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Depletion forces in fluids

B. Götzelmann, R. Evans,* and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 16 September 1997!

We investigate the entropic depletion force that arises between two big hard spheres of radiusRb , mimick-
ing colloidal particles, immersed in a fluid of small hard spheres of radiusRs . Within the framework of the
Derjaguin approximation, which becomes exact ass5Rs /Rb→0, we examine an exact expression for the
depletion force and the corresponding potential for the range 0,h,2Rs , whereh is the separation between
the big spheres. These expressions, which depend only on the bulk pressure and the corresponding planar
wall-fluid interfacial tension, are valid for all fluid number densitiesrs . In the limit rs→0 we recover the
results of earlier low density theories. Comparison with recent computer simulations shows that the Derjaguin
approximation is not reliable fors50.1 and packing fractionshs54prsRs

3/3*0.3. We propose two new
approximations, one based on treating the fluid as if it were confined to a wedge and the other based on the
limit s5Rs /Rb→1. Both improve upon the Derjaguin approximation fors50.1 and high packing fractions.
We discuss the extent to which our results remain valid for more general fluids, e.g., nonadsorbing polymers
near colloidal particles, and their implications for fluid-fluid phase separation in a binary hard-sphere mixture.
@S1063-651X~98!14405-7#
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I. INTRODUCTION

Depletion forces arise when two big~colloidal! particles
are immersed in a fluid of small colloidal particles, nona
sorbing polymers, micelles, or in a simple fluid. When t
separation between the big particles is less than the diam
of the small ones the latter are expelled from the gap
tween the bigger ones, i.e., there is depletion that leads t
anisotropy of the local pressure, which, in turn, may give r
to an attractive depletion force between the big partic
Such a mechanism was described first by Asakura
Oosawa@1#, who suggested that the depletion force cou
lead to reversible flocculation and phase separation
colloid-polymer mixtures. Those authors calculated the fo
between two big hard spheres of radiusRb immersed in a
fluid of small hard spheres of radiusRs using excluded vol-
ume arguments. Their celebrated result@cf. Eq. ~2.11!#,
which is correct to first order in the number densityrs of the
small component, predicts that the force and the correspo
ing depletion potential are attractive for all separationsh
,2Rs and are zero forh.2Rs . The physical origin of the
attraction is that the exclusion volumes for the small sphe
centered on each big sphere, overlap whenh,2Rs , increas-
ing the volume that is accessible to the small ones, ther
allowing their entropy to increase. The result is a force t
favors the clustering of the big particles and thus provide
possible mechanism for phase separation. Such depletio~or
entropic! forces are the focus of much current attention, n
just because of their practical importance for understand
the properties of colloid-polymer mixtures@2# but also from
a fundamental statistical mechanics viewpoint. That pur
entropic effects—all the interparticle forces in the abo
model are hard-sphere-like—can result in attraction is q
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remarkable and has prompted several detailed investigati
Attard and co-workers@3,4# have developed sophisticate
hypernetted-chain–based approximations, which include
proximate solvent-solvent, solute-solvent, and solve
solvent bridge diagrams, and tested these in recent Mo
Carlo simulations@5# of the depletion force for size ratioss
50.1 and 0.2. The integral equation theory appears to
rather accurate for all the packing fractions,hs54prsRs

3/3
up to 0.34, that were investigated. In an alternative appro
to the problem Maoet al. @6# have calculated the first thre
terms in the virial expansion of the force, i.e., up to thi
order inrs , having first made the Derjaguin approximatio
in order to relate the force between two particles with lar
radii of curvature to the force that arises when two sm
particles are confined by planar walls (Rb5`). Comparison
of their results with molecular dynamics simulations@7# for
s50.1 suggests that this third-order approximation perfor
well, at least for the important range of separationsh
&2Rs , even for a packing fraction as high ashs50.367.
Note that results from theory and simulation show that
though the depletionpotential remains attractive at contac
(h50) this potential becomes repulsive at largerh, with a
maximum ath/(2Rs)50.7, ashs is increased; forhs*0.2
the position of this maximum hardly varies as a function
hs . Such behavior, which is not captured by the Asaku
Oosawa formula valid at low densities, has implications
the possible existence of fluid-fluid phase separations in
nary hard-sphere mixtures@7#.

Motivated in part by these recent studies we reexam
the theory of depletion forces, focusing for the most part
big hard spheres immersed in a fluid of small hard sphe
Our aim is to construct approximations for the depleti
force and the depletion potential that are analytically tr
table and that provide some new physical insight into
origin of attraction and repulsion but that go beyond t
third-order virial expansion of Maoet al. @6#. The starting
point is an exact expression for the force between a h

y

6785 © 1998 The American Physical Society



flu
ity
n

t
th

n-
ce
ty
e
q

g
ls
u
cl
o

.
th
f

th
n

on
e
tio
-
d

m
es
o

m
b

ius

d
e

d

a

e

a

e-
cal

le 1

to
i-

en
s
-

ches

ter of
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sphere and a second obstacle immersed in an arbitrary
of small particles. Different approximations for the dens
profile of the fluid at contact with the sphere lead to differe
approximations for this force.

The paper is arranged such that in Sec. II we describe
exact expression for the depletion force and how
Asakura-Oosawa result emerges as the low density~ideal
gas! approximation for the density profile of the fluid at co
tact. The well-known Derjaguin approximation for the for
@cf. Eq. ~2.21!# follows by approximating the contact densi
by that of the fluid in a planar hard wall. By confining th
fluid to a wedge rather than a slit, an approximation, cf. E
~2.26!, is derived that should be more appropriate for lar
size ratioss. Section III compares the depletion potentia
obtained from the approximations of Sec. II with the sim
lation studies mentioned above. The most significant con
sion is that the Derjaguin approximation provides a po
account of the simulation data for large values ofhs and the
size ratioss50.1 ands50.2 employed in the simulations
We discuss the convergence of the virial expansion of
depletion force and conclude that the apparent success o
third-order theory of Ref.@6# may be fortuitous. In Sec. IV
we enquire how the depletion potential depends on
choice of interparticle potential functions, i.e., to what exte
our results carry over to more general fluids. Section V c
siders the limitRb5Rs (s51), where exact results can b
derived. These prompt a new approximation for the deple
potential @cf., Eq. ~5.12!#, which is shown to be quite suc
cessful even fors50.1. Section VI is more speculative an
discursive than the earlier sections. It discusses possible
percussions of our results for the structure and the ther
dynamic properties of bulk binary mixtures of hard spher
i.e., for nonzero concentrations of the big spheres. We c
clude in Sec. VII with a summary of the results and so
discussion of their relevance for experiments that pro
depletion forces in colloid-polymer systems.

II. FORCE ON A LARGE FIXED HARD SPHERE

We consider a fluid consisting of small particles of rad
Rs in the presence of an external potentialV(R) composed
of two contributions:

V~R;h!5V1~R!1V2@R2~2Rb1h!ez#, h.0, ~2.1!

where

V2~R!5H `, R,Rb1Rs

0, R.Rb1Rs . ~2.2!

The second term in Eq.~2.1! is the potential due to a big har
sphere of radiusRb ~denoted as 2 in Fig. 1 and later in th
text! fixed at the positionR5(x,y,z)5(0,0,2Rb1h); ez is a
unit vector in thez direction. We are particularly intereste
in the caseRb.Rs . The potentialV1(R) can represent any
other fixed obstacle, such as another big hard sphere loc
at the origin@V1(R)5V2(R), case~a!# or, e.g., a planar hard
wall located a distanceh apart from sphere 2@case~b!#. h is
the minimal distance between the two big spheres or betw
the big sphere and the wall~Fig. 1!. We are concerned with
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the forceF(h) exerted by the fluid on the big sphere 2. For
general obstacleV1 its z component is

Fz~h!52S ]V

]h D
T,m

, ~2.3!

whereV is the grand canonical potential of the inhomog
neous fluid in contact with a reservoir at a fixed chemi
potentialm and temperatureT. A negative value ofFz(h)
corresponds to a force directed to the left~Fig. 1!. This im-
plies attraction as the grand potential is lowered (DV,0)
when the sphere is moved to the left towards the obstac
(Dh,0).

In the Appendix we use density functional methods
derive the following result for the force in terms of the equ
librium number density profiler(R) of the fluid:

bFz~h!5E d3Rd„uRu2~Rb1Rs!…~2z/R!

3r„R1~2Rb1h!ez… ~2.4!

with b5(kbT)21. Although the external potentialV1 does
not appear explicitly in this formula, the form ofr(R) de-
pends on it. The force can also be expressed as

bF~h!52E
S
dAr~R!n̂, ~2.5!

FIG. 1. Two fixed hard spheres of radiusRb , denoted as 1 and
2, in a fluid of smaller hard spheres of radiusRs , drawn for a size
ratio s5Rs /Rb50.2.h>0 measures the minimal distance betwe
the two fixed hard spheres along thez axis connecting the center
(x,y,z)5(0,0,0) and (0,0,2Rb1h). The figure depicts a configura
tion in which all centers of spheres are located in the planex50.
FG denotes the angle formed when a small hard sphere tou
both fixed big hard spheres.q is the angle formed between thez
axis and the axis connecting the center of sphere 2 and the cen
a small sphere touching sphere 2.F5p2q, l 5(Rb1Rs)cosF,

yG5(Rb1Rs)sinFG , L̃52(Rb2 l )1h, andL5 L̃12Rs .
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57 6787DEPLETION FORCES IN FLUIDS
where the integral is over the surfaceS of a sphere of radius
Rb1Rs centered at the center of sphere 2;n̂ is the unit nor-
mal vector pointing outwards from this sphere. Equat
~2.5! was first derived by Attard@3# directly from the parti-
tion function for a hard sphere fluid containing two big ha
spheres and was employed in recent Monte Carlo sim
tions @5# of the force for the particular case of hard spher
Our present derivation~see the Appendix! emphasizes, first
that this formula is valid for any fluid, not only for one tha
is composed of~small! hard spheres~the generalization to
other fluids is discussed in Sec. IV!, and, second, that i
remains valid even when anapproximatedensity functional
is used to obtain the equilibrium density profile. Moreov
Eq. ~2.5! holds for any external potentialV1(R), i.e., the
obstacle 1 can have various shapes and can exert an arb
potential, not necessarily a hard one, on the fluid. In
absence of an external potential (V1[0) the density profile
has radial symmetry and the net force vanishes. It is
reduction of symmetry induced by the presence of the
stacle at the origin that lends shape to the contact den
r(R) in Eqs.~2.4! and~2.5! and that gives rise to a nonzer
force Fz(h). One can interpretkBTr(R) as a local, kinetic
pressure and for a hard sphere the net force is simply a
face integral of this kinetic pressure.

