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Splay-bend surface elastic constant of nematic liquid crystals: A solution of the
Somoza-Tarazona paradox

Massimo Faetti and Sandro Faetti
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica, Universita` degli Studi di Pisa,

Piazza Torricelli 2, 56100 Pisa, Italy
~Received 25 November 1997!

The Nehring-Saupe@J. Chem. Phys.54, 337 ~1971!; 56, 5527~1972!# elastic free energy of nematic liquid
crystals ~NLCs! contains the splay-bend elastic constantK13, which affects only the elastic surface free
energy. Several years ago, Somoza and Tarazona@Mol. Phys.72, 991 ~1991!# showed that the value ofK13

depends on the nonlocal to local mapping that is used to define the local elastic free energy. Then they
concluded that the splay-bend constant is not a well-defined physical parameter. In the present paper we show
that the Somoza-Tarazona result comes from an inconsistent treatment of the boundary effects. If all the
boundary effects are correctly taken into account in an elastic approach, the elastic surface free energy contains
an effective elastic constantK13

eff that is mapping independent.K13
eff is the sum of three different constants: the

classical Nehring-Saupe bulk constantK13 and two specific interfacial constantsK1 and Kh . While each
surface constant~K13, K1 , andKh! depends on the kind of nonlocal to local mapping, the resulting surface
constantK13

eff5K131K11Kh is mapping independent. Using a simple molecular model of the intermolecular
interactions, we obtain explicit expressions ofK13

eff in terms of the characteristic parameters of the intermo-
lecular energy. In the final part of this paper we discuss the meaning and the physical consequences of the
elastic surface free energyFs . We show thatFs is a semimacroscopic parameter that provides an approximate
elastic description of the interfacial layer. Furthermore, we point out that the elastic surface free energy should
not be confused with the thermodynamic surface free energy that appears in a consistent continuum theory of
NLCs. @S1063-651X~98!07606-5#

PACS number~s!: 62.20.Dc, 61.30.Cz, 64.70.Md
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I. INTRODUCTION

The macroscopic properties of nematic liquid cryst
~NLCs! are described in terms of a unit vector fieldn(r ),
which is called thedirector and represents the local avera
molecular orientation of the long molecular axes@1#. In
many important cases,n(r ) is a smoothly and slowly varying
function of r with a characteristic macroscopic lengthLmac,
which is much greater than the typical rangeRint of the in-
teractions between the NLC molecules (Rint'100 Å). In
such a case, the total free energy is reduced to the el
form

F5E ~ f e1 f ext!dV1E f sdS, ~1!

wheredV anddSare bulk and surface infinitesimal elemen
and f e is the Oseen-Frank elastic free-energy density@2,3#

f e5 f 01
K11

2
~“•n!21

K22

2
~n•“3n!21

K33

2
~n3“3n!2

2~K221K24!“•~n“•n1n3“3n!1K13“•~n“•n!.

~2!

f 0 is a unessential constant contribution,K11, K22, andK33
are the splay, twist, and bend elastic constants, andK24 and
K13 are the saddle-splay and splay-bend surface-like ela
constants.f ext is the interaction free-energy density with e
ternal fields~magnetic or electric! and f s is the excess of
surface free-energy density. In the classical approach@1#, f s
571063-651X/98/57~6!/6741~16!/$15.00
s
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is assumed to be a function of the orientation of the direc
at the surface, which is called theanchoring energy. Using
the Gauss theorem, the last two terms in Eq.~2! can be
transformed into the surface integral

Fs5E dS@2~K221K24!k•~n“•n1n3“3n!

1K13k•~n“•n!#, ~3!

wherek denotes the outgoing surface normal. TheK13 con-
stant was introduced by Oseen, then eliminated by Fra
and finally reintroduced by Nehring and Saupe in 1972
the basis of phenomenological and molecular argume
@4,5#. In principle, the equilibrium director field can be ob
tained minimizing the free energy in Eq.~1! with the stan-
dard variational method. This procedure leads to some Eu
Lagrange equations for the bulk director field and so
boundary conditions. Oldano and Barbero@6,7# showed that
the presence of theK13 term in Eq.~2! leads to a paradoxica
result: The free energy is unbounded from below and
variational approach leads to a ill-posed mathematical pr
lem. Different solutions to this problem have been propos
in the literature@8–15#. Of course, no problem arises ifK13
50. For this reason, some authors calculated directly theK13
elastic constant using specific microscopic molecular mod
@4,5,16,17#. The molecules were assumed to interact via
two-body energyU(ê,ê8,u), whereê andê8 denote the long
molecular axes at the pointsr andr 8 in the NLC sample and
u5r2r 8 is the intermolecular vector. In the simplest a
proach@5,16#, which we will call the Nehring-Saupe molecu
lar approach, one assumes perfect nematic order~order pa-
6741 © 1998 The American Physical Society
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6742 57MASSIMO FAETTI AND SANDRO FAETTI
rameter S51 @1#! and a uniform single-particle density
Then the free energy due to the interactions between nem
molecules becomes

F5 1
2 E drE dr 8g~n,n8,u!5E dr f ~r !, ~4!

where the integrals are extended to the whole volume of
NLC

g~n,n8,u!5r2U~n,n8,u! ~5!

and

f ~r !5 1
2 E dr 8g~n,n8,u!. ~6!

r is the single-particle density andf (r ) is the free-energy
density at the pointr in the NLC. n andn8 are the director
orientations at the pointsr and r 8, i.e.,

n5n~r !, n85n~r 8!. ~7!

g(n,n8,u) vanishes foru@Rint , whereRint is the character-
istic interaction length of a few molecular lengths. For
director field that varies over a macroscopic characteri
length Lmac@Rint , f (r ) is well approximated@at the order
(Rint /Lmac)

2# by the elastic free-energy density

f e~r !5 1
2 E dr 8g~n,n,u!1 1

2 E dr 8U]g~n,n8,u!

]ni8
U

n85n

dni

1 1
4 E dr 8U]2g~n,n8,u!

]ni8]nk8
U

n85n

dnidnk , ~8!

with

dni5ni82ni'2
]ni

]r j
uj1

1]2ni

2]r j]r s
ujus . ~9!

Hereni , ui , andr i are thei th components of vectorsn, u,
andr , the symbolu un85n denotes the derivative calculated
n85n, and the repeated indices stand for a sum. Substitu
of dni into Eq. ~8! leads to an expression of the free-ener
density in terms of the first and second director derivativ
If point r is at a distanced@Rint from the surface of the
NLC, many terms in Eq.~8! become negligible and the bul
free-energy density in Eq.~2! is recovered@5,16# with the
elastic constants that are given in terms of the intermolec
energy. For the typical interactions characterizing NLCs,
constantK13 is found to be different from zero@5,16#. The
same conclusion has been reached using a more genera
oretical approach based on the density-functional the
@17#.

In the analysis above, the local free-energy density w
obtained using the integration variablesr and r 8 in Eq. ~4!.
However, according to the general analysis in@18#, this is
not the unique way to obtain a local free-energy density fr
a nonlocal energy functional. In particular, Somoza a
Tarazona @19# replaced variablesr and r 8 with R5(r
1r 8)/2 and u5r2r 8 and obtainedF5*dR f (R). By ex-
panding f (R) in a power series of the director derivative
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calculated at pointR, they obtained a different expression
the bulk elastic free-energy density. The bulk elastic co
stantsK11, K22, and K33 remain unchanged, butK13 be-
comes zero. Then they argued that the splay-bend cons
K13 cannot be a well-defined physical parameter. T
Somoza-Tarazona argument originated some debate in
literature@17,20#.

In a recent paper@21#, Faetti and Riccardi showed that th
procedure used to obtain the surface elastic free energFs
does not take correctly into account the boundary effe
Indeed,Fs in Eq. ~3! was obtained by integration of th
divergence terms in the bulk free-energy densityf e of Eq.
~2!. However,f e differs greatly from the ‘‘true’’ elastic free-
energy densityf e(r ) in a thin interfacial layer of thickness
d'Rint . In particular, by substitutingdni of Eq. ~9! into the
second integral in Eq.~8!, one obtains some elastic term
that are proportional to the first director derivatives]ni /]xj
@22–24#. These elastic terms vanish out of the interfac
layer, but assume enormous values~with respect to the bulk
terms! in the interfacial layer. The integral of this excess
interfacial elastic free energy over the interfacial layer lea
to contributions to the surface elastic free energy that ren
malize the surface elastic constants in Eq.~3!. In particular,
K13 in Eq. ~3! is replaced byK13* 5K11K13, whereK1 de-
notes a surface constant coming from the integral of the
terfacial elastic linear terms~a different symbol was used in
@21# to denoteK1!. For any two-body energy lawg(n,n8,u)
that satisfies the invariancen→2n andn8→2n8, K1 satis-
fies the general equalityK152K13 and thusK13* 50 @21#.
Yokoyama~see Appendix C in@20#! reached the same con
clusion using a more general theoretical argument that
ploited only the symmetry property

U]g~n,n8,u!

]ni
U

n5n8

5U]g~n,n8,u!

]ni8
U

n85n

. ~10!

Using Eq.~10!, he showed that the second integral in Eq.~8!
vanishes at first order indni . Then he concluded that th
bulk K13 elastic constant must be zero.

