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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
near the critical point in liquids. I. Theoretical results
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We calculate the hydrodynamic shear and sound mode near the liquid-gas phase transition and predict its
values for different frequencies and temperatures. The dynamical parameters that enter the theoretical expres-
sions are apart from static quantities the background values of the Onsager coefficients for the order parameter
and the transverse momentum current. We find within the field-theoretical renormalization group formalism the
asymptotic scaling functions or the real and imaginary parts of the shear and sound mode & thelane.

Our main concern, however, is the calculation of the nonasymptotic expressions describing the crossover from
the analytic background to the asymptotic critial behaVi81063-651X97)05412-3

PACS numbe(s): 62.60+v, 64.60.Ht, 05.70.Jk, 64.70.Fx

[. INTRODUCTION tivity and the sound attenuatidd]. In this way the sound
mode constitutes an important further test of phase transition
The dynamical critical behavior of pure fluids near thetheories. _
critical point belongs to the universality class of moddlIHt A first successful phenomenological approach has been
The dynamics of this model is described by the order paramd€veloped iri5]. Asymptotic properties at the critical point
eter, which is chosen as the entropy density, and the trand) fluids have been studied [13] within an extension of the

verse momentum current. Thus this model contains the he%rnammal equations of model Hil] by renormalization

. o oup theory providing a basis fd5]. A nonasymptotic
conducting mode and the shear mode. However, critical efmeow of the sound propagation has been elaborated for the

fects can be seen in other modes too, specifically in thgperfluid transition irHe [6,7], and our approach for the
sound mode. Measurements of the critical sound attenuatiogaculation of the sound attenuation near the critical point at
a(t) at the liquid-gas critical poinT; in the limit of zero T in pure fluids is quite in the spirit of this treatment.
frequency show a divergence at, which according to In addition to the sound attenuation and sound velocity
theory follows the power lawr(t)~ w?t? with w the fre-  we calculate the expression of the frequency-dependent vis-
guency and:(T_Tc)/Tc the relative temperature distance cosity. This has been COﬂSldereq years ago within a decou-
at zero frequency. In the asymptotic region the dynamicaPled mode theory by Bhattacharjee and Ferf8|p]. Here
critical exponent is related to the dynamical critical expo- W€ €Xtend the calculation to the nonasymptotic region.
nent z, the exponentv of the correlation length, and the A derivation of the complete set of equations describing

' . T the critical dynamics of a mixture including the sound mode
exponent of the specific heatby p=zv+ a/2. The ratio of

: . , has been given ifl0]. Here we use the specification of the
the sound attenuation amplitudes above and befQwis  set of these equations to the case of pure fluids to calculate

given by a universal valug2,3] and is related to the ratio of wjthin the field theoretic theory of dynamical critical phe-
the amplitudes of the specific heat at zero frequency. Hownomena the sound attenuation in one loop order. Although
ever, at finite frequencies the sound attenuation reachesthe attenuation can be calculated by a so-called frequency-
finite value aftT, leading to a critical frequency dependence dependent specific heat within the simpler model H, we pre-
atT.. Thus one has to calculate the attenuation as a functiofer to stay within the complete model and express the attenu-
of both variables, temperature and frequency, in the limit ofation by the appropriate vertex functions. This allows us to
small wave vectork. Since the experimental temperature identify additional(however, less divergingterms missing
region covers the whole region from background to thein the simplified version.

asymptotic region in the comparison with experiment a non- The paper is organized as follows. In Sec. Il we present
asymptotic calculation seems to be appropriate. It is the topithe dynamical equations and identify the static vertex func-
of this paper to present the details of such a calculation. Itions. Then we relate in Sec. lll the hydrodynamic transport
will be seen that the nonasymptotic attenuation at differentoefficients to the unrenormalized dynamic vertex functions
finite frequencies can be predicted without introducing non-and give their one loop expressions. In Sec. IV we perform
universal dynamical parameters apart from those alreadthe necessary renormalizations and show that no new singu-
contained in model Hapart from some subleading terms larities besides those of model H appear. Then we need to
related to the Onsager coefficient of the bulk viscgsity relate the transport coefficients to the renormalized vertex
Those parameters appearing in the attenuation can be takémctions and to the renormalized dynamical parameters.
from the description of the other modes of the liquid within This is done in Sec. V. The zero frequency results are dis-
model H. In particular they have been found by comparingcussed in Sec. VI and Sec. VII contains the asymptotic scal-
the shear viscosity with the theoretical predictions of modeing functions together with the frequency dependencE.at

H and have already been used to predict the thermal conduta three Appendixes we present the static and dynamic func-
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tionals used for the loop expansion and give a short descrip- it ,0H SH S|

tion of the derivation of the dynamic equations. A compari- E:)\tv 3+97{ (V¢o)'g+%v-£]
son with experiment using the theoretical results will be ! 0 0
presented in a second p&a short account on this has been

published in[4,11]). —67{ g

H
]+®t. (2.4)

Tis the projector to the direction of the transverse momen-
tum density, which corresponds to a projection orthogonal to
In this section we present the dynamic model for the gasthe wave vector in Fourier space. In the fast fluctuating
liquid transition suitable for the field-theoretic renormaliza- forces ©;(x,t)(i=¢,q,l,t) memory effects are irrelevant
tion group treatment, by which we calculate critical effects inand their Gaussian spectrum fulfills the Einstein relations,
the thermal conductivity, the shear viscodifsictional coef-
ficient), and the sound propagation. The dynamical univer- (0i(x,1)@;(x",t"))=2L;;(x) 8(t—t") 8(x—x"), (2.5
sality class is defined by the dynamical equations for the set

of local volume densities enclosing the entropy dens{i) where the matrifL;;] is given by
and the transverse momentum dengjfx), with the con-

Il. EXTENDED DYNAMIC MODEL IN PURE LIQUIDS

straint V-.j;=0. Choosing the entropy per mass _Pv2 _f y2 0 0

a(X)=s(x)/p(x) as the order parameter the dynamic model 4

that is known as model H was suggested by Halperin, Ho- —Ii¢V2 —\V2 0 0

henberg, and Siggi@l,12]. All critical singularities con- [Li]= .

nected with the gas-liquid transition in the pure fluid are 0 0 -\ V? 0

related to the critical singularities found within this model. In 0 0 0 _R.y2

order to obtain a model that also describes critical sound t 2.6

propagation, the set of densities has to be extended by the '

mass densityp(x) and the longitudinal momentum density e o o ]

ji(x) (Vxj;=0). As a consequence it is necessary to use arl "€ mode couplings, g, andg, are defined as

extended set of dynamic equations which include mass con-

servation and the effects of bulk viscosity. 2T s RT ( (?p) RT 27

: . _ - ’ - = E] —, _

Recently this extended system of dynamic equations and p, 9 N, 9=\ 75 N

the corresponding static functional has been derived for lig-
uid mixtures[10]. The dynamic model for pure liquids is .
obtained from these equations by reducing the mixturdVith the gas constari and the Avogadro numbéi, . Due
model and some details pI0] are repeated in the Appendix. tq mass conservatlc_)n the dyna_lmlc equgtlon for the mass den-
The resulting dynamic equations for the order parameter sity is purely reversiblécontinuity equaltmih Therefore only

[the entropy density, defined by E¢A14)], the secondary three of the five Onsager coefficientsL,,X,X;, and X,
densityq, [related to the mass density and defined by Eqconstitute an independent set of coefficients. The coefficients

(AlE?)]{ and the longitudinal and transverse momentum denﬁd) andf formally appear because the secondary dergjty
sity J; .J, are represents a linear combination of the entropy density and
the mass density fluctuations. Both of these coefficients are

ddo o . OH SH SH related tof”
—_— 2— 2——0 o —_—
Y v 5¢0+L‘/’V 504 a(V o) 5 +0,, ,
(2.0 ° AR A
L¢=— 6’_ F, A= (9_ I'. (2.8)
/e 7/p
%: L y2 SH +)°\V2ﬁ—€:V~ ﬁ_év_(q ﬁ) In the noncritical background Eg&.1)—(2.4) reduce at van-
at T Sy Lo ) 0 5 ishing mode couplings to the usual hydrodynamic equations.

5 The independent Onsager coefficients are related to the back-
—§|¢0V-5—-+®q, (2.2 ground values of the thermal conductivit®), the shear
Ji viscosity (), and the bulk viscosity(®:

H . Rk 4_
° _ o 0 0 0
_)+g(1_7) r=—0f>H, )\|—RT(§< >+§77< >), A=RT2©,

p
(2.9

The choicg/A14) and(A15) for order parameter and second-

ary density guarantees a static functiohlalith a diagonal

]+®|, 2.3 Gaussian part and with vanishing third order terms for the
order parameter. The corresponding Hamiltonian is
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o

1, 1 u
H= f ddxl§r¢%<x>+5[V¢o<x>]2+m¢é<x>
1, 1, ) 1, 1,
+ 58qG0(X) + 5¥qdo(X) 500 + 58 [{(x) + 5 (%)

- ﬁqqo<x>] : (2.10

where a constant external ﬁelltfiq has been introduced,
whose value fixes the average value of the secondary den
Jo(X) to zero. Thus in the unordered phase above the critic

1
(ii)e=RTp=_. (216

J

All the nondiagonal correlations vanish and therefore the
static two-point vertex functionﬁaﬁ are simply given by the
inverse correlations

1 o 1 1

6= (odore’ 199 (dotoe’ FH:FH:WM

which may be calculated in a systematic perturbation expan-
a'i(on by accumulating the one-particle irreducible two point

raphs[13]. A static functional of the same structure as Eq.

temperatureT;, where we havé>0, the expectation value (2,10 appears in the critical theory of the superfluid transi-

of the order parameter vanishes. The coefficientsind a;
are related to background parameters by

1
%= RTp

gP\(©
)

)
o

tion in *He (there the order parameter is a complex quan-
titiy ), therefore we will take over the results known for that
case. The static correlation functions are well studied and for
calculation details we refer td4]. The secondary densities
do.ji,» andj; in (2.10 may be eliminated by integration.
Then the static asymptotic behavior in fluids at the gas-liquid

The superscript (0) in Eq2.11) indicates thermodynamic transition is completely determined by ti¢ model[1]

background derivatives that do not contain any critical sin-
gularity. The Fourier transforms of the fluctuation density
correlation functions taken at vanishing wave numbkere

related to thermodynamic derivatives. We define
(AB).=(AB).(k=0)= | d"X(AOB(O).

