PHYSICAL REVIEW E VOLUME 57, NUMBER 6 JUNE 1998

Splay-bend surface elastic constant of nematic liquid crystals: A solution of the
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The Nehring-Saupg]. Chem. Phys54, 337 (1971); 56, 5527(1972] elastic free energy of nematic liquid
crystals (NLCs) contains the splay-bend elastic constén, which affects only the elastic surface free
energy. Several years ago, Somoza and Tarapdiohd Phys.72, 991 (1991)] showed that the value df ;5
depends on the nonlocal to local mapping that is used to define the local elastic free energy. Then they
concluded that the splay-bend constant is not a well-defined physical parameter. In the present paper we show
that the Somoza-Tarazona result comes from an inconsistent treatment of the boundary effects. If all the
boundary effects are correctly taken into account in an elastic approach, the elastic surface free energy contains
an effective elastic constaktS that is mapping independertST is the sum of three different constants: the
classical Nehring-Saupe bulk constdfii; and two specific interfacial constanks, and Ky, . While each
surface constaniK 3, K;, andK,,) depends on the kind of nonlocal to local mapping, the resulting surface
constanﬂ<§f3’=K13+ K;+Kp is mapping independent. Using a simple molecular model of the intermolecular
interactions, we obtain explicit expressionslf()igf in terms of the characteristic parameters of the intermo-
lecular energy. In the final part of this paper we discuss the meaning and the physical consequences of the
elastic surface free enerd@. We show thafF is a semimacroscopic parameter that provides an approximate
elastic description of the interfacial layer. Furthermore, we point out that the elastic surface free energy should
not be confused with the thermodynamic surface free energy that appears in a consistent continuum theory of
NLCs.[S1063-651X98)07606-5

PACS numbsgs): 62.20.Dc, 61.30.Cz, 64.70.Md

I. INTRODUCTION is assumed to be a function of the orientation of the director
at the surface, which is called tt@nchoring energyUsing
The macroscopic properties of nematic liquid crystalsthe Gauss theorem, the last two terms in E2). can be
(NLCs) are described in terms of a unit vector figir),  transformed into the surface integral
which is called thedirector and represents the local average

molecular orientation of the long molecular axgHg. In FS:J d9 — (Ky+Kopk-(nV-n+nxVxn)
many important cases(r) is a smoothly and slowly varying
function ofr with a characteristic macroscopic lendth,.., +Kyk-(nV-n)], 3

which is much greater than the typical rangg; of the in- _
teractions between the NLC moleculeB;{~100A). In  wherek denotes the outgoing surface normal. g con-

such a case, the total free energy is reduced to the elastiant was introduced by Oseen, then eliminated by Frank,
form and finally reintroduced by Nehring and Saupe in 1972 on

the basis of phenomenological and molecular arguments
[4,5]. In principle, the equilibrium director field can be ob-
F:f (fe+fext)dv+f fsdS, 1) tained minimizing the free energy in E¢L) with the stan-
dard variational method. This procedure leads to some Euler-
wheredV anddS are bulk and surface infinitesimal elements Lagrange equations for the bulk director field and some
andf, is the Oseen-Frank elastic free-energy dens{g] boundary conditions. Oldano and Barb§6y7] showed that
the presence of thi€ 5 term in Eq.(2) leads to a paradoxical
result: The free energy is unbounded from below and the
2 variational approach leads to a ill-posed mathematical prob-
lem. Different solutions to this problem have been proposed
(Kt Ko V- (nV-n+nXVXN)+KysV-(nV-n). i the literatur8—15. Of course, no problem ariseshf;s
2) =0. For this reason, some authors calculated directlKthe
elastic constant using specific microscopic molecular models
fo is a unessential constant contributidfy,,, K,,, andKz3  [4,5,16,17. The molecules were assumed to interact via a
are the splay, twist, and bend elastic constants,kgcand  two-body energyJ(&,€’,u), whereé ande’ denote the long
K3 are the saddle-splay and splay-bend surface-like elastimolecular axes at the pointsandr’ in the NLC sample and
constantsf, is the interaction free-energy density with ex- u=r—r’ is the intermolecular vector. In the simplest ap-
ternal fields(magnetic or electricand f is the excess of proach[5,16], which we will call the Nehring-Saupe molecu-
surface free-energy density. In the classical apprgaghf;  lar approach, one assumes perfect nematic ofuieler pa-

Ku

K K
fo=fo+ —= (V-n)2+ 722 (n-Vxn)2+ 733 (NXV xn)2
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rameter S=1 [1]) and a uniform single-particle density. calculated at poinR, they obtained a different expression of
Then the free energy due to the interactions between nematibe bulk elastic free-energy density. The bulk elastic con-

molecules becomes stantsK;, Ky, and K3 remain unchanged, bk, ; be-
comes zero. Then they argued that the splay-bend constant
_1 / "oy — K3 cannot be a well-defined physical parameter. The
F ZJ drf drg(n.n’,u) fdr fr), “ Somoza-Tarazona argument originated some debate in the

] literature[17,2Q.
where the integrals are extended to the whole volume of the | 3 recent papdi21], Faetti and Riccardi showed that the
NLC procedure used to obtain the surface elastic free eneggy
;v 2 , does not take correctly into account the boundary effects.
g(n.n",u)=p=U(n,n",u) ®) Indeed,F¢ in Eq. (3) was obtained by integration of the
divergence terms in the bulk free-energy densityof Eq.
(2). However,f, differs greatly from the “true” elastic free-
) , , energy densityf¢(r) in a thin interfacial layer of thickness
f(r)ZEJ dr'g(n,n",u). 6)  5~R,,. In particular, by substitutingn; of Eq. (9) into the
second integral in Eq(8), one obtains some elastic terms
p is the single-particle density anir) is the free-energy that are proportional to the first director derivativs / 9x;
density at the point in the NLC.n andn’ are the director [22-24. These elastic terms vanish out of the interfacial

and

orientations at the pointsandr’, i.e., layer, but assume enormous valyesth respect to the bulk
terms in the interfacial layer. The integral of this excess of
n=n(r), n'=n(r’). (7)  interfacial elastic free energy over the interfacial layer leads

, ) i to contributions to the surface elastic free energy that renor-
g(n,n’,u) vanishes fou>Ryy, whereR;y is the character- iz the surface elastic constants in B3). In particular,
istic interaction length of a few molecular lengths. For a, Eq. (3) is replaced byK*;=K,+ K3, whereK, de-
director field that varies over a macroscopic characteristic > = "0 o = LlC comli3r19 from the integral of the in-
length I—ma%> Rint, (1) is well apprommatec{_at the order iortacial elastic linear term@ different symbol was used in
(Rint/Lmad ] by the elastic free-energy density [21] to denoteK ;). For any two-body energy lag(n,n’,u)
that satisfies the invariance—~—n andn’— —n’, K; satis-

ag(n,n’,u : .
fe(r)=%J dr’g(n,n,u)+%f dr’ % on; fies the general equal|t'b(1=_—K13 and thuski;=0 [21].
[ n’=n Yokoyama(see Appendix C if20]) reached the same con-
52 , clusion using a more general theoretical argument that ex-
+%f dr’ M sn.ony, (8)  Ploited only the symmetry property
anjong |,
ag(n,n’,u) ‘&g(n,n’,u)
with ‘— == (10)
an; n=n’ &ni N =n
, an; 102ni
ON=nj — Ny~ — — = U+ 5o —— Ujus. (9)  Using Eq.(10), he showed that the second integral in E).
i i%s

vanishes at first order idn;. Then he concluded that the

Heren;, u;, andr; are theith components of vectons, u,  Pulk Ky elastic constant must be zero. _ .
andr, the symbol |/, denotes the derivative calculated at All the gnaIyS|s above conqerned o_nly the linear elastic
n’=n, and the repeated indices stand for a sum. Substitutioff'Ms coming from the second integral in E§). It has been
of &n; into Eq. (8) leads to an expression of the free-energyshown recentlyf 25,24 that also the first integral in Ed8)
density in terms of the first and second director derivatives(th®homogeneousee-energy terfnleads naturally to a sur-
If point r is at a distancel> R, from the surface of the face free energy that is _formally equivalent to #g, surface
NLC, many terms in Eq(8) become negligible and the bulk free energy and contains a differenomogeneousurface
free-energy density in Eq2) is recovered5,16] with the ponstantKh. Then, if this interfacial gontrlbutlon is taken
elastic constants that are given in terms of the intermoleculdft® account, the surface frﬁee energy is characterized by the
energy. For the typical interactions characterizing NLCs, theéffective surface constaitiz =K+ Ky + Ky =Kj,.
constantk ;5 is found to be different from zerf5,16]. The In the present paper we use the Nehring-Saupe molecular
same conclusion has been reached using a more general tiBodel to calculate the effective surface constif. Ex-
oretical approach based on the density-functional theorploiting only the symmetry properties of the function
[17]. g(n,n’,u), we show that the value of the constalﬁigf is