All the analysis above concerned only the linear elas
terms coming from the second integral in Eq.~8!. It has been
shown recently@25,26# that also the first integral in Eq.~8!
~thehomogeneousfree-energy term! leads naturally to a sur
face free energy that is formally equivalent to theK13 surface
free energy and contains a differenthomogeneoussurface
constantKh . Then, if this interfacial contribution is take
into account, the surface free energy is characterized by
effective surface constantK13

eff5K131K11Kh5Kh .
In the present paper we use the Nehring-Saupe molec

model to calculate the effective surface constantK13
eff . Ex-

ploiting only the symmetry properties of the functio
g(n,n8,u), we show that the value of the constantK13

eff is
independent of the kind of nonlocal to local mapping. Th
result gives a satisfactory solution to the Somoza-Taraz
paradox and shows that there is no ambiguity in the defi
tion of the surface elastic constants if the boundary effe
are entirely taken into account. Furthermore, we calculate
effective surface constantK13

eff in terms of the characteristic
parameters of the intermolecular two-body energy. In or
to avoid the very involved calculations that characterize
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57 6743SPLAY-BEND SURFACE ELASTIC CONSTANT OF . . .
three-dimensional geometry~see, for instance, Refs.@21,
24#!, we consider the case of a semi-infinite nematic liqu
crystal with a surface atz50 and a planar director fieldn
5@sinu(z),0,cosu(z)#. We recover the known expressions
the bulk and interfacial elastic constantsK13 andK1 and we
calculate the surface constantKh . We find Kh5Kh

e1Kh
i ,

whereKh
e is an external contribution due to the interactio

between the NLC molecules and the surrounding me
while Kh

i is an internal contribution due to the interactio
between nematic molecules. In Sec. II, by exploiting only
symmetry properties of the interaction law, we find the ge
eral resultKh

i 5K13 @here K13 denotes the surfacelike con
stant that is obtained using the standard integration varia
r andr 8 as in Eq.~4!#. Then, with this standard mapping, th
effective splay-bend elastic constant is always given
K13

eff5Kh
e1K13. In Sec. III we consider a nonlocal to loca

mapping that depends on a free parametera and we calculate
the corresponding expression for the effective surface c
stantK13

eff(a). By exploiting only the symmetry properties o
the interaction law, we findK13

eff(a)5K13
eff , while the single

contributionsK13(a), K1(a), and Kh(a) are a dependent.
This means that each contribution does not have a w
defined physical meaning, but the resulting splay-bend c
stantK13

eff is a well-defined physical parameter. The inva
ance of K13

eff is found only if all the three different
contributionsK13(a), K1(a), andKh(a) are taken into ac-
count. In particular, the homogeneous contributionKh(a),
which was disregarded in@20,21#, plays here a fundamenta
role.

In Sec. IV we discuss the physical meaning of the surf
elastic term and we show that this term represents the so
of a director distortion in a very thin interfacial layer. W
show that the elastic surface free energyFs is a useful semi-
macroscopic parameter that makes it possible to obta
rough but qualitatively correct description of the distort
interfacial layer. However, we emphasize thatFs should not
be confused with the thermodynamic surface free energyFs

th

that appears the continuum theory of NLCs@1#. In particular,
we show that the presence of a normal-derivative surf
term in the elastic surface free energy does not imply th
similar term has to be present also in the thermodyna
surface free energy. On the contrary, there are some ind
arguments that suggest that the thermodynamic surface
energy does not depend on the normal derivative of the
rector field@13–15#.

II. CASE 1: VARIABLES z AND z8

A. The molecular free energy of nematic liquid crystals
and its elastic approximation

Consider a semi-infinite NLC sample that lies in the low
semispace (z,0) in contact with a different medium in th
upper semispace (z.0). Here we use the simplifying as
sumptions of perfect nematic order (S51) and uniform
single-particle densityr in the NLC, which have been exten
sively used in the literature@4,5,16,23,24#. We consider a
planar director field withn given by

n5„sin u~z!,0,cosu~z!…. ~11!

Let g(u1 ,u2 ,u) be the interaction law, whereu15u(z), u2
a,

e
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5u(z8), andu5r2r 8. Since the director field depends on
on z, the free-energy densityf (u;z) is a functional that de-
pends onz and on the functionu5u(z). f (u;z) is given by

f ~u;z!5 f ext~u,z!1E
2`

0

G~u1 ,u2 ,s!dz8

5 f ext~u,z!1E
z

`

G~u1 ,u2 ,s!ds, ~12!

where

s5z2z8, u15u~z!, u25u~z8!, ~13!

and

G~u1 ,u2 ,s!5 1
2 E

2`

1`

dx8E
2`

1`

dy8g~u1 ,u2 ,u!. ~14!

f ext(u,z) is the free-energy density due to interactions w
the bounding media, which goes rapidly to zero below a t
interfacial layer. In order to simplify the notations, it is co
venient to define

Gi~u,s!5U]G~u1 ,u2 ,s!

]u i
U

u25u

u15u
,

Gi j ~u,s!5U]G~u1 ,u2 ,s!

]u i]u j
U

u25u

u15u
, ~15!

with i 51,2 and j 51,2. The functionG(u1 ,u2 ,s) satisfies
the following important properties, which will be essenti
for our further analysis.

~i! G(u1 ,u2 ,s) and its u1 and u2 derivatives are even
function of s.

~ii ! G(u1 ,u2 ,s) and itsu1 and u2 derivatives are func-
tions ofs that go to zero fors→` with an infinitesimal order
higher than (s/s)3, wheres is an average molecular length
ThenG(u1 ,u2 ,s) and itsu1 andu2 derivatives become neg
ligible if s is greater than a microscopic interaction radi
Rint of a few tenths of a molecular length.

~iii ! From the general symmetry condition in Eq.~10! we
find that theu1 andu2 derivatives ofG(u1 ,u2 ,s) must sat-
isfy the equalities

G1~u,s!5G2~u,s!, G11~u,s!5G22~u,s!. ~16!

As shown in Appendix A, properties~i! and ~iii ! are the
direct consequence of the inversion symmetry of the inter
tion energy in the real and the director isotopic space@20#.
According to the analysis given in Ref.@24#, condition~ii ! is
necessary to build a local elastic free-energy density. T
quadrupole-quadrupole interactions that are characterize
G(u1 ,u2 ,s)'1/s3 cannot be described by an elastic loc
free-energy density. For a discussion of this important asp
of the elastic theory that is related to the intrinsically non
cal character of the quadrupole-quadrupole interactions
refer the reader to@24#. The free-energy density per un
surface area is
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F5E
2`

0

f ~u;z!dz5E
2`

0

f ext~u,z!dz

1E
2`

0

dzE
z

`

G~u1 ,u2 ,s!ds. ~17!

The basic assumption of the elastic theory is that the dire
field is a slowly and smoothly varying function ofz. This
means that the characteristic macroscopic lengthLmac of the
director distortion is much greater than the interaction len
Rint (Rintdu/dz'Rint /Lmac!1). In such a case,du5u2
2u1 is a small quantity~of orderRint /Lmac! within the inter-
action region. Then the molecular free energyF in Eq. ~17!
can be replaced by the elastic expansion

Fe5E
2`

0

dzF f ext~u,z!1E
z

`

G~u,u,s!dsG
1E

2`

0

dzE
z

`

G2~u,s!du ds

1E
2`

0

dzE
z

`

G22~u,s!
du2

2
ds, ~18!

with

du'2 u̇s1
ü

2
s2, ~19!

whereu̇5du/dz, ü5d2u/dz2, andu5u15u(z). Substitut-
ing du into Eq. ~18! and disregarding the contributions o
infinitesimal order higher than (Rint /Lmac)

2, we obtain

Fe5E
2`

0

dz$@ f ext~u,z!1 f h
i ~u,z!#1@ f 1~u,u̇,z!

1 f 13~u,ü,z!#1 f 2~u,u̇2,z!%

5E
2`

0

f ext~u,z!dz1E
2`

0

f ~u,u̇,ü,z!dz, ~20!

where

f h
i ~u,z!5E

z

`

G~u,u,s!ds, ~21!

f 1~u,u̇,z!5S 2E
z

`

G2~u,s!s dsD u̇, ~22!

f 13~u,ü,z!5S E
z

`

G2~u,s!
s2

2
dsD ü, ~23!

f 2~u,u̇2,z!5S E
z

`

G22~u,s!
s2

2
dsD u̇2. ~24!

The functionf (u,u̇,ü,z), which is implicitly defined in Eq.
~20!, is the local elastic free-energy density due to the int
molecular interactions in the NLC, whilef ext(u,z) is the lo-
cal free-energy density due to the interactions with the s
strate. It is easy to show thatF5Fe1O„(Rint /Lmac)

3
…,
or

h

r-

-

where O„(Rint /Lmac)
3
…, represents infinitesimal contribu

tions of third order in the small expansion parame
Rint /Lmac. Far from the interface (z→2`), f h

i (u,z)→ f 0

5const, f 1(u,u̇,z)→0, and f (u,u̇,ü,z) is reduced to the
classical bulk Oseen-Frank elastic free-energy densityf e

5 f (u,u̇,ü,2`) in Eq. ~2!, which does not depend explicitly
on z. On the contrary, in a very thin interfacial layer o
thickness d'Rint , f 1(u,u̇,z) is different from zero and
f h

i (u,z) is not constant. Thenf (u,u̇,ü,z) differs greatly from
the bulk expressionf e(u,u̇,ü) in this interfacial layer.

B. The bulk and interfacial contributions to the surface free
energy

In order to separate the classical bulk contribution fro
the purely interfacial one, we rewrite the free energy for u
surface in the equivalent form

Fe5E
2`

0

f ~u,u̇,ü,2`!dz1E
2`

0

D f ~u,u̇,ü,z!dz, ~25!

where f (u,u̇,ü,2`) is the Oseen-Frank bulk free energ
while D f (u,u̇,ü,z)5 f (u,u̇,ü,z)1 f ext(u,z)2 f (u,u̇,ü,2`)
represents theexcess of interfacial free-energy density. The
functionD f (u,u̇,ü,z) vanishes below the interfacial layer o
thickness d'Rint . The functions f (u,u̇,ü,2`) and
D f (u,u̇,ü,z) are given by

f ~u,u̇,ü,2`!5 f 01 f 13~u,ü,2`!1 f 2~u,u̇2,2`!
~26!

and

D f ~u,u̇,ü,z!5 f ext~u,z!1D f h
i ~u,z!1D f 1~u,u̇,z!