If the potentialV1(R) is radially symmetric around thez
axis, as in the cases~a! and ~b!, the density profile has the
same symmetry and Eqs.~2.4! and ~2.5! lead to@5#

bFz~h!522p~Rb1Rs!
2E

0

p

dqsinqcosqr~q!,

~2.6!

wherer(q) is the contact density of the small hard-sphe
fluid at the fixed big sphere 2 andq is the angle between th
z axis and the axis connecting the center of sphere 2 and
center of a small sphere touching the large one~see Fig. 1!.
In this caseFx5Fy50. Equation~2.6! can be reformulated
as

bFz~h!52p~Rb1Rs!
2E

p/2

p

dqsinq~2cosq!Dr~q!.

~2.7!

HereDr(q)5r(q)2r(p2q), with p/2,q,p, is the dif-
ference of the contact densities between the left@r(q)# and
the right @r(p2q)# hemisphere of sphere 2. For a fixe
value of they coordinateL̃ denotes the distance in thez
direction a small sphere can move until it touches one of
two surfaces of the obstacles. In case~a!, corresponding to
two big spheres, one hasL̃52Rb1h22l ~see Fig. 1! and in
case~b!, corresponding to a big sphere a distanceh in front
of a planar wall, L̃5Rb1h2 l 2Rs with l 52(Rb

1Rs)cosq.0. Note that with these definitions one hasL̃

5h22Rs for q5p and L̃5h12Rb for q5p/2 for case
~a!. Changing variables fromq to L̃ and definingL[ L̃
12Rs ~see Fig. 1! we obtain theexactequation

bFz~h!5peE
h

`

dL@~Rb1Rs!2 1
2 e~L2h!#Dr~L !,

~2.8!
n
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wheree51 for the sphere-sphere case@case~a!# and e52
for the sphere-wall case@case~b!#. Dr(L) denotes the dif-
ference of the contact densities between the left and r
hemisphere of sphere 2 and is defined to be zero foL
.(2/e)(Rb1Rs)1h. It depends also on the choice of th
geometry, i.e., one and on the radii of the spheres. For sm
size ratioss[Rs /Rb!1 this additional dependence is e
pected to be rather weak but, in general, this dependence
be significant.

The calculation of the density profiler(R) at contact,
either by simulation or by minimizing a suitable densi
functional, requires considerable numerical effort so that i
important to develop approximation schemes forr(R).
These can provide physical insight into the factors that le
to an entropic attraction or repulsion. To this end Eq.~2.8! is
a convenient starting point. If one assumes thatDr(L) de-
cays rapidly as a function ofL over the range of the integra
tion, the second integral in Eq.~2.8! should be negligible so
that one finds

bFp~h!5pe~Rb1Rs!E
h

`

dLDr~L !. ~2.9!

We refer to this approximation as the projection approxim
tion since it corresponds to ignoring the factor (2z/R) in
Eq. ~2.4! and the factor cosq in Eq. ~2.7!, respectively. Thus
the projection approximation disregards the projection o
the z axis that appears in the exact formula. Equation~2.9!
already indicates that to leading order inRb the force should
depend linearly on the radiusRb . Moreover, it is reasonable
to expect that for a given value ofRb the contact density
differenceDr(L) is almost the same for case~a! and case
~b!. ~This should be true for intermediate as well as sm
size ratioss.! With this additional approximation Eq.~2.9!
implies that the force-separation curves for the two ca
should differ by a factor of approximately 2. Direct suppo
for this prediction is provided by the Monte Carlo resu
~see Fig. 8 in Ref.@5#! of Dickman et al. for a size ratios
[Rs /Rb50.1. Note that in Ref.@5# the authors argue tha
the comparison of the results of case~a! with those of case
~b! amounts to a test of the Derjaguin approximation. Ho
ever, we emphasize that the Derjaguin approximation
volves further assumptions, namely, thatDr(L) should be
replaced by the corresponding quantity for a planar slit~see
Sec. II B!. The Derjaguin approximation does, of cours
lead to a factor of precisely 2 for the ratio of forces but E
~2.9! indicates that a factor of approximately 2 should follo
from less drastic assumptions and therefore should hold f
wider class of approximations. It is sufficient thatDr(L) for
two macrospheres and for a wall and a macrosphere are s
lar. Therefore the appearance of this factor of 2 is a nec
sary but not sufficient criterion for the validity of the De
jaguin approximation.

Another approximation scheme consists of calculating
density profiles for two separated systems, where in the
one onlyV1 is considered and in the second one onlyV2.
One then superposes the two density profiles of the two
lated systems in order to obtain an estimate of the den
profile of the combined system@3#. In the following subsec-
tions we describe some other approximate approaches
discuss the relationship between them as well as their im
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cations for the dependence of the depletion force on the d
sity ~volume fraction! of the small spheres.

A. The Asakura-Oosawa approximation and an extension

If one assumes that the density profile is not disturbed
the presence of the external potential untilh is so small that
no small sphere can be accommodated between the obs
1 and the big sphere 2, i.e., the density on a part of the
hemisphere of sphere 2 is zero, the contact density differe
is given by

Drs~L !5H 2rs , L,2Rs

0, L.2Rs , ~2.10!

wherers is the number density of the uniform~bulk! fluid.
This approximation is only justified for very low bulk den
sities for which it should become exact. Inserting Eq.~2.10!
into the exact Eq.~2.8! one obtains

bFA~h!52persQ~2Rs2h!@Rb1~12 1
2 e!Rs1

1
4 eh#

3~2Rs2h!, ~2.11!

i.e., the force is negative~attractive! for h,2Rs and vanishes
for h.2Rs . Again,e51 refers to case~a! ande52 to case
~b! andQ(r ) denotes the Heaviside step function. Equat
~2.11! is the well-known result obtained by Asakura a
Oosawa@1# more than 40 years ago using excluded volu
arguments. Using Eq.~2.10! in the projection approximation
@Eq. ~2.9!# one has

bFpA~h!52persQ~2Rs2h!~Rb1Rs!~2Rs2h!,
~2.12!

which is again negative forh,2Rs and vanishes otherwise
The ratio of the forces given by these two equations is larg
at h50:

FA~0!

FpA~0!
5

Rb1S 12
1

2
e DRs

Rb1Rs
512

1

2
e

s

11s
. ~2.13!

For s50.1 this ratio is 0.91 for case~b! and 0.95 for case~a!.
For smaller values ofs this ratio approaches 1.

In an attempt to improve this approximation one can
low for the disturbance of the small sphere fluid by the fix
sphere 2 but ignores the influence of the other obstacle,
V1. For a single hard sphere of radiusRb immersed in a
hard-sphere fluid with the bulk densityrs , the contact den-
sity rc is accurately approximated by@8#

rc~s,hs!

rs
5

12hs/2

~12hs!
3

1hs

3/21hs~12hs!

~12hs!
3

2Rb22Rs

2Rb12Rs
,

~2.14!

wherehs5(4p/3)Rs
3rs is the volume fraction of the sma

spheres. This equation follows from a careful fit to simu
tion data and in the limitRb→` it reduces to the result fo
the contact density at a single planar hard wallrc(s
→0,hs)5bP whereP is the pressure of the uniform hard
sphere fluid given by the Carnahan-Starling@9# equation of
n-

y

cle
ft
ce

n

e

st

-

e.,

-

state. Note that for size ratioss,0.1 the values obtained
from Eq. ~2.14! differ only slightly from those in the limit
s50. As expected from the equation of state of the ideal
one hasrc(s,hs→0)5rs . Equation~2.10! can be general-
ized by replacingrs by rc . Within the projection approxi-
mation we then obtain

bFpA2~h!52percQ~2Rs2h!~Rb1Rs!~2Rs2h!,
~2.15!

which constitutes an empirical extension of Eq.~2.12! to
larger values ofhs . The quality of this approximation will
be discussed in Sec. III B.

B. The Derjaguin approximation

In the case of a small size ratios!1, the small spheres
between the two big hard spheres are exposed to an ext
field, which for fixedy ~see Fig. 1! can be approximated by
that of a planar hard-wall slit of widthL. Thus the contact
density at the left hemisphere of the fixed sphere 2 is
proximated by the contact densityrslit(L) of a hard sphere
fluid confined to a slit of widthL. The contact density on the
right hemisphere is approximated by that at a single pla
wall, i.e., that of a slit of infinite width,L→`. Thus the
difference in the contact densities is given byrslit(L)
2rslit(`) with rslit(`)5bP(rs). From a force sum rule
@10,11# this difference isb times the so-called solvation
force f s(L), the excess pressure due to confinement of
fluid, in a slit composed of hard walls. Using this approx
mation in Eqs.~2.8! and ~2.9! leads to

FD~h!5peE
h

`

dL@~Rb1Rs!2 1
2 e~L2h!# f s~L !