=f d%(AA(X)AB(0))., (2.12

whereA,B hold for ¢4,q0,j; ,ji- The subscript character-
izes the cumulan{AB).=(AB)—(A)(B). The expectation
values are taken at vanishing external field variations

(F(AB, ... )= D{AB, ...}F(AB, ... Widsyo With

the local probability densityv,,. defined in Eq.(Al). The
static correlations of the order parameter and the seconda
densities are related to thermodynamic derivatives via th

relations

_RT( &0)
<¢0¢0>0_7 o o (213

Jd
<qoqo>c=RTp(£> . (214

Equations(2.13 and (2.14) constitute the connection be-
tween the static model defined by the functiof@lQ and

1, 1 U
H= f ddX[gr 5(x) + §[V¢0(X)]2+H¢S(X)] ,
(2.19

with the parameters

(2.19

For this reason all vertex functions and correlations in the
extended mode(2.10 may be written as functions of the

¢*-model parametens, U instead ofr, u and the correlations

of the secondary density, are related to order parameter

correlations calculated with E§2.18. In particular the fol-

lowing relations hold for the expectation value and the two
oint correlation of the secondary density:

(Qo)(F, ¥q, 1) =Pg— V(3 65) (7, ), (2.20

(UoUoYe(T, Vg U) =aq+ VA3 D33 b3)(T,1).  (2.20)

From Eq.(2.20 it follows that the constant external field has
to be fiy=4(3¢3)(,U) to guarantee a vanishing expecta-
tion value ofgg and relation(2.19 can be written as

(2.22

2
o o ‘yq o o
F=T+ (30T 0),
q

the thermodynamic derivatives. The momentum density term
in (2.10 represents the kinetic energy density, which is isoyhjch defines the connection betweeand 7 in every order

tropic. The correlations of the currents can be written as

<j|®j|>c:<jt®jt>cz<jj>cl (2.19

in which ® denotes the tensor product between two vectors
and 1 the unit matrix. Because the Hamiltonian does not

of the perturbation expansion.
Ill. MODEL TRANSPORT COEFFICIENTS

From Eqgs.(2.1)—(2.4) we derive a dynamic functional

include interactions of the currents with other densities theanalogoui 1415] from which the dynamic two-point vertex

correlation(2.195 simply is

functionsI', z are calculated within a Feynman graph ex-
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pansion. Some definitions and details are presented in the , [P 1 4 kr[ 1 1
Appendixes. In this section we derive the relations between Cs= (a—) ) Ds:_( {+ §ﬁ + —<C—— C_)

the dynamic vertex functions of the model and hydrody- Plo P Py P
namic transport coefficients like thermal conductivity, 38

shear viscositys, bulk viscosity ¢, sound velocityc,, and ~ With the isochoric specific he&@,=T(do/JT), and the iso-

sound attenuation. From the hydrodynamic equations for a baric specific hea€p=T(do/JT)p . Equation(3.6) contains
simple liquid[16] one gets immediately equations linear in two diffusion modes and one sound mode. The shear diffu-

the currents sion coefficientD, and the thermal diffusion coefficiem

describe the transverse shear mode and heat diffusion in the

) liquid. The sound mode is described by the sound velaxgjty

p —ﬁV T(x,t)=0, (3.1 and sound diffusion coefficier®, which determines the
sound attenuation

ajt,(xit) 7 2
———sz{(x,t)=0, (3.2 a:w—D 3.9
ot P ZCg S ( )
ap(X,t) Vil (x)=0 (3.3 measured in experiments. The contributions to the dynamic
at Ji(x)=0, ' equations that are linear in the densities determine the Gauss-
ian part (C10) of the dynamic functionalC9) defined in
aj| (x,1) 1 4 Appendix C and therefore the lowest order of the dynamic
o +VP(x,t)— —| ¢+ §ﬂV(V~j|'(X.t))=0. two point vertex functions. In the noncritical background the
P (3.4 model dynamic equations describe hydrodynamics, therefore
' the Gaussian part has to be consistent with the Gaussian
Introducing the Fourier component€ o,p,P, T, |, .jt) functional following from the hydrodynamic equations. Thus
we get a connection between background hydrodynamics
d*k [ dow oot and the lowest order of the dynamic vertex functions. Ap-
A(x,t)=f (277)3f 5 Ak, w)e" e (3.5 proaching the critical temperature, fluctuations arise that lead

to critical contributions to the thermodynamic derivatives
we calculate the coefficient determinant of E¢&1)—(3.4) and in the Onsager coefficients of the hydrodynamic equa-

in leading(hydrodynamig order ofk and  [17]. The result tions but do not influence the structure of the equations.
; Within the model the effects of fluctuation are calculated in a

'S perturbation expansion of the full dynamic functional and are

Ap(k,0)=(—iw+DK?)(—iw+Dk?) (w?—c2k? contained in the perturbation contributions to the dynamic
two point vertex function$C14). Replacing the lowest order

+Dg wk?). (3.6 vertex functions by the full ones in the critical region, we

keep the same formal relations between the hydrodynamic
transport coefficients and the vertex functions as in the back-
ground. From perturbation expansion one can see that the

The coefficients are defined as

D=2, DTZ%, (3.7  dynamic vertex functions introduced in E(C16) have the
p pCp structure
|
—io+k,; K k7 0
. k%t .5 —iw+kf 2 KT 0
= " . " . (310
kg|'(z, kg|a _I(,()+k2f|T 0
0 0 —iw+kH 7

The complex functioniag andg,z depend on the static and o o mn_ 98 o0& =
dynamic model parameters as well as lorand w. In the g“B(T’Q’{‘—’})_%Faﬁ(kﬁvﬂa{'—'}ﬂk:m (3.12
hydrodynamic limit we tak&k=0 and keep the frequency

finite. Thus the vertex functions on the right hand side of Eq. .
(3.10 are defined as the derivatives where we have introduced the frequency parameter

) o 2 Jd o o = o w
f.31Q{EH)=—I 3Kk 7Q{E) |0, (3.1 Q=—. (3.13
a(1,Q{E}) P 5K, 7,0 { Plk=o, (3.12 o
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2 and Hohenberd1] when the secondary density and the
{2} represents the set of the static and dynamic model paongitudinal momentum densify are eliminated by integra-

rameters{yq,u,F,L¢,A,A| R..8.8;}. Calculating the deter- tion- Thus in the limité—c we havegd3=0. Equations

minant of Eq.(3.10 in leading order we get (3.159—(3.18 simplify to
Ap=(—iw+Dk?)(—iw+Drk?)(w?—C2k?+ Dd wk?). ., . o b
(3.149 Cs=—0q1915, Ds=fgg+fiT+ (3] — (3.23
|
The coefficients are defined by the equations !
__o~o~ o o ° ° %~°~
Cs=—(9qT91g T 947913); (3.19 D=f7, Di=f,- 09947 (3.24)
9q7
f’[’tv o o 2 [ o Q o o
DtDT:?[?¢:¢;qug|a+fqag¢Tg|$_f¢aqug|z From Egs.(C11) and(C12 and the structure of the pertur-
® bation theory follows thaﬁqT is proportional toc while
— 143058471, (3.1  from g,7 no factor¢ can be extracted. Therefore the last

term in Dy and Dy is proportional to 1¢ and may be ne-

s __ s _.3__ DDr lected in the limit® i d(3.2
D=t ~+f ~4F~— ’ 31 glected in the limitc—oe. Inserting Eqs(3.23 and (3.24)
ST de T Taa T I i .19 into Egs.(3.19 and(3.20 the hydrodynamic transport coef-
ficients are
Dot Dot DT (3.18
T e ' Ra:gq|9|q+|w( Jrf||)] (3.29

Although equation(3.14 looks like Eq.(3.6) we have to 1, . . .

note that the coefficients in E¢3.14) are complex quanti- Ds=alm[qug|a+iw(fqa+f||~)], (3.26
ties. The thermal diffusion coefficiem and the shear dif-

fusion coefficientD; are simply determined by the real parts

of the corresponding complex coefficients D= Re[‘fg], D= Re{?([,g]. (3.27

Dr=RqDr], D=R4D]. (3.19 From perturbation theory one can see that in the case of finite

Expressions for the sound velocity and the sound diffusion frequencies we may extract functioﬁgﬁ from thek deriva-
D, may be obtained from the dispersion relation. From Eqtives of the vertex functions
(3.6) the dispersion relationw?=(c2—iwDg)k? follows

while the corresponding expression from E@.14) is $- §~- g~ O
2_ (o2 2 ; L ¢ Toq Yo
w°=(C;—iwDg)k*. Comparing real and imaginary parts al- . . .

lows one to identify the frequency-dependent sound velocity o fqs Tqg 9q7 0
and sound diffusion: [fap]= o o , (3.28