1D f 13~u,ü,z!1D f 2~u,u̇2,z!, ~27!

where

f 05 f h
i ~u,2`!, ~28!

D f h
i ~u,z!5 f h

i ~u,z!2 f 0 , ~29!

D f 1~u,u̇,z!5 f 1~u,u̇,z!2 f 1~u,u̇,2`!5 f 1~u,u̇,z!,
~30!

D f 13~u,ü,z!5 f 13~u,ü,z!2 f 13~u,ü,2`!, ~31!

D f 2~u,u̇2,z!5 f 2~u,u̇2,z!2 f 2~u,u̇2,2`!. ~32!

In writing Eqs. ~28! and ~30! we have used the propertie
f h

i (u,2`)5 f 05const andf 1(u,u̇,2`)50 that are imme-
diately recovered using the definitions in Eqs.~21! and ~22!
and the symmetry propertyG(u1 ,u2 ,s)5G(u1 ,u2 ,2s).
The z integrals ofD f 13 andD f 2 can be disregarded becau
they are of order (Rint /Lmac)

3. Then the free energy for the
unit surface area in Eq.~25! is reduced to
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Fe5E
2`

0

@ f 01 f 13~u,ü,2`!1 f 2~u,u̇2,2`!#dz

1E
2`

0

@ f ext~u,z!1D f h
i ~u,z!#dz1E

2`

0

f 1~u,u̇,z!dz.

~33!

The integrand of the first integral is the classical Ose
Frank free-energy densityf e . The function f ext(u,z)
1D f h

i (u,z) depends only onz and the local orientation o
the director and vanishes far from the interface.f ext(u,z) is
the external free-energy contribution due to the interacti
with the substrate, whileD f h

i (u,z) is the internal contribu-
tion due to the intermolecular interactions in the NLC. A
cording to Eqs.~29! and ~21!, D f h

i (u,z) represents the loca
free-energy density of NLC molecules when they are o
ented at the same angleu. For this reason, we will call this
term theinternal homogeneous term. The functionf 1(u,u̇,z)
is an elastic free-energy contribution that vanishes far fr
the interface but becomes enormous~with respect to the clas
sical Frank-Oseen terms! in a very thin interfacial layer. The
z integral of this latter term over the interfacial layer
thickness d'Rint leads to a surface free-energy dens
F1(us ,u̇s) of the same order of magnitude as the class
K13 surface energy. We will callf 1(u,u̇,z) the elastic inter-
facial term.

In the standard elastic theory@4,5,16,17# only the first
integral in Eq.~33! is taken into account. In a recent pape
Faetti and Riccardi@21# calculated explicitly the third elastic
contribution in Eq.~33! and showed that it leads to a surfa
elastic term that is exactly equal and opposite to the class
K13 term. They concluded that the total surface elastic te
is zero. This conclusion was recovered by Yokoyama~see
Appendix C in @20#! using a more general theoretical a
proach. He showed that the second integral in Eq.~18!,
which is linear indu and is responsible for thef 1 and f 13
terms, vanishes at the first infinitesimal order indu. How-
ever, Skacejet al. @25# and Alexe-Ionescu and Barbero@26#
have recently shown that also the homogeneous term in
second integral in Eq.~33! leads to a surface termFh(us ,u̇s)
that is not of elastic origin but is formally equivalent to th
K13 surface free energy. In this section, by using only
symmetry properties ofG(u1 ,u2 ,s), we will obtain simple
expressions for all the surface terms.

We start our analysis from the classical Oseen-Frank
energy in the first integral in Eq.~33!. Using the definitions
in Eqs. ~23! and ~24! and adding and subtracting the sam
term G12(u,s)(s2/2)u̇2, we obtain

f 13~u,ü,2`!1 f 2~u,u̇2,2`!

5E
2`

`

$G2~u,s!ü1@G22~u,s!1G12~u,s!#u̇2%
s2

2
ds

2E
2`

`

G12~u,s!
s2

2
u̇2ds. ~34!

Using the definition of the functionG2(u,s) given in Eq.
~15!, we find that the first integral in Eq.~34! is thez deriva-
tive of the function
-

s

-

l

,

al

he

e

e

F13~u,u̇ !5E
2`

`

G2~u,s!
s2

2
u̇ ds. ~35!

Then thez integration of the first integral in Eq.~34! leads to
the surface elastic free-energy density

F13~us ,u̇s!5E
2`

1` z2

2
G2~us ,z!u̇sdz

5E
2`

0

z2G2~us ,z!u̇sdz, ~36!

whereus5u(0) and u̇s5udu/dzuz50 and F13(us ,u̇s) is the
classicalK13 surface free energy. In Eq.~36! we have re-
named thes variablez. To obtain the last integral in Eq.~36!
we have used the symmetry propertyG2(us ,z)5G2(us ,
2z). It can be also shown~see Appendix B! that the func-
tion F13(us ,u̇s) has the well-known form@4,5#

F13~us ,u̇s!5
K13

2
@sin~2us!u̇s#, ~37!

whereK13 is the splay-bend elastic constant. Furthermore
can be shown~see Appendix B! that the last integral in Eq
~34! gives the well-known Oseen-Frank quadratic fre
energy density

FK11

2
sin2u1

K33

2
cos2u G~ u̇ !2, ~38!

whereK11 andK33 are the splay and bend elastic constan
respectively. A very general expression for a two-body int
action law is@16,24#

g~n,n8,u!52(
i , j ,k

Ji , j ,k~u!S n•
u

uD i S n8•
u

uD j

~n•n8!k.

~39!

By substitutingg(n,n8,u) into Eq. ~14! and using the defi-
nition of G2(u,s) given in Eq. ~15!, K13 in Eqs. ~36! and
~37! becomes~see Appendix B!

K1352
1

2 (
i jk

I ~ i , j ,k!
j

~ i 1 j 11!~ i 1 j 13!
, ~40!

where

I ~ i , j ,k!54pE
0

`

Ji jk~u!u4du. ~41!

The expression ofK13 in Eq. ~40! has already been obtaine
by Barbero and Barberi@16# in the three-dimensional case

C. The interfacial contributions to the surface free energy

The integrands in the two last integrals in Eq.~33! vanish
rapidly below a thin interfacial layer. Then we can replaceu
and u̇ with the local expansionsu5u(z)5us1 u̇sz1¯ and
u̇5 u̇(z)5 u̇s1¯ . By disregarding infinitesimal contribu
tions of order (Rint /Lmac)

3, the two last integrals in Eq.~33!
lead to the surface excess of free energy
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Fsurf5E
2`

0

f ext~us ,z!dz1E
2`

0

D f h
i ~us ,z!dz

1E
2`

0 U] f ext~u,z!

]u U
u5us

u̇sz dz

1E
2`

0 U] f h
i ~u,z!

]u
U

u5us

u̇sz dz1E
2`

0

f 1~us ,u̇s ,z!dz

5Fs
e~us!1Fs

i ~us!1Fh
e~us ,u̇s!1Fh

i ~us ,u̇s!

1F1~us ,u̇s!, ~42!

where the functionsFs
e(us), Fs

i (us), Fh
e(us ,u̇s), Fh

i (us ,u̇s),
and F1(us ,u̇s) represent the first, second, third, fourth, a
fifth integrals, respectively. In writing the integrand of th
fourth integral we have used the property]D f h

i (u,z)/]u
5] f h

i (u,z)/]u, which comes from Eq.~29!. The first two
integrals are the external and internal anchoring ener
Fs

e(us) andFs
i (us) that depend only on the surface direct

angle. The explicit dependence of the internal termFs
i (us)

on the characteristic parameters of the intermolecular en
in Eq. ~39! has been calculated in@21#. The other integrals
are surface free energies that depend onus and are propor-
tional to the surface derivativeu̇s . We will show that these
integrals have the same form as the classicalK13 surface
term in Eq. ~37! and thus they renormalize theK13 elastic
constant. The third integral (Fh

e) and the fourth integral (Fh
i )

come from the external and internal homogeneous interfa
terms. The fifth integral (F1) is the purely elastic interfacia
contribution, which had been already considered in@21#. For
an isotropic substrate that interacts with the NLC via non
lar interactions,f ext(u,z) is a function of (n•k)25cos2u.
Then, in such a case,] f ext(u,z)/]u5L(cos2u)sin 2u/2 and
Fh

e(us ,u̇s) becomes

Fh
e~us ,u̇s!5Kh

e~cos2us!sin 2us/2. ~43!

In the general case,Kh
e(cos2us) is a function of cos2 us, but it

is reduced to a simple constant for van der Waals interact
@27#. Note that the homogeneous external contribution
the same functional form as the classicalK13 term in Eq.
~37!.

Due to the definitions off h
i (u,z) and f 1(u,u̇,z) in Eqs.

~21! and ~22!, the last two integrals in Eq.~42! require a
double integration on variablesz and s. However, both of
them can be transformed into integrals in only one varia
using the integration by parts and the general property~ii ! of
the functionG. In particular, integration by parts with re
spect to the functiony5z2 in the fourth integral in Eq.~42!
leads to

Fh
i ~us ,u̇s!5F z2

2
U] f h

i ~u,z!

]u
U

u5us

u̇sG
2`

0

2E
2`

0 z2

2

d

dz
U] f h

i ~u,z!

]u
U

u5us

u̇sdz. ~44!

The first term in Eq.~44! vanishes due to property~ii !. Fur-
thermore, from Eq.~21! we get
es

gy

al

-

ns
s

e

d

dz
U] f h

i ~u,z!

]u
U

u5us

52G1~us ,s!2G2~us ,s!522G2~us ,s!.

~45!

The last equality in Eq.~45! derives directly from the sym-
metry propertyG1(us ,s)5G2(us ,s). Then Fh

i (us ,u̇s) in
Eq. ~44! is reduced to

Fh
i ~us ,u̇s!5E

2`

0

z2G2~us ,z!u̇sdz5F13~us ,u̇s!. ~46!

