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Depletion forces in fluids
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We investigate the entropic depletion force that arises between two big hard spheres oRgadivisnick-
ing colloidal particles, immersed in a fluid of small hard spheres of raBiusWithin the framework of the
Derjaguin approximation, which becomes exactsasRs/R,—0, we examine an exact expression for the
depletion force and the corresponding potential for the rangb€@2R,, whereh is the separation between
the big spheres. These expressions, which depend only on the bulk pressure and the corresponding planar
wall-fluid interfacial tension, are valid for all fluid number densitigs In the limit p,—0 we recover the
results of earlier low density theories. Comparison with recent computer simulations shows that the Derjaguin
approximation is not reliable fos=0.1 and packing fracti0n373=477pSR§'/320.3. We propose two new
approximations, one based on treating the fluid as if it were confined to a wedge and the other based on the
limit s=Rs/R,— 1. Both improve upon the Derjaguin approximation §+ 0.1 and high packing fractions.
We discuss the extent to which our results remain valid for more general fluids, e.g., nonadsorbing polymers
near colloidal particles, and their implications for fluid-fluid phase separation in a binary hard-sphere mixture.
[S1063-651%98)14405-1

PACS numbgs): 82.70.Dd, 61.20.Gy, 64.759

[. INTRODUCTION remarkable and has prompted several detailed investigations.
Attard and co-workerg3,4] have developed sophisticated
Depletion forces arise when two bigolloidal) particles hypernetted-chain—based approximations, which include ap-
are immersed in a fluid of small colloidal particles, nonad-proximate solvent-solvent, solute-solvent, and solvent-
sorbing polymers, micelles, or in a simple fluid. When thesolvent bridge diagrams, and tested these in recent Monte
separation between the big particles is less than the diamet€arlo simulationg5] of the depletion force for size ratias
of the small ones the latter are expelled from the gap be=0.1 and 0.2. The integral equation theory appears to be
tween the bigger ones, i.e., there is depletion that leads to amather accurate for all the packing fractiong,=47-rpsR§/3
anisotropy of the local pressure, which, in turn, may give riseup to 0.34, that were investigated. In an alternative approach
to an attractive depletion force between the big particlesto the problem Macet al. [6] have calculated the first three
Such a mechanism was described first by Asakura anterms in the virial expansion of the force, i.e., up to third
Oosawa[1l], who suggested that the depletion force couldorder inp,, having first made the Derjaguin approximation
lead to reversible flocculation and phase separation iin order to relate the force between two particles with large
colloid-polymer mixtures. Those authors calculated the forceadii of curvature to the force that arises when two small
between two big hard spheres of radigg immersed in a particles are confined by planar wallR=c0). Comparison
fluid of small hard spheres of radil& using excluded vol-  of their results with molecular dynamics simulatidirg for
ume arguments. Their celebrated respdf. Eq. (2.11)], s=0.1 suggests that this third-order approximation performs
which is correct to first order in the number dengityof the  well, at least for the important range of separatidms
small component, predicts that the force and the correspond=2R,, even for a packing fraction as high ag=0.367.
ing depletion potential are attractive for all separatitns Note that results from theory and simulation show that al-
<2Rs and are zero foh>2Rg. The physical origin of the though the depletiopotential remains attractive at contact
attraction is that the exclusion volumes for the small spheregh=0) this potential becomes repulsive at largperwith a
centered on each big sphere, overlap whet2Rg, increas- maximum ath/(2R,)=0.7, asy; is increased; forp,=0.2
ing the volume that is accessible to the small ones, therebthe position of this maximum hardly varies as a function of
allowing their entropy to increase. The result is a force thaty,. Such behavior, which is not captured by the Asakura-
favors the clustering of the big particles and thus provides ®osawa formula valid at low densities, has implications for
possible mechanism for phase separation. Such depl@tion the possible existence of fluid-fluid phase separations in bi-
entropig forces are the focus of much current attention, notnary hard-sphere mixturgd].
just because of their practical importance for understanding Motivated in part by these recent studies we reexamine
the properties of colloid-polymer mixtur¢g] but also from  the theory of depletion forces, focusing for the most part on
a fundamental statistical mechanics viewpoint. That purelbig hard spheres immersed in a fluid of small hard spheres.
entropic effects—all the interparticle forces in the aboveOur aim is to construct approximations for the depletion
model are hard-sphere-like—can result in attraction is quitdorce and the depletion potential that are analytically trac-
table and that provide some new physical insight into the
origin of attraction and repulsion but that go beyond the
*Permanent address: H.H. Wills Physics Laboratory, Universitythird-order virial expansion of Maet al. [6]. The starting
of Bristol, Bristol BS81TL, United Kingdom. point is an exact expression for the force between a hard
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sphere and a second obstacle immersed in an arbitrary fluid L
of small particles. Different approximations for the density
profile of the fluid at contact with the sphere lead to different R
approximations for this force. ’

The paper is arranged such that in Sec. Il we describe the
exact expression for the depletion force and how the
Asakura-Oosawa result emerges as the low der(gityal
gag approximation for the density profile of the fluid at con-
tact. The well-known Derjaguin approximation for the force
[cf. Eq.(2.2D)] follows by approximating the contact density 0)
by that of the fluid in a planar hard wall. By confining the
fluid to a wedge rather than a slit, an approximation, cf. Eq.
(2.26), is derived that should be more appropriate for large
size ratioss. Section Ill compares the depletion potentials
obtained from the approximations of Sec. Il with the simu-
lation studies mentioned above. The most significant conclu-
sion is that the Derjaguin approximation provides a poor
account of the simulation data for large valuespgfand the
size ratioss=0.1 ands=0.2 employed in the simulations.
We discuss the convergence of the virial expansion of the riG, 1. Two fixed hard spheres of radiBs, denoted as 1 and
depletion force and conclude that the apparent success of thein a fluid of smaller hard spheres of rad®s, drawn for a size
third-order theory of Ref{6] may be fortuitous. In Sec. IV ratio s=R,/R,=0.2.h=0 measures the minimal distance between
we enquire how the depletion potential depends on thenhe two fixed hard spheres along theixis connecting the centers
choice of interparticle potential functions, i.e., to what extent(x,y,z)=(0,0,0) and (0,0,R,+h). The figure depicts a configura-
our results carry over to more general fluids. Section V contion in which all centers of spheres are located in the plasé®.
siders the limitR,=R; (s=1), where exact results can be @ denotes the angle formed when a small hard sphere touches
derived. These prompt a new approximation for the depletiopoth fixed big hard spheres) is the angle formed between tize
potential[cf., Eg. (5.12], which is shown to be quite suc- axis and the axis connecting the center of sphere 2 and the center of
cessful even fos=0.1. Section VI is more speculative and & small sphere touching sphere ®=m— 9, |=(R,+R;)cosp,
discursive than the earlier sections. It discusses possible rgs=(Rp+Rs)sin®g, L=2(R,—1)+h, andL=L+2R;.
percussions of our results for the structure and the thermo-
dynamic properties of bulk binary mixtures of hard spheresthe forceF(h) exerted by the fluid on the big sphere 2. For a
i.e., for nonzero concentrations of the big spheres. We corgeneral obstacl¥; its z component is
clude in Sec. VIl with a summary of the results and some
discussion of their relevance for experiments that probe 90
depletion forces in colloid-polymer systems. F,(h)=— (%) , (2.3

T.u

Il. FORCE ON A LARGE FIXED HARD SPHERE
) ) o ) _where( is the grand canonical potential of the inhomoge-
We consider a fluid consisting of small particles of radiuspeoys fluid in contact with a reservoir at a fixed chemical
Rs in the presence of an external poten¥gR) composed potential . and temperaturd. A negative value of ,(h)
of two contributions: corresponds to a force directed to the Igftg. 1). This im-
plies attraction as the grand potential is lowerédd}<0)
V(R;h)=Vi(R)+V,[R= (2R +h)e,], h>0, (2.1)  \yhen the sphere is moved to the left towards the obstacle 1
(Ah<0).
where In the Appendix we use density functional methods to
derive the following result for the force in terms of the equi-
®, R<R,+Rs librium number density profilg(R) of the fluid:

V2(R)=10, R>R,+R.. (2.2)

BF.0) = [ R(RI= (R, + R~ /R
The second term in E@2.1) is the potential due to a big hard

sphere of radiuR,, (denoted as 2 in Fig. 1 and later in the Xp(R+(2Rp+h)e) (2.9
text) fixed at the positiolR=(x,y,z)=(0,0,2R,+h); g, is a

unit vector in thez direction. We are particularly interested with = (k,T
in the caseR,>R;. The potential,(R) can represent any
other fixed obstacle, such as another big hard sphere locat
at the origin[ V,(R) =V,(R), case@] or, e.g., a planar hard
wall located a distanck apart from sphere case(b)]. h is
the minimal distance between the two big spheres or between BF(h)=— j dAp(R)N, (2.5
the big sphere and the wdlFig. 1). We are concerned with s

)~ 1. Although the external potential; does
not appear explicitly in this formula, the form @fR) de-
©&nds on it. The force can also be expressed as
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where the integral is over the surfaBef a sphere of radius wheree=1 for the sphere-sphere casmse(a)] and e=2

R,+ R centered at the center of spherends the unit nor-  for the sphere-wall casfease(b)]. Ap(L) denotes the dif-

mal vector pointing outwards from this sphere. Equationference of the contact densities between the left and right

(2.5 was first derived by Attard3] directly from the parti- hemisphere of sphere 2 and is defined to be zeroLfor

tion function for a hard sphere fluid containing two big hard > (2/€)(R,+ Rs) +h. It depends also on the choice of the

spheres and was employed in recent Monte Carlo simuladeometry, i.e., o and on the radii of the spheres. For small

tions [5] of the force for the particular case of hard spheressize ratioss=R;/R,<1 this additional dependence is ex-

Our present derivatiofsee the Appendixemphasizes, first, pected to be rather weak but, in general, this dependence can

that this formula is valid for any fluid, not only for one that be significant.

is composed ofsmal) hard spheregthe generalization to The calculation of the density profilp(R) at contact,

other fluids is discussed in Sec.)lVand, second, that it either by simulation or by minimizing a suitable density

remains valid even when aapproximatedensity functional ~ functional, requires considerable numerical effort so that it is

is used to obtain the equilibrium density profile. Moreover,important to develop approximation schemes fo(R).