0 93 fr 0

c2(t,w)=RgC%(t,w) —iwDy(t,w)], 0 0 o0 %-

tt

1
Dy(t,w)=— Zlm[Cﬁ(t,w)—ist(t,w)]. (3.20  which have the property that they reduce at vanishing fre-

quencies to the static vertex functloﬁg) calculated within
The frictional coefficient3 [8,9] measured in an oscillat- the extended modéR.10). Particularly we have
ing disk experiment is related to the complex shear viscosity

o

7=pD, (3.29 lim P p(7. 02D =T (751, (329
w—0
by
_ _ Thus the matrix3.28 may be written as the product
B(t,w)~[Ren(t,0) [+ Im[ n(t,0)]. (3.22
Analogous to the: transition in“He [6,7] the model only [%aﬁ](‘;ﬂﬁ,{é})=[lgag](;,igl,{é})[f<d)]( ¥e) { 1.
becomes renormalizable when the slow heat and shear modes (3.30

are separated from the fast sound mode. This means that the

dynamic model has to be considered in the litvitc. The At zero frequency Eq3.30 coincides with results that have
structure of the perturbation theory gets simpler and one caBeen obtained for liquids and liquid mixtures calculated
see that no contributions arise gq)* In this limit also the  within model H and model H[10,18,4. The matrices on the
dynamic functional reduces to model H of Siggia, Halperin,right hand side of Eq(3.30 are defined as
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P 0 0 0 now expressed by the inverse correlation length getting
(‘)M o o functions  Pe(¢ 20,45), 9 202)  and
- r o(d),.—2 & [
[T'5]= % , Gia(¢20,(=)).
0 0O Iy 0 To make the procedure mentioned above more clear, we
0 0 0 TI'y will apply it in the following to the vertex functions calcu-
lated in one loop order showing the main steps for the static
3d) 9@ g@ g vertex functions. The static vertex functions calculated
o6 Toa Yol within the extended modéR.10 are
$d) ) g g
(e foo Taa 9o (3.3 o o,
ap 0 °<g) %(g) 0 ' ' °(S oo 2 of U yq o
g i Uya(myg,u)=17 §_a_q [1(7), (3.33
$(d)
0 0 0 f3
o y2
I';, andT';; appearing in Eq(3.31) are also at finite frequen- Féﬂ(?,% ,ﬁ)zaq( 1- ﬁ'z(;)), (3.39
cies equal to the constahf =I";=4a;, thus we do not need a

any distinction between static functions and frequency- .
dependent functions. where we have defined
In order to introduce the correlation leng¢has the tem-
perature scale in all vertex functions, we replace in a first | (;)_f 1
m

—. 3.3
K(T+k'?)m (3:39

step the parameteﬁsandﬁ of the extended mod€R.10 by

the corresponding parameteérandl of the ¢* model(2.18

using Egs.(2.19 and (2.22. This allows the calculation of Note that the integral, appearing in the order parameter
the vertex functions by expansion as well as id=3 [19]. vertex function contains a dimensional poledat 3 for an

This step leads at finite frequency to vertex functions?”ﬁnite cutoff wave number._ In the above equations we may
insert the one loop expression of HG.22

I CROR=S)) ?S%(F,(o),{é}), and éfyd—‘%(?,ﬁ,{é}), where
{E} represents now the se{t%zq,ﬁ,lg,li,j,,i,&,Z"\t,é,&}. oo ;,gl . is
Analogously the static vertex functidﬁgﬂ(?, ¥q.u) of the r=r 2a, 1(F) (3.36

secondary density, change ta") (7, %,8). The static or-
o o0 2 and also Eq(2.19 to change the extended model parameters

der parameter vertex functior]“f;(),,(r,yq,u) calculated d.?. h 2 and®l of the ¢* model (2

within the extended model is equal to the correspondini and u to the parameters andu of the ¢* model (2.18.

function calculated within the* model. Therefore express- he result is
ing this function by thep*-model parameters the explic%

dependence dropsoout ?nod we get #ifemodel order param- f%(? ) =F+ = 14(F), (3.37)
eter vertex functiod (7, 0). The vertex functions obtained
so far contain dimensional poles not onlydat 4 but also at
d=3 when the cut off wave number is shifted to infinity. In o620 o Ve .

the second step we have to remove the3 poles from the Fog(ryg,u)=ag| 1— g'z(f) : (3.38
vertex functions, which is also necessary to obtain a defined a

expression for the correlation length @& 3. This can be

done by inserting explicitly the shift of the critical tempera- the expression obtained by a calculation within éfemodel

tgre characterlzeq.by a cr|t|(§al_valmg.|nto the vertex fu_n_c- [13]. The critical value?C is in one loop order defined by the
tions [19]. The critical valuer is defined by the condition equation

P$)(Fc.0)=0 from whichf (&) may be calculated by in-

version in every order of perturbation expansion. All vertex . u

function may be expressed as a functiorr eff . by insert- Fet 511(re)=0. (339
ing F=r—r.+r.. The correlation length is defined 3]

The order parameter vertex functi¢8.37) is now equal to

Inserting the zero loop solution,=0 into the first order

s . . Nl (kF—F,,0) term of (3.39 the critical value in one loop order is
g2t iy = el — . (332 (3:39 P
JK k=0 0
o u
re=—=14(0). 3.4
which is a finite expression ad=3 [19]. Inserting ¢ 2 1(0) (3.40

r—r.=F(£2,0) into the vertex functions, where may be o
calculated by inversion of E¢3.32), the temperature scale is Replacingr by r—r +r. in Egs.(3.37) and(3.38 we get



57 FREQUENCY-DEPENDENT SHER ... . I. ... 689

. 0 vertex functions calculated at finite frequency.
I‘Effl,(r—rc,U)zr—rcﬂLE[Il(r—rc)—ll(O)], 446 2.0,{Z}) does not depend explicitly on the fre-
(3.41  Quency in one loop order. We get

°2

[ yp(e2.0,(2D =Ty 20). (3.49
F(s)(r—rc,yq,u) ag| 1 I,(F—Fo)|. (3.42
The one loop expression G?qu(gfz,fl,{é}) is given by
The order parameter vertex function at finite wave number in
one loop order is simply given byS),(F — ., 0) + K2 Insert- [ (202
ing in Eqg.(3.32 the resulting expression for the correlation
length is

:a(l_ﬁf K2
e oy_p_¢ N 280k (ki QK2 (E 24K
E2(F =T, i)=F—Fet S[1(F=F)—11(0)]. (3.47

I\)CO

(3.43 from which one can immediately see that it reduces to the
0 : corresponding static function in E3.45 for o=0. Analo-
In contrast tol, (r) the integral gous in model H1] the time scale ratios

o o
r—re

o
o
Qo

(3.49

'K'3(F—r.+k'?) W=

llr‘r’—Fc>—|1(0>=—fk

(3.48

._70
o
(]

'\
contains no poles al=3 and Eq.(3.43 is a well defined

equation at three dimensions. Al=3 poles have been ab- will be introduced. In the present model additional ratios
sorbed in the critical valug,. The correlation function may May be introduced corresponding to the longitudinal momen-
be introduced in the vertex functior8.41) and (3.42 by  tum density
inserting the inverse of Eq3.43. The resulting one loop

functions are

Qo

=ho
Il

_%‘

o
W=

(3.49

ak,’ 0
o ) _ JM
FEue=¢72 s
The cutoff dimensionsv,~ A ~2 andw,~ A ~2 are negative,
which means that the parameters are irrelevant for the critical
(3.45  theory. The renormalization in the following section will be

performed at vanishing irrelevant parame{e&@]. Therefore
perturbation expansion removing all poles in three dimen{3.25—(3.29 at w,=w,;=0. Introducing the correlat|on
sions in the model functior4.9]. Analogous to Eqs(3.33—  length (3.43 we get for the purely dynamic parts of the
(3.45 the correlation length also will be introduced in the vertex functions in one loop order

% _
1-— 2a|(§2).

Foa(€72,%.0) =2,

OED=F 1—f—2 S0 (350
e b BN =P 1 5] St .
$2 12 14ai 12
FOE 2.6, = 1+gtf 7 k- osrn26 7 _Zf .ok srnzeeosze /1+ 7l< ,2) |
(e 2k IOk A 2+kD] [k 2k £ 2k

f2

i 20.08)= I s

er (g*Z_er)erCOSZG ( k72
[ ! L .
C(E 2+ - 1Dk e 2+kD)] IN[—ih+k g 2HkD T E 2k

I

(3.52
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The second integrals within the braces in E(&51) and tributions in ane expansion of the specific heft4]. In the
(3.52 are obtained after performing the derivatives of theextended mode(2.10 we have additionally

one loop contribution according to the definition in Eq.

(3.1D. Ya= K2, 2512 yAd . (4.9

?g%(g‘z,ﬁ,{é})=i, (353  Sincez, in Eqg. (4.4 may be replaced b¥ factors of theg*
model via the relation

I

FOg2 0 (2 =F e 20, (8n=0,, @5
q¢(§ { }) ¢q(§ { }) ¢ ( 4) Zyzzqzr (45)
o) z=2 & 2 QD2 & 2y _:8
qu(§ Z'Q’{:})_gr& (¢£72Q,{=}p=ic. (359 the critical singularities are completely the same as ingfe
. model (2.18, no new singularities appear in the extended
Note that in Eq.(3.50 no frequency dependence appearsmodel(2.10. From theZ factors we define thé functions
explicitly atw,= 0 in one loop order and therefore it is equal

to the expression obtained in the reduced model H or mixture ( 3|”Zf1
K

model H' for w;=0, respectivelycompare[10]). The dy- i
namic vertex function of the transverse md@e51) reduces
in the limit w— 0 to the corresponding model H functifh]. The i - P T
. A e index 0 in Eq(4.6) indicates that the derivative is taken
:Ensertlggz Eqs?’.(g.30)ih(3.4a, (3'4.7) ' anfd (3t'so)_h(3(‘j55dmto . at fixed unrenormalized parameters. The renormalization of
gs. (3.25—(3.27, the expressions for the hydro ynamic y,q siatic parameters is described by the flow equations. The

trar&spl)ort coeﬁ;luent are expressed by the unrenormalize mperature dependence of these parameters is then deter-
model parameters. mined from thel dependence via a matching conditi@ee
below)

, i=¢,q,r,u. (4.6)
0

IV. RENORMALIZATION
A. Stati dr

e |5y =W =Ly, 4.7
The model will be treated within the field-theoretic renor-
malization group theory. Using the minimal subtraction q L
scheme[13] dimensional singularities at space dimension g _ | € <
d=4 in the vertex functions will be absorbed irfofactors. ! dar Y72 Lo+ qu(yq WL, (4.8

The longitudinal and transverse momentum density need

no renormalization because these densities only enter in qua- du
dratic order in the extended model Hamiltonian. The renor- gy =Ul—e= 244+ Lu(w]. (4.9
malization of Eq.(2.10 follows along the same lines as in

model F for the superfluid transition ftHe [20,14], which is . . . .
well known and therefore only will be sketched briefly in the From Eq.(4.9 one obtains the Heisenberg fixed poif as

following. Calculation details are comprehensively shown inthe, S_tab"? oné21322.*For a one component order pargmeter
[14] (here we have the case of a one component order p& finite fixed pointy; follows from Eq. (4.8). The fixed
rameter and the specific heat is divergirighe order param- point values{; of the ¢ functions are related to the critical
eter and the secondary field are renormalized by exponents by