By operating at the same way on the last integral in Eq.~42!
we get easily

F1~us ,u̇s!52E
2`

0

z2G2~us ,z!u̇sdz52F13~us ,u̇s!,

~47!

which coincides with the theoretical result already found
@21#. In conclusion, the total surface term that is linear
u̇s„Fh

e(us ,u̇s)1Fh
i (us ,u̇s)1F1(us ,u̇s)1F13(us ,u̇s)… is re-

duced to

Fs~us ,u̇s!5Fh
e~us ,u̇s!1F13~us ,u̇s!. ~48!

Then the splay-bend elastic constantK13 has to be replaced
by the effective constant

K13
eff5Kh

e~cos2us!1K13. ~49!

In the special case of the interface between a NLC and
vapor phase,Fh

e(us ,u̇s)50 and the elastic surface free e
ergyFs(us ,u̇s) is reduced to the classicalF13(us ,u̇s) term in
Eq. ~37! with K13 given in Eq.~40!.

In the next section we will give a solution to the Somoz
Tarazona paradox. In agreement with Somoza and Taraz
@19#, we will show that the classical surfacelike free ener
F13(us ,u̇s) depends explicitly on the nonlocal to local ma
ping used to define the local free-energy density. Then
surface free energy does not have a well-defined phys
meaning. However, we will also show that the tot
surface free energyFh

e(us ,u̇s)1Fh
i (us ,u̇s)1F1(us ,u̇s)

1F13(us ,u̇s) is mapping independent. This means that su
a surface free energy has an unambiguous physical mea
Therefore, no paradox arises if all the boundary effects
correctly taken into account.

III. CASE 2: VARIABLES Z AND s

A. The local free-energy density

According to Sec. II, the total free energy of the NLC

F5E
2`

0

dzF f ext~u,z!1E
2`

0

G~u1 ,u2 ,z2z8!dz8G , ~50!

whereu15u(z) andu25u(z8). Then the functional

f ~u;z!5 f ext~u,z!1E
2`

0

G~u1 ,u2 ,z2z8!dz8 ~51!
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can be interpreted as the local free-energy density at
point z. However, it is known@18# that this is not the only
way to define a free-energy density starting from a nonlo
free-energy functional. In particular, one can use the v
ables

Z5az1~12a!z8, s5z2z8, ~52!

with 0<a<1. These variables satisfy the following prope
ties: ~a! Z5z if z85z, ~b! the Jacobian of the transform
uJu51, and~c! Z is always internal to thez-z8 interval. By
substitutingZ and s in the double integral in Eq.~50!, F
becomes

F5E
2`

0

f ext~u,z!dz1E
2`

0

dZE
Z/a

2Z/~12a!

G~u1 ,u2 ,s!ds,

~53!

where nowu1 andu2 are defined asu15u(Z1@12a#s) and
u25u(Z2as). Note that the integration extremes for theZ
variable in Eq.~53! are the same as for thez variable. This
important property is a consequence of property~c! and re-
mains satisfied also for a NLC layer with two surfaces az
52d and 0. It is convenient to renameZ asz in Eq. ~53! so
that

F5E
2`

0

dzF f ext~u,z!1E
z/a

2z/~12a!

G~u1 ,u2 ,s!dsG ,
~54!

where

u5u~z!, u15u~z1@12a#s!, u25u~z2as!.
~55!

Then the functional

f a~u;z!5 f ext~u,z!1E
z/a

2z/~12a!

G~u1 ,u2 ,s!ds ~56!

can be interpreted as a different expression of the free-en
density at the pointz in the NLC. Fora51, Z5z in Eq. ~52!
and f a(u;z) is reduced to the standard free-energy den
f (u;z) in Eq. ~51!.

B. The elastic free energy

In order to obtain the elastic free energy, one has to
pand functionG(u1 ,u2 ,s) in Eq. ~54! with respect to the
reference stateu5u(z). Thenu1 andu2 must be replaced by
u15u1du1 and u25u1du2 . At second order indu1 and
du2 , we get

Fe
a5E

2`

0

dzF f ext~u,z!1E
z/a

2z/~12a!

ds G~u,u,s!G
1E

2`

0

dzF E
z/a

2z/~12a!

ds G2~u,s!~du11du2!G
1E

2`

0 dz

2 E
z/a

2z/~12a!

ds@G22~u,s!~du1
21du2

2!

12G12~u,s!du1du2#, ~57!
he

l
i-

gy

y

x-

whereGi(u,s) and Gi j (u,s) are the derivatives defined i
Eq. ~15! and we have exploited the equalitiesG1(u,s)
5G2(u,s) andG11(u,s)5G22(u,s). The elastic free energy
at the infinitesimal order (Rint /Lmac)

2 is obtained by substi-
tuting in Eq.~57!

du15~12a!su̇1
~12a!2s2

2
ü ~58!

and

du252asu̇1
a2s2

2
ü. ~59!

du1 anddu2 have been obtained using Eq.~55!. By follow-
ing the same procedure as in Sec. II, we can separate the
and interfacial energy contributions. By disregarding the
terfacial terms of order (Rint /Lmac)

3 and exploiting the
equalitiesG1(u,s)5G2(u,s) and G11(u,s)5G22(u,s), we
get

Fe
a5E

2`

0

@ f 01 f 13
a ~u,ü,2`!1 f 2

a~u,u̇2,2`!#dz

1E
2`

0

@ f ext~u,z!1D f h
ia~u,z!#dz1E

2`

0

f 1
a~u,u̇,z!dz,

~60!

where

f 13
a ~u,ü,2`!5@~12a!21a2#E

2`

1`

ds G2~u,s!
s2

2
ü,

~61!

f 2
a~u,u̇2,2`!5E

2`

1`

ds$G22~u,s!@~12a!21a2#

22a~12a!G12~u,s!%
s2

2
u̇2, ~62!

D f h
ia~u,z!5E

z/a

2z/~12a!

ds G~u,u,s!2 f 0 , ~63!

f 1
a~u,u̇,z!5~122a!E

z/a

2z/~12a!

ds G2~u,s!su̇. ~64!

f 0 in Eq. ~63! is the constant contribution in the bulk free
energy density, which is defined asf 05*2`

1`ds G(u,u,s).
By adding and subtracting the same termG12(u,s)s2u̇2/2 in
the integrand in Eq.~62!, f 2

a(u,u̇2,2`) can be written in the
more convenient form

f 2
a~u,u̇2,2`!5@~12a!21a2#E

2`

1`

ds$G22~u,s!

1G12~u,s!%
s2

2
u̇2

2E
2`

1`

ds G12~u,s!
s2

2
u̇2. ~65!
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Then the bulk elastic free-energy densityf bulk5 f 13
a (u,ü,

2`)1 f 2
a(u,u̇2,2`) becomes

f 13
a ~u,ü,2`!1 f 2

a~u,u̇2,2`!5
dF13

a ~u,u̇ !

dz

2E
2`

1`

ds G12~u,s!
s2

2
u̇2,

~66!

where

F13
a ~u,u̇ !5@~12a!21a2#E

2`

1`

dsG2~u,s!
s2

2
u̇. ~67!

The first derivative term in Eq.~66! corresponds to the sur
faceK13 term, while the second term is the bulk contributio
that depends on the bulk elastic constantsK11 andK33. Note
that this latter term is identical to that already found in E
~34! of Sec. II B. Then, in agreement with the Somoz
Tarazona results, the bulk elastic constants are not affe
by the variable’s transform. On the contrary, by compar
Eq. ~67! with Eq. ~36! of Sec. II B, we find

F13
a ~us ,u̇s!5@~12a!21a2#F13~us ,u̇s!. ~68!

This means that the splay-bend constantK13 is mapping de-
pendent, in agreement with the Somoza-Tarazona con
sions. Using the same approach as in Sec. II C, the last
interfacial contributions in Eq.~60! can be written in terms
of the surface angleus and its surface derivative. Then th
sum of the last two integrals in Eq.~60! is reduced to the
sum of the five surface free energies per unit surface are

Fs
ea~us!5E

2`

0

dz fext~us ,z!, ~69!

Fs
ia~us!5E

2`

0

dz D f h
ia~us ,z!, ~70!

Fh
ea~us ,u̇s!5E

2`

0

dz zU] f ext~u,z!

]u U
u5us

u̇s , ~71!

Fh
ia~us ,u̇s!5E

2`

0

dz zU]D f h
ia~u,z!

]u
U

u5us

u̇s , ~72!

and

F1
a~us ,u̇s!5E

2`

0

dz f1
a~us ,u̇s ,z!. ~73!

The external surface free energiesFs
ea(us) and Fh

ea(us ,u̇s)
are equal to surface energiesFs

e(us) andFh
e(us ,u̇s) defined

implicitly in Eq. ~42!. Furthermore, it is also easy to sho
that the internal surface free energyFs

ia(us) is equal to
Fs

i (us) defined in Eq.~42! ~see Appendix C!. Then we infer
that these two contributions are mapping independent.
surface termsFh

ia(us ,u̇s) and F1
a(us ,u̇s) can be reduced to

simplez integrals substituting in Eqs.~72! and ~73! the ex-
.
-
ed
g

lu-
o

e

plicit expressions ofD f h
ia(u,z) and f

1

a(us ,u̇s ,z) given in
Eqs.~63! and~64! and using integration by parts to elimina
the s variable ~see Appendix C!. In such a way, we obtain
explicit expressions of the surface free energies in terms
the z integralF13(us ,u̇s) defined in Eq.~36!. After straight-
forward calculations, we obtain

Fs
ea~us!5Fs

e~us!, ~74!

Fs
ia~us!5Fs

i ~us!, ~75!

Fh
ea~us ,u̇s!5Fh

e~us ,u̇s!, ~76!