Eg. (2.5 holds for any external potential,(R), i.e., the These can provide physical insight into the factors that lead

obstacle 1 can have various shapes and can exert an arbitrdgyan entropic attraction or repulsion. To this end E38) is

potential, not necessarily a hard one, on the fluid. In thed convenient starting point. If one assumes tha(L) de-

absence of an external potentidl,&0) the density profile cays rapidly as a function df over the range of the integra-

has radial symmetry and the net force vanishes. It is th&on, the second integral in EQ.8) should be negligible so

reduction of symmetry induced by the presence of the obthat one finds

stacle at the origin that lends shape to the contact density

p(R) in Egs.(2.4) and(2.5) and that gives rise to a nonzero _ *

force F,(h). One can interprekgTp(R) as a local, kinetic BFp()=me(RotRs) fh dLap(L). 29

pressure and for a hard sphere the net force is simply a sur-

face integral of this kinetic pressure. We refer to this approximation as the projection approxima-
If the potentialV,(R) is radially symmetric around the  tion since it corresponds to ignoring the facter Z/R) in

axis, as in the case®) and (b), the density profile has the EQq.(2.4) and the factor ca$in Eq. (2.7), respectively. Thus

same symmetry and Eg&.4) and (2.5) lead to[5] the projection approximation disregards the projection onto
the z axis that appears in the exact formula. Equati®r®)
__ 2| ™ : already indicates that to leading orderRy the force should
BFLN) 2m(Ry*Ry) fo dosindcosdp(d), depend linearly on the radil®,. Moreover, it is reasonable

(2.6)  to expect that for a given value &, the contact density
differenceAp(L) is almost the same for case) and case
wherep(9) is the contact density of the small hard-sphere(). (This should be true for intermediate as well as small
fluid at the fixed big sphere 2 anilis the angle between the sjze ratioss.) With this additional approximation Ed2.9)
z axis and the axis connecting the center of sphere 2 and thgplies that the force-separation curves for the two cases
center of a small sphere touching the large (see Fig. 1 should differ by a factor of approximately 2. Direct support
In this caseF,=F,=0. Equation(2.6) can be reformulated for this prediction is provided by the Monte Carlo results
as (see Fig. 8 in Ref[5]) of Dickmanet al. for a size ratios
=R,/R,=0.1. Note that in Ref[5] the authors argue that
BF,(h)=2( Rb+Rs)2Jﬁ d9sind(—cosH) Ap(9). the comparison of the results of ca@ with those of case
w2 (b) amounts to a test of the Derjaguin approximation. How-
2.7 ever, we emphasize that the Derjaguin approximation in-

volves further assumptions, namely, t L) should be
HereAp(9) = p(9) — p(m— 9), with w/2< <, is the dif- P Y. thigp(L)

/) replaced by the corresponding quantity for a planar(sée
ference of the contact densities between the[let})] and  goc B. The Derjaguin approximation does, of course,

the right [p(7—¥)] hemisphere of sphere 2. For a fixed g5 1o a factor of precisely 2 for the ratio of forces but Eq.
value of they coordinateL denotes the distance in tte  (2.9) indicates that a factor of approximately 2 should follow
direction a small sphere can move until it touches one of thérom less drastic assumptions and therefore should hold for a
two surfaces of the obstacles. In cdsg corresponding to  wider class of approximations. It is sufficient thip(L) for
two big spheres, one has- 2R, +h—2l (see Fig. 1andin  two macrospheres and for a wall and a macrosphere are simi-
case(b), corresponding to a big sphere a distahcie front  lar. Therefore the appearance of this factor of 2 is a neces-
of a planar wall, T=R,+h—I1—R; with I=—(R, sary but not s_ufflc_lent criterion for the validity of the Der-
+Ry)cosy>0. Note that with these definitions one hhas Jaguin approximation. . .

~ Another approximation scheme consists of calculating the
=h—=2R; for §=m and L=h+2R, for 9=m/2 for case  gensity profiles for two separated systems, where in the first
(a). Changing variables from9 to L and definingL=L  one onlyV; is considered and in the second one owly.

+ 2R, (see Fig. 1 we obtain theexactequation One then superposes the two density profiles of the two iso-
lated systems in order to obtain an estimate of the density

E.(h)= J dL[(Ry+ Ry~ e(L—h)]Ap(L), proﬁle of the cqmblned systef3]. In the_ following subsec-
AFAh)=me h [(Ry+ Ry — 2l Jap(L) tions we describe some other approximate approaches and

(2.9 discuss the relationship between them as well as their impli-
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cations for the dependence of the depletion force on the derstate. Note that for size ratios<0.1 the values obtained

sity (volume fraction of the small spheres. from Eq. (2.14 differ only slightly from those in the limit
s=0. As expected from the equation of state of the ideal gas
A. The Asakura-Oosawa approximation and an extension one hasp.(s, 7s—0)=ps. Equation(2.10 can be general-

ized by replacingos by p.. Within the projection approxi-

If one assumes that the density profile is not disturbed b¥nation we then obtain

the presence of the external potential uhtils so small that
no small sphere can be accommodated between the obstacle

1 and the big sphere 2, i.e., the density on a part of the left BFpaa(h) == mepcO(2Rs—h)(Ry+Rs) (2Rs—h),

hemisphere of sphere 2 is zero, the contact density difference (219
is given by which constitutes an empirical extension of Eg§.12 to
—ps, L<2Rq larger values ofp;. The quality of this approximation will

be di d in Sec. Il B.
Apg(L)= 0, L>2R,, (2.10 e discussed in Sec

B. The Derjaguin approximation
whereps is the number density of the uniforfbulk) fluid.
This approximation is only justified for very low bulk den-

sities for which it should become exact. Inserting E3j10
into the exact Eq(2.8) one obtains

In the case of a small size rat&<1, the small spheres
between the two big hard spheres are exposed to an external
field, which for fixedy (see Fig. 1 can be approximated by
that of a planar hard-wall slit of width.. Thus the contact

BFa(h)=—mep®(2R—h)[R,+ (1— 3 €)Rs+ 2eh] density at the left hemisphere of the fixed sphere 2 is ap-
proximated by the contact densipy;i(L) of a hard sphere
X (2Rs—h), (2.1)  fluid confined to a slit of widti.. The contact density on the

_ . ) . _ right hemisphere is approximated by that at a single planar
i.e., the force is negativ@ttractive for h<2R; and vanishes wall. i.e., that of a slit of infinite widthL—sc. Thus the

for h>2Rs. Again, e=1 refers to caséa) ande=2 to case jgrerence in the contact densities is given (L)

(b) and@(r) denotes the Heaviside step function. Equation_ pai(©) With pgi()=BP(pJ). From a force sum rule
(2.11) is the Well-rl:nown result obta|n<_ed by ,lbxs;kéjra land [10,17] this difference isg times the so-called solvation
Oosawa(1] more than 40 years ago using exciuded volume&, .o fs(L), the excess pressure due to confinement of the
arguments. Using E¢2.10) in the projection approximation fluid, in a slit composed of hard walls. Using this approxi-

[Eq. (2.9] one has mation in Eqs(2.8) and(2.9) leads to
BFpa(h)=—meps®(2Rs—h)(Ry+Rs)(2Rs—h),

(2.12 FD(h):WEJ dL[(Ry+Rs)—ze(L—h)]fg(L)
h
which is again negative fdn<2Rg and vanishes otherwise. (2.19
The ratio of the forces given by these two equations is largest
ath=0: and
1 o0
FA(0) Rp+ 1—56 Rs_l 1 s - FpD(h)=7-re(Rb+Rs)fh dLfg(L), (2.17
Foa0)  RptR, =~ 2°1+s’ 213

) o respectively. In both Eq$2.16) and(2.17) the upper limit of
Fors=0.1 this ratio is 0.91 for cas) and 0.95 for cas€).  integration is extended to infinity, although strictly speaking
For smaller values o$ this ratio approaches 1. this limit should bel = (2/e)(R,+ Ry) + h. However,f(L)

In an attempt to improve this approximation one can alanjshes sufficiently rapidly that this causes a negligible er-
low for the dis_turbance of_the small sphere fluid by the fix_edror [11]. Equation(2.17) is called the Derjaguin approxima-
sphere 2 but ignores the influence of the other obstacle, i.ejon [12] because it is equivalent to the general formula ob-
V,. For a single hard sphere of radii immersed in a tained by Derjaguiri13] relating the force between convex
hard-sphere fluid with the bulk densipg, the contact den- podies to the excess free energy of a fluid confined between

sity p. is accurately approximated ] planar walls. The advantage of Eq8.16) and(2.17) is that
the only required input is that from the plan@lit) geom-

pc(S,ms) 1= g2 N 3/2+ (1 7ns) 2Ry~ 2Ry etry. This input can be determined more easily, e.g., by den-
ps  (1—7° s (1-799° 2Rp*2R¢’ sity functional theory 11], simulation[14], virial expansions

(2.14 [6], and integral equation closurgg5]. A more formal way
of defining this approximation is to demand that in E@s8)

where 7= (47/3)R3ps is the volume fraction of the small and(2.9) Ap(L) should not depend oR,. Then the value
spheres. This equation follows from a careful fit to simula-for R,— can be used, which igg;(L) — pgit(), leading
tion data and in the limiR,— o it reduces to the result for directly to Eqgs.(2.16 and(2.17). One can argue that Egs.
the contact density at a single planar hard wall(s (2.16 or (2.17 represent the best approximation one can
—0,m5) =BP whereP is the pressure of the uniform hard- apply without taking explicit account of the dependence of
sphere fluid given by the Carnahan-Starl{i®j equation of the contact density on the size rato
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We now consider Eq(2.17) for 0<h<2Rg. For L

< 2R all spheres are squeezed out of the slit so that the
contact density is zero and the solvation force is constant and Ry

given by minus the bulk pressure of the fluid:

fo(L)=—P(ps), (2.18

On the other hand, by definition, one has for any slit width

0<L<2R;.