=2, q0=23"a. (4.1 a 1

0 ’ 0 * * * *

’ ‘ G==n GG=5, §-0=2--. (410
From Eq.(2.2)) it follows immediately thaZ, is determined

by the singularities of the)>-¢? correlation function, which Th

e fixed point value of the coupling, is related to the
is proportional to the specific heat P PN

fixed point value o [23,24. In one loop order the relation

i readsy; /aq=2{; .
Zalz 1+ a_qA(u)_ (4.2) The renormalization of the static vertex functions reads
q
A(u) contains the singularities of the specific heat calculated Fgf;;(f_zyu,K):Z¢F$;>(§_2,ﬁ), (4.1
within the ¢* model and is obtained by an additive renor-
. . 2 2 . . . _ o _ ° o
malization of the¢=-¢“ correlation functionu is the renor- ngc;(g Z,Yq,U,K):ZngSC;(g 2,yq,u)_ (4.12

malized fourth order coupling of the* model (2.18 in

which renormalized parameters will be introduced by From the corresponding standard renormalization group

0o o __1 o _ 1 equations in field theorj13] follow the solutions
r=re=2Z,"Z;xr, U=kZ,ZuhAy" . 4.3

-2
k is a reference wave number that will be specified later and F(S>(§*2,u,;<)=(KI)ZeflﬂdX’X)%f(S) g_(t),u“)) ’
e=d—4. The factorA,=T(3—d/2)/[ 29 2792(d—2)] has i P9\ (k)2

been chosen to obtain a minimal number of perturbation con- (4.13
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. [ that the mode couplings need @Adfactors. Thus the follow-
F(s (& ,yq,u K)= ! dX/X)ng‘f;g( ()7 ,yq(l),u(l)). ing renormalized couplings will be introduced:
(4.14 g K1+e/2gA vz 6|:K2+e/2glAd—1/2_ (4.23

ff;?b and fff(} are the amplitude functions, which are deter-The Onsager coefficients renormalize as
mined by the corresponding two point vertex functions cal-

culated in a loop expansion. In order to guarantee finite am- f=ZFF ﬁ¢: kZ, L N=r2Z. \ (4.24
. ) ; - o ' Py A
plitude functions in the critical limitt—0 usually one
Choose{lg] )o\ = KZZ)\I)\| , )o\t: KZZ)\t}\t . (425)
_2 t . .
¢ (2) =1, (4.195 Using Egs(4.1), (4.20, and(4.22 the dynamic vertex func-
(xl) tions defined in the Appendixes get the following renormal-

. ' . ization factors:
which defines the relation between reduced temperature and

flow parameter. All terms containing logarithms of Eqg. ==~ T.~=P
(4.15 vanish in the amplitude functions. The critical singu- ¢ " ¢
larities are then completely collected in the prefactors of Eqgs.
(4.13 and(4.14), while the amplitude functions stay smooth
and finite. Specifying the wave numbe{=§51 in Eq.
(4.19), the relation between reduced temperature and flow 108 1o
parameter is written as Lg7=2Z5Tq1, T'ig=Z4 " T5a. (4.28

(4.26

725128 ~_ 7 1251/2f
Uyq=ZyZq " Tyg, Tgg=247Z5Tq3, (427

I=&oé (1). (4.1 The vertex functions factorize into a static and dynamic part,
as discussed in the previous section, as a consequenée the
Thus the static vertex functions are related to the renormalfactors defined in Eq(4.24 also separate into a static and

ized parameters by dynamic part. One gets
o o A —7 7(d —_ > 7(d _ 125112
r(g‘fé)(éf*Z,u):(Kl)ZZ;lefll(dxlx)Q/,FE;é)(u(l)), (417) ZF Z¢ZF s Z}\ ZqZA , ZL¢ Z¢ Zq ZL¢
(4.29
o o o _ | ~
T2(£72,54,0) =24 "eA 04T & (yy(1),u(). The static vertex functions of the longitudinal and transverse

(4.18 momentum density are simply represented by the constant
parametera;. ThereforeZM and ZM in Eq. (4.25 do not

In one loop order we simply ha\/EE;f,,(u(D): 1. Equations  ¢ontain statice poles. From Egs(3.30 and(4.26—(4.29 it

(2.17 and(2.2)) give rise to the exact relation follows immediately that
a (d) _ --1%(d) (d)_ -—1%(d)
L (yg(h),u()= . (4.19 T5=267 T4 Taa=% Tqa- (4.30

1+ [yva(h/ag] F2 (1)
(d) _ 5 —1/2-—1/23(d) (d) _ 5 —1/25—1/23(d)
Foa=Zo Zq Hyq fe3=24"°2q " (4.31)

whereF®(u(l)) is the amplitude of thé$?¢?) correlation 0’
function calculated within theb* model[14]. (d)_ o —1/20(d) (d)_ ——1/20(d)
glq Z glq qu :Zq qu ) (432
B. Dynamics f(g (f ) f@:?@' 433
The conjugated fieldgy, Jo, ] 10, and ] 1o introduced in e e
the Appendixes are renormalized analogous to (Ed). In Eq. (3.53 one can see that the perturbation expansion
3 Z ¢ ~ lez-a 4.20 does not contribute t@l(g), which means that ne poles
0~ 0— ’ .

appear in this function. Therefore does not need an inde-
T :le'zj" = =Zy2f (4.21) pendent renormalization factor. The corresponding renormal-
10 b o ! ' ized coefficient absorbs the factor in Eq.(4.32).

All hydrodynamic denisities are conserved densities. The
frequency terms of the dynamic vertex functions

(I 43/ dw)|,—o do not containe poles[20]. As a conse-  Analogous to mixture§10] no e poles arise from perturba-
quence we get tion theory tof(d) f(d) andf(d) therefore we have'{(d)—

Z;=2,%, z5=zg% zy=1, Zy=1. (422 and z@9=1 |n aII orders of the loop expansion. n Egs.

(4.249 and(4 29 only the static renormalization factors re-

Using Ward identities, which are a consequence of the Galmain in the above-mentioned Onsager coefficiehts\,,
ilean invariance of the equations of motip20], one finds and\; get nontrivial dynamicZ factors. We defing func-

t=«ze%. (4.39



692 R. FOLK AND G. MOSER 57

tions fori=I",L 4,,\,\,\; @analogous to Eq4.6). Equation  is obtained.
(4.29 implies a separation ofr, {Ly and (¢, into a static

and dynamic part: V. CRITICAL BEHAVIOR OF THE TRANSPORT
COEFFICIENTS AT FINITE FREQUENCIES

r=094¢,, =0 L =34+3C,. (4.39 The transport coefficients are separated into static and dy-
boer ¢ Noea Lo 2Ra7 259 namic contributions by inserting E¢3.30 in Egs.(3.25-
In the last two equationg(,_d)zo andggd)=0 has been used. (3.27). In order to obtain the critical behavior of the hydro-

. ¢ .. dynamic transport coefficients we proceed quite analogously
The critical temperature dependence of all parameters is de&—) the method used at thetransition in *He [25] and 3He-

termined by flow equations anqlqgous to statics. The flowap,o mixtures[26]. We use the loop expansion only for the
equations for the Onsager coefficients read 2 \hile the stafi .
= while the static vertex

dynamic vertex functionois(;% andg,, %
. " functionsfﬁf}a are replaced by the corresponding thermody-
— F(§<Fd>+ £y, |_|:)\(_2+ Lo, (4.36 namic derivatives, which will be taken from experiments.

dl

A. Shear viscosity and frictional coefficient

dLy From the definition of the complex shear viscosity Egs.
IW =Lg(—1+3L4+ 3Ly, (4.37  (3.2)) and(3.30 we have
7(t0)=paf P (e 20 {E)). (5.1)

N N,
g =N(2H 6, g =2t 5. (439

Inserting the solution of the renormalization group equation

Inserting the renormalized paramete#23, (4.24, and for the vertex function used in standard renormalzation
(4.29 into the definitions of the mode coupling parametersdfoup theory{13] into Eq. (4.33 the dynamic vertex func-

(3.48), (3.49 and into(4.34 we get the flow equations tion Is
df, 1 F9e2 Q12N =(x)2N\(
Id_||:_§f|(6+§%d)+§)\|+g¢)’ (4.39 t1 (¢ { }) (D) 2N(D)
(5.2
o 1 (d)
IW =Tt i+ a4y, (4.40 where{=(I)} characterizes the renormalized set of variables

E()}={y4(D),u(D), T (1), L4\ (1), (1),
%:c(—s%gq). 441 {EM}={yq(1),u),T(1),Ly(1), M)\ (1)
M(D,9(1),a1(D}-

Equations(4.9), (4.9), and (4.36—(4.41) completely deter- .
m?ne the critical behavior of the static andpdyna)r/nic modeIThe parameters (1) and w(l) rgpresent 'the renormalized
parameters. temperature and frequency variables defined by

At finite frequency no newe poles appear in the vertex
functions. TheZ factorsZ(rd),Z)\t and therefort—g’,’(r"'),Q\l are

-2
identical to the corresponding quantities in model H. As a v(l)= § (t), ()= Qb — . (5.3
consequence the fixed point value of the mode coudiing (k)? (kD)* 2T (1) (kl)*
the same as in model HL,20] (f{=f},,;4#0). From Eq.
(4.40 we get at the fixed point The complex functiork, contains the contributions from the
loop expansion. Defining
4= (e+ " +¢5) (4.42
g(l)

and an analogous equation fg} for the finite fixed point fi(l)= —/——=. (5.9

* ) . . (A1)
f\". Thus from Eqs(4.39 and(4.40 the fixed point relation
quite analogous to its unrenormalized counterpart in EqQ.