In the analysis above, the local free-energy density wasndependent of the kind of nonlocal to local mapping. This
obtained using the integration variablesindr’ in Eq. (4).  result gives a satisfactory solution to the Somoza-Tarazona
However, according to the general analysig 18], this is  paradox and shows that there is no ambiguity in the defini-
not the unigue way to obtain a local free-energy density frontion of the surface elastic constants if the boundary effects
a nonlocal energy functional. In particular, Somoza andare entirely taken into account. Furthermore, we calculate the
Tarazona[19] replaced variables and r’ with R=(r effective surface constamh in terms of the characteristic
+r’)/2 andu=r—r’ and obtained== [dR f(R). By ex- parameters of the intermolecular two-body energy. In order
pandingf(R) in a power series of the director derivatives to avoid the very involved calculations that characterize a
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three-dimensional geometrisee, for instance, Ref§21,  —¢(z'), andu=r—r’. Since the director field depends only
24)), we consider the case of a semi-infinite nematic liquidop, 7, the free-energy densiti(6;2) is a functional that de-

crystal with a surface a=0 and a planar director field  pends orz and on the functiord= 6(z). f(6;2) is given by
=[sin #(2),0,cos#(2)]. We recover the known expressions of

the bulk and interfacial elastic constamts; andK; and we 0
calculate the surface constald,. We find K,=K&+K],, f(6:2) = fexl 9,Z)+f_xG(91,6’2,S)dZ’
whereKj is an external contribution due to the interactions

between the NLC molecules and the surrounding media,
while K}, is an internal contribution due to the interactions
between nematic molecules. In Sec. I, by exploiting only the
symmetry properties of the interaction law, we find the gen+yhere
eral resultk,=K,3 [here K,3 denotes the surfacelike con-

stant that is obtained using the standard integration variables s=z—-2', 0,=0(z), 0,=0(2"), (13
r andr’ as in Eq.(4)]. Then, with this standard mapping, the

effective splay-bend elastic constant is always given byand

KET=KE+Ky3. In Sec. Il we consider a nonlocal to local

mapping that de_pends on a_free paramatand_we calculate G(6y,0,,5)= %f
the corresponding expression for the effective surface con-

stantK'fg(a). By exploiting only the symmetry properties of _ _ _ _ _
the interaction law, we fink$i(a)=KS!, while the single fex(6,2) is the free-energy density due to interactions with
contributionsK 15(a), K4(a), andK,(a) are a dependent. f[he bou_ndlng media, which goes rapldly to zero be_onv a thin
This means that each contribution does not have a welinterfacial layer. In order to simplify the notations, it is con-
defined physical meaning, but the resulting splay-bend con¢€nient to define
stantK M is a well-defined physical parameter. The invari-

=fext(9,z)+ij(al,az,s)dS, 12

+

o) + oo
dX’J dy'g(61,6,,u). (14

— o0 —

ance of KT is found only if all the three different Gi(gys):‘w
contributionsK 15(a), K4(a), andK,(a) are taken into ac- 90; Zlfz
count. In particular, the homogeneous contributkog(a), 2
which was disregarded if20,21], plays here a fundamental 9G(01.6,.9)
role. Gii 0,S)=‘# , (15
In Sec. IV we discuss the physical meaning of the surface il 36,90 0,=0
0,=0

elastic term and we show that this term represents the source
of a director distortion in a very thin interfacial layer. We
show that the elastic surface free enekgyis a useful semi-
macroscopic parameter that makes it possible to obtain
rough but qualitatively correct description of the distorted
interfacial layer. However, we emphasize tkatshould not
be confused with the thermodynamic surface free enéfby
that appears the continuum theory of NL[a$. In particular,

with i=1,2 andj=1,2. The functionG(6,,6,,s) satisfies
he following important properties, which will be essential
or our further analysis.

(i) G(61,65,s) and its 6; and 6, derivatives are even
function of s.

(i) G(0,,0,,s) and its §, and 6, derivatives are func-
S tions of s that go to zero fos— o with an infinitesimal order
we show that the presence of a normal-derivative Surfac%igher than ¢7/s)3, whereo is an average molecular length.

term in the elastic surface free energy does not imply that T . RV
i g .ThenG(#4,,0,,s) and itsf, and 6, derivatives become neg-
similar term has to be present also in the thermodynamlﬁ:l ible if o is greater than a microscopic interaction radius

surface free energy. On the contrary, there are some indire¢y of a few tenths of a molecular lenath
arguments that suggest that the thermodynamic surface fred™ gmn.

- — (iii) From the general symmetry condition in H40) we
fggg%ﬁg%ﬁ;f;; epend on the normal derivative of the OIIfind that thed, and 6, derivatives ofG(6,,65,,S) must sat-

isfy the equalities
Il. CASE 1: VARIABLES z AND z G1(0,5)=G,(6,5), Gi4(6,5)=Gy6,5). (16)
A. The molecular free energy of nematic liquid crystals

and its elastic approximation As shown in Appendix A, propertie§) and (iii) are the
direct consequence of the inversion symmetry of the interac-
tion energy in the real and the director isotopic spg2@.
According to the analysis given in R¢R4], condition(ii) is
necessary to build a local elastic free-energy density. Then
quadrupole-quadrupole interactions that are characterized by
G(6,,6,,5)~1/s® cannot be described by an elastic local
free-energy density. For a discussion of this important aspect
of the elastic theory that is related to the intrinsically nonlo-

n=(sin 6(z),0,c0s6(2)). (12) cal character of the quadrupole-quadrupole in_teractions.we
refer the reader t§24]. The free-energy density per unit

Let g(0,,0,,u) be the interaction law, where, = 6(z), 6, surface area is

Consider a semi-infinite NLC sample that lies in the lower
semispace<0) in contact with a different medium in the
upper semispacezt0). Here we use the simplifying as-
sumptions of perfect nematic ordeS£€1) and uniform
single-particle density in the NLC, which have been exten-
sively used in the literaturg4,5,16,23,24 We consider a
planar director field witm given by
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0

F:Jicf(ﬂ;z)dz= J_wfext(ﬁ.Z)dZ

+ffmdzfzwe(0l,02,s)ds. (17
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where O((Rint/Lmad®), represents infinitesimal contribu-
tions of third order in the small expansion parameter
Rint/Lmac- Far from the interface 24— —x), fih(é',z)—n‘o
=const, f,(6,0,2)—0, andf(a,a,b,z) is reduced to the
classical bulk Oseen-Frank elastic free-energy dentity
=1(6,6,0,—«) in Eq.(2), which does not depend explicitly

The basic assumption of the elastic theory is that the directosn z. On the contrary, in a very thin interfacial layer of

field is a slowly and smoothly varying function af This
means that the characteristic macroscopic lehgth. of the

director distortion is much greater than the interaction length

Rint (Rnd0/dz=~Riyi/L1ac<1). In such a casefd= 6,
— 6, is a small quantityof orderRy,;/L a9 Within the inter-
action region. Then the molecular free enekgyn Eq. (17)
can be replaced by the elastic expansion

0
Fezf dz

0 0
+f dzf G,(0,s)66 ds
e 2

fex( 0,2)+ wa(e,a,s)ds

0 = 8562
+f de Gy 6,S) > ds, (18
e ),
with
.0
50~ — Os+ > s?, (19

where 9=dé/dz, 6=d26/dz2, and 9= 6,= 6(z). Substitut-
ing 86 into Eq. (18) and disregarding the contributions of
infinitesimal order higher thanR(,/Lmad?, We obtain

Fe= fi) dZ{[ fexd 0,Z)+fih(0,z)]+[f1(g';9'2)

+1,40,0,2)]+f5(0,62,2)}

0 0 o
=f_ foxl(0,2)dz+ f_ f(6,0,0,2)dz, (20)
where

fL(e,z):FG(a,o,s)ds, (22)
fl(a,é,z)=( —fwez(a,s)s ds) b 22

. @ 52 .
f13( 0,0,2):< f Gz( 0,5) E dS) 0, (23)

. o0 52 .
fz(e,ez,z):U G,y 6,5) Eds) 62. (24)

The functionf(a,é,b,z), which is implicitly defined in Eqg.

thickness 6~Riy, f1(6,60,2) is different from zero and
f1,(6,2) is not constant. Thef( 0, 0,0,2) differs greatly from
the bulk expressioriig( 6, 6, 6) in this interfacial layer.