Q)

)
&L ot pS

A

dy(ps;L)

f(L oL

w, T

" (2.19

where y(ps;L) is the finite size contribution to the grand
potential per unit areA for a hard-wall slit of widthL [11].
If these relations are inserted into HG.17), one obtains

Fpo(h)=—7€e(Ry+Rs)[P(ps)(2Rs—h) + y(ps ;)
—v(ps;2Ry)], (2.20

In Ref.[11] it is shown thaty(ps;2Rs) vanishes identically
so that

0<h<2R,.

FpD(h): —me(Ry+Rs)[P(ps)(2Rs—h) + v(ps) ],

(2.29

where y(ps)=7vy(ps,*) is twice the wall-fluid interfacial
tension of a single wall. Note that(p) is negativefor hard
spheres at a hard wall. Equati@®.2]) is a formally exact

0<h<2Rq,

result within the general framework of the Derjaguin ap-
proximation. Note that the same formula is given by Attard

et al. [16]. Whenh=2R;, so that a small sphere can just

bridge the gap between the obstacles, the force simplifies tp
S

BF pp(2Rs) = — me(Rp+ Rg) ¥(ps) . This last result, which is
valid for any fluid, is presented explicitly in Derjaguin’s
original work[13]. Note that Eq(2.2)) is valid for all fluid
densitiesps. This is in strong contrast to the Asakura-

Oosawa approximation, which is valid only for low densi- .
ties. Moreover, as the Derjaguin approximation becomes ex

act in the limitR,— o, Eq.(2.2]) is also exact in that limit.

Equation(2.21) shows nicely the interplay between attractive
and repulsive contributions. The depletion of the smal
spheres acts to push the big sphere on the right side towar

the left by a force that equals the bulk pressB(g;) times
the depleted areAA(h):

L))
AA(h)=2m(Ry+R2 | _d®sind
0

= me(Ry+ R (2Rs—h). (2.22

Here we used the relations es=(R,+3h)/(R+R;) (see
Fig. 1) in case(a) and co®s=(R,+h—R)/(R,+Ry) in case
(b). This implies that the first term in E¢2.21) leads to an
attraction that is essentially the same as in 2dql5. On the
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FIG. 2. Introduction of the wedge approximation for the same
geometry as in Fig. {see the main text The wedge with opening
angle« is defined such that its sides are perpendicular to the lines
connecting the centers of the big spheres and the center of a small
sphere, which just touches both big spheres. Thus one has

cos@/2)=cosbg=(Ry+ sh)/(R+Ry).

vature effects. This repulsive contribution is completely ig-
nored both in the Asakura-Oosawa approximation, Eq.
(2.12), and in Eq.(2.15.

C. The wedge approximation

The Derjaguin approximation invokes the solvation force
(L) for a parallel slit in order to estimate the force between
the big spheres. For hard spherggl) oscillates with a
period~ 2R, and its envelope decays exponentially. The in-
tegral in Eq.(2.17) is dominated by values dfy(L) for L
=<3R; or 4R, (see Ref[18]). In Fig. 2 a single small sphere

s shown at a positiol=0 or L=2R, for a size ratios
=0.2. In order to estimate the values of the dengitRR) in

this case, it seems hardly justified to approximate the system

Iby a slit(see the short-dashed line in Fig. t this case the

gviations from planar geometry are very pronounced and
the small particles can enter and leave more easily than in a
slit. Thus we propose to replace the slit by a wedge of angle

a=2dg, i.e., for a given distanck between the centers of
the dotted spheres in Fig. 2 we approximate the contact den-
sity at the fixed sphere 2 by the contact density in a wedge
with hard walls forming a fixed angle and the same dis-

tanceL (see the dashed spheres in Fig. @sing this ap-
proximation in the projection approximatidiq. (2.9)] for

the force acting on sphere 2 we obtain an equation that con-
tains an integration over the contact dengify(l) at one of

the sides of a wedge instead over the solvation force of a slit.
Thus we define

other hand, the density of the small spheres in the wedge

formed by the two big spheres is enlargdd], leading to

repulsion. The overall contribution due to this repulsion is

l(a)zsinaj:dl[pwa>—pw<oo>], 223

given by the second, surface tension, term, which is indepen-

dent ofh, as the Derjaguin approximation neglects all cur-

where the factor sim has been included in order to yield a
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finite value ofl(«) for a=0. A close investigation of this Moreover, since the leading dependencaith) on the ra-
guantity leads to some exact results and a symmetry proghus R, is given by a prefactor R,+Rs) [see, e.g., Eq.
erty, which can be exploited to determine the first sever(2.9)], this motivates the following definition of a normalized
coefficients in a Fourier expansion of .23 [19], yield-  (dimensionlesspotential:

ing what should be a very accurate approximation:

Ry 1
AW(h)= —B[W(h)—W(2R)]. 3.3
|(a)=—§y(ps)(1+cosa). (2.24 (M=RrR, AWM ZWERIL 39
This result is consistent with the exact sum ruler/2) A. Asakura-Oosawa depletion potential

=—Bv(ps)/2 [20]. [Note that y(ps) is twice the surface  sypstituting Eq(2.1) into Eq.(3.1) and integrating leads
tension between the fluid andsanglewall.] A substitution of {5 the Asakura-Oosawa approximation for the depletion po-

variables in Eq(2.23 gives tential,
_ Sina o —pAV(h), h<2Rg

which facilitates the use of Eq2.24) in the projection ap-

proximation given by Eq(2.9) and leads, together with Eq. Where
(2.18), to the wedge approximation

Fpw(h)=—7(Ry+Ry)[P(ps) (2Rs—h) + y(ps)cosb], AV(h)=we(2Rs—h)[Rs[Rb+(1—%e)Rs]
1
0<h<2Rs, 2.29 - Eh[Rb+(1—§e)Rs]—h2$e]. (3.5

with 0<cosbs;=(R,+h2)/(Ry+Rg)<1. In the limits s

=Rs/R,—0 andh/R,—0 we recover the Derjaguin ap- Note thatAV(h), which results here from a straightforward
proximation [Eq. (2.21]. For s=y2—1 andh=0, which  integration of Eq.(2.11), can be identified with the overlap
corresponds tex= /2 where the sum rule fdi(a) is exact,  volume of two exclusion spheres of radiBg+ R (e=1) or
one has cobg=1/1/2=0.707. Thus the repulsion between of an exclusion sphere and a hard wal=2) (see Fig. L
the two fixed spheres is reduced within this new approximafor sufficently small size ratios the projection approxima-

tion. From this observation we expect that in an exact treattion is accurate and the above equation simplifies consider-
ment the repulsion should be diminished further, as even ably, i.e., using Eq(2.12 in Eq. (3.2 yields

wedge(see Fig. 2 restricts the small spheres more than the
actual configuration.

T
_pSEG(RS+ Rp) (2Rs— h)?, h<2R

Ill. DEPLETION POTENTIAL BWpa(h) =
FOR A HARD SPHERE FLUID 0, h>2Rs.
For subsequent applications the potential energy associ- (3.6

ated with depletion is the important physical quantity. The

depletion potentialV(h) is the potential energy required to pefining the packing fractioms=4mp R3/3 and the dimen-

bring a hard sphere of radil, from infinity to a distancér  gjonless distance. = (h—2RY)/(2Ry)=—1+h/(2Ry), the
from another hard sphere with radit (e=1) or from a  npormalized potential is

hard wall (e=2)

» —39\2, —1<\<O0
W(h)EJhdh’F(h’). (3.1 AW, (M) =1 o, \>0, 3.7

For the remamder Of.th's sect|on we specw}llze.to a hardWhich, unlike the normalized potential following from Eq.
sphere fluid and consider the various approximations for th(f3 4), is independent of and e. The Asakura-Oosawa po-
depletion forcer(h) th"’.‘t were mtrodgced In _Sgc. Il. Since tential is attractive and increases linearly with increasing
most of those approximations provide explicit results forquid densit