. ok 44 (3.48), the e-expanded one loop contribution to the shear
gM_gM (4.43 viscosity is
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4 [vi—vs, 3
o.—o ) 3 +§(v+—v7)

v? 1 v vi
i —Inv+ —Ilnhv_——Inv, | |-
v

f2
E ()W) {E(h=— [1+6

U+_U_ U+ —
2 U3 3
X(v2Inv . +v2inv_)—(w3nv,—v3inv_) +(—)—(1+4|nv+)+—(1+4|nv )
—-v
1 2 vilnv+—v4|nv 1 2 v v _—v?n
+|—- +|— : (5.9
U_ U+_U_ U_ U+ U+ U_ U+

where we have dropped the argumein the parameters on 2 a7 -2 & 2@ -2 & r21yq2
the right hand side of the equation. The parameters intro- Cs(t,w)=—ajlq(§7 %O {ED[9,7 (6 %A AED ],

duced in Eq(5.5 are defined as (5.12
2
vi(|)=$t (@ +iw(). (5.6 Dy(t,0)=Tgq(¢ 20 {EHTL(E2.0{E))
+a;f P (67208, (5.13

Inserting Eqs(5.2) and (2.11) into Eq. (5.1) the shear vis-
cosity generally reads
With Eq. (4.32 the solution of the corresponding renormal-
L 1 ization group equation fog(d)
n(t,w)= ﬁ(Kl)2)\t(|)[1+Et(v(l),w(l),{E(I)})],
(5.7 agt%)(g—zyﬁ’{é}):(,d)3Zc;1/2e(1/2)f'1<dx/x>gq
leading to the real friction coefficient ~ —
J xg2eh WL EOD. (.14
B(t,w)=(kl)2\(1)[1+ (Re+Im)

X[Ew (D), w() {ZNI]- (5.8

The amplitude function simply reads

The flow of the Onsager coefficien; in Eq. (5.7) is ~(d) = _
determined by the flow equatio@.38 whose solution may gq7 @ (), w(l) {2 H=ic(l). (5.15
be written as

At finite frequencies no new poles appear in the vertex

functions, thus the renormalization d?qu(g‘z,ﬁ,{é}) is
the same as for the corresponding static vertex function in
Eqgs.(4.12 and(4.14). Therefore we have

(1) =N ]~ 261000, (5.9

The flow parametel, the reduced temperatute and the
frequencyw are related by a matching condition introduced
in the following section, which defines the functibft, w). |
Foq(6720{E}) =2, /1 ™ar o (1),wh) {E()}).
B. Sound velocity and sound attenuation (5.16

The sound velocity and the sound attenuation are obtained
from Egs.(3.25 and (3.26 by inserting the renormalized The amplitude function may be written as
parameters into

CA(t,w)=—847(£ 20 {ED05(¢ 2.0.{E)), L aq@(D,w(D {E()})
(5.10

aq
= , (5.17
1+[va()laglF . w),w() {E(H})

Dytw) =T 2.0 &) +Hir(e 2. 0.(&)).

(5.1)
where the functiorF, contains the contributions of the loop
Separating static and dynamic functions with E830 we  expansion. In one loop order tleeexpanded amplitude func-
get tion is
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Fi@,w),{EM})

[vz 2
—Inv_— —Inv,
U+_U_[U+ v

|

(5.18

The amplitude functiorF-, reduces at vanishing frequency

to the amplitude function of the statig?-¢? correlation
function
u(I)).

(5.19

This reflects the fact that the isochoric specific heat and

2

()2’

w

m F+(U(|),W(|),{E(|)}):F(f’)(
—0

adiabatic compressibility have the same weak singularity.

serting Eqs(5.14—(5.17) into Eq.(5.12 we get

B ajaq(«1)°c%(1)

1+ [(D)/aglF () w() {E())
(5.20

C3(t,w)

2 .
iv?

—Inv—
w
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The dynamic vertex functions in E¢5.13 are given by

?Eda)(‘r’,s"’z,{é})=(xl)que—f'ﬁd””gqx(l), (5.21

Q

f

2

f—

I

D=2 (D{1+Ei(),w(l) {EMH}.
(5.22

i (.0

With Egs. (5.21) and (5.22 the complex coefficient5.13
becomes

B ag( k)2 (1)
1+[Y3()/aglF .+ w(),w(h) {E(1)})
+a; (kD)2 (D{1+E (), w(h),{EMOD},
(5.23

DS(tlw)
the
In-

where Eqs(5.16 and(5.17) also have been used. The func-
tion E, includes the contributions from perturbation expan-
sion and reads in one loop order €xpandegl

|

3 3

2
vi—vl

v_ +
—Inv_——Inv,
U4 v

2 3 3
3vilnv,—villnu_

+
2 (v,-v.)?

|

(vi—v_)®

1 [ ivw

2 (vy-vo)?

1 1

2

+_
4(U+

+ 2 (14 Al + —(1+4l 2
Y Py ( v ) U+( v_)=v

1 v v _—v?nv

vtiIn, —vinu
—+

+

+3
4 V. U4V

(v+—v_)2,(
+3 v (02
4

(vi—v_)2

1

vinv, —viinu
e _+

+

vy v
— (143w )+ —(1+3Inv_)
v Uy

ex
VyL—0U_

|

|

v_ UL Uy

2 2

UVy—0U_

+4

(U+_U—)2 v-

|

v3Inv_ —v3Iny

(5.29

v_ Uy

The flow of the parameters(l), \((1), andc(l) is deter-
mined by Eqs(4.36), (4.38), and(4.41) with the solutions

N1y =N ~2e/ 18908\ (1) =\, |~ 2000,

c(1) = cl~3eM2I (X0, (5.25
The sound velocity and the sound diffusion coefficient
determined by inserting Eq95.20 and (5.23 into Eq.
(3.20. The sound attenuation is then defined by

2

(tw)= —
a(t,w)=—F——
22&))

Dy(t,w). (5.26

’

e
UVyL—0U_

|

In the expressions obtained so far for the shear viscosity
[Eq. (5.7)], the sound velocityEqg. (5.20], and the diffusion
[Eqg. (5.23)] the relation among the flow parameter, the re-
duced temperature, and the frequency needs to be specified.
There are several conditions that restrict the choice of this
relation. First the amplitude function&.5), (5.18, and
(5.29 have to stay finite at the limits—~0 at fixedw and
also in the limitw— 0 at fixedt. At last in the zero frequency
limit the relation has to reduce to the conditighl5 used in

Al&tatics. At finite frequencies an appropriate choice for the
matching condition is

U+

(5.27)

NP
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where|- - -| denotes the length in the complex plane. This _ 1, _

choice is suggested by the appearance of the frequency de- 7(t) = 25& (OMOII+ECEMDN]. (6.6)
pendence in all our expressions through the square root in

Eq. (5.6). Taking the square of Eq5.27) and inserting the At vanishing frequency the amplitude functioaexpanded

definition (5.3) of w(l) the relation becomes in one loop order are
-8 2w 2_ —1| 8 5.2 t2 t2
§°()+ X0 =(& 1" (5.28 G{ED)=-15 E{EH=—z¢ (6.7

For any fixed frequency Ed5.27) implicitly defines a flow  Equations(6.5—(6.7) will be used in the second part of this
parametet (t,). In contrast to the zero frequency case thework to analyze experimental results of the thermal conduc-
critical limit £~*(t)—0 at fixed frequency corresponds to a tivity and the shear viscosity in several liquifg7]. In the
finite flow parameter valué,(w), which is defined by the critical limit the specific heat and the correlation length be-

equation have as
2 - -
( gol,c)f;:(;(:v)) | (5.29 Co(h)=At™", &D=&t ", GE:]
¢ where y and v are the critical exponents. The relation be-
tween flow parameter and reduced temperati#d6 is
VI. CRITICAL BEHAVIOR AT ZERO FREQUENCY given byl =t". In the asymptotic limit the flow of the On-
A. Shear viscosity and thermal conductivity sager coefficient§' and\; in Egs.(6.4) and(5.9) reduces to

. - . simple power laws:
In order to obtain the initial values of the dynamic model

parameter$’' (1) andf,(lo), appearing in the sound velocity, Iy -2+
the attenuation, and the friction coefficient, experiments on =T, A=A M 6.9
the thermal conductivity and/or shear viscosity performed a‘ntroducing the notation of Siggia, Halperin, and Hohenberg

» =0 have to be fitted with our theoretical expressions. Fro . ) T .
the definition of the thermal diffusion coefficientmtl]' thatisx\=—{p" andx,=—{; and using Eq(4.10,

D+=«7/(pCp) and Eq.(3.27) the thermal conductivity is the asymptotic behavior of the Onsager coefficients is
iven b
given by T)=Tt 7%, A\ ()=At""2%).  (6.10

kr(t)=pCr(D)T45(¢ 2 {ED). (6.3) Inserting Eqs(6.8—(6.10 into Egs.(6.5) and (6.6) we ob-
o tain the asymptotic behavior of the thermal conductivity and
Becausd ,7 in Eq. (6.1) is a real function at zero frequency shear viscosity,
we have omitted the real part. With E@.30 we may write
S 2 00 3(d), 42 g2 KEI) =k, @) =7 (6.1
kt(t)=pCp(t)I’ Luf (6T ED. 6.2
1()=pCe(l (%Wt Z(E7°{E}D. (6.2 with the amplitudes

The solution of the renormalization group equation for the

dynamic order parameter vertex function inserted into Eq. K(TC)ZPA+§62Ff$é,(U*)[1+G({E*})], (6.12
(4.30 reads
— 1
o o O=_——¢ 2N\ [1+E({E*D]. 6.1
(e 22D =2,e HOmar() {1+ G(E0)), 7Rr MATRAZTL 649

€3 In the asymptotic forn{6.11) of the thermal conductivity the

where the functionG contains the contributions from the critical exponent relationy=w(2—») has been used. The
perturbation expansion. The flow of the Onsager coefficienflynamic{ functions are in one loop order
I' is determined by the corresponding flow equat{dr36)

. . 3 1
from which the solution (9= fo, H=— ﬂft2_ (6.14
_Telldx ()
(1) =T e/t a 64  From Eq. (4.40 it follows that at the fixed point
* d)* * .
follows. Together with the static vertex functiqd.1?) the Gy +{3,=— € With Eq. (6.14 we get the one loop
thermal conductivity is fixed pointf{=+/24€/19. Inserting this value into E¢6.14)

the one loop values of the dynamic exponents are

18 €
X, == (6.15

KT<t)=pcp<t>é2<t>r<t>f<,,¢(u<t>>[1+G({E(t)})](.6 5
' "0 %719

X\
The flow parameter has been replaced by the reduced tem-

perature at zero frequency using the relati@gnlg. The At d=3 (e=1) the values are,=0.947 andx,=0.053
shear viscosity5.7) reduces at vanishing frequency to where the latter is in good agreement with results obtained
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from the mode coupling theofy28] and the decoupled mode The first term vanishes foF— T, the second term diverges

theory for binary liquids at the consolute po{®9] and for
pure liquids[30].

