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Determination of orientational distribution function of organic molecular surfaces
using the modified maximum-entropy method
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The determination of the surface orientational distribution function for organic molecules such as liquid
crystals has been studied using the maximum-entropy method with second-order optical nonlinear coefficients.
Systematic simulation revealed that the conventional maximum-entropy method does not give sufficient infor-
mation about the axial ordering do$6¢)) along the surface normal directiord (s the angle between the
molecular axis and surface normal direcliowe propose a modified maximum-entropy method that involves
an additional constraint function ¢to<6) and gives more realistic distribution functions. Distribution func-
tions were determined for several previous experimental results using these conventional and modified meth-
ods. From the comparison of these distribution functions, it has been shown that the distribution densities of
molecules oriented at tilt anglé=180°, which appear when using the conventional maximum-entropy
method, are artifact$S1063-651X98)04606-9

PACS numbegps): 61.30-v, 68.45-v, 64.70—p, 42.65.Ky

[. INTRODUCTION angle is obtained using this moddl-5]. The second model
is the maximum-entropy method. This method is a method of
The understanding of the orientational distribution of or-“reasoning” developed in the field of information theory
ganic systems at a surface or an interface is not only of19]. The basic concept is to determine a solution using
fundamental interest but also of practical importance for deknown information under the least bias for unknown infor-
signing and constructing organic devices such as liquidmation. For this purpose, the concept of information entropy
crystal (LC) displays[1-9]. In the past few years, many is introduced to deal with any incompleteness and the infor-
kinds of optical methods have been used in order to obtaimation entropy is maximized under constraints. This method
information about surface orientatiph0—12. Among them, has been widely used in data analysis of various experiments
optical second-harmonic generati®HG) has proved to be such as x-ray and neutron diffraction for determining the
an effective tool for studying the alignment or arrangementlectron and nuclear densitig®0,21] and polarized fluores-
of adsorbed molecular monolaydi2—14. Using this tech- cence[22] and Ramar{23] measurements for determining
nique, one can deduce the orientational distribution functionmolecular orientational distributions. In the present work we
of molecules from the second-order nonlinear opt{dHLO) apply this method to SHG data and obtain the unbiased ori-
coefficients. entational distribution of a molecular monolayé;7]. Up to
Previously, several models have been proposed to obtaimow this method has been widely applied to obtain the ori-
information about the orientational distribution. As for the entational distributions of various kinds of organic systems
systems ofC.., , we can obtain the average fiftolan angle  such as LC monolayel$—9], side-chain polymer surfaces
6, of the molecules at the monolayer surface from the ratid7,24], and polymer monolayerg25]. However, using this
of the two nonvanishing NLO coefficienfd2—-17. For the  method, unrealistic distributions have sometimes been de-
determination, however, a Gaussian distribution of a certaigluced, i.e., a relatively high distribution peak at a molecular
width must be assumed. Hence the average orientation wdidt angle of 180°[6,9]. This peak could be interpreted as the
usually determined by assuming a sha#fignctiona) dis-  distribution density for molecules with their polar end group
tribution. Recently, Yocet al. proposed a method to deter- away from the substrate surfaj@®9]. However, the deduced
mine the unbiased distribution function in the systenCqf  distribution may not be a real distribution function because
symmetry[18]. the proportion of peaks at=180° is too high, namely, over
As for the systems oC;, symmetry, two models were 15-25 % with respect to the main distribution pg&i9].
adopted. In the first model, one neglects the dependenge of In this paper the procedure for determining orientational
on the azimuthal angle and assumes the distribution func- distribution functions is examined using the maximum-

tion entropy method with second-order optical nonlinear coeffi-
cients. According to systematic simulation, we point out

f(0,¢)=Crexd — (60— 6p)%/20%][1+d,cosp+ d,cos2p problems in the conventional maximum-entropy method and
propose a modified method to avoid errors leading to more

+d3c0s3p], (1) accurate information about the molecular distribution at sur-

face. Then the adequacy of this method is exemplified by
whereC, is the normalization constant amdthe width of @  determining several distribution functions using the modified
distribution. Therefore, the distribution with a uniform aver- method with second-order NLO results reported previously
age polar angle and a biased distribution along the azimutfd,2,9,18.
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Il. THEORETICAL BACKGROUND x'2) can be deduced using Eq&)—(5). From these values of
First, a brief review is given of the determination of the Xij, we can obtain information about the orientational dis-

orientational distribution of molecules from surface SHG tribution function of the monolayer on the surface. In order

data since the theory of surface SHG from adsorbed mond® obtain an “unbiased” estimate of the orientational distri-
layers has already been described in detail elsewfigte bution function, we have used the maximum-entropy method