Fh
ia~us ,u̇s!5@a21~12a!2#Fh

i ~us ,u̇s!

5@a21~12a!2#F13~us ,u̇s!, ~77!

F1
a~us ,u̇s!5~122a!2F1~us ,u̇s!52~122a!2F13~us ,u̇s!.

~78!

It is evident from Eqs.~77!, ~78!, and~68! that each surface
derivative term due to the internal intermolecular interactio
is affected by the change of variables. However, the to
surface free energy, which is given by the sum of the fi
terms in Eqs.~74!–~78! and the one in Eq.~68!, is mapping
independent and is given by

Fs5Fs
e~us!1Fs

i ~us!1Fh
e~us ,u̇s!1F13~us ,u̇s!, ~79!

where Fs
e(us), Fs

i (us), Fh
e(us ,u̇s), and F13(us ,u̇s) are the

surface functions defined in Sec. II. This theoretical res
gives a satisfactory solution to the Somoza-Tarazona p
dox. In conclusion, the separation of the surface elastic te
into a bulk (F13) and two interfacial~Fh and F1! contribu-
tions does not have a well-defined physical meaning beca
one contribution that is interpreted as a bulk contributi
with a given nonlocal to local mapping becomes an inter
cial contribution if a different mapping is used. The on
well-defined physical parameter is the total surface free
ergy that is mapping independent. Our theoretical results
show that the homogeneous surface contributionFh(us ,u̇s)
introduced in Refs.@25,26# plays a very important role. In-
deed, if this interfacial term is disregarded, the mapping
dependence of the surface free energy is no longer recove

In conclusion, the surface elastic free energy is alwa
given by Fs in Eq. ~79!. Explicit expressions forFs

i (us) in
terms of the characteristic parameters of the generic inte
tion law of Eq.~39! can be found in@24#, while the expres-
sion of F13(us ,u̇s) is given in Eqs.~37! and ~40! of Sec. II.
The other two parameters can be easily obtained if the s
cific form of the interaction energyf ext(u,z) is given.

IV. THE PHYSICAL MEANING OF THE ELASTIC
SURFACE FREE ENERGY

In Sec. IV A we discuss the physical meaning and t
consequences of the elastic surface free energy that has
obtained in Sec. II and III. We show that the surface elas
constantK13

eff represents the source for sharp director dist
tions that occur in a very thin interfacial layer. The elas
surface free energy makes it possible to build approxim
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elastic models for the interfacial director field. In Sec. IV
we emphasize that the elastic surface free energy should
be confused with the thermodynamic surface free energy
appears in a consistent continuum theory of NLCs. The p
ence of a normal-derivative term on the elastic surface
energy does not imply that a similar term has to be presen
the thermodynamic surface free energy. On the contrary,
show that there are some indirect arguments that sug
strongly the absence of a normal-derivative term in the th
modynamic surface free energy. Then the theoretical res
that have been obtained in the present paper do not con
with the expression of the thermodynamic surface free
ergy that was proposed in Refs.@14,15# and with Yokoya-
ma’s recent results@20#.

A. The equilibrium director field

Here we will call the free energy per unit surface areaF
in Eq. ~17! the molecular free energy, while its elastic ap-
proximation will be called theelastic free energy. In this
subsection we will discuss the physical meaning and the c
sequences of theK13 surface term. For simplicity, we con
sider the special case of a NLC layer of thicknessd sand-
wiched between two identical solid plates that interact w
the NLC via short-range interactions. Then the external fr
energy density due to the interactions with the solid plate

f ext~u,z!5W~u!d~z1d/2!1W~u!d~z2d/2!, ~80!

whered(z) is the Dirac function. In this case, the effectiv
constant K13

eff in Eq. ~49! is reduced to K13 because
Kh

e(cos2us)50. The equilibrium director angleueq(z) should
be obtained by minimizing the Nehring-Saupe molecular f
energyF in Eq. ~17!. This leads to an integral equation th
requires a numerical treatment@26#. In order to obtain an
approximate solution for the same problem, one could m
mize the elastic free energy per unit surface areaFe obtained
in Sec. II. In the present case,Fe becomes

Fe5E
2d/2

1d/2FK11

2
sin2u1

K33

2
cos2uG~ u̇ !2dz1Fs

i ~u1!

1Fs
i ~u2!1W~u1!1W~u2!1

K13

2
@sin~2u2!u̇2#

2
K13

2
@sin~2u1!u̇1#, ~81!

where u15u(2d/2) and u25u(d/2) are the angles at th
surfacesz52d/2 andd/2 and we have disregarded the u
essential constant contributionf 0 . The variational approach
leads to a second-order differential equation foru(z) and
four boundary conditions@6,7#. Since the general solution o
a second-order differential equation depends only on
arbitrary constantsB andC, it cannot satisfy simultaneousl
four boundary conditions. Then the variational problem is
posed. It has been shown@6,7# that this paradoxical result i
due to the splay-bend elastic constant in Eq.~81! that makes
the elastic free energy unbounded from below. In particu
the free energy approaches2` if the z derivative ofu(z) at
the interfaces approaches6`, depending on the sign o
K13. This means that a director angleu(z) that has a discon
ot
at
s-
e
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e
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r-
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-

n-

h
-
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e

i-

o

l
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tinuity at the interfaces is energetically favored. Oldano a
Barbero argued that the surface discontinuity mimics a sh
variation that occurs in a very thin interfacial layer of thic
ness comparable to the molecular length. Note that the
lecular free energyF is bounded from below. This mean
that the higher-order contributions that have been dis
garded in the elastic expansion bound the free energy f
below. Following this idea, Barbero, Sparavigna, a
Strigazzi @8,9# developed asecond-order elastic theory
where contributions up to order (Rint /Lmac)

4 were retained in
the expansion of the bulk elastic free-energy density. T
second-order elastic free energy contains many differ
second-order elastic terms. However, for small direc
angles (u!1), only the second-order elastic termK2ü2/2 is
not negligible. The constantK2 is a second-order elastic con
stant of the order ofK33 Rint

2 . The second-order elastic term
bounds the free energy from below and the variational
proach leads to afourth-orderEuler-Lagrange equation with
four boundary conditions. Then the mathematical problem
well posed. The equilibrium solution has the general fo
@9,13#

ueq~z!5Du~z!1umac~z!, ~82!

whereumac(z) is a slowly and smoothly varying function an
Du(z) is a function that vanishes exponentially out of tw
thin interfacial layers of thicknessd25(K2 /K33)

1/2'Rint .
The surface discontinuity that is predicted by the first-ord
elastic theory is immediately recovered forK2→0 because
d25(K2 /K33)

1/2→0. The amplitude of the surface discont
nuity is given by Du(0)5K13u(0)/K33 @9,13#. In the
second-order theory, the elastic contributions of order hig
than (Rint /Lmac)

4 were disregarded. However, it is evide
that, for Lmac'd2'Rint the elastic terms of orde
(Rint /Lmac)

m, with m.4, are not negligible. Pergamenshch
proposed@12# that the higher-order terms remove entirely t
interfacial distortion. In order to investigate the role of th
higher-order terms, Faetti@13# developed anNth-order elas-
tic theory where contributions up to order (Rint /Lmac)

2N were
retained. For any finite value ofN, the equilibrium director
angle always has the general form in Eq.~82! with a sharp
interfacial distortionDu(z). Therefore, he concluded that th
higher-order terms do not remove the interfacial distortio
although the amplitude and the analytical expression of
interfacial functionDu(z) are appreciably affected by th
higher-order terms. Then the second-order theory give
correct qualitative view of the interfacial field, but is unab
to reproduce the details.

We remark that the existence of the sharp interfacial d
tortion du(z) is not an artifact of the higher-order elast
theories but corresponds to an actual feature of the inter
lecular interactions. This has been shown recently in so
papers where the molecular free energyF in Eq. ~17! was
minimized using numerical procedures@25,28–30#. It was
shown that the director field exhibits a sharp interfacial d
tortion in qualitative agreement with the predictions of t
second-order theory.

The second-order and higher-order elastic theories are
the only possible ways to obtain a mathematically we
posed problem and an approximate solution for the inte
cial distortion. In particular, one can follow an alternativ
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approximate approach using the semielastic free energy
is given in Eq.~33! of Sec. II @30#. Disregarding the unes
sential constant contributionf 0 , the semielastic free energ
in Eq. ~33! is written

Fse5W~u1!1W~u2!1E
2d/2

d/2

D f h
i ~u,z!dz

1E
2d/2

d/2

@ f 13~u,ü,2`!1 f 1~u,u̇,z!1 f 2~u,u̇2,2`!#dz,

~83!

whereD f h
i (u,z) is the interfacial homogeneous free ener

defined in Eq.~29!, while the second integral contains th
bulk and interfacial elastic terms. Note thatFse is different
from the elastic free energyFe in Eq. ~81! because the inter
facial contributionsD f h

i (u,z) and f 1(u,u̇,z) have not yet
been expanded with respect tou(0)5us . According to Sec.
II, the two linear surface derivative contributions comin
from the bulk elastic free-energy densityf 13(u,ü,2`)
1 f 2(u,u̇2,2`) and from the expansion off 1(u,u̇,z) are
equal and opposite. Then the second integral in Eq.~83! is
reduced to the classical bulk Oseen-Frank elastic free en
and the semielastic free energyFse becomes

Fse5W~u1!1W~u2!1E
2d/2

1d/2

D f h
i ~u,z!dz

1E
2d/2

1d/2FK11

2
sin2u1

K33

2
cos2uG~ u̇ !2dz. ~84!