B. Sound attenuation and sound velocity

From Egs.(5.20 and (5.23 one immediately sees to-
gether with Eq(5.19 that the complex function§; and Dy
in the limit «— 0 reduce to the real coefficients

o _ |
a]_ anZZq 1e_|'1(dxlx)g“q

2 =

A i agFo W) 619
Dt aqizalefll(dx’x)fq o]
T 2 agFe @y Y

X{1+E{ED}, (6.17

where we have used Eq4.24), (4.29, (4.34), and(5.25 for
the parametera(l), andc(l). With Egs.(2.14), (2.17) and
(4.18 from statics we may write

1
agRTp

z; 1S Y(dXX) g —

oP 'yé(|) S)
%)U(l‘f‘ a—qF(_'_ (LI(|)) .
(6.18

Eliminating the renormalization factors witl6.18 and in-

serting the definitions of anda; from Egs.(2.7) and(2.11)
we get

) _(aP)
Cs(t)= ) (6.19

o

o

R (aP 5 _
Ds(t)—R—Tp o + (<D M(D[L+E{EMD].

like t~ " wherex, is defined as= —g;l analogous to the
transverse mode. In one loop order théunction reads

f2
0= 15 (6.24

The momentum density functions fulfill the fixed point
relation(4.43 from which it follows that the dynamic expo-
nent of the second part in E(.23 x,=X,, is the same as for
the shear viscosity. Thus E@6.23 may be given as an
asymptotic power law

DE=N[1+E({E*D].
(6.25

D(Sas)(t) — D(ZC)t* VX77,

Inserting Eq.(5.25 and the unrenormalized paramet&2<8)
and (2.9 into Eq.(6.20 and using the thermodynamic rela-

tion
2/ 9P _ ot 1 1
), PTGl

e
P

aa

the coefficientDg at vanishing frequency can be written as
K<T°>( 11 )
p \Cy(t) Cp(t)
£+ 7
p

Dy(t)=

Z{llej'l“)(dxlxml[l—k E{EM®D].

(6.26

The above sound diffusion coefficient looks like the hydro-
dynamic expression in E¢3.8) separating into a part caused

by the finite thermal conductivity and a part caused by the
finite shear and bulk viscosity. In the asymptotic limit con-

7 (6.20
) tributions due to critical fluctuations appear that are de-
From Eq.(6.19 one can see thal; is expressed by the same gcriped by the two critical specific heats in the first term of
thermodynamic derivative as the hydrodynamic sound velocgg, (6.26) and the exponential factor in the second term. We
ity (3.8). The difference is that the thermodynamic derivative\yant to emphasize that in E¢6.26) the thermal conductiv-
in Egs. (6.19 and(6.20 now contains the critical singular- ity the shear viscosity, and the bulk viscosity only enter by
ity. In the asymptotic region we may write their background values. It would be erroneous to take the
hydrodynamic expression in E(.8) and simply insert the
(&p) —B,t ° (6.21)
Pl " ' cients and thermodynamic derivatives.
To get the sound diffusion coefficiem at vanishing
ishes with the critical exponent/2. The one loop amplitude (3.20 and take the limitv—0. The result is
function (5.24) reduces atv=0 to

asymptotic power laws for all appearing transport coeffi-
and therefore the sound velocigf?¥=C,=B;"%4*? van-  frequency we have to insert E¢&.20 and (5.23 into Eq.

_ Im[C2—iwDq]
£2 Dy(t)=— lim————
E({ED=- 25 (6.2 w0
) [oP FLAEMD

With Egs. (5.25 and (6.2 the critical behavior of Eg. = =
(6.20 =as: (5.29 and (6.20) the critical behavior of Eq 2a,0(1)(x)*\ 90|, 1+ [N /agF o (u(l)

+Dy(t) 6.2
B

Dy(t)= 5=t + N\ [1+E({E" D]t~ ™.

RTp (6.23

with the flow parameter=1(t) from Eq.(4.16 and
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aF , w(h),w() {EN)}) £ 37
J 8m) 73

FLEEWDH= lim awiD . (6.28 Et({E*})=$ 1+6In2+i =

w—0

Inserting the matching conditio®.16) and the asymptotic With Eq. (7.1) the frequency dependence of the shear viscos-
power laws(6.10 for the Onsager coefficient an@.25 for ity at the critical point is
Dy(t), the sound diffusion coefficient can be written as

7(0,0)= 9w %22, (7.4
Dy(t)=D{t 2" e+ Dt~ (6.29
This result for the asymptotic shear viscosity is in agreement
where we have introduced the exponent with the result of the decoupled mode theory of Bhattachar-
jee and Ferrel[30].
z=4—7n—X, (6.30 The complex functions Eqg5.20 and (5.23 appearing

_ in the sound mode turn in the asymptotic frequency region to
and the amplitude

2¢—6
2.4 ' — 2 ajan §0 |alv
¥q §o  RFL{ED] Cs(Ow)= - —lc (7.9
DY =5 rg 0 - (631 ) 1+(75 lagF ({E") ©
Al B+ 1+[yg /1aglF(u)
-2
In Eqg. (6.30 the exponent of the critical thermal conductiv- D(0,w)= ‘aqfo A Iglv
ity x, enters. With the relatiox, +x,=e— 7 [1] between 1+(y§ lagF . ({E™})
the dynamic exponentg,may be expressed by the exponent 72 o x
of the critical shear viscosity +a;é MI+E{E DI, (7.6
z=4-€+X,. (6.32  where the asymptotic power laws for the static and dynamic

parameters c(lg)=cl 3", \(g)=NI;2""", and
The first term in Eq(6.29 contains the leading strong sin- >\|(|c)=)\||c_(2+x”) follow from Egs. (4.10 and (5.25. The
g_ularlty with z=3.053 in one loop order. The second term amplitude functiorF, ({Z*}) att=0 reads
diverges only weakly with the exponent of the shear viscos-
ity. From Egs. (5.2 and (6.21) one can see that the 1
asymptotic behavior of the sound attenuation at small fre- F.({E*H= 2
guencies is

In2+i— 7
n IZ' (7.7

239t ) = a®) 2t~ @l 6.33 From Egs.(3.20 and(7.1) we get for the sound velocity

2 2 alvz 2 1+alvz 2 1-x,/z
C . . cs(0,w)=ciw*"+c +c . 7.8
which is in agreement with results obtained[#h3]. s(0w)=cio 2 3@ T 78

At small frequencies the first term in E(.8) is the leading

VII. CRITICAL BEHAVIOR AT T, one due to the small positive exponent. Further, the ampli-
AND SCALING FUNCTION tudesc, andc; are small compared to the amplitude of the
A. Viscosity and sound atT, ;gfrtnterm. Thus the sound velocity at the critical point has the

At the critical temperatureT, the flow parameter is
uniquely related to the frequency by E(.29. At small cs(0,0)~Cc w2, (7.9
frequencies in the asymptotic region the Onsager coefficient . .
I behaves aST('c)=F|C_(XA+ ”)=F|§‘4 according to Eq. Analogous to Eq(7.8) for the asymptotic behavior at small

(6.9). We used the definition of the dynamical exponeibly frequencies of the sound diffusion follows

Eq. (6.30. Replacingl by its solution of the matching con- D =D YT Y74 DoVt D X2
dition Eq. (5.29 {(0w) =Dy 2¢ ¥ 110
4
l.=(bw)¥, b= @ (7.1) In the limit w— 0 the first term in Eq(7.6) shows a strong
¢ ' r- ' divergence while the last term has a weak divergence. For

asymptotic small frequencies the sound diffusion coefficient
the complex shear viscosit{s.7) for frequencies in the s described by the single power law
asymptotic region of reads

Dy(0,w)~Dyow T2, (7.19)
_ A _
7(0,0)=— ! [1+E({E" DI, X, (7.2 Inserting the power law§7.9) and(7.11) into the definition
ERT of the sound attenuatiof5.26 we get finally
Note that Eq(5.29 may be rewritten as/(l;) =3 by insert- a(0,w)= a!® 1~ (7.12

ing the definition(5.3). The amplitude functiorE,({Z*}) at
t=0 is the complex function in agreement with5].
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B. Scaling functions for the viscosity and sound Rt,w)z?as)(t)Y”(y), (7.18

The connection between flow parameter and reduced tem-
perature(5.28 offers the possibility to define a scaling vari- where the scaling functio¥,(y) is normalized to 1 ag=0.
able. Inserting the asymptotic relationg(t)=¢,t™ %,  From Eq.(5.7) we have
I'(1)=T1?"* and defining the variable ~

Y (y)=S(y)‘Xth(y)
S — (7.13 ! 1+E({E"D
or ga 4t vz

This expression might be compared with the resul{ %t
The matching condition Eq5.28 may be written after some  Following the manipulations in that paper, which make use

(7.19
y

rearrangement of the smallness ok, , we identify the impedance function
sum of the real and imaginary parts of the shear viscpsit
(t771)8= 1+ 16y%(t~"1)2(4-2), 714 O ginary psiy

This form of the equation holds for all liquids because all .
parameters that characterize a special liquid are absorbed iM =In(B..y) —zIn[ S(y)]+ —{Re[Et(y)]—Re[ E({E*D]
y. Equation(7.14) also shows that the produtct”l is a func- Xy

tion S(y)=t""l of y alone, wheres is determined implicitly

by solving Eq.(7.14). The flow parameter may be written as +ImE(y)]}- (7.20

I=t"S(y). (7.15 The first term comes from the division by the larg®ehav-
ior, which cancels the Iy} terms of the following terms. A