B. The bulk and interfacial contributions to the surface free
energy

In order to separate the classical bulk contribution from
the purely interfacial one, we rewrite the free energy for unit
surface in the equivalent form

0 R 0 -
Fe:f f(0,0,0,—oo)dz+f Af(6,6,0,2)dz, (25)

where (6, 0,_@,__—00) is the Oseen-Frank bulk free energy,
while Af(6,0,0,2)=1(6,0,0,z)+T(0,2)—(6,6,0,— )
represents thexcess of interfacial free-energy densithe
functionAf(6,6,6,z) vanishes below the interfacial layer of

thickness 6~Rj,. The functions f(6,60,6,—«) and
Af(6,6,0,z) are given by
f(evbyba_w):f0+f13(0,b,_w)+f2(0,.02,—00)
(26)
and
AF(6,0,0,2)="f ol 0,2)+ AF(6,2)+ AT1(6,6,2)
+Af140,0,2)+AF(0,622),  (27)
where
fo=Tfh(6,—), (28
Af(6,2)=f1(6,2)—fq, (29)
Af1(0,6,2)=fl(H,é,Z)—fl(ﬁl.a,—oo):fl(g,é,z)'
(30
Af150,0,2)="F15(0,0,2)— F146,0,— ), (31)
Afo(0,0%2)=15(0,622)—F,(0,0%—=). (32

In writing Egs. (28) and (30) we have used the properties
fl,(6,—»)=fy=const andf,(6,6,—>)=0 that are imme-
diately recovered using the definitions in E¢81) and(22)

(20), is the local elastic free-energy density due to the interand the symmetry propertys(6,,6,,5)=G(6,,65,—S).

molecular interactions in the NLC, while,,( 6,2) is the lo-

The z integrals ofAf,3andAf, can be disregarded because

cal free-energy density due to the interactions with the subthey are of order Riy;/Lmad>. Then the free energy for the

strate. It is easy to show thaf=F4+O((Rint/Lmad®),

unit surface area in Eq25) is reduced to
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0 . . . o 32 .
Fe:J [fo+f1g(6,6,—)+f5(6,6% —)]dz F13(6,6)=J Gy(0.5) 5 0 ds (35
0 0 . . . . .
i y Then thez integration of the first integral in Eq§34) leads to
* J_m[feﬂ( 6.2)+ Afy(6,2)]dz+ f_mfl( 6.0,2)dz the surface elastic free-energy density

(33

+o 72

Fle,(es,'es):f EGZ(GS,Z)ést

The integrand of the first integral is the classical Oseen- —o
Frank free-energy densityf,. The function fe,(6,2) 0 _
+Af}(6,2z) depends only oz and the local orientation of :f 7°G,(65,2) 60z, (36)
the director and vanishes far from the interfatgy(6,z) is e

the external free-energy contribution due to the interactions . -

with the substrate, whil&fi(6,2) is the internal contribu- Where s=6(0) and 0s=1d6/dz|,-, and F5(6s,65) is the
tion due to the intermolecular interactions in the NLC. Ac- classicalKyy surface free energy. In Eq36) we have re-
cording to Eqs(29) and(21), Afl(6,2) represents the local named thes variablez. To obtain the last integral in E¢36)
free-energy density of NLC molecules when they are ori-V€ have used the symmetry propeiy(6s,z) =Ga(0s,
ented at the same angte For this reason, we will call this ._Z)' It can be also showfsee Appendix Bthat the func-
term theinternal homogeneous terrfihe functionf(6,6,7) 10N F1a(6s,65) has the well-known fornj4,5]

is an elastic free-energy contribution that vanishes far from _ K _

the interface but becomes enormdwsth respect to the clas- Fia( 05,05 = -3 [sin(26s) 6], (37
sical Frank-Oseen termm a very thin interfacial layer. The 2

z integral of this latter term over the interfacial layer of . . :
. - whereK 3 is the splay-bend elastic constant. Furthermore, it
thickness 6~R;,; leads to a surface free-energy density : . X
: . ~ 2 can be showrisee Appendix Bthat the last integral in Eq.
F1(6s,05) of the same order of magnitude as the classicalzy) gives the well-known Oseen-Frank quadratic free-
K13 surface energy. We will call;(6,6,z) theelastic inter-  energy density

facial term
In the standard elastic theofy,5,16,17 only the first Ky . Kas :
integral in Eq.(33) is taken into account. In a recent paper, > sin* 6+ > cos 0 |(6)?, (38

Faetti and Riccardi21] calculated explicitly the third elastic
contribution in Eq.(33) and showed that it leads to a surface whereK;; andK 33 are the splay and bend elastic constants,
elastic term that is exactly equal and opposite to the classicakspectively. A very general expression for a two-body inter-
K3 term. They concluded that the total surface elastic termaction law is[16,24
is zero. This conclusion was recovered by Yokoyafsee | J
Appendix C in[20]) using a more general theoretical ap- , u , ,
proach. He showed that the second integral in E®), g(n,n ,U>=—“2k Ji,J,k(u)(n' G) (n : G) (n-n")~.
which is linear in5¢ and is responsible for the; and f5 o (39)
terms, vanishes at the first infinitesimal orderda How-
ever, Skacegt al.[25] and Alexe-lonescu and Barbef26] By substitutingg(n,n’,u) into Eq. (14) and using the defi-
have recently shown that also the homogeneous term in thaition of G,(6,s) given in Eq.(15), K,3 in Egs.(36) and
second integral in Eq33) leads to a surface terfy, (65,6,  (37) becomegsee Appendix B
that is not of elastic origin but is formally equivalent to the i
K3 surface free energy. In this section, by using only the K= — E 2 1(i,j,K) —— ] _ (40)
symmetry properties o6(6;,6,,s), we will obtain simple B2 Y (+ D) (i) +3)
expressions for all the surface terms.

We start our analysis from the classical Oseen-Frank frewhere
energy in the first integral in Ed33). Using the definitions .
in Egs. (23 anc;(24)2and addln.g and subtracting the same I(i,j,k)=47rj Jijk(u)u“du. (41)
term G, 6,s)(s/2) 6, we obtain

fls(a,b,—oo)+ f2(0,0%, —x) The expression ok 13 in Eq. (40) has already been obtained
) ) by Barbero and Barbefil6] in the three-dimensional case.
=J (Gol(6,9) 8+ [Gys( 6,5)+ G12(6,5)] 8 = ds
—» 2 C. The interfacial contributions to the surface free energy

3 s2 . The integrands in the two last integrals in E§3) vanish

—j G 0.5) & ¢°ds. (349 rapidly below a thin interfacial layer. Then we can replace

N and ¢ with the local expansion8= 6(z) = 65+ 6sz+--- and
Using the definition of the functiolG,(6,s) given in Eq. 0= 6(z)=6s+--- . By disregarding infinitesimal contribu-
(15), we find that the first integral in E¢34) is thez deriva-  tions of order Ri,/Lmad®, the two last integrals in Eq33)
tive of the function lead to the surface excess of free energy
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0 o
Fsurf=J fext(as,z)dzwtf Af(6s,2)dz

0 |dfeyl 6,2 .
+J M 0sz dz
ol 90 |,
o |afh(0,2)] - 0 _
+f —_— 0sz dz+f f1(0s,65,2)dz

=F&(0s) +FL(0:)+FE(6s,00)+Fi( s, 05)
+F (0,65, (42)

where the function§e(6s), FL(6s), FS(s,6s), Fh(6bs, ),

andF4(6s,6;) represent the first, second, third, fourth, and
fifth integrals, respectively. In writing the integrand of the

fourth integral we have used the proper&foL(e,z)/ae
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d |ofh(6,2)
azl a0 . =—G1(0s,5) —Gy(0s,5)=—2G;,(s,9).

S

(49

The last equality in Eq(45) derives directly from the sym-
metry property Gy(6s,S)=G,(6s,S). Then F}(6s,6s) in
Eq. (44) is reduced to

0

Fh0s.00- |

22G,(0s,2) 0.dz=F 14 05, 0). (46)

By operating at the same way on the last integral in (#8)
we get easily

0

F1(6s,00)=— f 2°G,(05,2) 0:d2= —F 14 65, 6,),

(a7

=(?fih(t9,z)/(90, which comes from Eq(29). The first two

integrals are the external and internal anchoring energies, . _ . . .
FS(6.) andFi(6,) that depend only on the surface director‘flhmh coincides with the theoretical result already found in

angle. The explicit dependence of the internal t6¥bi6,) [21]. In conclusion, the total surface term that is linear in
. e i :

on the characteristic parameters of the intermolecular senerg (Fh(0s,05) + Fi(0s,05) +F1(05,05) + F14(05,65) is re-

in Eq. (39) has been calculated fi21]. The other integrals auced to

are surface free energies that dependdgrand are propor-
tional to the surface derivativé;. We will show that these
integrals have the same form as the classkg surface

Fo(0s,00)=FZ(0s,05)+F1a05,6,). (48)

term in Eq.(37) and thus they renormalize th¢€,; elastic
constant. The third integraF{) and the fourth integralR},)

come from the external and internal homogeneous interfacial
terms. The fifth integral ) is the purely elastic interfacial

contribution, which had been already considerefit]. For

an isotropic substrate that interacts with the NLC via nonpo

lar interactions,fe(6,2) is a function of -k)?=coé.
Then, in such a casef o 0,2)/90=L(coS6)sin 20/2 and

Fr(6s,6s) becomes
FE(0s,05) = KE(CoZ05)sin 204/2. (43)

In the general casé (cogby) is a function of co$ 6y, but it

Then the splay-bend elastic const#qt; has to be replaced
by the effective constant

KST=KE(cog,) + Ks. (49)
In the special case of the interface between a NLC and its
vapor phasef(6s,60,)=0 and the elastic surface free en-
ergyF(6s,6,) is reduced to the classicBl4( 6, 65) term in
Eq. (37) with K;3 given in Eq.(40).

In the next section we will give a solution to the Somoza-
Tarazona paradox. In agreement with Somoza and Tarazona
[19], we will show that the classical surfacelike free energy

F15(6s,6s) depends explicitly on the nonlocal to local map-

is reduced to a simple constant for van der Waals interactionging used to define the local free-energy density. Then this
[27]. Note that the homogeneous external contribution hasurface free energy does not have a well-defined physical

the same functional form as the classital; term in Eq.
(37). _
Due to the definitions of}(#,z) and f,(6,6,z) in Egs.