We recall that the elastic free energyFe in Eq. ~81! was
obtained from Eq.~84! by making a linear expansion o
D f h

i (u,z) in terms ofDu5u(z)2us5 u̇sz1¯ , whereus is
the surface director angle. Then the semielastic free en
Fse contains implicitly all the higher-order surface term
coming from the expansion ofD f h

i (u,z) that were disre-
garded inFe . On the other hand, the second integral in E
~84! disregards entirely the higher-order surface and b
elastic terms. In this sense, the semielastic free energy in
~84! can be considered as complementary to the higher-o
elastic free energies. Both these free energies take part
into account different higher-order terms~the homogeneous
higher-order terms and the elastic ones, respectively!. The
semielastic free energy is bounded from below and the s
dard variational approach leads to the bulk Euler-Lagra
equation

]D f h
i ~u,z!

]u
2~K11 sin2u1K33 cos2u!ü

2~K112K33!
sin 2u

2
u̇250, ~85!

with the two boundary conditions

~K11 sin2u11K33 cos2u1!u̇11
]W~u1!

]u1
50, ~86!
at
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gy
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2~K11 sin2u21K33 cos2u2!u̇21
]W~u2!

]u2
50. ~87!

Now the variational problem is well posed because
second-order differential equation~85! has only two bound-
ary conditions. Dubois-Violette and de Gennes@27# studied
the same kind of problem in the special case of a se
infinite NLC sample lying in the semispacez.0 with
D f h

i (u,z)5B(sin2u)/z3. They obtained an analytical expre
sion for the equilibrium director angle and showed tha
sharp distortion occurs in a very thin interfacial layer. Mo
recently Rajteriet al. @30# considered the Nehring-Saupe in
teraction energy and showed that the functionu(z) that mini-
mizesFse is in satisfactoryquantitativeagreement with the
solution that is obtained by numerical minimization of th
molecular free energyF.

In conclusion, theK13 term that appears in the Nehring
Saupe surface free energy has a well-defined physical m
ing: It represents a physical source of interfacial distortio
A zero value ofK13 means that the molecular interactions
not favor the occurrence of these distortions. This occurs,
instance, if the interaction law does not depend on the or
tation of the intermolecular vectoru @i 50 and j 50 in Eqs.
~39! and~40!#. The mathematical problems generated by
presence of theK13 term in the first-order elastic free energ
can be removed by introducing higher-order contributio
using either the second-order elastic free energy or
semielastic free energy. Both these approaches provide
approximate but qualitatively correct description of som
features of the interfacial layer. However, the second-or
approach is restricted to director distortions of very sm
amplitude (u!1), while the semielastic model is not a
fected by this restriction. Furthermore, according to R
@30#, the semielastic approach leads to better quantita
agreement~within 10%! with the results obtained from th
numerical minimization of the molecular free energy.

B. The elastic surface free energy and the thermodynamic
surface free energy

In Sec. II we obtained the surface elastic free energy d
sity Fs of a NLC by making the expansion of a simple m
lecular free-energy functional. Below we will call this su
face free energy theelastic surface free-energy densit.
According to Sec. IV A, the elastic surface free energy giv
important information about some specific features of
interfacial field. We emphasize, however, thatFs is a physi-
cal parameter completely different from thethermodynamic
surface free-energy density Fs

th that appears in the classica
continuum theory of NLCs@31#. To clarify the fundamental
difference between the elastic surface free energy and
thermodynamic one, we discuss a simple example. Cons
the case of a nematic layer of thicknessd sandwiched be-
tween twoidenticalsolid plates atz52d/2 andd/2, respec-
tively. The two solid plates favor a director alignment alo
the z axis ~homeotropic anchoring!. A uniform magnetic
field H is applied at an angleb with the z axis. In order to
simplify the theoretical expressions, we make the followi
assumptions: ~a! the b angle is very small (b!1) and~b!
the bulk director field is a planar fieldn5(sin u,0,cosu).
From condition ~a! we deduce thatu(z)!1 everywhere.
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Then all the contributions to the bulk free energy that are
order higher thanu2 andb2 can be disregarded. In particula
K11 sin2 u1K33 cos2 u'K33. In the continuum theory, the
NLC sample has to be considered as bulklike up to the
terfaces. Then the bulk free energy per unit surface area

Fbulk5E
2d/2

1d/2H K33

2
~ u̇ !22

xaH2

2
@12~u2b!2#J dz,

~88!

where the second term represents the magnetic free-en
density foru2b!1 andxa.0 is the anisotropy of the dia
magnetic susceptibility@1#. The variational approach leads
the Euler-Lagrange bulk equation

ü5
u2b

j2 , ~89!

where j5(K33/xa)1/2/H is the magnetic coherence leng
@1#. Since the NLC layer is sandwiched between two iden
cal plates, the physical solutions of Eq.~89! have to be even
or odd functions ofz. The low-energy solution is the eve
solution

u~z!5b1A cosh~z/j!, ~90!

where A is a free integration constant. It is convenient
rewrite u(z) in Eq. ~90! in the equivalent form

u~z!5b1~usurf2b!

coshS z

j D
coshS d

2j D , ~908!

where we have defined the constantusurf5A cosh(d/2j)1b.
usurf is a free parameter that corresponds to the value ofu(z)
in Eq. ~90! at the two surfacesz52d/2 and d/2 @usurf
5u(2d/2)5u(d/2)#. Of course, the free-energy density
Eq. ~88! cannot describe the interfacial behavior. First of a
the interfacial local free-energy density is no longer given
the simple bulk Oseen-Frank form because the local ela
constants becomez dependent and different interfacial e
ergy contributions appear~see the Introduction!. Further-
more, also other interfacial phenomena that were not ta
into account by the Nehring-Saupe molecular model use
Sec. II play an important role in the interfacial layer. F
instance, a local biaxiality@32#, a smectic ordering@33#, and
spatial variations of the order parameter@33# can occur very
close to the interfaces and the definition itself of a lo
director field in the interfacial layer becomes questionab
This means that the equilibrium molecular configurationMeq
that minimizes the exact total free energy of the NLC will
very complex in the interfacial layers. However, far from t
interfaces, the local free-energy density is well represen
by the Oseen-Frank bulk free energy. Then, far from
interfaces, the equilibrium molecular configurationMeq will
be reduced to the equilibrium uniaxial configuration d
scribed byu(z) in Eq. ~908!, with a well-defined valueūsurf
of the free parameterusurf. This means that the bulk directo
field that is given by the continuum theory withusurf5 ūsurf
represents the exact bulk equilibrium configuration. N
f
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that usurf is different from the surface angleus considered in
Secs. II and III because it does not represent the actual
erage orientation of the long molecular axes at the surfa
but corresponds only to the extrapolation of the bulk direc
field on the surface. This surface angle is called theextrapo-
lated surface director angle. The only aim of the continuum
theory is to find the extrapolated surface angleūsurf that cor-
responds to the extrapolation of the exact equilibrium b
director field. The study of the interfacial molecular config
ration can only be the object of more or less approxim
models of the interfacial layer, for instance, theNth-order
elastic theories and the semielastic approach. By substitu
u(z) of Eq. ~908! into Eq. ~88!, we obtain the bulk free
energy

Fbulk5F01
K33~usurf2b!2

2j

sinhS d

j D
cosh2S d

2j D , ~91!

whereF0 is an inessential contribution that is independent
usurf. The bulk free energy does not take into account
excess of free energy that is stored in the interfacial lay
where the molecular configuration and the local free-ene
density are very different from the bulk energy. Then t
exact total free energyFtot is different fromFbulk . This leads
naturally to the definition of the thermodynamic surface fre
energy density

Fs
th5
Ftot2Fbulk

2
. ~92!

The coefficient 2 in Eq.~92! is due to the presence of tw
identical interfaces and the choice of the even solution of
~89!. SinceFtot represents the exact total free energy th
corresponds to the exact molecular configuration,Fs

th is a
macroscopic physical parameter that takes into account
plicitly any free-energy contribution that has been dis
garded in the bulk free energyFbulk . Yokoyama showed@31#
thatFs

th is completely determined once the bulk director fie
in Eq. ~908! is given. ThenFs

th can depend only on the mac
roscopic parameters that characterize the bulk director fi
For a proof of this important but not obvious property of t
thermodynamic surface free energy we refer the reader to
sound Yokoyama paper@31#. In the present case of the NLC
subjected to the tilted magnetic field, the surface free ene
can depend only on the macroscopic parametersusurf, b, and
j that enter the bulk director field in Eq.~908!. Note that, in
principle, the thermodynamic surface free energy can dep
also on the parametersb andj that characterize the externa
field. For fixed values ofb andH, Fs

th is a functionFs
th(usurf)

of the extrapolated surface director angleusurf. This property
makes the thermodynamic surface free energyFs

th a physical
parameter that is completely different from the elastic s
face free energyFs that depends on the actual surface an
us ~see Sec. II!. If the explicit dependence ofFs

th(usurf) on
usurf is known, the equilibrium valueūsurf can be obtained by
solving the equilibrium equation](2Fs

th1Fbulk)/]usurf50.
This procedure leads always to a well-posed mathema
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problem. Therefore, according to Yokoyama@31#, no para-
dox arises within a consistent continuum theory of NLCs

The discussion above shows that the exact bulk equ
rium director field can be easily found if the functio
Fs

th(usurf) is known. The knowledge of the explicit depe
dence ofFs

th on the extrapolated surface director field rep
sents a fundamental but still open problem for the continu
theory. In particular, it has not yet been clearly establishe
a normal-derivative term can enter the thermodynamic s
face free energy. Note that such a derivative term has to
intended as the extrapolated surface derivative of the b
director angle in Eq.~908!, that is, 6(usurf2b)tanh(d/2j).
ThenFs

th is yet a function ofusurf and the surface free energ
does not lead to any variational problem@10–12#. In a recent
paper, using the density-functional theory, Yokoyam
showed that some surface contributions proportional to
normal derivative of the extrapolated director field could
present in the thermodynamic surface free energy@20#. How-
ever, several years ago Faetti@13# showed that a normal
derivative term leads to a nonconservation of the ang
momentum for a planar director field. More recently Sta
inga and Vertogen@15# generalized this theoretical result
more general three-dimensional problems. Then they arg
that the thermodynamic surface free energy cannot dep
on the normal-director derivative.