~2.16!

and

FpD~h!5pe~Rb1Rs!E
h

`

dL fs~L !, ~2.17!

respectively. In both Eqs.~2.16! and~2.17! the upper limit of
integration is extended to infinity, although strictly speaki
this limit should beL5(2/e)(Rb1Rs)1h. However, f s(L)
vanishes sufficiently rapidly that this causes a negligible
ror @11#. Equation~2.17! is called the Derjaguin approxima
tion @12# because it is equivalent to the general formula o
tained by Derjaguin@13# relating the force between conve
bodies to the excess free energy of a fluid confined betw
planar walls. The advantage of Eqs.~2.16! and~2.17! is that
the only required input is that from the planar~slit! geom-
etry. This input can be determined more easily, e.g., by d
sity functional theory@11#, simulation@14#, virial expansions
@6#, and integral equation closures@15#. A more formal way
of defining this approximation is to demand that in Eqs.~2.8!
and ~2.9! Dr(L) should not depend onRb . Then the value
for Rb→` can be used, which isrslit(L)2rslit(`), leading
directly to Eqs.~2.16! and ~2.17!. One can argue that Eqs
~2.16! or ~2.17! represent the best approximation one c
apply without taking explicit account of the dependence
the contact density on the size ratios.
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57 6789DEPLETION FORCES IN FLUIDS
We now consider Eq.~2.17! for 0,h,2Rs . For L
,2Rs all spheres are squeezed out of the slit so that
contact density is zero and the solvation force is constant
given by minus the bulk pressure of the fluid:

f s~L !52P~rs!, 0,L,2Rs . ~2.18!

On the other hand, by definition, one has for any slit wid

f s~L ![2
1

AS ]V

]L D
m,T

2P~rs!52S ]g~rs ;L !

]L D
m,T

,

~2.19!

where g(rs ;L) is the finite size contribution to the gran
potential per unit areaA for a hard-wall slit of widthL @11#.
If these relations are inserted into Eq.~2.17!, one obtains

FpD~h!52pe~Rb1Rs!@P~rs!~2Rs2h!1g~rs ;`!

2g~rs ;2Rs!#, 0,h,2Rs . ~2.20!

In Ref. @11# it is shown thatg(rs ;2Rs) vanishes identically
so that

FpD~h!52pe~Rb1Rs!@P~rs!~2Rs2h!1g~rs!#,

0,h,2Rs , ~2.21!

where g(rs)[g(rs ,`) is twice the wall-fluid interfacial
tension of a single wall. Note thatg(rs) is negativefor hard
spheres at a hard wall. Equation~2.21! is a formally exact
result within the general framework of the Derjaguin a
proximation. Note that the same formula is given by Atta
et al. @16#. When h52Rs , so that a small sphere can ju
bridge the gap between the obstacles, the force simplifie
bFpD(2Rs)52pe(Rb1Rs)g(rs). This last result, which is
valid for any fluid, is presented explicitly in Derjaguin’
original work @13#. Note that Eq.~2.21! is valid for all fluid
densitiesrs . This is in strong contrast to the Asakur
Oosawa approximation, which is valid only for low dens
ties. Moreover, as the Derjaguin approximation becomes
act in the limitRb→`, Eq. ~2.21! is also exact in that limit.
Equation~2.21! shows nicely the interplay between attracti
and repulsive contributions. The depletion of the sm
spheres acts to push the big sphere on the right side tow
the left by a force that equals the bulk pressureP(rs) times
the depleted areaDA(h):

DA~h![2p~Rb1Rs!
2E

0

FG
dFsinF

5pe~Rb1Rs!~2Rs2h!. ~2.22!

Here we used the relations cosFG5(Rb1
1
2h)/(Rs1Rb) ~see

Fig. 1! in case~a! and cosFG5(Rb1h2Rs)/(Rb1Rs) in case
~b!. This implies that the first term in Eq.~2.21! leads to an
attraction that is essentially the same as in Eq.~2.15!. On the
other hand, the density of the small spheres in the we
formed by the two big spheres is enlarged@17#, leading to
repulsion. The overall contribution due to this repulsion
given by the second, surface tension, term, which is indep
dent of h, as the Derjaguin approximation neglects all cu
e
nd

-

to

x-

ll
rds

e

n-
-

vature effects. This repulsive contribution is completely
nored both in the Asakura-Oosawa approximation, E
~2.11!, and in Eq.~2.15!.

C. The wedge approximation

The Derjaguin approximation invokes the solvation for
f s(L) for a parallel slit in order to estimate the force betwe
the big spheres. For hard spheresf s(L) oscillates with a
period;2Rs and its envelope decays exponentially. The
tegral in Eq.~2.17! is dominated by values off s(L) for L
&3Rs or 4Rs ~see Ref.@18#!. In Fig. 2 a single small spher
is shown at a positionL̃50 or L52Rs for a size ratios
50.2. In order to estimate the values of the densityr(R) in
this case, it seems hardly justified to approximate the sys
by a slit ~see the short-dashed line in Fig. 2!. In this case the
deviations from planar geometry are very pronounced
the small particles can enter and leave more easily than
slit. Thus we propose to replace the slit by a wedge of an
a52FG , i.e., for a given distanceL̃ between the centers of
the dotted spheres in Fig. 2 we approximate the contact d
sity at the fixed sphere 2 by the contact density in a we
with hard walls forming a fixed anglea and the same dis
tance L̃ ~see the dashed spheres in Fig. 2!. Using this ap-
proximation in the projection approximation@Eq. ~2.9!# for
the force acting on sphere 2 we obtain an equation that c
tains an integration over the contact densityrw( l ) at one of
the sides of a wedge instead over the solvation force of a
Thus we define

I ~a![sinaE
0

`

dl@rw~ l !2rw~`!#, ~2.23!

where the factor sina has been included in order to yield

FIG. 2. Introduction of the wedge approximation for the sam
geometry as in Fig. 1~see the main text!. The wedge with opening
anglea is defined such that its sides are perpendicular to the li
connecting the centers of the big spheres and the center of a s
sphere, which just touches both big spheres. Thus one
cos(a/2)5cosFG5(Rb1

1
2h)/(Rs1Rb).
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finite value of I (a) for a50. A close investigation of this
quantity leads to some exact results and a symmetry p
erty, which can be exploited to determine the first sev
coefficients in a Fourier expansion of Eq.~2.23! @19#, yield-
ing what should be a very accurate approximation:

I ~a!52
b

2
g~rs!~11cosa!. ~2.24!

This result is consistent with the exact sum ruleI (p/2)
52bg(rs)/2 @20#. @Note that g(rs) is twice the surface
tension between the fluid and asinglewall.# A substitution of
variables in Eq.~2.23! gives

I ~a!5
sina

2sin~a/2!
E

2Rs

`

dL@~rw~L !2rw~`!#, ~2.25!

which facilitates the use of Eq.~2.24! in the projection ap-
proximation given by Eq.~2.9! and leads, together with Eq
~2.18!, to the wedge approximation

Fpw~h!52p~Rb1Rs!@P~rs!~2Rs2h!1g~rs!cosFG#,

0,h,2Rs , ~2.26!

with 0<cosFG5(Rb1h/2)/(Rb1Rs)<1. In the limits s
5Rs /Rb→0 and h/Rb→0 we recover the Derjaguin ap
proximation @Eq. ~2.21!#. For s5A221 and h50, which
corresponds toa5p/2 where the sum rule forI (a) is exact,
one has cosFG51/A250.707. Thus the repulsion betwee
the two fixed spheres is reduced within this new approxim
tion. From this observation we expect that in an exact tre
ment the repulsion should be diminished further, as eve
wedge~see Fig. 2! restricts the small spheres more than t
actual configuration.

III. DEPLETION POTENTIAL
FOR A HARD SPHERE FLUID

For subsequent applications the potential energy ass
ated with depletion is the important physical quantity. T
depletion potentialW(h) is the potential energy required t
bring a hard sphere of radiusRb from infinity to a distanceh
from another hard sphere with radiusRb (e51) or from a
hard wall (e52)

W~h![E
h

`

dh8F~h8!. ~3.1!

For the remainder of this section we specialize to a ha
sphere fluid and consider the various approximations for
depletion forceF(h) that were introduced in Sec. II. Sinc
most of those approximations provide explicit results
F(h) in the range 0<h<2Rs it is convenient to focus on the
potential difference

W~h!2W~2Rs!5E
h

2Rs
dh8F~h8!. ~3.2!
p-
n

-
t-
a
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Moreover, since the leading dependence ofW(h) on the ra-
dius Rb is given by a prefactor (Rb1Rs) @see, e.g., Eq.
~2.9!#, this motivates the following definition of a normalize
~dimensionless! potential:

DW~h![
2Rs

Rb1Rs

1

e
b@W~h!2W~2Rs!#. ~3.3!

A. Asakura-Oosawa depletion potential

Substituting Eq.~2.11! into Eq.~3.1! and integrating leads
to the Asakura-Oosawa approximation for the depletion
tential,

bWA~h!5H 2rsDV~h!, h,2Rs

0, h.2Rs , ~3.4!

where

DV~h!5pe~2Rs2h!H Rs@Rb1~12 1
3 e!Rs#

2
1

2
h@Rb1~12 2

3 e!Rs#2h2 1
12 eJ . ~3.5!

Note thatDV(h), which results here from a straightforwar
integration of Eq.~2.11!, can be identified with the overlap
volume of two exclusion spheres of radiusRb1Rs (e51) or
of an exclusion sphere and a hard wall (e52) ~see Fig. 1!.
For sufficently small size ratioss the projection approxima-
tion is accurate and the above equation simplifies consi
ably, i.e., using Eq.~2.12! in Eq. ~3.2! yields

bWpA~h!5H 2rs

p

2
e~Rs1Rb!~2Rs2h!2, h,2Rs

0, h.2Rs .

