in Fig. 9. It is
clear that the integral®) and (10) take their values for val-
D=(c/4){\2I(\) (7)  ues of\ of the order of the pore width. It can be seen in Fig.

8 that this is also true for the next higher generation. This
in two dimensions. Heré\?) is the average of the square of explains why the Knudsen diffusivity is only weakly modi-
the individual free patth,i|2 or mean square displacement. fied in our structures. One should note that our structures are
There exists then in this problem an “equivalent diffusion smooth on large scales. They represent a surface irregularity
path” defined byAp=(\2)/(\) such thatD=cAp/4. The in which the largest irregular feature is kept smaller than the
dependence ofA) and Ap on the irregularityS is given in  pore diameter. This is why our results differ from those ob-
Fig. 7. tained by Coppens for structures irregular at all scgds.
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, FIG. 9. Distribution of the integrandaP(\) (squares and FIG. 10. Dependence of the average length of the trajectories
AP()) (circles in Eqg. (9) and(10) for a pore of the first genera- () onT for different generationé&computer units Same symbols

tion. Lengths are expressed in computer units defined in Fig. 1. Ongs in Fig. 2. The lengtiL,) also measures the average trajectory
observes that the integrals of these functions take their main contrgyration(T,) if the velocity is equal to 1.

butions from the same values of the free paths, which are of the

order of the pore diameter. these lengths are extremely dispersed, as indicated by Fig.

11, which gives the probability distribution of the lengths, or

durations, of the different trajectories. Note that in the case

of a smooth pore there exists no trajectory of length smaller

éhan Lp0 here equal to 256. The existence of trajectories of
mall length or durations is then a specific consequence of

MEAN INTERACTION BETWEEN PARTICLES
AND IRREGULAR PORE WALLS

We address now the following question: suppose that w
consider a gaseous system at sufficiently low pressure f L ;
collisions between particles to be negligible as compared t € geometrlcal |rregular|t_y: . . .
collisions with the pore walls. Suppose that the particles, for Slnc_e the_ average collision number Increases with the ir-
instance xenon atoms, are absorbed at each collision for rggglgnty with nearly constant average duration, th? average
short durationr. During this time the nuclear magnetic reso- collision frequency Sh.OU|d also increase. The CO||!SIOI’] fre-
nance of the isotopé**Xe (spin 1/2 is submitted to a small quencyFy =Ny, /T, is directly related to the arithmetic aver-
shift in frequency[5,28,29. What is the average interaction, age A, of the free paths along the trajectory since by.
or average NMR shift? This shiftw will be proportional to definition, )‘“_: L”/N”:CT”/N”' The average frequency is
the fraction of the time during which the nuclei are in inter- €N Proportional to the inverse of this mean free path
action with the surface or simply to the frequency of the (Fry=(Ny/Tp)=c(1\,)
collisions, if the residence time is short enough. We assume A nen v
that we are in this situation. The mean interaction is then related to teemonic mearof

To compute the mean interaction, we need to consider ghe arithmetic mean free pattalong the n trajectory The
steady state in which the pressure is constant. If all the trasimulation results are given in Fig. 12. They indicate that the
jectories are initiated simultaneously at the entrance of th@verage collision frequency increases rapidly vththe ir-
pore, the simple average over the trajectories does not repre-
sent a system at constant pressure, because the duration of 10° ;
the various trajectories is different. Some particles are re-

mﬂ%

(11)

flected out of the system very quickly, while others spend a

longer time in the pore. In order to mimic a constant pres-

sure, we need to replace the particles as soon as they leave 107
the system. A trajectorym of durationT,, is then renewed —
1/T, times during the unit time, and the number of collisions = s
per unit time is equal t&,=N,,/T,. To see the effect of the R [}
randomness and the irregularity on the average interaction at 10° | ng
constant pressureone has to estimate the average of the 4
frequencies over the various trajectories. This is a way to

restitute an ensemble average from our humerical results on EEA
the statistics of the trajectories. One needs to measure the 10" L ‘
total time T,, spent by the trajectory in the pore. This time 10 10
can be calculated from the trajectory lendth, sinceT,

=L,/c, wherec is the average velocity of the particle. The  FiG. 11. Probability distributiorP(L) of the total lengthd. or
measured dependence of the average trajectory lgiigdh  durations of the trajectories for specular reflectiog®mputer
on S andI is given in Fig. 10. It is found that the average units). Different symbols correspond to the different generations of
trajectory length is of the order of a few pore depths, almosthe pore: circles fow=1, triangles forv=2, and boxes fow=3.
independently of" and ». One should, however, note that The tail of the distribution is of the vy type.