Below we will use the example of the NLC layer lying i
a tilted magnetic field withb!1 andu!1 to show that the
absence of the normal-director derivative in the thermo
namic surface free energy is consistent with the predicti
of the higher-order theories. This simple example will allo
us to point out clearly the basic differences and the rela
between the elastic surface free energyFs and the thermo-
dynamic surface free energyFs

th . TheNth-order elastic free
energy is given by the sum of the first-order elastic fr
energy obtained in Sec. II, the magnetic free energy, and
Nth-order termFN that contains the elastic contributions
order higher than (Rint /Lmac)

2 and lower than
(Rint /Lmac)

2N11. Due to the conditionu!1, we can disre-
gard contributions of order higher thanu2 and the effective
surface elastic parameterK13

eff(cosus) in Eq. ~49! is reduced
to a constantK13

eff5Kh
e(1)1K13. Furthermore, in the presen

case ~homeotropic anchoring!, the surface free energ
Fs(us)5Fs

i (us)1Fs
e(us) is reduced toWs1W0us

2/2, where
W0 is the anchoring energy coefficient andWs is an inessen-
tial constant that will be disregarded. TheNth-order free en-
ergy per unit surface area for anevenfunction u(z) is

Ftot
N5H W0us

212K13
effusu̇s1E

2d/2

1d/2 K33

2
~ u̇ !2

2
xaH2

2
@12~u2b!2#dzJ 1FN , ~93!

with

FN5E
2d/2

d/2

f N~u;u ,1 ;u ,2 ;...;u ,N!dz, ~94!

where symbolsu , j with j 51,...,N denote theNth derivative
of the functionu(z). The functionf N(u;u ,1 ;u ,2 ;...;u ,N) in
-
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Eq. ~94! is a quadratic function ofu, u ,1 , u ,2 ,..., andu ,N .
The explicit expression of the higher-order functionf N can
be found in Appendix B of Ref.@13#. Minimization of the
functionalFtot

N using the variational method leads to a line
differential equation foru(z) of order 2N. The even function
that solves the bulk Euler-Lagrange equation has the gen
form @13#

uN~z!5DuN~z!1umac
N ~z!, ~95!

with

umac
N ~z!5b1AN cosh~z/j! ~96!

and

DuN~z!5(
j 52

N

Bjhj~z!. ~97!

AN and B2 ,B3 ,...,BN are N arbitrary constants, while
hj (z)5cosh(z/dj) with d j'Rint . The functionDuN(z) goes
rapidly to zero out of two very thin interfacial layers and th
umac
N (z) has to be identified with the macroscopic bulk dire

tor field that appears in the continuum theory@see Eq.~90!#.
SettingAN5(usurf2b)/cosh(d/2j) in Eq. ~96!, one recovers
the bulk solution given in Eq.~908!. Substitution of the func-
tion uN(z) into Eq. ~93! leads toF tot

N5F(usurf,B2 ,...,BN),
which is a quadratic function ofusurf,B2 ,...,BN. The un-
known coefficients usurf,B2 ,...,BN that minimize
F(usurf,B2 ,...,BN) can be obtained by solving the system
N linear equations]F/]usurf50, ]F/]B250,...,]F/]BN50.
It can be shown, after a tedious but straightforward analy
that these equations are equivalent to the linear bound
conditions that were obtained in Ref.@13# using the standard
variational method. For a given value of the surface ext
polated angleusurf, the set of N21 linear equations
]F/]B250,...,]F/]BN50 leads to well-defined value
B2(usurf),...,BN(usurf) of the unknown interfacial parameter
B2 ,B3 ,...,BN in terms ofusurf. This means that, in agree
ment with Yokoyama’s general analysis, for a given bu
director field having the general form in Eq.~908!, the inter-
facial field is univocally determined. Then it is natural
assign to this bulk director field the total free ener
F tot
N (usurf)5F„usurf,B2(usurf),...,BN(usurf)…. The thermody-

namic surface free-energy density that corresponds to
Nth-order elastic model is

Fs
Nth~usurf!5

Ftot
N ~usurf!2Fbulk~usurf!

2
, ~98!

whereFbulk(usurf) is the bulk free energy in Eq.~91!. Note
that the thermodynamic surface free energy depends onusurf,
in agreement with Yokoyama’s general analysis@31#. The
equilibrium extrapolated angleūsurf is obtained by solving
the boundary condition

2
]Fs
Nth~usurf!

]usurf
1

]Fbulk~usurf!

]usurf
50. ~99!

The total free energyFtot
N (usurf) in Eq. ~98! has been obtained

by substituting in Eq.~93! the director angleuN(z), which is
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given in Eqs. ~95!–~97! with B25B2(usurf),...,BN
5BN(usurf). SinceuN(z) depends on the magnetic coheren
length j and the angleb, the thermodynamic surface fre
energy could also depend on these parameters. To obtai
explicit form of Fs

Nth(usurf) we can exploit the theoretica
results already found in@13#. Indeed, according to our analy
sis, the surface angleusurf that solves Eq.~99! is the solution
of the system of linear equations]F/]usurf50, ]F/]B2
50,...,]F/]BN50. On the other hand, these equations
fully equivalent to the boundary conditions that were o
tained in Ref.@13# using the standard variational metho
Then the solution of Eq.~99! has to correspond to the solu
tion that was obtained in Ref.@13#. In that paper it was
shown thatusurf has to satisfy the simple equation

]@WNusurf
2 #

]usurf
1

]Fbulk~usurf!

]usurf
50, ~100!

whereWN is a constant coefficient that is independent ofb
and j. By comparing Eqs.~100! and ~99! we infer that the
bulk equilibrium director angleu mac

N (z) that minimizes the
complexNth-order functional can be always obtained usi
the standard continuum theory with the thermodynamic s
face free energyWNusurf

2 /2. Therefore, as far as the bulk d
rector field is concerned, the continuum free energy w
Fs

Nth(usurf)5WNusurf
2 /2 andFbulk given in Eq. ~88! is com-

pletely equivalent to the much more complexNth-order free
energy. This result holds at any orderN and thus we can
expect that it remains satisfied also forN→`.

Although the simple example above and other indir
arguments@14,15# suggest strongly that no normal-derivativ
term can enter the thermodynamic surface free energy, t
is no definitive proof for this ansatz. Therefore, the know
edge of the general expression of the thermodynamic sur
free energy remains an open problem that needs further
oretical and experimental investigations. On the contrary,
cording to the analysis in Sec. II and III, the presence o
normal-derivative term in the elastic surface free energy
obvious. Within an approximate elastic model of the inter
cial layer, this surface term has a well-defined physi
meaning: It represents the source for sharp interfacial dis
tions.

V. CONCLUDING REMARKS

In this paper we showed that the Somoza-Tarazona p
dox is due to an incomplete analysis of the boundary effe
If all the boundary effects are taken into account, the norm
derivative term in the elastic surface free energy is indep
dent of the nonlocal to local mapping. Simple relations t
must be satisfied by the surface normal-derivative term h
been obtained using the Nehring-Saupe molecular appro
and exploiting the symmetry properties of the intermolecu
energy. The surface-derivative term contains an effec
constantK13

eff that depends on the properties of the NLC a
on the nature of the substrate. Therefore, except for the
special case of a free surface (Kh

e50), the surface elastic
constant is a true surface parameter that can depend o
surface director angle as well as on the anchoring energ

It is important to compare our theoretical results w
those obtained by other authors on the same subject, in
the
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ticular, by Somoza and Tarazona@19# and by Yokoyama
@20#. Somoza and Tarazona showed that the surface ela
constantK13 that is obtained from the integration of the bu
free-energy density depends on the nonlocal to local m
ping. They concluded that such an elastic constant is n
well-defined physical parameter. This conclusion is in
complete agreement with the result of our calculation of
bulk surfacelike elastic constant that is found to depend
plicitly on the mapping parametera @see Eq.~67!#. There-
fore, we agree with Somoza and Tarazona that the class
bulk Nehring-Saupe constant is not a well-defined phys
parameter. However, our theoretical results demonstrate
that the total surface elastic constant is independent of m
ping and thus is a well-defined physical parameter.

As far as Yokoyama’s paper@20# is concerned, we recal
briefly the main results of that paper. Yokoyama used
functional-density theory and showed that the linear ela
terms @the second integral in Eq.~8! of the present paper#
vanish at first order indn. In Appendix C of his paper he
showed that this theoretical result comes directly from
symmetry properties of the interaction law. Then he co
cluded that the bulk surfacelike elastic constant is zero. T
vanishing of the linear elastic term is in complete agreem
with the analysis made by us in Sec. II and in Ref.@21#.
Indeed, at first order inu̇s , the elastic linear integral in Eq
~8! is reduced toF1(us ,u̇s)1F13(us ,u̇s), which is zero.
However, we emphasize here that Eq.~8! is obtained using
the standard mapping and thus the vanishing of the lin
term in the elastic integral in Eq.~8! is a direct consequenc
of this special choice. As a matter of fact, if a different ma
ping is used, the linear elastic contribution is reduced
F1

a(us ,u̇s)1F13
a (us ,u̇s), which is a function of the mapping

parametera and is different from zero in the general ca
~aÞ0, aÞ1!. According to our analysis, the separation
the surface elastic energy into bulk and interfacial contrib
tions depends strongly on the mapping that is used and
it is somewhat arbitrary to decide what is really a bulk co
tribution and what is an interfacial contribution. Then we
not agree with Yokoyama’s conclusion that the bulk const
K13 must always be zero. In his paper Yokoyama analyz
also the specific interfacial contributions due to the homo
neous term in the interfacial layer. He showed that the in
facial interactions lead to some surface contributions that
linear in thez derivative of the surface angle. In the spec
cases of homeotropic (us50) and planar anchoring (us
5p/2), Yokoyama’s surface terms have the same functio
form as those obtained in the present paper. However,
emphasize here that a direct comparison between our su
terms and Yokoyama’s is not possible because they are
lated to intrinsically different physical parameters: the act
director orientation at the surface in our paper and the ‘‘
trapolated’’ surface director angle in Yokoyama’s paper. A
though the elastic surface free energy represents a us
parameter to build approximate models of the interfac
field ~the Nth-order elastic theories!, it cannot appear in a
consistent continuum theory of NLCs. The thermodynam
surface free energy that appears in the continuum theory
different macroscopic parameter that depends on the extr
lated surface director field. The explicit dependence of
thermodynamic surface free energy on the extrapolated
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face director field is still the subject of some debate in
literature. In particular, it is not completely clear if a norma
derivative term can appear in such a surface free ene
although there are some indirect arguments that sugges
absence of such a term.