(21) and (22), the last two integrals in Eq42) require a
double integration on variables and s. However, both of

meaning. However, we will also show that the total
surface free energyFp(0s,0s)+Fy(0s,0s)+F1(0s,0)
+F15(6s,6s) is mapping independent. This means that such

a surface free energy has an unambiguous physical meaning.
Therefore, no paradox arises if all the boundary effects are

them can be transformed into integrals in only one variableorrectly taken into account.

using the integration by parts and the general prop@intyf

the functionG. In particular, integration by parts with re-

spect to the functioly=2z? in the fourth integral in Eq(42)

leads to
o 22 |ofl(6,2) . 1°
Flh(bs,09)=|= |———| 0
S S 2 070 6=05 S N
o 22 d |dfh(6,2) »
—fix Ed—z —&0 - 05 Z. (44)

The first term in Eq(44) vanishes due to propertji). Fur-
thermore, from Eq(21) we get

Ill. CASE 2: VARIABLES Z AND s
A. The local free-energy density

According to Sec. Il, the total free energy of the NLC is

0
F=f dz

where 6;= 60(z) and 6,= 6(z'). Then the functional

0
fext(0,2)+f G(64,0,,z—2")dZ' |, (50

f(0;z)=fext(6,z)+f0 G(64,0,,z—2')dZ (51
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can be interpreted as the local free-energy density at thehere G;(6,s) and G;;(6,s) are the derivatives defined in
point z. However, it is knowr[18] that this is not the only Eqg. (15) and we have exploited the equaliti€3;(6,s)

way to define a free-energy density starting from a nonlocak= G,(6,s) andG;4(8,s) =G,,(6,s). The elastic free energy
free-energy functional. In particular, one can use the variat the infinitesimal orderR;,/L n,J? is obtained by substi-

ables tuting in Eq.(57)
Z=az+(1-a)z', s=z—-7, (52) . (1-a)?s? .
56:1=(1-a)sf+ ——5— 0 (59)
with O0<a< 1. These variables satisfy the following proper-
ties: (a) Z=zif z' =z, (b) the Jacobian of the transform is gng
|J|=1, and(c) Z is always internal to the-z’ interval. By
substitutingZ and s in the double integral in Eq(50), F .a’s? .
becomes 86,=—asf+ - 6. (59
0 0 ~Zi(1-a) 56, and 56, have been obtained using E&5 -
_ 1 5 g E&5). By follow
F f_wfe’“( 6.2)dz+ f_ocdzfz/a G(01,62,5)ds, ing the same procedure as in Sec. Il, we can separate the bulk

(53 and interfacial energy contributions. By disregarding the in-

] terfacial terms of order R /Lm,0° and exploiting the
where nowd; andd, are defined a8, = 6(Z+[1—a]s) and  equalitiesG,(6,s) = G,(0,s) and G14(8,5)=G(6,s), we
0,=6(Z—as). Note that the integration extremes for the get
variable in Eq.(53) are the same as for thevariable. This
important property is a consequence of propédyand re- 0 . -
mains satisfied also for a NLC layer with two surfaceg at Fe= f_w[f0+f?3( 0,60,—)+5(6,6%, —)]dz
=—d and 0. It is convenient to renanZeasz in Eqg. (53) so

that 0 ‘ 0 :
+f [fext(0,2)+AfLa(0,z)]dz+f 3(6,60,2)dz,
0 —z/(1-a) - -
F=J7xdz fEX‘(a’Z)+jz/a G(01,02,S)ds}, (60)
(54) where
where o 2
a(ab—oo)=[(1—a)2+a2]f ds Gz(as)s—b
0=6(z), 6,=6(z+[1—als), 6,=6(z—as). SRR Cw 2
(55) (62)

Then the functional . too
f§(0,02,—00)=j ds{Gzz(e,s)[(l—a)eraZ]
—z/(1—-a %

)
G(6,,0,,5)ds (56) 5

fa(e;z)zfext(a,z)wa
—2a(1-a)G16,9)} SE 02, (62

z/a

can be interpreted as a different expression of the free-energy
density at the point in the NLC. Fora=1,Z=zin Eq.(52)

and f&(6;2) is reduced to the standard free-energy density A iha(g,z):f
f(6;2) in Eq. (51). za

—z/(1-a)
ds 3 6,6,s)—fg, (63

. . —z/(1-a) .
B. The elastic free energy fi(0,0,2)=(1—2a)f ds Gy(0,5)s6. (64)
In order to obtain the elastic free energy, one has to ex- Za
pand functionG(6,,60,,s) in Eqg. (54) with respect to the
reference stat@= 6(z). Thend,; andd, must be replaced by
0,= 60+ 66, and 6,= 6+ 56,. At second order inv9, and

fo in EqQ. (63) is the constant contribution in the bulk free-
energy density, which is defined dg=/">ds G(0,0,s).
By adding and subtracting the same te@yy( 6,5)s%6%/2 in

660,, we get i ] . .
2 g the integrand in Eq(62), f5(6, 62, —=) can be written in the
0 -zl(1-a) more convenient form
Fae‘:f dz fext(e,Z)-i-j ds G(6,6,s)
—x zla . + o
0 Cia f%(e,02,—oo)=[<1—a)2+a2]f7 ds{GyA6.5)
+f dz f ds Gz(a,s)(661+602)}
—® z/la S2 .
S 2
0 dz (-z(1-a) ) ) +G1A0.9)} 2 0
+ 7f dg G, 6,5)(5607+ 565)
—® z/la

1261 60,5)56,56,], 57 — ) ds Gl 5 b (69
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Then the bulk elastic free-energy densityu,k=f"i‘3(0,b, plicit expressions ofAfLa(a,z) and fi‘(as,és,z) given in

— ) +f5(4, 92,—00) becomes Egs.(63) and(64) and using integration by parts to eliminate
o the s variable (see Appendix € In such a way, we obtain
a, arn 2 dFis(0,0) explicit expressions of the surface free energies in terms of
f146,0,—0)+f5(0,0°, —0)= ———— . : , ) .
dz the z integral F15( 65, 65) defined in Eq.(36). After straight-
. & forward calculations, we obtain
_ 22
f _, 48 G 0:8) 5 ¢ FE3(0,)=FE(65), (74)
€6 F2(69)=Fi(65), (79
where . .
) Fﬁa( 0s,05)= Fﬁ( 65105)1 (76)
. +o0 s° .
— 2 2 . . . .
23(0,0)—[(1—3) +a ]J_w dSGz(a,S) ? 6. (67) Flha(esv05):[a2+(1_a)2]Fll1(05!08)
The first derivative term in E(66) corresponds to the sur- =[a*+(1-a)*]F14(6s,065), (77)

faceK 5 term, while the second term is the bulk contribution a . 5 . ) .
that depends on the bulk elastic constatfsandKss. Note  Fi(0s.05)=(1—-2a)°F(6s,65) = —(1—2a)F 1465, 65).
that this latter term is identical to that already found in Eq. (78)
(34) of Sec. Il B. Then, in agreement with the Somoza-,, . .

Tarazona results, the bulk elastic constants are not affectegjIS evident from Eqs(77), (78), and(68) that each surface-

: .~ derivative term due to the internal intermolecular interactions
by the variable’s transform. On the contrary, by comparing. :
Eq. (67) with Eq. (36) of Sec. Il B, we find is affected by the change of variables. However, the total

surface free energy, which is given by the sum of the five
aip ,é =[(1—a)2+a2|F« 6 "9 _ 68 terms in Egqs(74)—(78) and the one in Eq68), is mapping
1805, 69 =1(1~2) IF1(05.05) €8 independent and is given by

This means that the splay-bend constiépt is mapping de- . i . . :

pendent, in agreement with the Somoza-Tarazona conclu-  Fs=Fs(0s) +Fs(09) +Fi(0s,05) +F15(0s,65), (79

sions. Using the same approach as in Sec. Il C, the last two . i o : :

interfacial contributions in Eq(60) can be written in terms WhereFs(s), Fs(6s), Fp(bs,65), andFi5(6s,6) are the

of the surface angl@, and its surface derivative. Then the surface functions defined in Sec. Il. This theoretical result

sum of the last two integrals in EG60) is reduced to the 9ives a satisfactory solution to the Somoza-Tarazona para-
sum of the five surface free energies per unit surface area dox. In conclusion, the separation of the surface elastic terms

into a bulk 3 and two interfaciakF, andF,) contribu-
ca 0 tions does not have a well-defined physical meaning because
Fs(0s)= f_wdz fext(0s,2), (69) one contribution that is interpreted as a bulk contribution
with a given nonlocal to local mapping becomes an interfa-
_ 0 _ cial contribution if a different mapping is used. The only
F3( Gs)zf dz Af2(6s,2), (700 well-defined physical parameter is the total surface free en-
’°° ergy that is mapping independent. Our theoretical results also
_ show that the homogeneous surface contribuk(s, 6)
0s, (72) introduced in Refs[25,2€] plays a very important role. In-
0=10, deed, if this interfacial term is disregarded, the mapping in-
dependence of the surface free energy is no longer recovered.
In conclusion, the surface elastic free energy is always
Os, (72) given by F in Eq. (79). Explicit expressions foFL(6,) in
s terms of the characteristic parameters of the generic interac-
tion law of Eq.(39) can be found if24], while the expres-