~3.6!

Defining the packing fractionhs54prsRs
3/3 and the dimen-

sionless distancel5(h22Rs)/(2Rs)5211h/(2Rs), the
normalized potential is

DWpA~l!5H 23hsl
2, 21,l,0

0, l.0, ~3.7!

which, unlike the normalized potential following from Eq
~3.4!, is independent ofs and e. The Asakura-Oosawa po
tential is attractive and increases linearly with increas
fluid densityrs .

B. Derjaguin depletion potential

Using the Derjaguin approximation@Eq. ~2.21!# in Eq.
~3.2! leads to
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WpD~h!2WpD~2Rs!52ep~Rb1Rs!~2Rs2h!

3S 1

2
P~rs!~2Rs2h!1g~rs! D ,

0,h,2Rs , ~3.8!

which is exact in the context of the Derjaguin approximatio
The corresponding normalized interaction potential is

DWpD~l!52pS 1

2
P̃~rs!l

212g̃~rs!l D , 21,l,0,

~3.9!

where P̃[bP(rs)(2Rs)
3 is the reduced pressure andg̃

52bg(rs)(2Rs)
2/2.0 is minus the reduced surface te

sion of a hard sphere liquid close to asinglehard wall. Note
that the normalized interaction potential in Eq.~3.9! is inde-
pendent of the size ratios5Rs /Rb and of e; it is the same
for the interaction between a wall and a fixed sphere as
two equal fixed spheres. The usefulness of Eqs.~3.8! and
~3.9! lies in the fact that highly accurate, analytic formul
for P̃ and g̃ are known. In the following we use the
Carnahan-Starling relation for the pressure@9#

P̃~rs!5
6

p
hs

11hs1hs
22hs

3

~12hs!
3

~3.10!

and the scaled particle theory~SPT! @21# for the surface ten-
sion

g̃~rs!5
9

2p

hs
2~11hs!

~12hs!
3

. ~3.11!

Using more sophisticated results forP̃ and g̃ @22# leads to
very similar results for the depletion potential. Moreov
making variations of a few percent from the values ofP and
g given by the Carnahan-Starling and scaled particle res
does not have a significant effect on the form of the deple
potential.

Much insight is gained by expanding Eq.~3.9! in powers
of the packing fraction:

DWpD~h!523l2hs1~29l212l2!hs
2

1~236l230l2!hs
3254l~ 3

2 1l!hs
4

1O~hs
5!, 21,l,0. ~3.12!

At first order in hs we recover Eq.~3.7!, the Asakura-
Oosawa result in the projection approximation, which
therefore, completely contained in Eq.~3.9!. This is due to
the fact that the surface tensiong̃ is, in lowest order, qua-
dratic inhs . Thus, the first-order term in Eq.~3.12! is given
by the first-order~ideal gas! term in the pressureP̃. This is
equivalent to the assumption used in the derivation of
Asakura-Oosawa approximation. Note that for the seco
order term in Eq.~3.12! the surface tension contribution
equally important. Therefore improving only the estimate
P̃, which is equivalent to calculating the contact densityrc
.

r

,

lts
n

,

e
d-

to higher order inhs @see Eq.~2.15!#, does not constitute a
systematic improvement of the Asakura-Oosawa approxi
tion.

Recently Maoet al. @6,23# have developed a virial expan
sion approach for calculating the depletion potential with
the framework of the Derjaguin approximation, i.e., by usi
the planar~slit! geometry. Within their approach it is pos
sible to calculate the depletion potential exactly up to th
order in hs , for all h. In the range 0,h,2Rs our present
approach reproduces their result, if one uses formulas foP̃

@22# and g̃ @24# that yield the exact virial coefficients up to
third order. In order to obtain a simple expansion we u
approximations, given by Eqs.~3.10! and~3.11!, which yield
the exact first two virial coefficients. However, a comparis
with the results in Ref.@6# shows that the differences at thir
order are at most a few percent. We emphasize that E
~3.10! and~3.11! are known to be accurate to all orders ofhs
not just to third order.

In Fig. 3~a! the normalized depletion potential obtaine
from Eq. ~3.9! is shown as a function ofh/(2Rs) for hs
50.2094. Even at this fairly low packing fraction the firs

FIG. 3. The normalized depletion potentialDW(h) @Eq. ~3.3!#
for a packing fractionhs50.43p/65p/1550.2094 ~a! and for
hs50.73p/650.3665~b!. In both ~a! and~b! the full line denotes
the ‘‘exact’’ Derjaguin result@Eqs.~3.9!–~3.11!# and the dotted line
denotes the Asakura-Oosawa~projection! approximation @Eq.
~3.7!#. The dashed and the dashed-dotted lines denote the resu
to third and fourth order inhs , respectively@see Eq.~3.12!#. The
third-order result is almost identical to the result obtained in R
@6#. In ~b! the dashed-double-dotted line denotes the result of
wedge approximation@Eq. ~3.15!# for e51 and withs50.2. The
dashed-triple-dotted line corresponds to the result of the limitRb

5Rs @Eq. ~5.12!# (e51). This is the only case for which we show
results forh.2Rs . By definitionDW(h52Rs)50.
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6792 57B. GÖTZELMANN, R. EVANS, AND S. DIETRICH
order, Asakura-Oosawa, approximation is very inaccurate
is only useful for very small packing fractions. The thir
order result yields a shape similar to the ‘‘exact’’ result~i.e.,
without expansion! but even the fourth-order result show
significant deviations from the ‘‘exact’’ one. It is necessa
to include fifth-order terms in order to obtain a satisfacto
agreement with the ‘‘exact’’ result. For a higher packin
fraction, hs50.3665, the third-order result is even qualit
tively incorrect @see Fig. 3~b!#. For this value ofhs it is
necessary to include terms up to seventh order in orde
obtain reasonable agreement with the ‘‘exact’’ result.

Figure 4 shows the depletion potential at contact, i.e.,
h50 obtained from the ‘‘exact’’ result:

DWpD~0!523hs

122hs22hs
22hs

3

~12hs!
3

. ~3.13!

For large values ofhs this is in strong contrast to th
Asakura-Oosawa approximation

DWpA~0!523hs ~3.14!

and to the third-order results@6# for which the contact value
always decreases upon increasing the packing fraction. E
tion ~3.13! predicts a maximal attraction forhs50.241 and
for hs.0.3532 the contact value is positive so that there
repulsion~see Fig. 4!. If we assume a 1% percent error in th
Carnahan-Starling equation and a 2% error in the SPT e
tion DWpD will change sign for a packing fraction in th
range 0.342 to 0.364.
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C. The wedge approximation for the depletion potential

Using the refined expression for the force between t
large fixed spheres@Eq. ~2.26!# leads, via Eq.~3.2!, to a
refined approximation for the depletion potential

FIG. 4. The normalized depletion potential@Eq. ~3.3!# at contact
h50. The full line denotes the ‘‘exact’’ Derjaguin approximatio
@Eq. ~3.13!#, which has a minimum aths50.241 and vanishes a
hs50 and hs50.3532. The dotted line represents the Asaku
Oosawa~projection! approximation@Eq. ~3.14!#, which is linear in
hs . The dashed and dashed-dotted lines are the results from
third- and fourth-order expansion@Eq. ~3.12!#. Thus, the inclusion
of higher-order contributions produces a slow buildup to repuls
at high packing fractions.
Wpw~h!2Wpw~2Rs!52p~Rb1Rs!~2Rs2h!F 1

2
P~rs!~2Rs2h!1g~rs!

S Rb1
1

4
~2Rs1h!

Rs1Rb

D G , 0,h,2Rs .

~3.15!
ly?
m-

nt

to
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re-

-
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ion
Although this formula is very similar to the Derjaguin a
proximation, the correction becomes very important for la
values ofs and large values of the packing fractionhs . This
is demonstrated in Table I for two different size ratioss
50.2 ands50.1 and three different packing fractions. A
expected, the contact values from the wedge approxima
are more negative than the results of the Derjaguin appr
mation, indicating a reduction of the repulsive contributio
Note that the normalized depletion potential from the wed
approximation depends on the size ratio and is plotted in
3~b! for hs50.3665 ands50.2. It is significantly less repul
sive than the Derjaguin approximation for allh,2Rs .

D. Comparison with simulation data

All the approximations we have discussed, apart from
wedge approximation, are based on the assumption tha
contact density differenceDr(L) @see Eq.~2.8!# does not
depend on the size ratios. They differ only in the subsequen
approximation applied to this difference. Thus they can o
be accurate for small size ratios. The issue is as follows:
e

n
i-
.
e
g.

e
he

y
p

to which value ofs can these approximations be used safe
An obvious way to answer this question is to make a co
parison with simulation data@5,7#. In Fig. 9 of Ref.@7# mo-
lecular dynamics data for the depletion potential, withs
50.1, are shown for packing fractionshs50.209, 0.262,
0.314, and 0.367. In the range 0,h,2Rs the results of the
third-order theory of Maoet al. @6# are very close to the
simulation data.~The third-order theory gives a poor accou
of the simulation results in the range 2Rs,h, but this is not
germane to the present discussion.! First we concentrate on
the casehs50.209. Since, according to Fig. 3~a!, the third-
order expansion already provides a good approximation
the ‘‘exact’’ Derjaguin result@Eq. ~3.9!#, we conclude that
the latter gives a reasonable account of the simulation da
this case, indicating that the Derjaguin approximation is
liable for a size ratios50.1 and for the packing fraction
hs50.209. However, forhs50.367 Fig. 3~b! shows that the
third-order expansion is qualitatively different from the ‘‘ex
act’’ Derjaguin result. Therefore we conclude that the agr
ment between the predictions of the third-order expans
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TABLE I. The depletion potential at contactW(0) and the height of the depletion barrierdW
5maxh@W(h)2W(0)# in units of kBT for the case of sphere-sphere interactions.hs is the packing fraction
of the small spheres ands5Rs /Rb is the size ratio.WA denotes the Asakura-Oosawa approximation@Eq.
~3.4!# andWpA is the projection approximation of the latter@Eq. ~3.6!#. WpD is the Derjaguin approximation
@Eq. ~3.8!#, Wpw is the wedge approximation@Eq. ~3.15!# andW1(0) is the result given by Eqs.~5.11! and
~5.9! based on the limitRb5Rs . WMC refers to the Monte Carlo results in Ref.@5#. Note that the presen
theory provides only expressions for the differenceWpD(0)2WpD(2Rs) andWpw(0)2Wpw(2Rs) and these
differences are given in rows 4 and 5 of the table, respectively. However, as argued in the mai
WpD(2Rs) andWpw(2Rs) are both negligible.