The Nehring-Saupe molecular model used in Secs. II
III to obtain the elastic free energy makes use of strong s
plifying assumptions: perfect nematic order (S51) and a
uniform single-particle density in the NLC. Then the expre
sions of the elastic constants that have been obtained in
present paper could be modified appreciably by using m
accurate molecular approaches such as the density-funct
theory @17,20#. However, the mapping independence of t
K13

eff constant has been obtained by exploiting only the sy
metry properties of the molecular interactions. Thus we th
that this theoretical result has a more general validity.
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APPENDIX A

In this appendix we show that properties~i! and ~iii ! of
Sec. II A are a direct consequence of the inversion symm
in the real and the director isotopic space~see Appendix C in
@20#!. This symmetry leads to the equality

g~n,n8,u!5g~n8,n,2u!, ~A1!

where u5r2r 8. It is convenient to use forg(n,n8,u) the
explicit form given in Eq.~39!:

g~n,n8,u!52(
i , j ,k

Ji , j ,k~u!S n•
u

uD i S n8•
u

uD j

~n•n8!k.

~A2!

Due to the symmetry property in Eq.~A1!, we infer thati
1 j is an even integer andJi , j ,k(u) is symmetric with respec
to i and j . This means thatg(n,n8,u)5g(n,n8,2u) and
thus from Eq.~A1! we find

g~n,n8,m!5g~n8,n,u!. ~A3!

By setting n85n1dn in Eq. ~A3! we get g(n,n1dn,u)
5g(n1dn,n,u) and thus

g~n,n1dn,u!2g~n,n,u!5g~n1dn,n,u!2g~n,n,u!.
~A4!

From the equality of the differentials in Eq.~A4!, the equal-
ity of their Taylor expansions follows directly and thus

U]kg~n,n8,u!

]n8 j
k U

n85n

5U]kg~n,n8,u!

]nj
k U

n5n8

, ~A5!

wherek is an arbitrary integer. From Eq.~A5! property~iii !
of the functionG(u1 ,u2 ,s) follows directly. From the equal-
ity g(n,n8,u)5g(n,n8,2u) we getg(u1 ,u2 ,u)5g(u1 ,u2 ,
2u). Then
e

y,
the

d
-

-
he
re
nal

-
k

.

ry

G~u1 ,u2 ,s!5 1
2 E

2`

1`

duxE
2`

1`

duyg~u1 ,u2 ,ux ,uy ,s!

5 1
2 E

2`

1`

duxE
2`

1`

duyg~u1 ,u2 ,2ux ,2uy ,2s!

5G~u1 ,u2 ,2s!. ~A6!

The last equality has been obtained by making the subs
tions 2ux→ux and 2uy→uy in the second integral in Eq
~A6!. Equation~A6! leads immediately to property~i! of the
function G(u1 ,u2 ,s) and itsu1 andu2 derivatives.

APPENDIX B

Here we calculate explicitly the elastic constantK13 in
terms of the characteristic parameters of the interaction
g(n,n8,u) given in Eq.~39!. For the planar director fieldn
5(sinu,0,cosu), the function g(n,n8,u) becomes
g(u1 ,u2 ,ux ,uy ,uz), where u1 and u2 are the angles tha
correspond ton andn8, while ux , uy , anduz are thex, y,
andz components of the vectoru. The functionF13(us ,u̇s)
in Eq. ~36! becomes

F13~us ,u̇s!5 1
2 E

2`

`

dzE
2`

`

duxE
2`

`

duyz
2g2~us ,ux ,uy ,z!u̇s ,

~B1!

where

g2~us ,ux ,uy ,z!5U ]

]u2
g~u1 ,u2 ,ux ,uy ,z!U

u15u25us

.

~B2!

Using the explicit expression ofg(n,n8,u) given in Eq.~39!,
the functiong2(us ,ux ,uy ,z) becomes

g2~us ,ux ,uy ,z!

52
1

2 H (
i , j ,k

Ji jk~u! j @ns•û# i 1 j 21U]@n8•û#

]u2
U

n85n5ns

1(
i , j ,k

Ji jk~u!k@ns•û# i 1 jU]@n•n8#

]u2
U

n85n5ns

J , ~B3!

where û5u/u and ns denotes the director at the surfac
Now we note that]@n•n8#/]u25]@cos(u12u2)#/]u250 for
u15u25us and ]nx8/]u25cosu25nz8 and ]nz8/]u2

52sinu252nx8 . Then

U]@n8•û#

]u2
U

n85n5ns

5
nszux2znsx

u
, ~B4!

whereu5Aux
21uy

21z2. ThenF13(us ,u̇s) is reduced to
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F13~us ,u̇s!52
1

4 E
2`

`

duxE
2`

`

duyE
2`

`

dz(
i , j ,k

Ji jk~u!z2

3
j @ns•u# i 1 j 21

ui 1 j ~nszux2nsxz!. ~B5!

To solve the integrals in Eq.~B5! it is convenient to pass to
the coordinatesux8 , uy8 , andz8 with the z8 axis that is par-
allel to ns and to use polar coordinatesj, f, andr , wherej
denotes the polar angle with respect to thez8 axis andf
denotes the azimuthal angle. With this choice,F13(us ,u̇s)
becomes

F13~us ,u̇s!5I 11I 21I 3 , ~B6!

where

I 152 1
4 E

0

`

drE
4p

dV r 4cos2us(
i , j ,k

jJi jk~r !

3~cosj! i 1 j 11sin j cosf, ~B7!

I 252 1
4 E

0

`

drE
4p

dV r 4sin2us(
i , j ,k

jJi jk~r !

3~cosj! i 1 j 21sin3j cos3f, ~B8!

and

I 352 1
4 E

0

`

drE
4p

dV r 4sin 2us(
i , j ,k

jJi jk~r !

3~cosj! i 1 j sin2j cos2f. ~B9!

dV is the infinitesimal solid angle. By performing the int
grals in Eqs.~B7!–~B9!, we find I 15I 250, while exploiting
the property thati 1 j is an even number, it is easy to sho
that I 3 is given by expressions~37! and~40!. Using the same
procedure, it is easy to show that the integral in Eq.~34!
leads to Eq.~38! with K11 andK33 expressed in terms of th
characteristic parameters of the interaction energy.

APPENDIX C

Here we show that Eqs.~75!, ~77!, and~78! come directly
from Eqs.~70!, ~72!, and~73!, respectively. We first conside
the function

Fs
i ~us!5E

2`

`

dzF E
2`

`

G~u,u,z2z8!dz82 f 0G . ~C1!

By making the change of variablesZ5az1(12a)z8 ands
5z2z8, we get

Fs
i ~us!5E

2`

`

dZF E
z/a

2z/~12a!

G~u,u,s!ds2 f 0G , ~C2!
which is equal to the functionFs
ia(us) in Eq. ~70!. Then

Fs
ia(us)5Fs

i (us), in agreement with Eq.~75!. Now we con-
sider the function

Fh
ia~us ,u̇s!5E

2`

0

dz zU]D f h
ia~u,z!

]u
U

u5us

u̇s , ~C3!

which was defined in Eq.~72!. Equation~C3! can be inte-
grated by parts with respect to the part functionz2. We get

Fh
ia~us ,u̇s!5Zz2

2
U]D f h

ia~u,z!

]u
U

u5us

u̇sZ
z52`

z50

2E
2`

0

dz

3
z2

2

d

dz H U]D f h
ia~u,z!

]u
U

u5us

u̇sJ . ~C4!

The first term on the right-hand side vanishes due to
property G(u1 ,u2 ,`)50. Substituting in the second term
the explicit expression ofD f h

ia(u,z) as given in Eq.~63!, we
find

Fh
ia~us ,u̇s!52E

2`

0

dz z2
d

dz H E
z/a

2z/~12a!

ds G2~us ,s!u̇sJ ,

~C5!

where we have used the propertyG1(us ,s)1G2(us ,s)
52G2(us ,s). Now we use the identity

d

dz H E
z/a

2z/~12a!

ds G2~us ,s!u̇sJ 52
G2~us ,z/a!u̇s

a

2
G2„us ,z/~12a!…u̇s

12a
.

~C6!

To write the second term on the right-hand side in Eq.~C6!
we have used the propertyG2(us ,s)5G2(us ,2s). Substi-
tuting Eq.~C6! into Eq. ~C5!, we get

Fh
ia~us ,u̇s!5E

2`

0

dz z2
G2~us ,z/a!u̇s

a

1E
2`

0

dz z2
G2„us ,z/~12a!…u̇s

12a
. ~C7!

By making the variable changesz→z/a andz→z/(12a) in
the two integrals we find

Fh
ia~us ,u̇s!5@a21~12a!2#E

2`

0

dz z2G2~us ,z!u̇s ,

~C8!

which is the equality in Eq.~77!. Finally, operating in the
same way on the functionF1

a(us ,u̇s) defined in Eq.~73!, we
obtain the equality in Eq.~78!.
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