. 0 If e 0,2
Fﬁa(05103):j dz 4%

0 g IAF13(0,2)
z 0

Foos,00= |

—o

and
sion of F15( 65, 6;) is given in Eqs(37) and(40) of Sec. II.
a . 0 . The other two parameters can be easily obtained if the spe-
Fi(0s,065)= fﬁwdz fi(6s,65,2). (73 cific form of the interaction energie(6,2) is given.
The external surface free energie§*(6;) and Fp¥( 05,0, IV. THE PHYSICAL MEANING OF THE ELASTIC
are equal to surface energie§(6s) andFg(6s,6s) defined SURFACE FREE ENERGY

ImpIICItIy in Eq (42) FUrthermOfe, it |S also easy to show In Sec. IV A we discuss the physica| meaning and the
that the internal surface free enerdi’(6s) is equal to  consequences of the elastic surface free energy that has been
F¢(8s) defined in Eq(42) (see Appendix € Then we infer  obtained in Sec. Il and 1Il. We show that the surface elastic
that these two contributions are mapping independent. Theonstant<$T represents the source for sharp director distor-
surface term$=2(6s,6s) and F(6s,6s) can be reduced to tions that occur in a very thin interfacial layer. The elastic
simple z integrals substituting in Eq$72) and(73) the ex-  surface free energy makes it possible to build approximate
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elastic models for the interfacial director field. In Sec. IV B tinuity at the interfaces is energetically favored. Oldano and
we emphasize that the elastic surface free energy should nBarbero argued that the surface discontinuity mimics a sharp
be confused with the thermodynamic surface free energy thatariation that occurs in a very thin interfacial layer of thick-
appears in a consistent continuum theory of NLCs. The presaess comparable to the molecular length. Note that the mo-
ence of a normal-derivative term on the elastic surface freéecular free energyr is bounded from below. This means
energy does not imply that a similar term has to be present ithat the higher-order contributions that have been disre-
the thermodynamic surface free energy. On the contrary, wgarded in the elastic expansion bound the free energy from
show that there are some indirect arguments that suggebtlow. Following this idea, Barbero, Sparavigna, and
strongly the absence of a normal-derivative term in the therStrigazzi [8,9] developed asecond-order elastic theory
modynamic surface free energy. Then the theoretical resultwhere contributions up to ordeR(, /L n,0* were retained in
that have been obtained in the present paper do not conflithe expansion of the bulk elastic free-energy density. The
with the expression of the thermodynamic surface free ensecond-order elastic free energy contains many different
ergy that was proposed in Refd4,15 and with Yokoya- second-order elastic terms. However, for small director
ma’s recent resultg20]. angles @<1), only the second-order elastic tein 62/2 is

not negligible. The constailt, is a second-order elastic con-
stant of the order oK 33 R%,. The second-order elastic term
bounds the free energy from below and the variational ap-

in Eq. (17) the molecular free energywhile its elastic ap- proach leads to &)u_rt_h—orderEuler—Lagrange equation with _
proximation will be called theslastic free energyln this four boundary conditions. Then the mathematical problem is

subsection we will discuss the physical meaning and the conYell posed. The equilibrium solution has the general form

sequences of th& 5 surface term. For simplicity, we con- L%
sider the special case of a NLC layer of thicknelssand-

wiched between two identical solid plates that interact with
the NLC via short-range interactions. Then the external free-

: . . . : -Wwhere#,,,{2) is a slowly and smoothly varying function and
h h the solid pl ma
energy density due to the interactions with the solid plates IgAv¢9(z) is a function that vanishes exponentially out of two
(80)

thin interfacial layers of thickness,=(K,/Kzg9?~Ry.

The surface discontinuity that is predicted by the first-order
where 5(z) is the Dirac function. In this case, the effective elastic theory is immediately recovered fiib— O because
constant Kf‘;f in Eq. (49) is reduced toK;; because &,=(K,/Ks3)?—0. The amplitude of the surface disconti-
KE(cog6)=0. The equilibrium director anglé.(z) should nuity is given by A#(0)=K130(0)/Ks3 [9,13. In the

be obtained by minimizing the Nehring-Saupe molecular fregsecond-order theory, the elastic contributions of order higher
energyF in Eq. (17). This leads to an integral equation that than Ri/Lynad? Were disregarded. However, it is evident
requires a numerical treatme[®6]. In order to obtain an that, for Ly ,~d,~Rj; the elastic terms of order
approximate solution for the same problem, one could mini{Rint/Lmad™, with m>4, are not negligible. Pergamenshchik
mize the elastic free energy per unit surface &gabtained proposed12] that the higher-order terms remove entirely the
in Sec. Il. In the present casg, becomes interfacial distortion. In order to investigate the role of the
higher-order terms, Faefti3] developed arNth-order elas-

tic theory where contributions up to ordeRi{;/L m.d 2" were
retained. For any finite value &, the equilibrium director
angle always has the general form in E§2) with a sharp
interfacial distortiomA #(z). Therefore, he concluded that the
higher-order terms do not remove the interfacial distortion,
although the amplitude and the analytical expression of the
interfacial functionA 6(z) are appreciably affected by the
higher-order terms. Then the second-order theory gives a
correct qualitative view of the interfacial field, but is unable
where 0;=0(—d/2) and 6,= 6(d/2) are the angles at the to reproduce the details.

surfacesz= —d/2 andd/2 and we have disregarded the un-  We remark that the existence of the sharp interfacial dis-
essential constant contributidig. The variational approach tortion §6(z) is not an artifact of the higher-order elastic
leads to a second-order differential equation &z) and theories but corresponds to an actual feature of the intermo-
four boundary condition§6,7]. Since the general solution of lecular interactions. This has been shown recently in some
a second-order differential equation depends only on tw@apers where the molecular free enefgyn Eg. (17) was
arbitrary constant8 andC, it cannot satisfy simultaneously minimized using numerical procedurg®5,28—3Q. It was
four boundary conditions. Then the variational problem is illshown that the director field exhibits a sharp interfacial dis-
posed. It has been shoW6,7] that this paradoxical result is tortion in qualitative agreement with the predictions of the

A. The equilibrium director field

Here we will call the free energy per unit surface afea

Oed2) =A0(2) + Onad 2), (82

ford 0,2)=W(0) 8(z+dI2) +W( ) (z—d/2),

+d/2

|
—d/2

) K .
+FL(02) +W(B1) +W( ) + = [Si(265) 6,]

Ku

K . .
5 Sifo+ 733 co20|(6)%dz+Fi(6;)

Kiz '
— 5 [sin(261)64], (81

due to the splay-bend elastic constant in 84) that makes

the elastic free energy unbounded from below. In particular,

the free energy approaches» if the z derivative ofd(z) at
the interfaces approachesc«, depending on the sign of
K13. This means that a director angléz) that has a discon-

second-order theory.

The second-order and higher-order elastic theories are not
the only possible ways to obtain a mathematically well-
posed problem and an approximate solution for the interfa-
cial distortion. In particular, one can follow an alternative
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approximate approach using the semielastic free energy that . - IW(8,)
is given in Eq.(33) of Sec. 11[30]. Disregarding the unes- —(Kyy Sirf8,+ K33 c0S6,) 5+ 20, O (87)
sential constant contributiofy, the semielastic free energy 2
in Eq. (33) is written Now the variational problem is well posed because the
o second-order differential equatidB85) has only two bound-
_ 4 " [ ary conditions. Dubois-Violette and de Genrj@3] studied
Fse=W(61) + W(6) fﬁdlefh(ﬁ,z)dz the same kind of problem in the special case of a semi-

infinite NLC sample lying in the semispace>0 with

n fdlz [F15(0,0,— )+ F1(6,0,2) + (0,02, —0)]dz, A'fL(H,z):B(sinZQ)/z?. They obtained an analytical expres-

dr2 sion for the equilibrium director angle and showed that a
sharp distortion occurs in a very thin interfacial layer. More
recently Rajteriet al. [30] considered the Nehring-Saupe in-
teraction energy and showed that the functigm) that mini-
mizesF is in satisfactoryquantitativeagreement with the
solution that is obtained by numerical minimization of the

(83

whereAfi(6,z) is the interfacial homogeneous free energy
defined in Eq.(29), while the second integral contains the
bulk and inter_facial elastic terms. Note thag, is differ_ent molecular free energf.