14]. The intensity of SHG light (2w) from a monolayer [6,7]. This provides a constructive method for obtaining dis-
sample is given by tributions on the basis of partial knowledge. In this method,

information is the average value of the following constraint

1(2w) | x2H212(w), (2)  functions obtained from the measurements(&?:
wherel(w) is the fundamental beam intensity(?)} is the f1(6,4)=cos’6,
effective nonlinear susceptibility of the surface and is de-

fined by f2(6,¢)=sin°6 cos'¢,

XZ=[8(20)- L(20) Y [L(0)- &(@)][L(0)- ()], fa(0,¢) = (cosd—cos'd) (1 cos'e),

) f4(6,$)=(cosH—cos 6)cos ¢, (6)

where x(?) is a second-order nonlinear susceptibility tensor,

é(Q)’s are unit polarization vectors at frequen€y, and
i_(rgzj’rssare macroscopic local-field factéor Fresnel factor fo( 6, ) =SiM0(cos p— coS ).
e .

For a rodlike adsorbed molecule, the second-order hypein order not to introduce any bias, we need to maximize the
polarizability is dominated by a single elemeBt,; along  uncertainty on the distribution function defined by
the molecular long axig [12—-14. The monolayer of such
molecules on the surface has a nonlinear susceptibility tensor

x? given by
(7

XH=N((- 5 (- &) (k-8)BEL, (4) , , , ,
under the constraints using the six Lagrange undetermined

whereNq is the surface molecular density andj(k) refers ~ multipliers; . This is equivalent to maximizing the quantity
to the unit vectors of the sample coordinatgsy(z), where H—X\;f; and maximization leads to the distribution func-
z is the direction of the surface normal. The angular bracketion
denote the orientational average weighted by a distribution
function (6, ¢) of molecules. An ensemble of rodlike mol- £(0,d)= eXF{E)‘ifi(a’¢)_] . ®
ecules can be described in terms of@ tensor by just six ' 6"J ¢ exd E\ifi(6,¢)|sin 6 do do
independent components @y, symmetry[6]:

f5(6,¢)=(sin §—sinr6)cos ¢,

T 2
H(f(¢9,¢))=—fo SinGdGJO f(0,¢6)In f(6,p)ded

Here\;'s (i=1-6) can be calculated from the set of equa-
X1= Xzzz7— Ns<CO§0>,8(§2§)§y tions

X2= Yoo = N(Si"0 cOS ¢) By (f1(0.4))= f;” foﬁfiw,qs)f(e,«msin 6dods. (9

X3= Xzyy™ Xyzy= X . . . T . .
§AmyAvey Ay This method gives the widest distribution compatible with

=Ng((cos 6—cos'0))((1-cos$))BZ:,  (5)  available information orf(6,).

Xa= Xzxx= Xxax= Xxx:= N{(COS 8 — C0OS'0) )(cOS ) B2}, 1. MODIFIED MAXIMUM-ENTROPY METHOD
X5= Xaxz= Xz2x= Xxz2= N&( (N 0—sin30)><cos ¢),8(§2§)§ A. Estimation of the maximum-entropy method
In order to judge whether the method is appropriate for
X6= Xxyy= Xyxy= Xyyx= Ns(SINP8)((cos ¢—coS¢)) B, the determination of the orientational distribution functions,

the maximum-entropy method was estimated. The procedure

whereg is the polar angle between the molecular &msnd s as follows. First, a certain distribution functidnis as-
the sample coordinate axis and¢ is the azimuthal angle sumed. Then we can determine the average values of the
betweené andx axes. In the case of azimuthal isotrofy., parameters;(6,¢) using Eq.(9). These parameters are re-
symmetry (cos'¢)=0 whenn is odd and(cos#)=(1-  sponsible for the nonlinear coefficients for E¢s) and (6).
cos'¢)=1/2. Hence Eq(5) reduces to just two independent From the six constraint functions with these values of the
nonvanishing elementg?, and x{2) . parameters, another orientational distribution funcfioan