F(h) in the range B=h=<2Rq it is convenient to focus on the YPs-

potential difference

B. Derjaguin depletion potential

W(h)—W(2R,) = ZRSdh,F(h,)' (3.2 Using the Derjaguin approximatiofEq. (2.21)] in Eq.
h (3.2 leads to
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WpD(h)_WpD(ZRs):_GW(Rb+Rs)(2Rs_h) 02
1 0 1
X|5P(ps)(2Rs—h) + V(Ps)) N S o
’ g w2t S
0<h<2R,, 39 3 o4 Deriaguin, “oxact”
------- Asakura-Oosawa
which is exact in the context of the Derjaguin approximation. 06 1 4 --- Derjaguin, 3“ order |
The corresponding normalized interaction potential is /’ (a) -~ Derjaguin, 4™ order
-0.8 t + + + + t
(L b ) 0 0.2 0.4 0.6 0.8 1
AWpp(N)=—m 2P(ps))\ +29ps)\ |, 1< <O, h/2 R,
(3.9
2

where P=8P(pJ) (2R,)° is the reduced pressure ang
=—Bvy(ps)(2Ry)%/2>0 is minus the reduced surface ten-
sion of a hard sphere liquid close taseglehard wall. Note - T
that the normalized interaction potential in £8.9) is inde- <
pendent of the size ratis= Rs/R;, and of ¢; it is the same =
for the interaction between a wall and a fixed sphere as for
two equal fixed spheres. The usefulness of E§sB) and
(3.9 lies in the fact that highly accurate, analytic formulas SR N, =07x7/6
for P and y are known. In the following we use the t t ' t ' t ' '
Carnahan-Starling relation for the press[@¢ 0 02 04 06 08 1 12 14

h/(2R
~ 6 1+nst 7}5—773 (2R,)

Rips)= s (1— 73 (310 FIG. 3. The normalized depletion potentiaW(h) [Eq. (3.3)]
for a packing fractionyps=0.4X /6= w/15=0.2094 (a) and for
and the scaled particle theot@PT) [21] for the surface ten- 7s=0.7X7/6=0.3665(b). In both (a) and (b) the full line denotes

sion the “exact” Derjaguin resulfEgs.(3.9—(3.11)] and the dotted line
denotes the Asakura-Oosawgrojectio approximation [Eqg.
B 9 7]2(1+ 7s) (3.7]. The dashed and the dashed-dotted lines denote the result up
Kpy)= o . (3.1 to third and fourth order iryg, respectively{see Eq.(3.12)]. The
2 (1- 773)3 third-order result is almost identical to the result obtained in Ref.

[6]. In (b) the dashed-double-dotted line denotes the result of the
Using more sophisticated results fBrandy [22] leads to ~ wedge approximatiofiEg. (3.15] for e=1 and withs=0.2. The
very similar results for the depletion potential. Moreover, dashed-triple-dotted line corresponds to the result of the IRpit
making variations of a few percent from the valuesPoéind  =Rs[Eq.(5.12] (e=1). This is the only case for which we show
y given by the Carnahan-Starling and scaled particle result&sults forh>2R,. By definition AW(h=2R,)=0.

does not have a significant effect on the form of the depletion . , .
potential. to higher order iny [see Eq.(2.195], does not constitute a

Much insight is gained by expanding E@.9) in powers systematic improvement of the Asakura-Oosawa approxima-
of the packing fraction: tion.

Recently Macet al.[6,23] have developed a virial expan-
AW,p(h)= — 32+ (—IN—1202) 72 sion approach for calculating the depl'etiorll pof[ential within
the framework of the Derjaguin approximation, i.e., by using
+(—360—30N?) 2 —BAN(3+N) pd the planar(slit) geometry. Within their approach it is pos-
sible to calculate the depletion potential exactly up to third
+0(79), —1<A<0. (3.12  order in 7, for all h. In the range 8<h<2R our present

approach reproduces their result, if one uses formula® for
[22] andy[24] that yield the exact virial coefficients up to
'third order. In order to obtain a simple expansion we use
approximations, given by Eq§3.10 and(3.11), which yield

At first order in »; we recover Eq.(3.7), the Asakura-
Oosawa result in the projection approximation, which is
therefore, completely contained in E@®.9). This is due to

the fact that the surface tensionis, in lowest order, qua- g exact first two virial coefficients. However, a comparison
dratic in 7. Thus, the first-order term in E@3.12 is given it the results in Ref(6] shows that the differences at third
by the first-order(ideal gag term in the pressur® Thisis  order are at most a few percent. We emphasize that Egs.
equivalent to the assumption used in the derivation of thg3.10 and(3.11) are known to be accurate to all ordersspf
Asakura-Oosawa approximation. Note that for the secondnot just to third order.

order term in Eq(3.12 the surface tension contribution is In Fig. 3(@ the normalized depletion potential obtained
equallyimportant. Therefore improving only the estimate of from Eq. (3.9 is shown as a function ofi/(2Ry) for 7

P, which is equivalent to calculating the contact dengity ~ =0.2094. Even at this fairly low packing fraction the first-
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order, Asakura-Oosawa, approximation is very inaccurate. It y t t
is only useful for very small packing fractions. The third- — Derjaguin, “exact”

order result yields a shape similar to the “exact” requk., [ Asakura-Oosawa
without expansionbut even the fourth-order result shows 21 ... Derjaguin, 3° order
significant deviations from the “exact” one. It is necessary 2. Derjaguin, 4" order
to include fifth-order terms in order to obtain a satisfactory = '

agreement with the “exact” result. For a higher packing

fraction, »,=0.3665, the third-order result is even qualita- 07
tively incorrect[see Fig. 8)]. For this value ofz; it is
necessary to include terms up to seventh order in order to
obtain reasonable agreement with the “exact” result. y
Figure 4 shows the depletion potential at contact, i.e., for 0 0.1 0.2 03 0.4
h=0 obtained from the “exact” result: M.
1-279s—279%— 73 FIG. 4. The normalized depletion potentji&lg. (3.3)] at contact
AWpD(O): =375 . (3.13 h=0. The full line denotes the “exact” Derjaguin approximation

(1- 773)3

For large values ofyg this is in strong contrast to the
Asakura-Oosawa approximation

[Eg. (3.13], which has a minimum ap,=0.241 and vanishes at

ns=0 and n,=0.3532. The dotted line represents the Asakura-

Oosawa(projection approximation Eq. (3.14], which is linear in

7s. The dashed and dashed-dotted lines are the results from the
AW, a(0)=—3 17, (3.14 third_- and fourth-ordgr e_xpansi({rEq. (3.12]. Thus,_ the inclusion_

of higher-order contributions produces a slow buildup to repulsion

and to the third-order resuli$] for which the contact value at high packing fractions.

always decreases upon increasing the packing fraction. Equa-

tion (3.13 predicts a maximal attraction fap;=0.241 and ¢ The wedge approximation for the depletion potential

for »s>0.3532 the contact value is positive so that there is

repulsion(see Fig. 4. If we assume a 1% percent error inthe  sing the refined expression for the force between two

Carnahan-Starling equation and a 2% error in the SPT equggrge fixed sphere§Eq. (2.26)] leads, via Eq.(3.2), to a

tion AW, will change sign for a packing fraction in the (efined approximation for the depletion potential
range 0.342 to 0.364.

1
1 R,+ Z(ZRS+ h)
pr(h) _WpW(ZRS) =—m(Rp+Rs)(2Rs—h) Ep(ps)(ZRs_ h)+ y(ps) 0<h<2R;.

(3.19

Rs+ Ry '

Although this formula is very similar to the Derjaguin ap- to which value ofs can these approximations be used safely?
proximation, the correction becomes very important for largeAn obvious way to answer this question is to make a com-
values ofs and large values of the packing fractigQ. This  parison with simulation datgs,7]. In Fig. 9 of Ref.[7] mo-
is demonstrated in Table | for two different size rati®s lecular dynamics data for the depletion potential, with
=0.2 ands=0.1 and three different packing fractions. As =0.1, are shown for packing fractions,=0.209, 0.262,
expected, the contact values from the wedge approximatiop 314, and 0.367. In the range<h< 2R, the results of the
are more negative than the results of the Derjaguin approXimird-order theory of Macet al. [6] are very close to the
mation, indicating a _reduction o_f the repu_lsive contribution. gjmulation data(The third-order theory gives a poor account
Note that th_e hormalized depletlpn pot_ent|al f_rom the Wedg%f the simulation results in the rangd&Rg<h, but this is not
approximation depends on the size r.atu').and is plotted in I:'ggermane to the present discussjdrirst we concentrate on
3.(b) for ns= 0.3665 an_d5—0.2. Itis s_|gn|f|cantly less repul- the casens=0.209. Since, according to Fig(e, the third-
sive than the Derjaguin approximation for & 2R;. : . S
order expansion already provides a good approximation to
_ o _ the “exact” Derjaguin resulfEq. (3.9)], we conclude that
D. Comparison with simulation data the latter gives a reasonable account of the simulation data in
All the approximations we have discussed, apart from théhis case, indicating that the Derjaguin approximation is re-
wedge approximation, are based on the assumption that thiable for a size ratios=0.1 and for the packing fraction
contact density differencép(L) [see Eq.(2.8)] does not 7s=0.209. However, fom;=0.367 Fig. 3b) shows that the
depend on the size rati They differ only in the subsequent third-order expansion is qualitatively different from the “ex-
approximation applied to this difference. Thus they can onlyact” Derjaguin result. Therefore we conclude that the agree-
be accurate for small size ratios. The issue is as follows: Upnent between the predictions of the third-order expansion
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TABLE I. The depletion potential at contad/(0) and the height of the depletion barriéVv
=max,[ W(h) —W(0)] in units ofkgT for the case of sphere-sphere interactiopsis the packing fraction
of the small spheres arg=R,/R,, is the size ratioW, denotes the Asakura-Oosawa approximafigg.
(3.4] andW,, is the projection approximation of the lattgq. (3.6)]. W,p is the Derjaguin approximation
[Eq. (3.8], W, is the wedge approximatidieg. (3.19] andW,(0) is the result given by Eqg5.11) and
(5.9 based on the limiR,=R;. W), refers to the Monte Carlo results in R¢E]. Note that the present
theory provides only expressions for the differeiég,(0) —W,p(2R,) andW,,,(0)—W,,(2R,) and these
differences are given in rows 4 and 5 of the table, respectively. However, as argued in the main text,
Wpn(2Rs) andW,,(2Rg) are both negligible.