;;(::riglthc?)reltlﬁzrt:ichrneseAig(eargZe an(ll((%l)-abze)cil;iee tzitm;g: < In conclusion, theK 13 term that appears in the Nehring-

; ' 7 ) aupe surface free energy has a well-defined physical mean-
been expanded with respect#0)= 5. According to Sec. ing: |t represents a physical source of interfacial distortions.
Il, the two linear surface derivative contributions coming ap zero value ofK ;3 means that the molecular interactions do
from the bulk elastic free-energy densiti5(6,6,—>)  not favor the occurrence of these distortions. This occurs, for
+1,(6,6%,—=) and from the expansion of,(6,6,z) are instance, if the interaction law does not depend on the orien-
equal and opposite. Then the second integral in(Bg). is  tation of the intermolecular vectar[i=0 andj=0 in Egs.
reduced to the classical bulk Oseen-Frank elastic free energg9) and(40)]. The mathematical problems generated by the

and the semielastic free enerfy, becomes presence of th& 3 term in the first-order elastic free energy
can be removed by introducing higher-order contributions

a2 using either the second-order elastic free energy or the

Fse=W(61) +W( 02)+ﬁd/2Afh(0,z)dz semielastic free energy. Both these approaches provide an

approximate but qualitatively correct description of some
" features of the interfacial layer. However, the second-order
(6)dz. (84 approach is restricted to director distortions of very small
amplitude @<1), while the semielastic model is not af-
. : fected by this restriction. Furthermore, according to Ref.
We _recall that the elastic free_ener@)_é in Eq. (81) was [30], theysemielastic approach leads to better q%antitative
obtained from Eq.(84) by making a linear expansion of agreementwithin 10%) with the results obtained from the

Af},(6,2) in terms ofA 9= 6(2) — 0= 052+~ , wherefsis merical minimization of the molecular free energy.
the surface director angle. Then the semielastic free energy

Fse contains implicitly all the higher-order surface terms
coming from the expansion offi(6,z) that were disre-
garded inF,. On the other hand, the second integral in Eq.
(84) disregards entirely the higher-order surface and bulk In Sec. Il we obtained the surface elastic free energy den-
elastic terms. In this sense, the semielastic free energy in E§ity Fs of a NLC by making the expansion of a simple mo-
(84) can be considered as Comp|ementary to the higher-ordé@CUlar free-energy functional. Below we will call this sur-
elastic free energies. Both these free energies take partialfice free energy theelastic surface free-energy density
into account different higher-order ternthe homogeneous According to Sec. IV A, the elastic surface free energy gives
higher-order terms and the elastic ones, respectivdlje  important information about some specific features of the
semielastic free energy is bounded from below and the starinterfacial field. We emphasize, however, tiftis a physi-
dard variational approach leads to the bulk Euler-Lagrang&al parameter completely different from tkteermodynamic
equation surface free-energy densitytsthhat appears in the classical
continuum theory of NLC$31]. To clarify the fundamental
aAfih( 0,2) . difference between the elastic surface free energy and the
50 — (K44 Sirf0+ K3 co$6) 0 thermodynamic one, we discuss a simple example. Consider
the case of a nematic layer of thicknessandwiched be-
sin 29 . tween twoidentical solid plates az= —d/2 andd/2, respec-
~(Ki=Ksg) — #°=0, (85 tively. The two solid plates favor a director alignment along
the z axis (homeotropic anchoring A uniform magnetic
field H is applied at an angl@ with the z axis. In order to
simplify the theoretical expressions, we make the following
assumptions: (a) the B angle is very small §<1) and(b)
IW(61) -0 (86) the bulk director field is a planar field=(sin 6,0,cos6).
a0, ' From condition(a) we deduce that#(z)<1 everywhere.

+ai2l K K
+J “sito+ -2 coLe

B. The elastic surface free energy and the thermodynamic
surface free energy

with the two boundary conditions

(K1 Sir20;+ K33 c0L6,) 0, +
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Then all the contributions to the bulk free energy that are othat 6, is different from the surface angl considered in
order higher tha® and 3> can be disregarded. In particular, Secs. Il and Ill because it does not represent the actual av-
K11 Sir? 6+Kgz3 COS 9~Kz3. In the continuum theory, the erage orientation of the long molecular axes at the surface,
NLC sample has to be considered as bulklike up to the input corresponds only to the extrapolation of the bulk director
terfaces. Then the bulk free energy per unit surface area isfield on the surface. This surface angle is calledekiapo-
ra2(K 2 lated surface director angléerhe only aim of the continuum
]:bulsz [_33 0)2— Xa [1-(6—B)?];dz theory is to find the extrapolated surface ang@lg; that cor-
2 2 responds to the extrapolation of the exact equilibrium bulk
(88 director field. The study of the interfacial molecular configu-
ration can only be the object of more or less approximate
fodels of the interfacial layer, for instance, tNeh-order
elastic theories and the semielastic approach. By substituting
0(z) of Eq. (90') into Eqg. (88), we obtain the bulk free
energy

where the second term represents the magnetic free-ener
density for6— <1 andy,>0 is the anisotropy of the dia-
magnetic susceptibilitil]. The variational approach leads to
the Euler-Lagrange bulk equation

. O—

0= _2_/8' (89 , I-(d)
£ , sinh -

Eo_F 4 K33 Osurr— B) §

where é=(Kg3/x,)Y4H is the magnetic coherence length bulk™ "0 2¢

[1]. Since the NLC layer is sandwiched between two identi- costf

cal plates, the physical solutions of E§9) have to be even

or odd functions ofz. The low-energy solution is the even

solution

(91)

il

whereF is an inessential contribution that is independent of
Osuri- The bulk free energy does not take into account the
excess of free energy that is stored in the interfacial layers

=03+ : ;
6(2)=p+A coshz/¢), (%0 where the molecular configuration and the local free-energy

whereA is a free integration constant. It is convenient to d€nsity are very different from the bulk energy. Then the

rewrite 6(z) in Eq. (90) in the equivalent form exact total free energf,.; is different from#, . This leads
naturally to the definition of the thermodynamic surface free-
z energy density
-
0(2)= B+ (OsurB) — g1 (90) A Frot— Fbulk 92
J— S 2 .
ool

The coefficient 2 in Eq(92) is due to the presence of two
identical interfaces and the choice of the even solution of Eq.
(89). Since F; represents the exact total free energy that
corresponds to the exact molecular Configurat'@ﬂ‘, is a

where we have defined the consta#gt= A coshfl/2&)+B.
Osur11S @ free parameter that corresponds to the valug( of
in Eq. (90) at the two surfacez=—d/2 and d/2 [ O

= 6(—d/2)=6(d/2)]. Of course, the free-energy density in i« physical ter that takes int ti
Eq. (88) cannot describe the interfacial behavior. First of a”'macroscoplc physical parameter that takes into account im-

the interfacial local free-energy density is no longer given bypl'c'tly any free-energy contribution that has been disre-
the simple bulk Oseen-Frank form because the local elastigh"j‘rde‘,j1 in the bulk free energfpy . Yokoyama showeB1]
constants become dependent and different interfacial en- ! atzy'is completely deterrr;lned once the bulk director field
ergy contributions appeafsee the Introduction Further- N EQ. (_90,) is given. ThenF' can depend only on the mac-
more, also other interfacial phenomena that were not takefPSCopic parameters that characterize the bulk director field.
into account by the Nehring-Saupe molecular model used iffor @ proof of this important but not obvious property of the
Sec. Il play an important role in the interfacial layer. For thermodynamic surface free energy we refer the reader to the
instance, a local biaxialitj32], a smectic orderin§33], and ~ Sound Yokoyama pap¢81]. In the present case of the NLC
spatial variations of the order paramef@8] can occur very subjected to the tilted magnetic flelq, the surface free energy
close to the interfaces and the definition itself of a localcan depend only on the macroscopic parameigfs S, and
director field in the interfacial layer becomes questionable$ that enter the bulk director field in E0'). Note that, in
This means that the equilibrium molecular configuratiog, principle, the thermodynamic surface free energy can depend
that minimizes the exact total free energy of the NLC will be &S0 on the parametefsand ¢ that characterize the external
very complex in the interfacial layers. However, far from the field. For fixed values oB andH, 7' is a function/{(
interfaces, the local free-energy density is well represente@f the extrapolated surface director anglg;. This property

by the Oseen-Frank bulk free energy. Then, far from themakes the thermodynamic surface free enefya physical
interfaces, the equilibrium molecular configuratibh,, will parameter that is completely different from the elastic sur-
be reduced to the equilibrium uniaxial configuration de-face free energ¥ that depends on the actual surface angle
scribed by#(2) in Eq. (90'), with a well-defined valudy,; s (see Sec. ) If the explicit dependence aFy( s, on

of the free parameted,;. This means that the bulk director 6,:is known, the equilibrium valuég,; can be obtained by
field that is given by the continuum theory with,~ 6,;  Solving the equilibrium equatiod(2F"+ Fouid! d Osu=0.
represents the exact bulk equilibrium configuration. NoteThis procedure leads always to a well-posed mathematical
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problem. Therefore, according to Yokoyarf®i], no para- Eq.(94) is a quadratic function of), 6, 6,,..., andd y.
dox arises within a consistent continuum theory of NLCs. The explicit expression of the higher-order functifyp can

The discussion above shows that the exact bulk equilibbe found in Appendix B of Reff13]. Minimization of the
rium director field can be easily found if the function functional Fy, using the variational method leads to a linear
]—"Sh( Osur) 1s known. The knowledge of the explicit depen- differential equation fo¥(z) of order 2\. The even function
dence off{sh on the extrapolated surface director field repre-that solves the bulk Euler-Lagrange equation has the general
sents a fundamental but still open problem for the continuuniorm [13]
theory. In particular, it has not yet been clearly established if
a normal-derivative term can enter the thermodynamic sur-
face free energy. Note that such a derivative term has to be.
intended as the extrapolated surface derivative of the bullt
director angle in Eq(90'), that is, = (04, B)tanh@/2¢).
Thenf‘sh is yet a function off,; and the surface free energy

On(2)=A0\(2)+ 0o 2), (95)