At zero frequency ¢ =0) the solution of the matching con- more detailed comparison will be given in the third part of
dition (7.14) is equal to the asymptotic form of E¢.15), this work.
thusS(0)=1. For largey one may neglect the 1 on the right  Let us turn to the sound velocity and attenuation. The
hand side of Eq(7.14 and we obtairS(y) = (4y)'* repro- ~ complex coefficient5.20 and(5.23 can be written with Eq.
ducing the power laws in frequency @t. Inserting Egs. (7.16 as
(7.13 and(7.19 into the definition(5.3), the parameters

andw may be expressed entirel ia s ISy
y be exp y by CAt,0)=aja,c%,  — ., (72D
v()=[SY1"% w(h=y[Sy)] %  (7.16 1+(7q 1ag)F+(y)
Inserting this into the amplitude functiorts, , E;, andE; tesv(y)
they become complex functions gfonly. We introduce the Dy(t,w) =24 °\ TN +a;&0 %\
function 1+(vg lag)F(y)
Fow®wh) {E D=F,.(S(y)] 2y[SY)]*{E"D X[1+E ()]t ™[ S(y)] . (7.22
=F.(y) (7.17 From the real and imaginary parts of E@g.21) and(7.22

one may calculate the squared sound velocity and the sound
and E,(y) and E,(y) accordingly. We then define the com- diffusion coefficient defined in Eq3.20. We note that the
plex scaling function for the shear viscosity by extracting theimaginary part ofF . is proportional to the frequency. Thus
asymptotic form(6.11) we have

IM[F (0 (1),w(1) {Z*H]=w(D)Im[F_ (o(1).w(1).{ZH]=y[S(y)] Am[F ()] (7.23

with a finite function InﬁIA::(y)] aty=0. In the vicinity of the fixed point the sound velocity and diffusion coefficient read

1+ (¥ 1agREF L (y)] (P lag)Im[F . (y)]
Cg(t, )=a;a,c%¢ 6 g *q ~ t“[S(y)]“’VJrZa T\ 6_4 q* _ ta+vzy2[s(y)]—z+a/y
R (Y Tag B (y) 2 T 1+ ag L (y))?
+2a;, T\ & CIm[E, (y) ]t X2y [S(y)] %, (7.24

L1+ (v2 1ag)RF . (y)]
11+ (2 1ag)F L (y)|?

+ah & {1+ RAE (y) It ™[ S(y)] . (7.29

aja4C%; 2(v2 lag) Im[F . (y)]

Dy(t,w)=— . ~
° 2T |1+ 92 ag)F 4 (y)|?

t_VZ+a[S(y)]_Z+a/V+aq)\§a ta[S(Y)]a/V
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Taking only the leading terms of the asymptotic behavior and extracting the asymptotic behavior at zero frequency the scaling
function for the sound velocity is defined by

Cs(t, ) =cB9(1) Yo(y) (7.26
with
* o 12 * N
YY) = Sy 1+(92 /aq>Re[F+<y)]) 1+ (93 lag)F O (u”) 727
: 1+(7; lag)FPWh) | [1+(¥5 1ag)F L (y)|
The scaling function for the sound attenuation reads accordingly
a(t,w)=a@I(t)Y,(y) (7.28
with
— * N 312 * ~
y (y)_s(y),z,a,blm[&(y)]{ 1+ (% lag) FP(u) ) |1+ (v Tag F L (y)] 729
’ FLUED 1+ (2 TagReFL (1] 1+ (32 TagFPwu)’ '

where we have taken out the asymptotic power (6v83 at  with temperaturel' (x), chemical potentiak(x), and veloc-
small frequencies. ity v(x) as external fields()(x) is the corresponding local
thermodynamic potential

VIil. OUTLOOK Q(X)=6(X)+ek(x)—T(X)S(X)—u(X)p(X)—v(X)J"(E&Z)
We have calculated within a nonasymptotic field-
theoretical renormalization group theory the frequency-n which e(x) is the internal energy density and
dependent viscosity sound velocity and sound attenuatios,(x) =]’ (x)%/2p(x) is the kinetic energy density. Assuming
near the gas-liquid critical point in pure fluids in one loop that the densities are fluctuating about their thermodynamic
order. These measurable quantities are determined coraverage values, we can write
pletely by model H dynamical parameters and thermody-

namic derivatives. Taking the initial values for the corre- e(x)=et+Ae(x), ex)=e+Ae(x),
sponding flow equations for the order parameter Onsager

coefficientT' (1), the mode coupling(ly), and the static s(x)=s+As(x), p(xX)=p+Ap(x), (A3)
coupling y4(l) from experiment a parameter-free prediction

of the complete frequency and temperature dependence of I'X)=j"+Aj (x).

the sound mode and the shear viscosity is possible. The non-

asymptotic behavior of the dynamical parameters has alreadidditionally we allow small variations of the conjugated ex-
been demonstrate#,31] and satisfactory agreement with ternal fields:

experiment has been reached. In the asymptotic limit one

introduces a scaled frequenéyepending or’(l,) and de- TX)=T+T(X), wm(X)=p+ou(x),
fines scaling functions for the asymptotic crossover in the

frequencyw and temperature from thet axis to thew axis v(X)=v+ Sv(X).

in the w-t plane. This allows one to compare with earlier

asymptotic calculations,8,9). These topics are described in Inserting Eqs(A3) and(A4) into Eq. (A2) the local thermo-

(A4)

more detail in Ref[27]. dynamic potential can be split into three parts
Q(x) QO as
APPENDIX A: STATIC FUNCTIONAL kgT B kgT +HX) = SH(X). (AS)

Recently a detailed derivation of a functional describingpe first part represents the thermodynamic average and con-
static critical phenomena in liquid mixtures has been giVeNains the Gibb's free energ®@=e+e,—Ts— up—v-j'
[10]. Therefor_e we wil sketch °.”'y briefly the_der|va_t|on_ of The second part involves the fluctuation contributions and is
a static functional for pure liquids. The starting point is given by
local equilibrium distribution function:

1
H(X)= kB—T[Ae(x) +Ae(X)—TAS(X)— uAp(X)
W=y 0T (A —v-A) (0], (A6)
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The third part is the first order contributions due to the ex-ondary densities, only need to be expanded up to quadratic

ternal field variation: order, taking into account in the Hamiltonian all terms rel-
. evant for the critical theory. The Gaussian part of EL3)
M(X)ZG(XHGK(X)—MP(X)—U'J'(X) oT(X) is nondiagonal and contains terms that are not invariant
kT T against order parameter inversion. These terms proportional
. to ApAc and (Ao)® can be removed by introducing a
n p(X) pu(x) 2! (x)- dv(x) (A7) shifted order parametey(x) and a transformed secondary
kgT kgT ' densityqy(x) such as
Inserting Eq.(A5) into the local distribution functior{Al) bo(X) = INA[Aa(X) = (Aa(X))], (A14)

and expanding in first order of the external field variations,

we get, analogous 82,33 for the correlation functions, ap

do(X) = VNa Ap<x>—(%) [Ao(x>—<Ao<x>>]}.
P

&_p) ,  (A8) (A15)
u T

(s9)c= kBT(Z_-T-) K (pp)c=kgT

N has been introduced for convenience to obtain the ap-
ap Js pearance of the gas constaRtinstead of the Boltzmann
<Sp>°:kBT(ﬁ) :kBT(ﬁL' (A9) constankg in the equations and parameter definitions. Intro-
# ducing a rescaled momentum dengityj, +j,= VNaAj’, one
From Egs.(A8) and (A9) one can see that the thermody- ends up with Eq(2.10.
namic derivatives involve the chemical potential Experi-
mentally the pressur® is accessible and therefore for a APPENDIX B: DYNAMIC EQUATIONS
comparison with experimentally measured quantities the lo- N ] ] -
cal thermodynamic potentialA5) has to be expressed in Due to the_ cr|t|cal_ s_IOW|_ng down the d_ynamlcs of critical
densities, that correspond to external fieldand P instead Phenomena is explicitly influenced mainly by slow pro-
of T and w. This can be obtained by changing from entropy C€SS€s. The |nfluen9e of variables _that vary on short time
density per volumes(x) to entropy density per mass spales may be congldere_d stochastlcally. Thus only projec-
o(x)=s(x)/p(x). The corresponding fluctuations transform tions of the dynamic variables into a subspace of slowly

like varying variables need to be considef84,35. Let i;(x,t)
be a set of slow variables, then the corresponding dynamic
As(x)=pAo(X)+oAp(X). (A10)  equations can be written §36—39
The correlation functiongA8) and (A9) change to Si(x,t) SH{y(x, 1)}
$A8) and (A9) chang 5 = Vil - X A0 =5 T O
kBT Jo &p ) ! ' (Bl)
(UfT)c:T o7+ (Pp)c=pkeT| o5 |, (ALD)
P T 0;(x,t) are fluctuating forces that fulfill the Einstein rela-
(op) kBT( &p) ’ T( &U) A1) tions
op)c=——| 7| =prkeT| 5| -
¢ p\dT p P/ (Oi(x,1)0;(x",t"))=2A;(x)8(t—t") 8(x—x") (B2)

Expanding the HamiltoniaitA6) in powers of the fluctua- when Markovian processes are assumeg(x) are the ki-
tions of the entropy per mass, the mass density and the maetic coefficients, which are constants; (x) =A;; in the

mentum density we get case of nonconserved densitiggx,t) and are given by
Ajj(x) = —AijVZ in the case of conserved densities. The re-
H:f ddx law[Ao(x)]an ECUU[VAO'(X)]Z versible cqntributions\/i{w(x,t)} of the dynamic equations
2 2 can be written as
1 2 1 f . 2 5Q(X t.X/ t/)
58, Ap(0 1+, AT () Ap(x)+ 53] [A]' (X)] Vo) = 3 f dx' g | 22X
] o (x',t")
+1 [A()]3+1 [A()]“Jrl Ap(x)
Sy Vol A0(X yUslAo(X 5 YpAp(X OH{(X,t
3! 4 2°° —Qij(x,t;x’,t’)—{l//( L - (B3
oyi(x',t)
2
X[Ao(x)] ] (A3 The quantitiesQ;;(x,t;x’,t") are related to the Poisson

brackets of the densities,
For dynamic calculations it is convenient to choose the en-

tropy density fluctuations as the order parameter. With re- Qij (X, tx",t") =kgT{eh (X, 1), (X", t")}. (B4)
gard to this we have expanded in E@#13) the entropy

density fluctuations up to fourth order, while the mass den¥or simple liquids the slowly varying densitieg(x) corre-
sity and momentum density fluctuations, considered as sespond to the volume densitieéx), p(x), andj’(x). Gener-
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alized Poisson brackets for hydrodynamic densities may be ap SH
derived from infinitesimal displacemenit39]. The resulting —=—kgTV: p—_,> . (B12)
Poisson brackets are at J]

07 (x,1),s(x' 1)} =s(x,H) Va(x—x") 8(t—t"), The conservation of mass is an exact relation, therefore Eg.