s=0.2 s=0.1

7s 0.116 0.229 0.341 0.116 0.229 0.341
W, (0) -0.99 —-1.95 -2.90 —-1.86 —3.66 —5.46
W;a(0) —-1.04 —2.06 -3.07 -1.91 —-3.78 —-5.63
Wpp(0) -1.12 -1.91 —-0.49 —2.05 —-3.50 -0.90
Wpn(0) -1.17 —-2.23 -1.70 —-2.09 -3.82 —-2.13
W;,(0) —-0.93 —1.98 -3.19 -1.71 —-3.62 —5.85
Wyc(0) —-0.91 —-1.84 —-2.89 —-1.73 —-3.69 —-5.70
6Wpp 1.17 2.54 4.05 2.14 4.66 7.42
OWpy, 1.22 2.83 5.01 2.18 4.94 8.37
SWyc 1.00 2.17 3.69 2.04 454 8.24

and the simulation data must be the result of a fortunat¢he repulsion at high packing fractiofBig. 3(b)], and for
cancellation of errors. This comparison demonstrates that thg;=0.341 the values oW,,(0) are substantially more
Derjaguin approximation is not valid for this size ratio at this negative than/,(0) but still underestimate the magnitude
high packing fractionA fortiori this is true for even larger of Wy(0) at this packing fraction. While it is very reason-
packing fractions. able to expect the Derjaguin approximation to be accurate for
A similar picture emerges from comparisons with recents<0.01, its application to larger size ratios is not reliable.
Monte Carlo simulation$5]. The authors of this reference Finally we define the depletion barriéWV as the difference
provide the values of the depletion potenti®(0) for three  between the maximum and the contact value of the depletion
different values ofps and for two values of the size ratio, potential. This quantity does not require knowledge of
s=0.1 and 0.2. At first sight a direct comparison appearsV(2R,). The results forSW from the Derjaguin approxima-
difficult, as our present analysis only predicts values for theion, the wedge approximation, and the simulation data are
difference W(0)—W(2R;). However, from the results of also given in Table |. Both approximations predict the cor-
both simulation studies one finds that the valueS\{2R;)
are always quite smal\W,p(2R;) has also been calculated
within density functional theory11] and shown to be in the 07T
order of 0.01 for a range afis. Thus one is able to compare

] =1:<¢ Dickman et al.
T~ A Bibenetal

the results of the Monte Carlo simulations fé,(0) with -05 T ™

those from the present approximations by setfiN(?R,) =)

=0. Table | shows that for the two lowest packing fractions, %’ 41 — AW(0),e=1 :\'\\,\

7s=0.116 and 0.229, the various approximations yield simi-<1 1 ... Asakura-Oosawa SN

lar results with that of Asakura-Oosawa being closest to the o
15 1 --- Derjaguin, 3" order i

simulation results. On the other hand, for the highest packing

fraction ,=0.341, the contact values obtained from the == AW,(0),e=2 s=0.1
Derjaguin approximatioW,(0) and from the simulations -2 t t t '
differ significantly. W,5(0) is much less negative than 0 0.1 0.2 0.3 0.4
Wyc(0) for both size ratios. Remarkably the crudest,

Asakura-Oosawa, approximatiohi,(0) [or W,(0)] yields Ns

values that are qlose to thqse of the Slr.nUIatlm also Fig. FIG. 5. The normalized depletion potenti&qg. (3.3)] at contact

5). We regard this as fortuitoys]. That improving uponthe |,_q “the il and the dashed-dotted line dendt@,(0) [Eq.
low-density Asqkura-Oo§awa apprpmm_aﬂon by mtroducmg(s.la] for the case of a sphere-sphere<(1) and a sphere-wall
an accurate high-density approximation leads to pooref._») interaction, respectively. The dotted line represents the
agreement with the_smylatlons r_emfo_rceg our previous Conasakura-Oosawdprojection approximation[Eq. (3.14] and the
clusion that the Derjaguin approximation is inappropriate forgashed line is the result from the third-order expangtemn (3.12)].
these size ratios and high packing fractions. This means thahe diamonds and the triangles denote simulation resultss for
replacing the contact density by that in a slit is not justified=0.1 ande=1, of Dickmanet al.[5] and Bibenet al.[7], respec-

for size ratios ofs=0.1 or 0.2. In view of Fig. 1, which is tively. The results obtained in R4E] are also listed in Table I. For
drawn to scale fos=0.2, this is not surprising. The intro- the present plot these data have been normalized by a factor of
duction of the wedge approximation does imply a decrease is/(1+s)=0.1818.
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rect variation ofSW with 7. However, the above discussion thermal equilibrium the net force on a fluid particle at posi-
of W(0) shows that the approximations do not account fortion R must vanish, i.e.,

the shapeof the depletion potential found in the simulations .
at the higher values ofjs. =B "VInp(R)=VV(R)+F(R)=0, (5.9

wherep(R) is the equilibrium density profile in the presence
of V,(r) andF(R) is the force arising from the interactions
with the other fluid particles. In the case of pairwise interac-

So far we have considered only the case of hard obstacld¥ns, described by a pair potenti&(|R|), the latter force is
immersed in a hard sphere fluid. The considerations prediven by
sented in the Appendix are more general and allow for the
presence of soft interaction potentials. First, we focus on two F(R)=— J' d*R'VO(|R—R’|)p(R)g(R,R"), (5.2
hard obstacle$i.e., two hard spheres of radil, or a hard

spherg In fron_t of a ha_rd Wallmmers_ed in a fluid of .smaII whereg(R,R") is the pair correlation function of the inho-
spherical particles, which interact with each other via an ar-

! ) . .mogeneous fluid; EJ5.1) is then the first Born-Green-Yvon
bltrary potentlal fu_nctlon. The obstgcles are c.allled hard nJ(rquation[ZS]. According to the Percus test particle theorem
their interactions with the small particles are infinitely repul-

. . : R")g(R,R") is the density profile of the system subject to

sive below a suitably chosen distanRg+ R and zero oth- o . .

erwise. For such mgdels Eqe.4 andg(z 5; remain valid, 2 additional external potential,(R)=®(|R|) due to a

with aﬁ appropriate definition (')be+R )' In this case th,e fluid particle fixed at the positioR [28]. Therefore the force
<) : . .

various approximations, which were introduced in Secs. i Eg. (|5'2) red#c?s to t(;]a}t gl\égn by i@“hThUSF(R;) IS

and lll, can be implemented straightforwardly. For example equivalent to the force defined in B@.3) in the special case

A L . ; Wwhere V,(R)=®(|R|) and the corresponding potential
the Derjaguin approximation, which should be exact in th 2 .
limit of s—0, Eq. (2.2 remains valid withP(p,T) and W(R) [see Eq(3.1] can be obtained from Eqs.1),

v(ps,T) referring to the pressure and interfacial tension of p(R)

the particular fluid under consideration. As indicatBdand —W(R)=V(R)+ B lIn—, (5.3
vy and thus the depletion potential have gained a temperature Ps

dependence. If the interaction potential between the smajith the boundary conditiond/;(<)=0 and p(=)=ps.

particles contains both attractive and repulsive parts, thfgte that here(R) denotes the density profile of the system
depletion potential given by Ed3.8) exhibits a rather dif- ity V,=0. Thus one has

ferent dependence g, from that of the hard sphere fluid,
because bottP(ps,T) and y(ps,T) reflect the presence of p(R)=psexp{—B[Vi(R)+W(R)]} (5.4
attractive forces. In gener#(ps) will be smaller than for a ) .

fluid of (smal) hard spheres of the same dengityso thatits ~and W(R) is the work that must be performed against the
contribution to the depletion potential will be less attractive.interparticle forces in order to bring a fluid particle from
On the other handy(ps,T) can be less negativ@ may be infinity to the fixed positiorR.

even positive than for hard spheres at a hard wall so that a If the potentialV;(R) is due to that of an identical fixed
net attraction can still occur. Nevertheless some results dparticle, i.e.V1(R)=®(|R|), the density profile is given by
Sec. I1l still hold. The virial expansion of the surface tensionthe Percus test particle theorem, i.8(R)=pg(R=|R|),
reveals[25] that for any spherically symmetric particle- Whereg(R) is the radial distribution function of the homo-
particle interaction the linear term vanishes. Thus it also fol-geneous fluid of densitys and Eq.(5.4) reduces to

lows in a more general fluid that the low density behavior is

dominated by the pressure term. Finally, if the potential ex- g(R)=exp{— B[P (R)+W(R)]}. (5.9
erted by obstacle 2 is soft one should employ &) for
the depletion force, which now depenebsplicitly on the po-

IV. DEPLETION POTENTIAL
FOR MORE GENERAL FLUIDS

For this particular situatiod® (R) +W(R) is the potential of
mean force. Thus for caga), i.e., a hard sphere fixed at the

tential V. . . . origin, the depletion potential between two hard spheres
The case of nonspherical particles introduces new feaiaentical to those constituting the fluid is given by
a

tures. These have been considered by Asakura and Oosaw

[26] and more recently by Maet al. [27] who have inves- BW®@(h)=—Ing,d 2Rs+h), h>0. (5.6)

tigated depletion forces and other properties for hard rods

between hard parallel plates. If the potentialV,(R)=V;(h) is that of a planar wall,
BIW(h) +Vi(h)]= —In[ pwai(h)/ ps], (5.7

V. THE LIMIT R,=R;
wherep,,.i(h) is the density profile of the fluid near the wall.

In this section we consider the special case in which thg,, case(b), i.e., a planar hard wall, this reduces to

radius Ry, of the fixed sphere 2 equals that of tkemall

spheres. We shall use results obtained in this limit in order to BW® (h)y=—In[pp(h)/ps], h>0, (5.9
suggest an alternative approximation for the depletion poten-
tial that will become exact in the limé=Rs/R,— 1. where pp,(h) is the density profile of the fluid near a hard

To this end we consider a fluid subject to an externalwall. Note that Egqs(5.7) and (5.8) are valid for any fluid,
potentialV,(R) [V,=0 in Eq.(2.1)]. For the system to be in not only for a hard sphere fluid.
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The contact valueH{=0) of the depletion potential for
caseq@a) and(b) can be related to the pressi?éps) of the
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line in Fig. 3b). AW, (h) is rather close to the simulation
results; surprisingly it seems to be a reasonable approxima-

fluid via the virial expression and the wall sum rule, respec+ion even for this low size ratis=0.1. In Table IW,(0) is

tively, yielding
1 [BP(ps) ”
(@(0)= — In| —— -
BW@(0) In[4ns( o 1 (5.9
and
ﬁW(m(O):—In(%). (5.10

In the limit »,—0 the ratioe; =W®(0)/W®(0) is given
by the ratioB5/B,=8/5=1.6, whereB, and B, are the sec-

compared with the other approximations and with MC simu-
lation data fors=0.2 ands=0.1. In both cases it is in good
agreement with the simulations, even at high densities.