Il L D
¢ 10* 10° 10
L

8
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FIG. 12. Dependence of the average interaction or average col-
lision frequency(F,) on the irregularityS. Note that the average FIG. 14. The circles represent the distributi®),) of the
frequency is very different from the ratio of the averagesarithmetic mean free patky, along thenth trajectory for the second
(N{(T ). generation of the porécomputer units The squares represent the

distribution of P(\,)/\,, which is the integrand for the average

regularity of the pore. One should also note that the averag%OIIISIon frequency expressed by HG.3).

(N,/T,) of the ratioN, /T, is much larger than the ratio of o .

the average$N,)/(T,). tion P(\,)~constant is indeed ver|f!ed for aI.I the small val-
To understand why the irregularity plays such a role, ong'€S 0fAn. The mean frequencyF,,) is now given by

has to discuss the probability distributiét{F) of the colli-

s!on_freguenmes. It is shown in Fig. 13. It is also avie <Fn>:f FP(F)dF=cf (LN)P(\)AN,. (13

distribution of exponent of order-2. But, asA,=L,/N,

=cT,/N,=c/F,, if one knowsP(F) one can retrieve the

probability distribution of \,, by the relation P(F) As P(\,) is essentially independent af,, the value of
=P(\y)|d\,/dF|. Then asP(F)~F 2, this integral is dominated by themall values of mean free

path \,,, as shown by Fig. 14 where l{)P(\,) is also

shown. If P(\,)=~const, the value of the integral is of the
P(\p)~F ~2[d\, /dF|~ 3\, 2~const. (120 order of consK(\ymin)? Where\, min is the minimum be-
tween these mean free paths. Here again, the properties of
the system are governed by the rare trajectories in which the
arithmeticmean free path is small. These trajectories domi-
nate the average interaction with the pore walls. Here again,
Fhis is a specific effect of the irregular structure as in a
smooth pore the smaller free path is equal to the pore width.
The results given in Fig. 11 suggest a specific behavior
the pumping speed in the Knudsen regime. The probabil-
ity distribution of the trajectories duration indicates that, for

The distribution (over the different trajectori¢sof the
arithmetic mean free patk,, should then be approximately
uniform This is an unexpected result: there exists also
large dispersion of tharithmetic mean free path along a
trajectory. The statistics of the lengths,, obtained directly
from the simulations, are shown in Fig. 14. The approxima-for

0

10 a long time, the remaining pressure should drop as a power
c; 8 law of time.
£
102 8 A CATALYTIC EFFICIENCY

- 9)
—_ g R Since the average collision frequency increases with the
) o irregularity, one can expect that the efficiency of a porous
A o a catalyst will increase with the irregularity. We consider first

107 o the simple reactionA— A* (products on collision with the
pore wall. There exist two reasons why irregular catalysts are

A
0 more efficient. First, there is an increase in the total surface,
described here by the fact® Second, there could exist a
10° L L - ol specific increase of the catalyst yigbér unit lengthof the
10 10 10 10 ; : : : L
F wall if, for a given perimeter, the irregularity increases the
probability of collisions with the wall. For this reason, we

FIG. 13. Probability distributio(F) of the collision frequency ~ define the specific catalytic efficiency as the number of
F. Different symbols correspond to the different generations of thecatalytic reaction events that takes place per unit lerigth
pore: circles forv=1, triangles forr=2, and squares for=3.  equivalently per catalytic sijgper unit time[3].