Omad 2) = B+ Ay coSHZ/€) (96)

does not lead to any variational probl¢f®—17. In a recent
paper, using the density-functional theory,

present in the thermodynamic surface free en¢2gy. How-
ever, several years ago Faditi3] showed that a normal-

derivative term leads to a nonconservation of the angul
momentum for a planar director field. More recently Stall
inga and Vertogel5] generalized this theoretical result to
more general three-dimensional problems. Then they argue
that the thermodynamic surface free energy cannot depe

on the normal-director derivative.
Below we will use the example of the NLC layer lying in
a tilted magnetic field witlB<1 and <1 to show that the

absence of the normal-director derivative in the thermody
namic surface free energy is consistent with the prediction§nOWn
of the higher-order theories. This simple example will allow F (fsurt,Ba, ..
us to point out clearly the basic differences and the relation

between the elastic surface free enekgyand the thermo-
dynamic surface free energfl". The Nth-order elastic free

energy is given by the sum of the first-order elastic free®
energy obtained in Sec. I, the magnetic free energy, and al
Nth-order termF that contains the elastic contributions of

order higher than Ry /Lmd? and lower than
(Rint/Lmag® L. Due to the conditiord<1, we can disre-
gard contributions of order higher tha? and the effective
surface elastic parametm‘jg(coses) in Eq. (49) is reduced
to a constanK$T=K&(1)+K5. Furthermore, in the present
case (homeotropic anchoring the surface free energy
Fo(0s)=FL(0) +FE(6y) is reduced toN+W,62/2, where
W, is the anchoring energy coefficient awd is an inessen-
tial constant that will be disregarded. TNeh-order free en-
ergy per unit surface area for avenfunction 6(z) is

+di2 Kgg -

(6)?

F= [ Wo 62+ 2K ST 0,04+ f -
—d/2

H2
- X [1-(6- )21z +Fy, 93
with
dr2
FN=f fn(0;61505;...,0 ) dzZ, (94
—d/2

where symbolsy ; with j=1,...N denote theNth derivative
of the functiong(z). The functionfy(6;601;6,;...;6 §) in

which is a quadratic function 08g,,B>,..

and

Yokoyama
showed that some surface contributions proportional to the
normal derivative of the extrapolated director field could be

N
AaN(z)=j§2 Bjh;(2). (97)

Ay and B,,Bs,....By are N arbitrary constants, while

aﬁj(z)zcoshelfsj) with &;~Rj,;. The functionA 6\(z) goes
“rapidly to zero out of two very thin interfacial layers and thus

b’NaC(z) has to be identified with the macroscopic bulk direc-
r field that appears in the continuum thegsge Eq.(90)].
ettingAyn= (05— B)/cosh@/2¢) in Eq. (96), one recovers
the bulk solution given in Eq90’). Substitution of the func-
tion 6y(z) into Eq. (93) leads to]-'{\o/t=F(05u,f,Bz,...,BN),
..Bn- The un-
coefficients  6g,4,B5,....By that  minimize
,By) can be obtained by solving the system of
linear equationgF/d6,~=0, dF/9B,=0,...gF/dBy=0.

It can be shown, after a tedious but straightforward analysis,
that these equations are equivalent to the linear boundary
onditions that were obtained in R¢L3] using the standard
ariational method. For a given value of the surface extra-
polated angle 6,,, the set of N—1 linear equations
dFI9B,=0,...gF/oBy=0 leads to well-defined values
Bs(0surd), - - - Bn(Osurf) Of the unknown interfacial parameters
B,,Bs,...,.By in terms of ;. This means that, in agree-
ment with Yokoyama’s general analysis, for a given bulk
director field having the general form in EQO’), the inter-
facial field is univocally determined. Then it is natural to
assign to this bulk director field the total free energy
fﬁ)ft(asurf):F(asurfaBz(esurf)a---vBN(asurf))- The thermOdy'
namic surface free-energy density that corresponds to the
Nth-order elastic model is

fi/})/t( esurf) - ]:bulk( esurf)
2 L

PO = (99)

where Fyui( Osurd) IS the bulk free energy in Eq91). Note
that the thermodynamic surface free energy depends,gn
in agreement with Yokoyama’'s general analyk3d]. The

equilibrium extrapolated anglé,,; is obtained by solving
the boundary condition

JF, /svth( esurf)
aasurf

ﬁfbulk( gsurf) _
agsurf

0. (99

The total free energy-'{gt( O, in Eq. (98) has been obtained
by substituting in Eq(93) the director angl@y(z), which is
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given in Egs. (95-(97) with B,=By(0syd,....Bn ticular, by Somoza and Tarazoha9] and by Yokoyama
=By(0su) . Sincedy(z) depends on the magnetic coherence[20]. Somoza and Tarazona showed that the surface elastic
length ¢ and the angleB, the thermodynamic surface free constani s that is obtained from the integration of the bulk
energy could also depend on these parameters. To obtain tfree-energy density depends on the nonlocal to local map-
explicit form of ]—"S\“h( 0. we can exploit the theoretical ping. They concluded that such an elastic constant is not a
results already found ifL3]. Indeed, according to our analy- well-defined physical parameter. This conclusion is in a
sis, the surface angle, that solves Eq(99) is the solution complete agreement with the result of our calculation of the
of the system of linear equationdF/d6s,~0, dF/IB, bulk surfacelike elastic constant that is found to depend ex-
=0,...gF/9By=0. On the other hand, these equations arelicitly on the mapping parametex [see Eq.(67)]. There-
fully equivalent to the boundary conditions that were ob-fore, we agree with Somoza and Tarazona that the classical
tained in Ref.[13] using the standard variational method. pulk Nehring-Saupe constant is not a well-defined physical
Then the solution of Eq99) has to correspond to the solu- parameter. However, our theoretical results demonstrate also
tion that was obtained in Ref13]. In that paper it was tnhat the total surface elastic constant is independent of map-

shown thatf,s has to satisfy the simple equation ping and thus is a well-defined physical parameter.
WO oF (0u) As far as Yokoyama’s pap€¢RQ] is concerned, we recall
N surt bulld 7sur?” _ o, (100  briefly the main results of that paper. Yokoyama used the
9 Osurt I Osurt functional-density theory and showed that the linear elastic

terms[the second integral in Eq8) of the present papér

vanish at first order inon. In Appendix C of his paper he

bulk equilibrium director angle%,\{ac(z) that minimizes the showed that this Fheorencal .result comes directly from the
symmetry properties of the interaction law. Then he con-

complexNth-order functional can be always obtained using luded that the bulk surfacelike elast tant i Th
the standard continuum theory with the thermodynamic syriuaea that the bulk surlacelike elastic constant IS zero. The

2 . vanishing of the linear elastic term is in complete agreement
face freg engrngasur/Z. Therefore_, as far as the bulk d'. with the analysis made by us in Sec. Il and in Refl].
rector field is concerned, the continuum free energy with . . L . .

Indeed, at first order i, the elastic linear integral in Eq.

A =Wy 62,42 and F iven in Eq.(88) is com-
s (Osurd = Wiebourd bulk 9 9.(88) (8) is reduced toF,(6s,60s)+F.«6s,6s), which is zero.

pletely equivalent to the much more complih-order free 4 : i .

energy. This result holds at any ordrand thus we can HOWever, we emphasize here that E§) is obtained using

expect that it remains satisfied also for-. the standard mapping and thus the vanishing of the linear
term in the elastic integral in E@8) is a direct consequence

Although the simple example above and other indirec hi 2l choi £ 2 di
argument$14,15 suggest strongly that no normal-derivative Of this special choice. As a matter of fact, if a different map-

term can enter the thermodynamic surface free energy, thefdnd 1S used, the linear elastic contribution is reduced to
is no definitive proof for this ansatz. Therefore, the knowl- F1(0s.6s)+Fis(6s,6s), which is a function of the mapping
edge of the general expression of the thermodynamic surfadearametera and is different from zero in the general case
free energy remains an open problem that needs further théa#0, a#1). According to our analysis, the separation of
oretical and experimental investigations. On the contrary, acthe surface elastic energy into bulk and interfacial contribu-
cording to the analysis in Sec. Il and lIl, the presence of dions depends strongly on the mapping that is used and thus
normal-derivative term in the elastic surface free energy idt is somewhat arbitrary to decide what is really a bulk con-
obvious. Within an approximate elastic model of the interfa-tribution and what is an interfacial contribution. Then we do
cial layer, this surface term has a well-defined physicahnot agree with Yokoyama'’s conclusion that the bulk constant

meaning: It represents the source for sharp interfacial distolK13 must always be zero. In his paper Yokoyama analyzed
tions. also the specific interfacial contributions due to the homoge-