s50.2 s50.1

hs 0.116 0.229 0.341 0.116 0.229 0.341
WA(0) 20.99 21.95 22.90 21.86 23.66 25.46
WpA(0) 21.04 22.06 23.07 21.91 23.78 25.63
WpD(0) 21.12 21.91 20.49 22.05 23.50 20.90
Wpw(0) 21.17 22.23 21.70 22.09 23.82 22.13
W1(0) 20.93 21.98 23.19 21.71 23.62 25.85
WMC(0) 20.91 21.84 22.89 21.73 23.69 25.70
dWpD 1.17 2.54 4.05 2.14 4.66 7.42
dWpw 1.22 2.83 5.01 2.18 4.94 8.37
dWMC 1.00 2.17 3.69 2.04 4.54 8.24
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and the simulation data must be the result of a fortun
cancellation of errors. This comparison demonstrates tha
Derjaguin approximation is not valid for this size ratio at th
high packing fraction.A fortiori this is true for even large
packing fractions.

A similar picture emerges from comparisons with rece
Monte Carlo simulations@5#. The authors of this referenc
provide the values of the depletion potentialW(0) for three
different values ofhs and for two values of the size ratio
s50.1 and 0.2. At first sight a direct comparison appe
difficult, as our present analysis only predicts values for
difference W(0)2W(2Rs). However, from the results o
both simulation studies one finds that the values ofW(2Rs)
are always quite small.WpD(2Rs) has also been calculate
within density functional theory@11# and shown to be in the
order of 0.01 for a range ofhs . Thus one is able to compar
the results of the Monte Carlo simulations forWMC(0) with
those from the present approximations by settingW(2Rs)
50. Table I shows that for the two lowest packing fraction
hs50.116 and 0.229, the various approximations yield sim
lar results with that of Asakura-Oosawa being closest to
simulation results. On the other hand, for the highest pack
fraction hs50.341, the contact values obtained from t
Derjaguin approximationWpD(0) and from the simulations
differ significantly. WpD(0) is much less negative tha
WMC(0) for both size ratios. Remarkably the crude
Asakura-Oosawa, approximationWA(0) @or WpA(0)# yields
values that are close to those of the simulations~see also Fig.
5!. We regard this as fortuitous@5#. That improving upon the
low-density Asakura-Oosawa approximation by introduc
an accurate high-density approximation leads to poo
agreement with the simulations reinforces our previous c
clusion that the Derjaguin approximation is inappropriate
these size ratios and high packing fractions. This means
replacing the contact density by that in a slit is not justifi
for size ratios ofs50.1 or 0.2. In view of Fig. 1, which is
drawn to scale fors50.2, this is not surprising. The intro
duction of the wedge approximation does imply a decreas
te
he
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,
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,
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the repulsion at high packing fractions@Fig. 3~b!#, and for
hs50.341 the values ofWpw(0) are substantially more
negative thanWpD(0) but still underestimate the magnitud
of WMC(0) at this packing fraction. While it is very reason
able to expect the Derjaguin approximation to be accurate
s,0.01, its application to larger size ratios is not reliab
Finally we define the depletion barrierdW as the difference
between the maximum and the contact value of the deple
potential. This quantity does not require knowledge
W(2Rs). The results fordW from the Derjaguin approxima
tion, the wedge approximation, and the simulation data
also given in Table I. Both approximations predict the co

FIG. 5. The normalized depletion potential@Eq. ~3.3!# at contact
h50. The full and the dashed-dotted line denoteDW1(0) @Eq.
~5.12!# for the case of a sphere-sphere (e51) and a sphere-wal
(e52) interaction, respectively. The dotted line represents
Asakura-Oosawa~projection! approximation@Eq. ~3.14!# and the
dashed line is the result from the third-order expansion@Eq. ~3.12!#.
The diamonds and the triangles denote simulation results, fos
50.1 ande51, of Dickmanet al. @5# and Bibenet al. @7#, respec-
tively. The results obtained in Ref.@5# are also listed in Table I. For
the present plot these data have been normalized by a facto
2s/(11s)50.1818.
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rect variation ofdW with hs . However, the above discussio
of W(0) shows that the approximations do not account
the shapeof the depletion potential found in the simulation
at the higher values ofhs .

IV. DEPLETION POTENTIAL
FOR MORE GENERAL FLUIDS

So far we have considered only the case of hard obsta
immersed in a hard sphere fluid. The considerations p
sented in the Appendix are more general and allow for
presence of soft interaction potentials. First, we focus on
hard obstacles~i.e., two hard spheres of radiusRb or a hard
sphere in front of a hard wall! immersed in a fluid of smal
spherical particles, which interact with each other via an
bitrary potential function. The obstacles are called hard
their interactions with the small particles are infinitely rep
sive below a suitably chosen distanceRb1Rs and zero oth-
erwise. For such models Eqs.~2.4! and ~2.5! remain valid,
with an appropriate definition of (Rb1Rs). In this case the
various approximations, which were introduced in Secs
and III, can be implemented straightforwardly. For examp
the Derjaguin approximation, which should be exact in
limit of s→0, Eq. ~2.21! remains valid withP(rs ,T) and
g(rs ,T) referring to the pressure and interfacial tension
the particular fluid under consideration. As indicated,P and
g and thus the depletion potential have gained a tempera
dependence. If the interaction potential between the sm
particles contains both attractive and repulsive parts,
depletion potential given by Eq.~3.8! exhibits a rather dif-
ferent dependence onrs from that of the hard sphere fluid
because bothP(rs ,T) and g(rs ,T) reflect the presence o
attractive forces. In generalP(rs) will be smaller than for a
fluid of ~small! hard spheres of the same densityrs so that its
contribution to the depletion potential will be less attractiv
On the other hand,g(rs ,T) can be less negative~it may be
even positive! than for hard spheres at a hard wall so tha
net attraction can still occur. Nevertheless some results
Sec. III still hold. The virial expansion of the surface tensi
reveals @25# that for any spherically symmetric particle
particle interaction the linear term vanishes. Thus it also
lows in a more general fluid that the low density behavior
dominated by the pressure term. Finally, if the potential
erted by obstacle 2 is soft one should employ Eq.~A4! for
the depletion force, which now dependsexplicitly on the po-
tential V2.

The case of nonspherical particles introduces new
tures. These have been considered by Asakura and Oo
@26# and more recently by Maoet al. @27# who have inves-
tigated depletion forces and other properties for hard r
between hard parallel plates.

V. THE LIMIT Rb5Rs

In this section we consider the special case in which
radius Rb of the fixed sphere 2 equals that of the~small!
spheres. We shall use results obtained in this limit in orde
suggest an alternative approximation for the depletion po
tial that will become exact in the limits5Rs /Rb→1.

To this end we consider a fluid subject to an exter
potentialV1(R) @V2[0 in Eq.~2.1!#. For the system to be in
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thermal equilibrium the net force on a fluid particle at po
tion R must vanish, i.e.,

2b21¹ lnr~R!2¹V1~R!1F~R!50, ~5.1!

wherer(R) is the equilibrium density profile in the presenc
of V1(r ) andF(R) is the force arising from the interaction
with the other fluid particles. In the case of pairwise intera
tions, described by a pair potentialF(uRu), the latter force is
given by

F~R!52E d3R8¹F~ uR2R8u!r~R8!g~R,R8!, ~5.2!

whereg(R,R8) is the pair correlation function of the inho
mogeneous fluid; Eq.~5.1! is then the first Born-Green-Yvon
equation@28#. According to the Percus test particle theore
r(R8)g(R,R8) is the density profile of the system subject
an additional external potentialV2(R)5F(uRu) due to a
fluid particle fixed at the positionR @28#. Therefore the force
in Eq. ~5.2! reduces to that given by Eq.~A4!. ThusF(R) is
equivalent to the force defined in Eq.~2.3! in the special case
where V2(R)5F(uRu) and the corresponding potentia
W(R) @see Eq.~3.1!# can be obtained from Eq.~5.1!,

2W~R!5V1~R!1b21ln
r~R!

rs
, ~5.3!

with the boundary conditionsV1(`)50 and r(`)5rs .
Note that herer(R) denotes the density profile of the syste
with V2[0. Thus one has

r~R!5rsexp$2b@V1~R!1W~R!#% ~5.4!

and W(R) is the work that must be performed against t
interparticle forces in order to bring a fluid particle fro
infinity to the fixed positionR.

If the potentialV1(R) is due to that of an identical fixed
particle, i.e.,V1(R)5F(uRu), the density profile is given by
the Percus test particle theorem, i.e.,r(R)5rsg(R5uRu),
whereg(R) is the radial distribution function of the homo
geneous fluid of densityrs and Eq.~5.4! reduces to

g~R!5exp$2b@F~R!1W~R!#%. ~5.5!