Those distributions are obtained for specular reflections and are The catalyst efficiency is then, apart from constant fac-
found to be of the Ley type. tors, the number of product&* created per unit timen
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- o FIG. 16. Dependence of the average collision frequency yp to
FIG. 15. Dependence of the specific catalytic efficienmn the  ¢ojjisions(f ) on the irregularityS. Different symbols correspond
irregularity S for different reaction probabilities corresponding to 5 ;,—2 (circleg, x=10 (squarel x=90 (triangles. The collision
No=10 (squarel No=1C° (triangles, No=10" (diamond$, No frequencies increase with the irregularity.
=10° (crosses The efficiency increases withfor any value of the
reaction probability. (1Np), and 7=(n)={1/, ,}(F)/No. The specific effi-

steady stateThe steady state is a situation where the prespiency then reproduces the average frequency, given in Fig.

sure ofA at the pore entrance is constant. Here, it means theiltz'_I_?]';"Sdee;jegylttshZlgce)rt'mgternlgn%.thht on the phenomenon of
each time oné\* product is obtained, aA must be renewed u W new fig P

at the pore entrance. We must then compute first the globaﬁatalySt poisoning. We consider the case where the barrier

productionfrequencyover one trajectory, then average over eﬂergy f?]r anpOIS;?Vnoui S[:i)ecllers B tl% tﬁ] t{apped frr:mtth? ?ﬁs
all trajectories. To find this quantity, we must take care thaf'aS€ ON an active site IS 1arge. at case, most of the
oisonous species are reflected when hitting the surface.

the catalytic event itself is a random process. The catalyti hat situation it is possible that the barrier for desorption is

process is characterized by the mean nuniiygr1 of col- even larger so that the poisonous species is strongly bonded
lisions necessary for an individual reactiéa-A* to occur. ger: P PECIES | gly
. . ) . - once when it has been trappeth the situation of a dilute
The quantity 1IN, is the reaction probability per collision. . oo
. : o . poisonous gas, it will be trapped extremely slowly by the
With such a constraint, the probabiliy, that the reaction Vst b he effecti f ing is th d
occurs exactly at the, collision on the wall is equal to catalyst because the effective rate of trapping Is the product
th of two small probabilities. Not only the elementary probabil-
P,=(1/Ng)exp — u/Np). (14) ity for an individual B to be absorbed on a catalytic center
a may be small but also the probability for the diluted B to
In that case, the specific efficiency along a trajectorgan  follow one of those rare trajectories with largé is also
be written as small. From this qualitative point of view, the catalyst's ef-
ficiency and the poisoning effects may be due to the same

trajectories.
nn:{lll—p,v}; (P /T, (15 rare trajectories

whereT,, , is the time spent by the particle in the trajectory SUMMARY

n to reachu collisions. The global catalyst efficiency is  The statistical properties of ballistic trajectories have been
n={7y,). The simulation results for are given in Fig. 15. studied in two-dimensional irregular porous structures. The
They indicate that the efficiency increases wahfor any  probability distribution for the collision numbers, the colli-
value of the numbeN, of collisions required to obtain a sion frequencies, trajectory durations or lengths, and the free
product. This means that a porous catalyst’s efficiency depaths between collisions are described byyt distributions
pends strongly on its small scale irregularity. It is importantwith exponent nearly equal te 2. The irregularity induces a

to note that the increase in the efficiency is independent omajority of path lengths smaller than the pore width and
No. This is only possible if not only the average frequency,several physical properties have been found to be governed
but also the collision frequency up to any collision numberby the existence of small scale structures in the system ge-
increases with the irregularity. In Fig. 16, we have plottedometry.

the averagg(f,) of the collision frequencyf , ,=u/T, The catalytic efficiency in the Knudsen diffusion regime
“up to u collisions.” It can be seen thdff ) increases with is found to increase rapidly with the geometrical irregularity
the irregularity for any value of.. This indicates that when of prefractal pores. In the same regime, the macroscopic dif-
one goes from one generation to the next, the addition ofusivity is not modified by the surface roughness.

small scale structures increases the collision frequency for These results have been obtained for two-dimensional po-
most of the trajectories. When the reaction probability isrous systems and the study should be extended to the third
very small, such thal, is larger than any that belongs to dimension. If the same properties arise in three-dimensional
the trajectories, the value d?, is constant and equal to systems, they could have great practical significance, be-
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