(B12) contains no stochastic force. Linearizing the hydrody-
namic equation for the momentum density in the velocity,
the equation read<l 6]

(0)

kOGO (X)) =0 (X, 1) Vi d(x—x") K 7 o
— = O+ ——|V(V.-0)+ 5OV (B13)
— (X" 1)V 8(x—x")]8(t—t"). at 3

{0, p(X" )= p(x,1) Vo(x—x") 6(t—t"), (BS)

All other Poisson brackets are zero. The reversible termé® and 7(® are the bulk viscosity and the shear viscosity in
(B3) of the dynamic equations turn witB5) to (we omit the  the noncritical background. EquatidiB13) may be sepa-

exp||c|t indication of space and time dependence in the f0|fated into an equatlon for the IOngltUdlnaI and transverse
lowing) parts of the momentum den5|ty according'tej’,+j’ with

VXj'1=0andV-j'=0

Vo= —kgTV oR (B6) )’ 4 a9’
=_ i — ¢ —
S B S5jr ’ W:(g(m_l— §77(0))V21)|, E=77<0)V2vt. (814)
SH From the kinetic energy in the static functior{&6) it fol-
V,=—kgTV-| p—], (B7)  lows that the longitudinal and transverse velocity in Eq.
(B14) can be written aw;=kgTSH/8j’; (i=1,t). With the
reversible termB8) we get for the nonlinear dynamic equa-
SH SoH tion
Vi= —keT|SV 5o +pV —keT2 || kVé—
J k H
dj 4 SH SH
2 04 0 |y2 " | | T,Ov2
SH pr kgT| ¢ 37 )V 5 kgTnVVe— 5
V' — (B8)
Sjk
5H
The matrixA;; is determined by the dissipation processes in ik
hydrodynamics. For a liquid at resb€0) the hydrody- SH
namic equation for the entropy density re4ds) _ijr; +0;. (B15)
Ik

Js
- _V. = _ .0
Tat =-Vea = —kp VI (B9Y) Changing from entropy per volume to entropy per mass

o(X)=s(x)/p(x), analogous to statics, E¢B11) turns into
in which «{% is the thermal conductivity in the background. o
Expanding the functionaH in Eq. (A6) in powers of the do keky’' _,0H oH
fluctuationsAs(x), Ap(x) andAj’(x), a comparison of the ot 2 v 5_0_kBT(V‘T)' §+®0' (B16)
coefficients in quadratic order with thermodynamic relations

show that we can writd*T=kgT6H/ds. Thus the hydro-  From Eq.(B15) we get the corresponding equation for the

dynamic equatiofB9) can be written as momentum density:
s oH 3’ 4—r)) 020
= kgr!OV2—. (B10) 9d _ 04 20 | g2l o2 2H
From the above equation it follows that in the dynamic equa- SH SH SH
tion (B1) for the entropy density the only nonvanishing ki- —kgT pV——(VU) } kBTE kaa—
netic coefficient isA ¢= — kgx{V'V2. With Eq. (B6) we get Ik
.,6H
S _x (°)V25H kg TV oH +0 B11 e St o (B17
ot = KBKT 5s B : 35]., s ( ) k

The equation for the mass dens{B12) remains unchanged.
for the nonlinear entropy density equation. Due to mass conEquationgB12), (B16), and(B17) constitute a set of nonlin-
servation no dissipative contributions appear in the dynamiear equations that describe the dynamics of fluctuations in
equation for the mass density. With E®7) we simply get liquids. Equations(2.1)—(2.4) are obtained by introducing
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the fields ¢, and g, from Egs. (A14) and (A15) and by (B17), we write the equations that contain stochastic forces
splitting the momentum density equation into a longitudinalin a short notation
and a transverse part.

o 0,
da=V+0 with a=|1Ji |, 6= 6 |. (CD
H ’
APPENDIX C: DYNAMIC FUNCTIONAL Jt 0,

In order to calculate the dynamic correlation functions inThe vectorV contains the rest of EqeB16) and(B17). The
a perturbation expansion we need a generating dynamifuctuating forces® fulfill Einstein relations analogous to
functional. Considering the dynamic equatiof®l6) and (2.5 but with a coefficient matrix

— (kg&'P1p?)V? 0 0
4__
L'= 0 —kgT| £+ §n<0>) V2 0 . (C2)
0 0 —kgT V2

Additionally we have the exact continuity equati@12) in the short form
atp: Vp ’ (C3)

which may be considered as a constraint for the generating functional. The stochastic forces fluctuate in such a way that Eq.
(C3) is always fulfilled. Thus the generating functional can be written as

: (C4

. 1 . .
Zdsz((@)D(F)B(F)eX;{—ZJ dtdx®@'L’ 10

whereF=d;p—V,,. D refers to a suitable integration measure. Inserting(E@) and changing the integration variables leads
to

z :fp(* )8(dp—V,)ex —lj dtf dx| [d,a—V]'L' " da—V]+2D, %+2% (C5)
d a,p tP™ Vp 4 e @ T Sa; op ||
The 6 function may be expressed by an exponential function
5(&tp—Vp)=fD(iF)ex4—f dxf dt’ﬁ(atp—vp)}. (C6)
Introducing auxiliary fields @ and performing a Gaussian transformati@®) turns into
zd=f D(apiiaipe” (C7)
with

J=fdtf dx| —aTL a+a (da—V)+p(dp—V )+32 Ni L, (CY
t PROP= Vo) T 54t 5a "2 8p |

Introducing the order parametéhl14) and the secondary densigi15) in Eqg. (C8) the dynamic functional reads

~ ~ ~ - - 1 5V|
J=f dtf dx(—,BTLﬁ+,8T(&t,8—V)+§Ei 5—3_), (C9)

where the densities ar8"=(¢y,00.ji.j) and L is the coefficient matrix2.6). The conjugated densitiéé are defined
accordingly. An explicit expression fqC9) is obtained by inserting the dynamic equatid@sl)—(2.4). The Fourier trans-
formed Gaussian part can be written as
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. - B(—k,~ )
102 | [0 Bk M kw)| . (10
o B(—k—w)
|
The integration is defined af,= f[d/(27)%]fdw/27. _ 1
The elements of the matrR(®)(k, w) are the dynamic vertex (bo(k,w) po(—k,—w))o=——2—7—,
functions in lowest order perturbation theory. They are ex- —io+Tk(7+k%)
plicitly given by (C17
Ok 0 —iwl+L(k) _ - 1
(k,w)= iw1+LT(k) —2n(K) , (C1) <jt(k,a))®jt(—k,—w)>0=Taj)c\tk21, (C18
wh_erel den_otes the unit matrix and the superscript T thegnd the correlation propagators
adjoint matrix. In the present case the submatrices are
P2 12y o120 % 12 PP 21°k?
Pk (7+k?)  Lyk*(7+k%) —ikghg 0 (do(k,®) po(—k,—w))o= S ,
¢ 2 212 ka8 0 |—iw+Tk3(7+k?)|?
a a ika,C
L(K)= a4 " % ' (C19
0 ikajC aj)\|k2 0 °
. _ _ 2\ K?
0 0 0 ajkk? (Jik,0)®ji( =k, —w))o=———— -1 (C20
(C12 |—iw+aj\k?|
NG |i¢k2 0 0 In the extended model additional propagators of ordgf {
. 0 0 arise, which contribute in the limi€—c with vertices of
AK)= Lgk® Ak . ] (C13 orderc¢ to the vertex functions, they read
0 0 XK
0 0 0 R - Lok
Ak (do(k,®) ] 1(—K,—w))o=—— o 5 o ;
ic[—iw+Tk3(7+k?)]
The interaction terms in the Hamiltoniaf®2.10 and the (C21)
mode coupling terms in the dynamic equation modify the
matrix (C11) and may be calculated in a perturbation expan- £ (5+KD)k
sion. The dynamic two-point vertex function is given by (i(k, @) o — Kk, — ®))o=— s . ,
ia;c[—iw+Tk3(T+k?)]
I'k,w)=T9(k,0)—2(k,w), (C19 (C22
whereX(k,w) contains 1-irreducible diagrams with two ex- o ©
ternal legs. The matriX'(k,w) of the vertex functions has (qo(k w)Z)(—k — ©))o=— gihg
the structure oL ’ 0 8,8 —iw+ K25 +KD)]
(C23
Ik, o) (0] [T 5]k o) 15
y W)= :
[I'3sl(kw) [T73](kw) - k
. _ (Go(k, @) ji( =k, ~w))o=—5—, (C24
with the submatrix iagck
I3 f¢6 fr 0 . ~ k
o o ik, @)do(—k,~w))o=——, (C25
r~ -~ .- O ia;ck
q¢ tagq lql i
[T.zl=]| , . . 0 (C16
3 g Tqt 21°“k2g°;|F1q
P~ (¢o(k,0)do( =K, — ®))o=— o ,
° 0 0 Tq R " agdl-iw+ KAk 2

The submatricegl'; 5] and[I'; 7] are defined accordingly. (C26

Then the propagators of the model are determined by invert-

ing Eq. (C12). In the limit c— the propagators of order {o(k, @)ji(— K, — @))o=— _
(¢)° are identical to the known model H propagatdts. a8l —iw+TK2(7+K?)[2
One gets the response propagators (C27)

2E¢k(l)
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