For this particular situationF(R)1W(R) is the potential of
mean force. Thus for case~a!, i.e., a hard sphere fixed at th
origin, the depletion potential between two hard sphe
identical to those constituting the fluid is given by

bW~a!~h!52 lnghs~2Rs1h!, h.0. ~5.6!

If the potentialV1(R)5V1(h) is that of a planar wall,

b@W~h!1V1~h!#52 ln@rwall~h!/rs#, ~5.7!

whererwall(h) is the density profile of the fluid near the wal
In case~b!, i.e., a planar hard wall, this reduces to

bW~b!~h!52 ln@rhw~h!/rs#, h.0, ~5.8!

whererhw(h) is the density profile of the fluid near a har
wall. Note that Eqs.~5.7! and ~5.8! are valid for any fluid,
not only for a hard sphere fluid.
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57 6795DEPLETION FORCES IN FLUIDS
The contact value (h50) of the depletion potential fo
cases~a! and~b! can be related to the pressureP(rs) of the
fluid via the virial expression and the wall sum rule, resp
tively, yielding

bW~a!~0!52 lnF 1

4hs
S bP~rs!

rs
21D G ~5.9!

and

bW~b!~0!52 lnS bP~rs!

rs
D . ~5.10!

In the limit hs→0 the ratioe15W(b)(0)/W(a)(0) is given
by the ratioB2

2/B358/551.6, whereB2 andB3 are the sec-
ond and third virial coefficients, respectively, of the pressu
Upon increasing the density the ratio decreases very slo
For example aths50.45, for which the Carnahan-Starlin
equation of state@Eq. ~3.10!# yields bP/rs59.38, one has
e151.46.

In the same spirit as the Derjaguin approximation is ba
on exact results valid in the limits50, we propose the use o
Eqs. ~5.6! and ~5.8!, which are exact fors51, in order to
estimate the depletion potential fors close to 1. Since the
dependence ofW(h) on the size ratio is not known in detai
we assume the same dependence as in the previous~projec-
tion! approximations and propose the following approxim
tion W1(h), which reduces to the exact resultW(a,b)(h) in
the limit s→1:

W1~h!5
~Rb1Rs!

2Rs
W~a,b!~h!. ~5.11!

Thus the normalized potential@Eq. ~3.3!# carries no explicit
dependence ons and is given by

DW1~h!55 2 lnS ghs~2Rs1h!

ghs~4Rs!
D , e51

2
1

2
lnS rhw~h!

rhw~2Rs!
D , e52.

~5.12!

In contrast to previous approximations this, normaliz
depletion potential is different for case~a! and case~b!.
Moreover, this approximation providesW(h) for all h.0. It
is shown fore51 in Fig. 3~b!, taking the radial distribution
function ghs(h) from the Percus-Yevick approximation
Comparing the ‘‘exact’’ Derjaguin approximation~full line!
with the wedge approximation~dashed-double-dotted line
plotted for s50.2) and withDW1(h) ~dashed-triple-dotted
line! one observes a systematic decrease of the repulsive
of the potential. Since the two limitss50 and s51 are
described exactly by the Derjaguin result and by Eq.~5.12!,
respectively, one is inclined to use them in order to estim
the potential close to these limits. However, as one can se
Fig. 3~b! at this density the limiting values of the normalize
depletion potential differ significantly so that there is no o
vious starting point for the description of systems with int
mediate size ratios. In Ref.@7# the authors report a goo
agreement between their simulation data fors50.1 and the
results of the third-order expansion@6#, given by the dashed
-

.
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-

,
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te
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-
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line in Fig. 3~b!. DW1(h) is rather close to the simulatio
results; surprisingly it seems to be a reasonable approxi
tion even for this low size ratios50.1. In Table IW1(0) is
compared with the other approximations and with MC sim
lation data fors50.2 ands50.1. In both cases it is in good
agreement with the simulations, even at high densities.

In Fig. 5 for a range of packing fractionshs , DW1(0) is
compared with the results of the Asakura-Oosawa~projec-
tion! approximation@Eq. ~3.6!#, the simulation results ob
tained in Refs.@5# and @7#, and with the third-order expan
sion of the Derjaguin result. All of these approximatio
predict thatDW(0) is decreasing monotonically with in
creasing density, which is in sharp contrast to the ‘‘exac
Derjaguin result~see Fig. 4!. The comparison with the result
of both simulations shows that the sphere-sphere (e51) re-
sult in Eq. ~5.12! provides a fair account of the density d
pendence of the contact value. The wall-sphere (e52) result
in Eq. ~5.12! predicts a somewhat less attractivenormalized
potential at contact.~Note the factor1

2, which arises in the
definition of DW.! The presence of the logarithm in the e
pression for DW1(h) implies that although the pressur
P(rs) is increasing very rapidly with increasing densityrs ,
DW1(0) has a much weaker—roughly linear—dependen
on rs .

VI. THERMODYNAMICS, PHASE SEPARATION, AND
STRUCTURE OF BINARY HARD SPHERE MIXTURES

So far we have considered the depletion potential betw
an isolated pair of big spheres or a big sphere and a wal
this section we turn our attention to bulk mixtures of big a
small hard spheres and ask whether the results derived
the depletion potential have relevance for the equilibriu
properties of such mixtures. These model systems have
tracted much attention. The phase behavior has been in
tigated by both simulation and theoretical techniques and
certain size ratios, typically 0.4&s&0.6, the solid-fluid and
solid-solid phase diagrams are well established. Depend
on the value ofs, different crystalline phases may exis
which coexist with each other and/or with a fluid phase@29#.
A more contentious and intriguing issue is whether flu
fluid phase separation can occur in this model. Lebowitz a
Rowlinson @30# showed that within the Percus-Yevick clo
sure approximation, hard spheres mix at all concentrati
for any value ofs. Much later, Biben and Hansen@31,32#
found, based on numerical solutions of integral equatio
using an improved closure approximation, strong evide
for a spinodal instability whens&0.2 and attributed this to
attractive depletion forces. That study spurred many sub
quent investigations~see the summaries in Refs.@7# and
@33#!. However, it is probably fair to argue that it is still a
open question as to whether fluid-fluid phase separation d
occur for the binary hard-sphere mixture@34#. It certainly
does occur for a lattice model of a binary mixture of paral
hard cubes@35#, which demonstrates that entropic effec
alone suffice to drive the phase separation. The matter is
settled because for the continuum case ergodic problems
small size ratios are severe; computer time is spent on m
ing the small spheres around whereas displacing a big sp
is a move that is rarely accepted when the density of
small spheres is large. Given the difficulties of treating bo
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species on equal footing, it is tempting to follow the stand
procedure of statistical physics and construct an effec
HamiltonianHbb

eff for the big ‘‘particles’’ by integrating out
the degrees of freedom of the small spheres. Simulations
theoretical analyses, can then be performed for this effec
one-component system. Formally one has

Hbb
eff~$Ri%!5Hbb

hs~$Ri%!1As~$Ri%!, ~6.1!

where Hbb
hs($Ri%) denotes the Hamiltonian of the bare b

hard spheres andAs($Ri%) is the Helmholtz free energy o
the inhomogeneous distribution of small spheres in the p
ence of a configuration ofNb big spheres located at fixe
positions $R1 , . . . ,RNb

%. Finding suitable approximation

for As is not straightforward for this particular problem. I
the general case, i.e., arbitrary values ofs and arbitrary den-
sitiesrs andrb , there is no small parameter that permits
natural perturbative approach to the calculation ofAs . When
the densityrb is low one might expect the approximation
pairwise additive potentials to be reasonable. Moreov
when the size ratios,0.154 @7,36# there are no configura
tions in which a small sphere can be in simultaneous con
with three big spheres. This rules out one important sourc
many-body effects.~Within the Asakura-Oosawa approxima
tion this is the only source and it follows that there are
three-body or higher-order potentials fors,0.154 @36#.!
Biben et al. @7# conclude from the analysis of their simula
tion data that pairwise additivity should be an excellent
proximation for s&0.1, even at high densities. For larg
ratios one should expect this approximation to break do
In the present discussion we restrict ourselves to small va
of s and assume that the potential energy of the big parti
is ( i , jFbb(uRi2Rj u) with the effective pair potential

Fbb~r !5H `, r ,2Rb

W~r 22Rb!, r .2Rb , ~6.2!

whereW(r 22Rb)[W(h) is the depletion potential betwee
two big spheres.W(h) depends onrs but not onrb . For the
subsequent discussion we choose the Derjaguin result@Eq.
~3.8!# because this becomes exact ass→0, i.e., we set
W(h)5WpD(h)2WpD(2Rs). SinceWpD(h) is not available
for h.2Rs , we assume, for simplicity,W(h)50 for h
.2Rs . Although the results of density functional calcul
tions @11# and simulations@5,7# show thatW(h) has weak
oscillations in this range, omitting these should not have
dramatic effect on the properties of the mixture. Thus
haveFbb(r )50 for r .2(Rb1Rs) and the resulting pair po
tential is of a type similar to that considered previously
Refs. @37# and @36# whose authors investigated phase se
ration in models of colloid-polymer mixtures. Those autho
used the Asakura-Oosawa approximation for the deple
potential. We examine the consequences for the hard-sp
mixture of employing a more accurate theory, valid also
large values of the packing fractionhs , for which the
Asakura-Oosawa approximation fails.

In order to obtain some physical insight into thermod
namic properties, we treat the depletion potential as a pe
d
e

or
e

s-

r,

ct
of

-

n.
es
s

y
e

-
s
n

ere
r

-
r-

bation on the hard-sphere potential. The first-order appro
mation in this perturbation approach for the Helmholtz fr
energy per big sphere is

A~rb ,rs!

Nb
5

Ahs~rb!