In Fig. 5 for a range of packing fractiong,, AW;(0) is
compared with the results of the Asakura-Oosgdmajec-
tion) approximation[Eq. (3.6)], the simulation results ob-
tained in Refs[5] and[7], and with the third-order expan-
sion of the Derjaguin result. All of these approximations
predict thatAW(0) is decreasing monotonically with in-
creasing density, which is in sharp contrast to the “exact”
Derjaguin resultsee Fig. 4. The comparison with the results
of both simulations shows that the sphere-sphereX) re-

ond and third virial coefficients, respectively, of the pressuresylt in Eq.(5.12 provides a fair account of the density de-
Upon increasing the density the ratio decreases very slowlyendence of the contact value. The wall-sphere 2) result
For example atps=0.45, for which the Carnahan-Starling in Eq. (5.12 predicts a somewhat less attractivermalized

equation of stat¢Eq. (3.10] yields BP/p;=9.38, one has
€1= 146

potential at contact(Note the factors, which arises in the
definition of AW.) The presence of the logarithm in the ex-

In the same spirit as the Derjaguin approximation is baseg@ression for AW;(h) implies that although the pressure
on exact results valid in the lim#= 0, we propose the use of P(ps) is increasing very rapidly with increasing density,

Egs. (5.6) and (5.8), which are exact fos=1, in order to
estimate the depletion potential ferclose to 1. Since the
dependence olN(h) on the size ratio is not known in detail,
we assume the same dependence as in the pre{poojgc-

tion) approximations and propose the following approxima-

tion W;(h), which reduces to the exact restit®”(h) in
the limit s—1:

(Rp+

Wy(h)=—

W@DP)(h), (5.1

Rs)
s

Thus the normalized potentifiEq. (3.3)] carries no explicit

dependence os and is given by

9nd 2RsTh)
Ind4Rs)

AW, (h)= 1 ( pr(N) ) (5.12

S Y LS

2\ pru(2Rs)

—In

AW;(0) has a much weaker—roughly linear—dependence
on ps.

VI. THERMODYNAMICS, PHASE SEPARATION, AND
STRUCTURE OF BINARY HARD SPHERE MIXTURES

So far we have considered the depletion potential between
an isolated pair of big spheres or a big sphere and a wall. In
this section we turn our attention to bulk mixtures of big and
small hard spheres and ask whether the results derived for
the depletion potential have relevance for the equilibrium
properties of such mixtures. These model systems have at-
tracted much attention. The phase behavior has been inves-
tigated by both simulation and theoretical techniques and for
certain size ratios, typically 04s=<0.6, the solid-fluid and
solid-solid phase diagrams are well established. Depending
on the value ofs, different crystalline phases may exist,
which coexist with each other and/or with a fluid ph§28].

A more contentious and intriguing issue is whether fluid-
fluid phase separation can occur in this model. Lebowitz and

In contrast to previous approximations this, normalized,Rowlinson[30] showed that within the Percus-Yevick clo-

depletion potential is different for cas@ and case(b).
Moreover, this approximation provid&g(h) for all h>0. It
is shown fore=1 in Fig. 3b), taking the radial distribution
function g,{h) from the Percus-Yevick approximation.
Comparing the “exact” Derjaguin approximatigifull line)
with the wedge approximatiofdashed-double-dotted line,
plotted fors=0.2) and withAW,(h) (dashed-triple-dotted

sure approximation, hard spheres mix at all concentrations
for any value ofs. Much later, Biben and Hansdi31,32
found, based on numerical solutions of integral equations
using an improved closure approximation, strong evidence
for a spinodal instability wheis=<0.2 and attributed this to
attractive depletion forces. That study spurred many subse-
guent investigationgsee the summaries in Refgr] and

line) one observes a systematic decrease of the repulsive paf3]). However, it is probably fair to argue that it is still an

of the potential. Since the two limits=0 ands=1 are
described exactly by the Derjaguin result and by &q12,

open question as to whether fluid-fluid phase separation does
occur for the binary hard-sphere mixtufg4]. It certainly

respectively, one is inclined to use them in order to estimateloes occur for a lattice model of a binary mixture of parallel
the potential close to these limits. However, as one can see imard cubeq35], which demonstrates that entropic effects
Fig. 3(b) at this density the limiting values of the normalized alone suffice to drive the phase separation. The matter is not
depletion potential differ significantly so that there is no ob-settled because for the continuum case ergodic problems for
vious starting point for the description of systems with inter-small size ratios are severe; computer time is spent on mov-
mediate size ratios. In Ref7] the authors report a good ing the small spheres around whereas displacing a big sphere
agreement between their simulation datager0.1 and the is a move that is rarely accepted when the density of the
results of the third-order expansi¢@], given by the dashed small spheres is large. Given the difficulties of treating both
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species on equal footing, it is tempting to follow the standardbation on the hard-sphere potential. The first-order approxi-
procedure of statistical physics and construct an effectivenation in this perturbation approach for the Helmholtz free
Hamiltoniaanfg for the big “particles” by integrating out energy per big sphere is

the degrees of freedom of the small spheres. Simulations, or h
theoretical analyses, can then be performed for this effective A(Po.Ps) _ A™(pp)

one-component system. Formally one has Ny Ny +2mpy
ff h 2R*RY o h
HEs({RiH =Hpa({RiH +As({Ri}), (6.1) XLRb dr r*Wpp(r —2Rp)g"™(r'; pp),
where H®({R;}) denotes the Hamiltonian of the bare big ©.3

hard spheres andy({R;}) is the Helmholtz free energy of ' hereghsr: p,) is the radial distribution function of the big

the inhomogeneous distribution of small spheres in the preg;, 4 sphere fluid and"{p,) is the Helmholtz free energy
ence of a configuration oy, big spheres located at fixed for the same homogeneous fluid of density=N, /V. Since
positions{R, . .. ,RNb}. Finding suitable approximations R.<R,, g"{(r:pp) is almost constant over the range of the
for Ag is not straightforward for this particular problem. In integration and we can approximate it by its contact value

the general case, i.e., arbitrary valuess@nd arbitrary den-  g" 2R, ;p,). Then the integral can be easily performed and
sities pg and p,,, there is no small parameter that permits awe find

natural perturbative approach to the calculatiodgf When

thg dgnsitypb |s low one might expect the approximation of BA(pp .ps) . 7o(4—37p)

pairwise additive potentials to be reasonable. Moreover, N =In(A°py)— 1+ ﬁ

when the size rati®<0.154[7,36] there are no configura- b (1= )

tions in which a small sphere can be in simultaneous contact —3m7,9"(2Ry ; pp)

with three big spheres. This rules out one important source of

many-body effectsWithin the Asakura-Oosawa approxima- 1 ~

tion this is the only source and it follows that there are no X §P(Ps)“P(S)_23(Ps)“y(S) '
three-body or higher-order potentials fer<0.154 [36].)