neous term in the interfacial layer. He showed that the inter-
V. CONCLUDING REMARKS facial interactions lead to some surface contributions that are
linear in thez derivative of the surface angle. In the special
In this paper we showed that the Somoza-Tarazona pargases of homeotropic#(=0) and planar anchoring 6y
dox is due to an incomplete analysis of the boundary effects= 7/2), Yokoyama'’s surface terms have the same functional
If all the boundary effects are taken into account, the normalform as those obtained in the present paper. However, we
derivative term in the elastic surface free energy is indepenemphasize here that a direct comparison between our surface
dent of the nonlocal to local mapping. Simple relations thaterms and Yokoyama’s is not possible because they are re-
must be satisfied by the surface normal-derivative term haviated to intrinsically different physical parameters: the actual
been obtained using the Nehring-Saupe molecular approagfirector orientation at the surface in our paper and the “ex-
and exploiting the symmetry properties of the intermoleculatrapolated” surface director angle in Yokoyama’s paper. Al-
energy. The surface-derivative term contains an effectivehough the elastic surface free energy represents a useful
constant$] that depends on the properties of the NLC andparameter to build approximate models of the interfacial
on the nature of the substrate. Therefore, except for the verfjeld (the Nth-order elastic theori¢sit cannot appear in a
special case of a free surfacKf=0), the surface elastic consistent continuum theory of NLCs. The thermodynamic
constant is a true surface parameter that can depend on tharface free energy that appears in the continuum theory is a
surface director angle as well as on the anchoring energy. different macroscopic parameter that depends on the extrapo-
It is important to compare our theoretical results withlated surface director field. The explicit dependence of the
those obtained by other authors on the same subject, in pathermodynamic surface free energy on the extrapolated sur-

whereW, is a constant coefficient that is independeniBof
and & By comparing Eqs(100) and (99) we infer that the
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face director field is still the subject of some debate in the +oo +o

literature. In particular, it is not completely clear if a normal- G(91,92,S)=%j deJ duyg(6y,602,uy,Uy,s)

derivative term can appear in such a surface free energy, o o

although there are some indirect arguments that suggest the +oo +oo

absence of such a term. =%f deJ duyg(6,,0,,—uy,—uy,—s)
The Nehring-Saupe molecular model used in Secs. Il and o o

Il to obtain the elastic free energy makes use of strong sim- =G(6,,6,,—59). (A6)

plifying assumptions: perfect nematic ordé8<1) and a

uniform single-particle density in the NLC. Then the expres- . . : .
sions of the elastic constants that have been obtained in thg' 1ast equality has been obtained by making the substitu-
present paper could be modified appreciably by using morHons —Ux— Uy and —u,—u, in the second integral in Eq.
accurate molecular approaches such as the density-functionfAl®): Equation(A6) leads immediately to property) of the
theory[17,20. However, the mapping independence of the!Unction G(#6y,65,s) and its#, and 6, derivatives.

Kﬁg constant has been obtained by exploiting only the sym-

metry properties of the molecular interactions. Thus we think APPENDIX B

that this theoretical result has a more general validity.
Here we calculate explicitly the elastic constd€is in
ACKNOWLEDGMENTS terms of thg chgracteristic parameters of thg interagtion law
g(n,n’,u) given in Eq.(39). For the planar director field
We are grateful to MURST and CNR for financial sup- =(sin §,0,cos), the function g(n,n’,u) becomes
port. During this work we had useful discussions with E.g(#6;,6,,ux,uy,u;), where 6; and ¢, are the angles that

Virga and D. Leporini. correspond ta andn’, while u,, uy, andu, are thex, vy,
andz components of the vectar. The functionF 5 65, 6)
APPENDIX A in Eq. (36) becomes

In this appendix we show that propertié$ and (iii) of
Sec. Il A are a direct consequence of the inversion symmetr 1|7 * * 2 .
in the real and the director isotopic spdsee Appendix C in 1305, 09) =2 fﬁwdzﬁxduxjiwduyz 92( s, Uy, Uy, 2) b,
[20]). This symmetry leads to the equality (B1)
g(n,n’",u)y=g(n’,n,—u), (A1)
where

whereu=r—r’. It is convenient to use fog(n,n’,u) the
explicit form given in Eq.(39):

J
i ; gZ(QSluX!uy!Z):‘W 9(01,02,UX,Uy,Z)
’ uy’ ’ uy’ vk 2 01=0,=0
9" W == 2 g n- g - g (nnt) (B2)
(A2)
) . . Using the explicit expression @f(n,n’,u) given in Eq.(39),
Due to the symmetry property in EGA1), we infer thati  he functiongs( s, Uy U, ,2) becomes

+]j is an even integer anj ; ,(u) is symmetric with respect
toi andj. This means thag(n,n’,u)=g(n,n’,—u) and

thus from Eq.(A1) we find 92( b5, Uy, Uy ,2)
’ ’ 1 . o~ dn’-0
g(n,n’,m)=g(n’,n,u). (A3) =—_ z Jijk(u),[ns.u]uwlu
2| Tk 90> n’=n=ng
By settingn’=n+4n in Eq. (A3) we getg(n,n+ én,u)
=g(n+ én,n,u) and thus . dn-n"]
o ) +_Ek Jijk(Wk[ng-u]'*! 20, ] (B3)
L, I —pn—
g(n,n+ én,u)—g(n,n,u)=g(n+én,n,u)—g(n,n,u). . n=n=ns

(A4)

where U=u/u and n, denotes the director at the surface.
Now we note that)[n-n']/d6,=d[ cos@,— 6,)]/d6,=0 for
0,=6,=60s and dny/df,=cosé,=n, and dIn,/i0,

Z

From the equality of the differentials in EGA4), the equal-
ity of their Taylor expansions follows directly and thus

Jg(n,n’,u) d*g(n,n’,u) = —sin6,=—n.. Then
P o i N G
o S Jn’-0] _ Nsdly— 20, (B4)
wherek is an arbitrary integer. From E@A5) property(iii ) P —u
S

of the functionG( 44, 6,,s) follows directly. From the equal-
Ity g(n,n’,u)=g(n,n’,—u) we getg(011021u):g(011021 .
—u). Then whereu= \JuZ+ uy2+ z°. ThenF15(6s,6,) is reduced to
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. 1 e o oo
Fix(6s,09)=—— du, | duy, dz>, Jij(u)z?
4 )_o —x —o i,j,k

j[n . u]i+j—1
X—SuiTj_ (nszux_ nsxz)- (BS)

To solve the integrals in EqB5) it is convenient to pass to
the coordinatesi,, u,, andz’ with the z’ axis that is par-

allel to ng and to use polar coordinatés ¢, andr, whereé
denotes the polar angle with respect to #ieaxis and¢
denotes the azimuthal angle. With this choi€gg(6s,6s)
becomes

F13(951-6’s):|1+|2+|3’ (B6)
where
|1:_4if drf dQ r4cof6., 1 Jiji(r)
0 41 L
|2:_%J ‘er’ dQ r4sin2652 JJijk(r)
0 A 1.k
x(cos§)' I~ 1si¢ cos'g, (63)
and

|3:_%f drf dQ rsin 265>, 1Jijk(r)
0 4 .k

X(cos &)t sirP¢ cose. (B9)

dQ is the infinitesimal solid angle. By performing the inte-
grals in Eqs(B7)—(B9), we findl;=1,=0, while exploiting
the property that+j is an even number, it is easy to show
thatl 5 is given by expression87) and(40). Using the same

procedure, it is easy to show that the integral in E2f)

leads to Eq(38) with K, andK 35 expressed in terms of the

characteristic parameters of the interaction energy.

APPENDIX C

Here we show that Eq$75), (77), and(78) come directly
from Eqs.(70), (72), and(73), respectively. We first consider

the function

fw G(&,a,z—z’)dz’—fo}. (Cy

Floo)= [ a2

By making the change of variabl&s=az+(1—a)z’ ands
=z—-7', we get

FU(89)= fidz

—-z/(1-a)
f G(a,e,s)ds—fo}, (C2

z/a
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which is equal to the functionFiSa(Hs) in Eg. (70). Then
F2(0s)=Fy(6s), in agreement with Eq(75). Now we con-
sider the function

. . PINIE2 :
F'ha(es,as)=fldz 4M ., (C3

96 =0

which was defined in Eq(72). Equation(C3) can be inte-
grated by parts with respect to the part functibn We get

z=0
0
—f dz

z=—

22
2

72 d
X7 dz

The first term on the right-hand side vanishes due to the
property G(#6,,0,,)=0. Substituting in the second term
the explicit expression ak f|*(6,z) as given in Eq(63), we

find

IAI3(6,2)

Flha(as,:es): 90

Os
0=10

IATR(6,2)
a6

'as] . (C4)
0=10,

. . 0 d —z/(1—-a) .
Fi3(6s,05)=— J_wdz Z e [ L/a ds G,(6s,9) QSJ,
(CH)

where we have used the propery,(6s,s)+ Gy(6s,S)
=2G,(6s,5). Now we use the identity

d ~z/(1-a) | Gz(¢9s,z/a)-6PS
d_Z[JZ/a dSGZ(aS,S)gS)__T

Ga(6s,2/(1-a)) b5
B 1-a '

(C6)

To write the second term on the right-hand side in &f)
we have used the property,(6s,s)=G,(6s,—S). Substi-
tuting Eq.(C6) into Eg. (C5), we get

G,(05,2/a) 0,
a

FLa(as,és)=jldz 2

+f° dzzsz(ﬁs,ilfla—a))Hs_

(C7)

By making the variable changes-z/a andz—z/(1—a) in
the two integrals we find

Fi0s,0)=[a%+ (1-a)%) [ dz 26,(0,,2)0,
(o)

which is the equality in Eq(77). Finally, operating in the
same way on the functioR$( 6, 6s) defined in Eq(73), we
obtain the equality in Eq(78).
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