Nb
12prb

3E
2Rb

2~Rb1Rs!

dr r 2WpD~r 22Rb!ghs~r ;rb!,

~6.3!

whereghs(r ;rb) is the radial distribution function of the big
hard sphere fluid andAhs(rb) is the Helmholtz free energy
for the same homogeneous fluid of densityrb5Nb /V. Since
Rs!Rb , ghs(r ;rb) is almost constant over the range of th
integration and we can approximate it by its contact va
ghs(2Rb ;rb). Then the integral can be easily performed a
we find

bA~rb ,rs!

Nb
5 ln~L3rb!211

hb~423hb!

~12hb!2

23phbghs~2Rb ;rb!

3S 1

3
P̃~rs!aP~s!22g̃~rs!ag~s! D ,

~6.4!

where hb54prbRb
3/3 is the packing fraction of the big

spheres and where we have used the Carnahan-Starling
mula @9# for the hard-sphere free energy;L is the thermal de
Broglie wavelength of the big spheres. For smalls the quan-
tities

aP~s!:511
1

2
s1

1

10
s2 ~6.5!

and

ag~s!:511
2

3
s1

1

6
s2 ~6.6!

depend weakly on the size ratio and fors,0.1 it causes little
error to replace them by unity. Thus, the last term in E
~6.4! is determined essentially by the combination1

3 P̃(rs)
22g̃(rs), which is similar to the one that determines th
normalized depletion potential at contact, i.e.,1

2 P̃(rs)
22g̃(rs) @see Eq.~3.9!#.

To first order inhs , in Eq. ~6.4!, only the pressure term
contributes,P̃(rs);6hs /p, and the free energy reduces t
that which one would obtain from using the Asakur
Oosawa depletion potential in the projection approximati
In this case the last term in Eq.~6.4! is always negative,
reflecting the fact that the potentialWpA(h) is always attrac-
tive. However, as demonstrated in Sec. III, at higher val
of hs the surface tension contributiong̃(rs) becomes
equally important and the variation withhs of the final term
in the free energy should be similar to that ofDW(0) in Fig.
4. But the upturn sets in at smaller values ofhs , because the
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57 6797DEPLETION FORCES IN FLUIDS
coefficient of P̃(rs) is 1/3 instead of than 1/2. This mean
that the ‘‘exact’’ Derjaguin result predicts a significant
smaller attractive contribution to the free energy forhs

*0.1 and a repulsive contribution forhs.0.222. This obser-
vation has clear repercussions for phase separation. If
calculate the compressibility by differentiating Eq.~6.4! with
respect torb at fixed hs and take the Percus-Yevick valu
for ghs(2Rb ;rb), there is no divergence within the flui
range of either packing fraction, i.e., there is no indication
a fluid-fluid spinodal. However, Eq.~6.4! is a crude approxi-
mation to the free energy of this particular model fluid a
better approximations or simulations should be employed
test this prediction. Note also that the packing fractionhs ,
which enters into the effective Hamiltonian, should refle
the fact that there is less free volume available for the sm
spheres when there is a macroscopic numberNb of large
spheres present in the bulk fluid@7#. What emerges from
these considerations is that the variation of the free ene
with hs seems to depend sensitively on the approximat
used for the depletion potential in the range ofhs where
fluid-fluid separation might occur for hard-sphere mixtur
@7# and different approximations could easily produce ve
different results.

We turn now to the structure of the fluid of big particle
interacting via the effective pair potentialFbb(r ). The shape
of the corresponding radial distribution functiongbb(r ) and
of the structure factorSbb(k) reflect the form of the depletion
potentialW. If the latter is strongly attractive, we have a ve
‘‘sticky’’ pair potential and the contact valuegbb(2Rb) is
much larger than the contact valueghs(2Rb ;rb) for the one-
component hard-sphere fluid at the same densityrb . This is
one of the reasons one must be cautious in using the pe
bative approach presented in Eq.~6.3!. The simulation stud-
ies for binary mixtures in Ref.@7# confirm this conjecture;
they yieldgbb(2Rb).20 for s50.1,hs50.1, andhb50.25.
The new prediction that emerges from the present stud
that ashs increases to larger values the depletion poten
actually becomes more repulsive—at least within the con
of the Derjaguin approximation applicable to small values
s. This means that a new characteristic length scale;2Rb
1Rs may become important. No such length arises in
Asakura-Oosawa approximation for whichW is attractive at
all distances. Thus we argue that ashs increases a characte
istic feature such as an additional maximum inSbb(k) should
develop neark52p/(2Rb1Rs), whereas for smallhs there
should only be the peak located nearp/Rb . A strongly at-
tractive depletion potential will also act to increaseSbb(0),
which is proportional to the osmotic compressibility, abo
the corresponding one-component hard-sphere value a
same value ofhb . Such behavior ofSbb(0) is already visible
in the Percus-Yevick results for binary mixtures@38#, for
which it is interpreted as evidence for depletion attraction
the depletion potential varies withhs as predicted by the
Derjaguin approximation this will lead to behavior ofSbb(0)
very different from that which emerges from the Asaku
Oosawa approximation. Within the latterSbb(0) should al-
ways increase withhs whereas within the formerSbb(0)
should decrease when the depletion potential becomes re
sive. These expectations can be tested, e.g., by calcula
Sbb(0) within the framework of the random phase appro
e
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mation ~RPA!, which has been successful in describing t
small momentum behavior of the structure factors of sim
liquids and liquid metals@39,40#. The RPA asserts that for
pair potential of the type given in Eq.~6.2! the direct corre-
lation function can be approximated by

cbb~r ;rb!5chs~r ;rb!2bW~r 22Rb!, ~6.7!

with W[0 for r ,2Rb . chs(r ;rb) is the hard-sphere direc
correlation function, which can be obtained from the Perc
Yevick approximation. The structure factor is then given
the Ornstein-Zernike relation

Sbb~k!5
1

12rbĉbb~k;rb!
~6.8!

with ĉbb(k;rb)5*d3rexp(ik–r )cbb(r ;rb). In Fig. 6 we show
Sbb(0), calculated from Eqs.~6.7! and~6.8!, as a function of
hs for a fixed big sphere packing fractionhb50.1. These
results support the expectations stated above.Sbb(0) in-
creases monotonically for the Asakura-Oosawa approxi
tion. By contrast it reaches a maximum nearhs50.13 and
decreases rapidly at higher values when the ‘‘exact’’ D
jaguin result for the depletion potential is used. There is
indication of a spinodal, i.e., the compressibility—
proportional toSbb(0)—does not diverge, for either poten
tial. It is well known that although the RPA does not provid
an accurate description of the short wavelength behaviok
*p/Rb in simple liquids, it usually provides a realistic ac
count of the long-wavelength behavior. The reliability of th
RPA for the present model potential, which is very differe
from the Lennard-Jones or liquid metal pair potentials, is,
course, uncertain, even fork→0.

To summarize we suggest that both the pairwise struc
and the thermodynamic properties of the hard-sphere mix
should reflect the variation of the depletion potential w
hs . The specific predictions listed here await tests by co
puter simulations of the effective one-component fluid

FIG. 6. The structure factorSbb at k50 for a range of packing
fractions hs , calculated within RPA@Eqs. ~6.7! and ~6.8!#. The
small-hard-sphere fluid has a fixed packing fractionhs50.1. The
full and the dotted line correspond to the ‘‘exact’’ Derjaguin a
Asakura-Oosawa approximation, respectively, for the underly
depletion potential. The Derjaguin approximation predicts a ma
mum and a turning point the Asakura-Oosawa approximation yie
a monotonic increase.
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well as experimental tests such as by small angle neu
scattering from suitable chosen colloidal solutions rese
bling closely hard sphere mixtures.

VII. SUMMARY AND DISCUSSION

In this paper we have examined the statistical mecha
of the so-called depletion potential, i.e., the effective pot
tial that arises between a large hard sphere of radiusRb and
a second obstacle at distanceh immersed in a fluid com-
posed of particles with radiusRs and number densityrs .
Defining the force between the two obstacles as minus
derivative with respect to the separationh of the grand po-
tential we have shown that this force depends only on
density profile of the fluid at contact with the hard sphe
Our derivation demonstrates that this result is valid for
arbitrary second obstacle, for density profiles obtained wit
the context of density-functional approximations, and for a
simple fluid, not only hard spheres. By considering vario
approximations for the density profile we have constructe
variety of approximations for the force between obstac
The main results can be summarized as follows:

~1! The simplest approximation leads to the well-know
Asakura-Oosawa result for the depletion force.

~2! More sophisticated approximations lead to new res
for the force. The Derjaguin approximation@Eq. ~2.21!# is of
particular significance because it allows one to express
force in terms of the bulk fluid pressure and the hard-wal
fluid surface tension, which are both readily accessible e
for high fluid densities. This approximation is valid for sma
size ratio s5Rs /Rb!1. The wedge approximation@Eq.
~2.26!# relieves some of the restrictions placed on a fluid
confining it to a slit, an assumption inherent in the Derjag
approximation.

~3! Section III concentrates on the depletion potential t
arises for two hard obstacles~two big hard spheres or a har
sphere and a hard wall! in a small-hard-sphere fluid. Within
the Derjaguin approximation we discuss the consequence
an explicit formula for the potentialW(h) in the regime 0
,h,2Rs , whereRs is the radius of the small spheres. In th
limit of low packing fractionshs54prsRs

3/3→0, it reduces
to the Asakura-Oosawa approximation but for largehs it
leads to very different depletion potentials. Indeed, forhs
.0.3532 the contact valueW(h50) is positive whereas the
Asakura-Oosawa approximation predicts strong attract
i.e., the contact value is negative and decreases linearly
hs ~see Fig. 4!. Our result contradicts the assumption that t
depletion potential for hard-sphere fluids is always attract

~4! Recent work by Maoet al. @6# has also emphasize
that the depletion potential is less attractive than that
tained by Asakura and Oosawa. We have shown that t
theory is equivalent to a third-order expansion of our ‘‘e
act’’ Derjaguin formula in powers ofhs and that this third-
order expansion is not even qualitatively correct forhs
*0.3.