Biben et al. [7] conclude from the analysis of their simula- (6.4

tion data that pairwise additivity should be an excellent ap- _ 31; . : .
proximation fors<0.1, even at high densities. For larger where 7,=4mp,R;/3 is the packing fraction of the big

! : Lo spheres and where we have used the Carnahan-Starling for-
ratios one should expect this approximation to break down;, ula[9] for the hard-sphere free energy:is the thermal de

In the present discussion we restrict ourselves to small valu ‘oalie wavelenath of the bia soheres. For snsathe auan-
of s and assume that the potential energy of the big particle 9 9 gsp ' q

is 2. Py(|R— R;|) with the effective pair potential fties
1 1 )
o, r<2Rb ap(s)::1+ §S+ ES (65)
Pon(N =1 W(r—2R,), r>2Ry, (6.2
and
whereW(r —2R,)=W(h) is the depletion potential between a(s) =1+ ES+ lsz (6.6
,(9): .

two big spheresw(h) depends om but not onp,,. For the 3 6

subsequent discussion we choose the Derjaguin réSglt _ _ _ _
(3.8] because this becomes exact @s:0, i.e., we set depend weakly on the size ratio and &70.1 it causes little
W(h) =W,p(h) —W,p(2Ry). SinceW,p(h) is not available ~ €rror to replace them by unity. Thus, the last term in Eq.
for h>2R,, we assume, for simplicityW(h)=0 for h (6.4 is determined essentially by the combinatidR ps)
>2R;. Although the results of density functional calcula- —2}(;)5), which is similar to the one that determines the
tions [11] and simulationg5,7] show thatW(h) has weak normalized depletion potential at contact, i.&Rpo)
oscillations in this range, omitting these should not have any_ Tp) [see Eq(3.9]
dramatic effect on the properties of the mixture. Thus we Topf?rst order i.n ' .'n Eq. (6.4), only the pressure term
have®,,(r)=0 forr>2(R,+ R,) and the resulting pair po- : ~ 75, 1N Q. (5.9), only P u
tential is of a type similar to that considered previously inContributes Rips)~67s/7, and the free energy reduces to
Refs.[37] and[36] whose authors investigated phase sepathat which one would obtain from using the Asakura-
ration in models of colloid-polymer mixtures. Those authors©0Sawa depletion potential in the projection approximation.
used the Asakura-Oosawa approximation for the depletiof? this case the last term in E@6.4) is always negative,
potential. We examine the consequences for the hard-sphef@flecting the fact that the potentil,A(h) is always attrac-
mixture of employing a more accurate theory, valid also fortive. However, as demonstrated in Sec.~III, at higher values
large values of the packing fractioms, for which the of 7s the surface tension contribution(ps) becomes
Asakura-Oosawa approximation fails. equally important and the variation with of the final term

In order to obtain some physical insight into thermody-in the free energy should be similar to that®o#/(0) in Fig.
namic properties, we treat the depletion potential as a pertud. But the upturn sets in at smaller values:gf, because the



57 DEPLETION FORCES IN FLUIDS 6797

coefficient ofTD(pS) is 1/3 instead of than 1/2. This means
that the “exact” Derjaguin result predicts a significantly
smaller attractive contribution to the free energy fgpg

=0.1 and a repulsive contribution faf,>0.222. Thisobser- & 0.6 T
vation has clear repercussions for phase separation. If wil!

S

calculate the compressibility by differentiating £§.4) with 3

respect top,, at fixed 55 and take the Percus-Yevick value ¢ 04

for g"Y2Ry;py,), there is no divergence within the fluid — Derjaguin, “exact”

range of either packing fraction, i.e., there is no indication of 02 + ... Asakura-Oosawa

a fluid-fluid spinodal. However, Ed6.4) is a crude approxi- : ' ' : '
mation to the free energy of this particular model fluid and 0 0.1 0.2 0.3 0.4
better approximations or simulations should be employed to

test this prediction. Note also that the packing fractign MNe

which enters into the effective Hamiltonian, should reflect
the fact that there is less free volume available for the smalg

spheres when tht_are is & macroscopic numitigrof large small-hard-sphere fluid has a fixed packing fractigg=0.1. The

spheres pr_esent_m the bulk flufd]. _V\/_hat emerges from full and the dotted line correspond to the “exact” Derjaguin and
these considerations is that the variation of the free energisayura-Oosawa approximation, respectively, for the underlying
with 75 seems to depend sensitively on the approximatioryepletion potential. The Derjaguin approximation predicts a maxi-

used for the depletion potential in the range xf where  mum and a turning point the Asakura-Oosawa approximation yields
fluid-fluid separation might occur for hard-sphere mixturesa monotonic increase.

[7] and different approximations could easily produce very
different results. mation (RPA), which has been successful in describing the

We turn now to the structure of the fluid of big particles small momentum behavior of the structure factors of simple
interacting via the effective pair potentid®,,(r). The shape liquids and liquid metal$39,40. The RPA asserts that for a
of the corresponding radial distribution functigg,(r) and  pair potential of the type given in E§6.2) the direct corre-
of the structure facto®,,(k) reflect the form of the depletion lation function can be approximated by
potentialW. If the latter is strongly attractive, we have a very o
“sticky” pair potential and the coérsl(tact valugy(2Ry) is Cp(r;pp) =C I pp) = BW(r —2Ry), (6.7)
much larger than the contact valge{ 2R, ;p;,) for the one- ) . hs . . .

) ; ; - with W=0 for r<2R,. ¢"{(r;py) is the hard-sphere direct

component hard-sphere fluid at the same derngjty This is orrelation function, which can be obtained from the Percus-

one of the reasons one must be cautious in using the pertu@ ok imation. The structure factor is th : b
bative approach presented in E.3). The simulation stud- evick approximation. 1nhe€ structure factor Is then given by
the Ornstein-Zernike relation

ies for binary mixtures in Ref[7] confirm this conjecture;
they yieldg,,(2R,) >20 for s=0.1, ,=0.1, andn,= 0.25.
The new prediction that emerges from the present study is Spp(k) = ——————
that as# increases to larger values the depletion potential 1—ppCop(K; pp)
actually becomes more repulsive—at least within the context

of the Derjaguin approximation applicable to small values ofwith c,,(k; pp) = S d3rexpik-r)cyp(r;pp). In Fig. 6 we show

s. This means that a new characteristic length seakR,, Syp(0), calculated from Eq96.7) and(6.8), as a function of
+Rs may become important. No such length arises in they, for a fixed big sphere packing fraction,=0.1. These
Asakura-Oosawa approximation for whiwti is attractive at  results support the expectations stated ab&g(0) in-

all distances. Thus we argue that@asincreases a character- creases monotonically for the Asakura-Oosawa approxima-
istic feature such as an additional maximungjp(k) should  tion. By contrast it reaches a maximum near=0.13 and
develop neak=27/(2R,+Rs), whereas for smallys there  decreases rapidly at higher values when the “exact” Der-
should only be the peak located neafR,. A strongly at- jaguin result for the depletion potential is used. There is no
tractive depletion potential will also act to increaSg,(0), indication of a spinodal, i.e., the compressibility—
which is proportional to the osmotic compressibility, aboveproportional toS,,(0)—does not diverge, for either poten-
the corresponding one-component hard-sphere value at thial. It is well known that although the RPA does not provide
same value ofy, . Such behavior 08,,(0) is already visible an accurate description of the short wavelength behdvior
in the Percus-Yevick results for binary mixturg38], for ==/R, in simple liquids, it usually provides a realistic ac-
which it is interpreted as evidence for depletion attraction. Ifcount of the long-wavelength behavior. The reliability of the
the depletion potential varies witlys as predicted by the RPA for the present model potential, which is very different
Derjaguin approximation this will lead to behavior §f,(0) from the Lennard-Jones or liquid metal pair potentials, is, of
very different from that which emerges from the Asakura-course, uncertain, even féar—0.

Oosawa approximation. Within the latt&;,(0) should al- To summarize we suggest that both the pairwise structure
ways increase withys whereas within the formes,,(0) and the thermodynamic properties of the hard-sphere mixture
should decrease when the depletion potential becomes repdhould reflect the variation of the depletion potential with
sive. These expectations can be tested, e.g., by calculating;. The specific predictions listed here await tests by com-
Spp(0) within the framework of the random phase approxi-puter simulations of the effective one-component fluid as

FIG. 6. The structure factds,, atk=0 for a range of packing
ractions 7, calculated within RPAEgs. (6.7) and (6.8)]. The

(6.9
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well as experimental tests such as by small angle neutrojustified. At high packing fractionsys>0.3, the wedge ap-
scattering from suitable chosen colloidal solutions resemproximation performs much better fer=0.1 and 0.2Table

bling closely hard sphere mixtures. I). We argue that the apparent agreement between simulation
data and results of the third-order theory of Metaal. [6] is
VII. SUMMARY AND DISCUSSION caused by a fortuitous cancellation of errors.

(6) In Sec. V we have considered the particular limit in

In this paper we have examined the statistical mechanic@hich the fixed spherical obstacle is a fluid particle itself. In
of the so-called depletion potential, i.e., the effective potenthis case the depletion potential is given in terms of the loga-
tial that arises between a large hard sphere of raljuand  rithm of the density profile of the fluid in the absence of the
a second obstacle at distanceimmersed in a fluid com- obstacldsee Eq(5.3)]; for the hard sphere fluid the sphere-
posed of particles with radiuRg and number density,. sphere depletion potential reduces to the potential of mean
Defining the force between the two obstacles as minus théprce. This result for the limis=1 has been used as a mo-
derivative with respect to the separatibrof the grand po- tivation for introducing a new approximation fex<1 [see
tential we have shown that this force depends only on theq. (5.12]. The comparison with simulation data shows that
density profile of the fluid at contact with the hard sphere.this approximation is reasonably good even for size ratios as
Our derivation demonstrates that this result is valid for arsmall ass=0.1. Thus, there are approximations for the
arbitrary second obstacle, for density profiles obtained withirdepletion potential available that are exact in the linsits
the context of density-functional approximations, and for any— 0 ors— 1. They differ substantially from each other and it
simple fluid, not only hard spheres. By considering variouss not clear which of them is more appropriate or how one
approximations for the density profile we have constructed ghould interpolate between them for intermediate values of
variety of approximations for the force between obstaclesFurther simulation studies of the type reported in RES.