~5! The comparison of our Derjaguin results with simu
tion data @5,7# for W, obtained for hard spheres with siz
ratioss50.1 and 0.2, shows that there are significant diff
ences for large values ofhs . We conclude that the Derjagui
approximation is only valid for very small values ofs, for
which replacing the contact density by that for a slit is fu
n
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justified. At high packing fractions,hs.0.3, the wedge ap-
proximation performs much better fors50.1 and 0.2~Table
I!. We argue that the apparent agreement between simula
data and results of the third-order theory of Maoet al. @6# is
caused by a fortuitous cancellation of errors.

~6! In Sec. V we have considered the particular limit
which the fixed spherical obstacle is a fluid particle itself.
this case the depletion potential is given in terms of the lo
rithm of the density profile of the fluid in the absence of t
obstacle@see Eq.~5.3!#; for the hard sphere fluid the spher
sphere depletion potential reduces to the potential of m
force. This result for the limits51 has been used as a m
tivation for introducing a new approximation fors,1 @see
Eq. ~5.12!#. The comparison with simulation data shows th
this approximation is reasonably good even for size ratios
small as s50.1. Thus, there are approximations for th
depletion potential available that are exact in the limitss
→0 or s→1. They differ substantially from each other and
is not clear which of them is more appropriate or how o
should interpolate between them for intermediate values os.
Further simulation studies of the type reported in Refs.@5#
and@7# for smaller values ofs are necessary to ascertain th
regime of validity of the Derjaguin approximation.

~7! In Sec. VI we showed that our approximations for t
depletion potential have implications for the structure a
the thermodynamic properties of binary hard-sphere m
tures and, in particular, may shed new light on the lo
standing issue of fluid-fluid phase separation in these s
tems.

In the following we return to the question of whether th
concept of depletion forces and our present results can
carried over to more general fluids~see Sec. IV!. To this end
we consider a model fluid that has an arbitrary, but sho
ranged particle-particle interaction but a hard-sphere inte
tion with the wall, i.e., the potential is infinite if the center o
the particle is closer thanRs to the wall and is zero other
wise. Thus, if two walls come closer to each another th
2Rs all particles are expelled, i.e., depletion occurs. In d
cussing the depletion force for this model fluid, we restr
ourselves to the Derjaguin approximation, but the other
sults of Sec. II are also applicable. In this approximation
depletion force between the two obstacles is determined
the balance between the surface tensiong and the pressureP
of the model fluid. Polymers are natural candidates fo
description in terms of such a model fluid. Indeed the dep
tion effect was introduced orginally@1,26,37# in the context
of mixtures of colloids and nonadsorbing polymers. T
colloid-polymer potential is assumed to be of a hard sph
type with a radiusRs , which is determined by the radius o
gyration. In reality the colloid-polymer potential is soft bu
provided its range is small compared with the colloidal
dius Rb and with Rs , the approximation of a hard-spher
interaction with the wall should be reasonable. The m
subtle question is how to model the polymer-polymer int
actions in terms of an effective potential. Near the theta te
perature, where even the intramolecular excluded volume
fects become negligible, it is reasonable to ignore
polymer-polymer interactions. In this case the surface t
sion of the model fluid vanishes and the pressure is just
of an ideal gas. Then the ‘‘exact’’ Derjaguin formul
WpD(h) @Eq. ~3.9!# reduces to the Asakura formulaWpA(h)
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57 6799DEPLETION FORCES IN FLUIDS
@Eq. ~3.7!#, which, for this model, should apply even for hig
densitiesrs . This was the scenario investigated in the
early papers@1,26,37#. For other temperatures excluded vo
ume effects should be important and one might expect
theories that are developed here to be more appropriate.
might obtain the surface tension and the pressure from d
measurements on the actual investigated polymers and
these in the ‘‘exact’’ Derjaguin formula@Eq. ~3.9!#. In this
way the polymer-polymer interaction is fully and proper
taken into account~within the context of the Derjaguin ap
proximation! and the only remaining assumption is that t
interaction with the wall is hard-sphere-like.

To what extent are these theories relevant to experim
Measurements of the depletion force@41# or the potential
barrier height@42# for a colloidal particle near a wall now
seem feasible and the results of such experiments can
principle, be compared with those from theory. From m
surements of diffusion coefficients in a binary colloid mi
ture, barrier heightsdW have been extracted@42# for packing
fractions 0.1&hs&0.3 and for a size ratios'0.035. The
meassured barrier heights were much smaller (bdW;2)
than all theoretical predictions (bdW.10). The source of
this discrepancy is not known@5#. On the other hand ther
are laser radiation pressure experiments@41# that measure the
minimum laser intensity required to blow off a polystyre
latex particle trapped near the wall as a function of the po
mer concentration. These results@41# have been interprete
as being in agreement with the Asakura-Oosawa approxi
tion for the depletion force. However, one should note tha
both experiments there are possible influences from scre
Coulomb forces and it is probably premature to argue t
the theoretical and experimental results are in conflict.

It follows from the discussion in Sec. VI that the therm
dynamic properties and the structure of a bulk colloidal s
pension should depend on the depletion potential and sh
reflect how this varies with the concentration of the sm
spheres~polymer!. If the attraction is large enough phas
separation can occur in the colloid-polymer mixture. T
corresponding studies have led to a large literature on
subject ~see, e.g., Ref.@33# for a summary!. Work that is
close in spirit to this aspect of the present study is tha
Gastet al. @36# who analyzed the phase behavior followin
from an effective pair potential model. Their model
equivalent to Eq.~6.2! with W given by the Asakura-Oosaw
approximation. It was treated using second-order pertu
tion theory based on the big-hard-sphere reference fluid.
authors found a fluid-solid phase separation for most s
ratios and polymer concentrations relevant to experime
For s.0.3 an additional fluid-fluid transition appeared.
the light of the present work it is clearly of interest to car
out similar investigations, but employing simulation tec
niques for potentials based on the approximations develo
here. From such studies one might learn how sensitive
phase behavior is to the details of the depletion poten
There are, of course, the issues of how reliable the effec
two-body Hamiltonian is and how to take proper account
the density dependence when calculating the free energy~see
Sec. VI!. The corresponding calculation of the pair corre
tion function and of the structure factor should be equa
revealing. Recently Yeet al. @43# have measuredSbb(k), the
colloid-colloid structure factor, by matching the neutro
e
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scattering length density of the solvent with that of the po
mer, for varying polymer concentrations and a series of c
loid concentrations. They analyze their data by using
random phase approximation~RPA! to calculateSbb(k) for a
pairwise potentialFbb @Eq. ~6.2!# with the form of W given
by the Asakura-Oosawa approximation. In this way they o
tained good fits to their scattering data for a wide range
mixtures using the amplitude of the depletion potential as
only free parameter. For small concentrations the latter
creases linearly with polymer concentration, as predicted
the Asakura-Oosawa approximation, but the slope is a fa
of 6 smaller than the theoretical value, i.e., the deplet
potential is much weaker than predicted. It would be of mu
interest to have the same type of data for systems where
size ratios is very small so that one could test the applic
bility of the Derjaguin approximation.
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APPENDIX

Density functional theory is based on the property that
any fluid that is exposed to an arbitrary external poten
V(R) all measurable equilibrium quantities are unique fun
tionals of the number density profiler(R) which minimizes
the grand canonical free energy functional

V„@r~R!#;m,T…5F„@r~R!#;T…2E d3R@m2V~R!#r~R!

~A1!

at a given chemical potentialm and temperatureT
51/(kBb). The external potential determines the volum
over which the integral is performed.F@r#5F id@r#
1Fex@r# is the intrinsic Hemholtz free energy function
consisting of an ideal gas part,F id , and an excess partFex.

Upon differentiating the equilibrium grand canonical p
tentialV„@r(R)#;m,T… arising from Eq.~A1! one obtains via
the chain rule

dV

dV~R!
5r~R!1E d3R8H dF@r#

dr~R8!
2@m2V~R8!#J

3
dr~R8!

dV~R!
. ~A2!

If r(R) is the equilibrium density distribution, the expressio
within the curly brackets vanishes. This is valid even f
approximationsof the functionalFex@r#. For the case stud
ied in Sec. II the external potentialV(R;h) in Eq. ~2.1! de-
pends parametrically on the separationh so that with Eq.
~A2! one has
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S ]V

]h D
T,m,A

5E d3R
dV

dV~R;h!

]V~R;h!

]h
5E d3R r~R!S 2

1

b
expbV~R;h! D ]exp@2bV~R;h!#

]h

52
1

bE d3R n~R!
]

]h
@Q„uR2~2Rb1h!ezu2~Rb1Rs!…#5

1

bE d3R d„uRu2~Rb1Rs!…
z

R
n„R1~2Rb1h!ez…,

~A3!

where we have used Eqs.~2.1! and ~2.2! and definedn(R)[r(R)exp@bV(R;h)#. In the case of a hard wall (Rb→`) it is
known thatn(R) is continuous even if the potential exhibits an infinite discontinuity. We expect the same to be true for a
radius@44# and Eq.~2.4! then follows.

The derivation given above pertains to large and small hard spheres. It should be viewed as a special case of th

S ]V

]h D
T,m,A

52E d3R r@R1~2Rb1h!ez#
z

R
V28~ uRu!, ~A4!

which is valid for any spherically symmetric potentialV2(uRu) centered at (0,0,2Rb1h) and acting on the fluid. The derivatio
of Eq. ~A4! follows along the lines given above. We emphasize that in Eq.~A3! and in Eq.~A4! the potentialV1(R), due to
the obstacle 1, is arbitrary.
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