The main results can be summarized as follows: and[7] for smaller values o$ are necessary to ascertain the
(1) The simplest approximation leads to the well-knownregime of validity of the Derjaguin approximation.
Asakura-Oosawa result for the depletion force. (7) In Sec. VI we showed that our approximations for the

(2) More sophisticated approximations lead to new resultgjepletion potential have implications for the structure and
for the force. The Derjaguin approximatipBq. (2.2D]is of  the thermodynamic properties of binary hard-sphere mix-
particular significance because it allows one to express thiires and, in particular, may shed new light on the long
force in terms of the bulk fluid pressure and the hard-wall—standing issue of fluid-fluid phase separation in these sys-
fluid surface tension, which are both readily accessible evefems.
for high fluid densities. This approximation is valid for small  |n the following we return to the question of whether the
size ratio s=Rs/R,<1. The wedge approximatiofiEq. concept of depletion forces and our present results can be
(2.26] relieves some of the restrictions placed on a fluid bycarried over to more general fluigsee Sec. IV, To this end
confining it to a slit, an assumption inherent in the Derjaguinwe consider a model fluid that has an arbitrary, but short-
approximation. ranged particle-particle interaction but a hard-sphere interac-

(3) Section Ill concentrates on the depletion potential thation with the wall, i.e., the potential is infinite if the center of
arises for two hard obstaclésvo big hard spheres or a hard the particle is closer thaR, to the wall and is zero other-
sphere and a hard waiin a small-hard-sphere fluid. Within \ise. Thus, if two walls come closer to each another than
the Derjaguin approximation we discuss the consequences 9R_ all particles are expelled, i.e., depletion occurs. In dis-
an explicit formula for the potentialV(h) in the regime O  cussing the depletion force for this model fluid, we restrict
<h<2Rs, whereR; is the radius of the small spheres. In the ourselves to the Derjaguin approximation, but the other re-
limit of low packing fractionsys=4mp,R3/3—0, it reduces  sults of Sec. Il are also applicable. In this approximation the
to the Asakura-Oosawa approximation but for largg it depletion force between the two obstacles is determined by
leads to very different depletion potentials. Indeed, #@r the balance between the surface tensiand the pressure
>0.3532 the contact valu&/(h=0) is positive whereas the of the model fluid. Polymers are natural candidates for a
Asakura-Oosawa approximation predicts strong attractiondescription in terms of such a model fluid. Indeed the deple-
i.e., the contact value is negative and decreases linearly wittion effect was introduced orginally1,26,37 in the context
75 (see Fig. 4 Our result contradicts the assumption that theof mixtures of colloids and nonadsorbing polymers. The
depletion potential for hard-sphere fluids is always attractivecolloid-polymer potential is assumed to be of a hard sphere

(4) Recent work by Macet al. [6] has also emphasized type with a radiusR,, which is determined by the radius of
that the depletion potential is less attractive than that obgyration. In reality the colloid-polymer potential is soft but
tained by Asakura and Oosawa. We have shown that theprovided its range is small compared with the colloidal ra-
theory is equivalent to a third-order expansion of our “ex-dius R, and with Rg, the approximation of a hard-sphere
act” Derjaguin formula in powers ofys and that this third- interaction with the wall should be reasonable. The more
order expansion is not even qualitatively correct fgg  subtle question is how to model the polymer-polymer inter-
=0.3. actions in terms of an effective potential. Near the theta tem-

(5) The comparison of our Derjaguin results with simula- perature, where even the intramolecular excluded volume ef-
tion data[5,7] for W, obtained for hard spheres with size fects become negligible, it is reasonable to ignore all
ratioss=0.1 and 0.2, shows that there are significant differ-polymer-polymer interactions. In this case the surface ten-
ences for large values af;. We conclude that the Derjaguin sion of the model fluid vanishes and the pressure is just that
approximation is only valid for very small values sf for ~ of an ideal gas. Then the “exact” Derjaguin formula
which replacing the contact density by that for a slit is fully Wyp(h) [Eg. (3.9)] reduces to the Asakura formul,4(h)
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[Eqg. (3.7)], which, for this model, should apply even for high scattering length density of the solvent with that of the poly-
densitiesp,. This was the scenario investigated in thesemer, for varying polymer concentrations and a series of col-
early paper$1,26,37. For other temperatures excluded vol- loid concentrations. They analyze their data by using the
ume effects should be important and one might expect thgandom phase approximatioRPA) to calculateS,,(k) for a
theories that are developed here to be more appropriate. Of@irwise potentiatby,, [Eq. (6.2)] with the form of W given
might obtain the surface tension and the pressure from dire& the Asakura-Oosawa approximation. In this way they ob-
measurements on the actual investigated polymers and uined good fits to their scattering data for a wide range of
these in the “exact” Derjaguin formulfEq. (3.9)]. In this mixtures using the amplitude of the depletlo_n potential as t_he
way the polymer-polymer interaction is fully and properly only free.parametgr. For small concentr_atlons the Iqtter in-
taken into accountwithin the context of the Derjaguin ap- Créases linearly with polymer concentration, as pre_d|cted by
proximation and the only remaining assumption is that thethe Asakura-Oosawa approximation, but the slope is a factor
interaction with the wall is hard-sphere-like. of 6 s_mqller than the theoretical _value, i.e., the depletion
To what extent are these theories relevant to experimentPOte”t'al is much weaker than predicted. It would be of much
Measurements of the depletion forfél] or the potential |r}terest.to have the same type of data for systems whefe the
barrier height[42] for a colloidal particle near a wall now SiZe ratios is very small so that one could test the applica-
seem feasible and the results of such experiments can, Rility of the Derjaguin approximation.
principle, be compared with those from theory. From mea-
surements of diffusion coefficients in a binary colloid mix- ACKNOWLEDGMENTS

ture, barrier heightsW have been extractdd2] for packing We thank M. Dijkstra, A. Hanke, H.N.W. Lekkerkerker

. _ ; e
fractions 0.1 #7s=0.3 and for a size ratiz~0.035. The and H. Laven for helpful discussions. R.E. is grateful for the

meassured barrier heights were much smallgepW~2) L . . :
than all theoretical predictionsBW>10). The source of C\?jggngl of the Physics Department of the University of

this discrepancy is not knowfb]. On the other hand there
are laser radiation pressure experimgaty that measure the
minimum laser intensity required to blow off a polystyrene APPENDIX
latex particle trapped near the wall as a function of the poly- Densi ; ;

i . ensity functional theory is based on the property that for
mer concentration. These resultl] have been interpreted y y property

being i t with the Asakura-O .~ any fluid that is exposed to an arbitrary external potential
as being in agreement wi € Asakura-osawa appfox'”’_'%(R) all measurable equilibrium quantities are unique func-
tion for the depletion force. However, one should note that in;

. T ionals of the number density profilgR) which minimizes
both experiments there are possible influences from screen ﬁe grand canonical free energy functional
Coulomb forces and it is probably premature to argue tha
the theoretical and experimental results are in conflict.

It follows from the discussion in Sec. VI that the thermo-

dynamic properties and the structure of a bulk colloidal sus- Q([p(R)]; &, T)=F(p(R)];T)— f d*R[u—V(R)]p(R)
pension should depend on the depletion potential and should (A1)
reflect how this varies with the concentration of the small
spheres(polymey. If the attraction is large enough phase
separation can occur in the colloid-polymer mixture. They; o given chemical
corresponding studies have led to a large literature on this.
subject(see, e.g., Ref[33] for a summary. Work that is
close in spirit to this aspect of the present study is that o
Gastet al. [36] who analyzed the phase behavior following
from an effective pair potential model. Their model is
equivalent to Eq(6.2) with W given by the Asakura-Oosawa - : - : :
approximation. It was treated using second-order perturb tﬁgtﬁgg%li)]’“’n arising from Eq(AL1) one obtains via
tion theory based on the big-hard-sphere reference fluid. The
authors found a fluid-solid phase separation for most size
ratios and polymer concentrations relevant to experiments.

potentiau and temperatureT
1/(kgB). The external potential determines the volume
ver which the integral is performedF[p]=Fi4p]
+Fqlp] is the intrinsic Hemholtz free energy functional
consisting of an ideal gas paF;y, and an excess pafi.y.
Upon differentiating the equilibrium grand canonical po-

For s>0.3 an additional fluid-fluid transition appeared. In o :p(R)+J d3R’ SF[p] —[u=V(R)]

the light of the present work it is clearly of interest to carry oV(R) Sp(R")

out similar investigations, but employing simulation tech- ,

nigues for potentials based on the approximations developed % op(R") (A2)
here. From such studies one might learn how sensitive the OV(R) ’

phase behavior is to the details of the depletion potential.

There are, of course, the issues of how reliable the effective

two-body Hamiltonian is and how to take proper account oflf p(R) is the equilibrium density distribution, the expression
the density dependence when calculating the free enieegy  within the curly brackets vanishes. This is valid even for
Sec. V). The corresponding calculation of the pair correla-approximationsof the functionalF,] p]. For the case stud-
tion function and of the structure factor should be equallyied in Sec. Il the external potenti®(R;h) in Eqg. (2.1 de-
revealing. Recently Yet al.[43] have measure8,,(k), the  pends parametrically on the separatiorso that with Eg.
colloid-colloid structure factor, by matching the neutron (A2) one has
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90 80 JV(R;h) 1 _ dexd — BV(R;h)]

__ 1t d? i (¢ h 1 d? 2 h
== 5] R MR LTOIR- 2Ry e~ (Ry+ RI= 5 [ &R SR~ Ry REN(R+ (2R e,

(A3)

where we have used Eq.1) and (2.2) and definech(R)=p(R)exd BV(R;h)]. In the case of a hard walR,— ) it is

known thatn(R) is continuous even if the potential exhibits an infinite discontinuity. We expect the same to be true for a finite

radius[44] and Eq.(2.4) then follows.

The derivation given above pertains to large and small hard spheres. It should be viewed as a special case of the relation
Q) 3 z .
0 =—J d°R p[R+ (2R, +h)e I V(IR (A%)
T,u,A
which is valid for any spherically symmetﬁc potentig)(|R|) centered at (0,0R,+ h) and acting on the fluid. The derivation

of Eq. (A4) follows along the lines given above. We emphasize that in(E8) and in Eq.(A4) the potentiaV,(R), due to
the obstacle 1, is arbitrary.
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