By measuring surface SHG as a function of rotation anglée deduced using the maximum-entropy method. By com-
@ about its surface normal direction for different input andparing the original distributiorf with the deduced distribu-
output polarization combinations, i.g,in andp out,s in  tion f’, the method can be judged as to whether it is appro-
andp out, s in ands out, andp in ands out, the values of priate for the determination of the orientational distribution.
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FIG. 1. Orientational distribution functions as
a function of tilt angled,. @ is the tilt angle(de-
gree. Open circles represent the original Gauss-
ian functionsf and lines denote the deduced

functionsf’ andf” determined using the conven-
! () 06r ©) ! 0 tional and the modified maximum-entropy meth-
e 05T 03 ods, respectively(a) f andf’ for §,=55°, (b) f
04r ' 04r oar andf’ for 6,=70°, (c) f andf’ for 6,=89°, (d)
T 03¢ 03 03 f and f” for #,=55°, (e) f andf” for 6,=70°,
T oz} 02| 02 and(f) f andf” for §,=89°.
0.1 o1l 01l
0.0 PRI IS I P 0.0 1 1 7 009 PR e P I e
-180-120-60 O 60 120 180 -180-120-60 O 60 120 180 -180-120-60 O 60 120 180
0 0 0

Let us first consider a system 6f,, symmetry. As a test ian distributionf within the calculation error band. One of
distribution functionf we assume a Gaussian distribution the examples is shown in Fig.(d (6y=55°, 0=10°),
with an average tilt angl®, and a widtho, where perfect agreement is seen between the dedficed

_ 220 2 (solid line) and the originalf (open circlg. However, when
f=Coex = (0= 60)%/207], (10 0 is larger than 55°, the deduced distributibh does not

whereC, is the normalization constant. In this case, the dis-coincide with the original distributiori, as shown in Figs.
tribution is azimuthally isotropic..,); thus there are only 1(b) and Xc). The disagreement becomes greater with in-
two nonvanishing constraint functions éesand (C050 Creasin900. It should be noted that the distribution denSity in
—cos'6)/2, which are responsible foy,,,and x,., respec- the deduced’ is not zero wherd is near 180°, whereas that
tively. We calculated cosd) and{cos#—cos'6)/2 values us- in the original distributionf is zero. Thus this analysis
ing Egs.(9) and(10) with variousd,’s and a fixeds of 10°.  clearly shows that the conventional maximum-entropy
These results provide constraints in addition to four othemethod brings about an erroneous orientational distribution
zero xjjk's for the maximum-entropy method and lead to anif 6 is larger than 55°.
orientational distribution functiori’. Then the original dis- The tilt angle of 55°, more precisely 54.7°, is known as a
tribution functionf was compared with the deduced distri- magic angled,,, defined by 3 cd¥,,—1=0. Hence the dis-
bution f’ for various fy’s. These results are shown in Figs. agreement fo,>55° mentioned above must be physically
1(a), 1(b), and Ic), where 6,=55°, 70°, and 89°, respec- accountable. In order to find the meaning of this angle, the
tively. In the figures the original distributiong) are plotted average values of three parameters®6osos6, and coéd
with open circles and the deduced distributiorfS)(are  were monitored as a function @. Table | lists the calcu-
shown as solid lines. lated average values of these parameters for the original dis-
For the case whosg, is less than 55°, it was found that tribution f and the deduced distributidri. As shown in the
the deduced distributioff is identical to the original Gauss- table, the average values of ce@sand cod6 for the deduced

TABLE I. Calculated average values of é6scosé, and coéd for the original Gaussian distribution
function (GF), the deduced distribution determined using the conventional maximum-entropy niitEpd
and the deduced distribution determined using the modified maximum-entropy nibthbdas a function of
molecular average tilt anglé,.

GF ME MM

o cosd  cosé  cose cosd  cosd  cogl cosd  cosf  col

0 0.915 0.027 0.942 0.916 0.027 0.942 0.915 0.027 0.941
10 0.847 0.048 0.893 0.847 0.048 0.894 0.853 0.044 0.896
20 0.736 0.080 0.811 0.732 0.082 0.808 0.733 0.082 0.809
30 0.586 0.120 0.692 0.586 0.121 0.695 0.586 0.121 0.695
40 0.418 0.156 0.548 0.419 0.157 0.550 0.418 0.155 0.545
50 0.262 0.175 0.394 0.262 0.176 0.396 0.262 0.176 0.394
55 0.195 0.176 0.319 0.197 0.176 0.321 0.196 0.176 0.321
60 0.139 0.169 0.250 0.139 0.168 0.281 0.139 0.169 0.249
70 0.059 0.133 0.132 0.059 0.133 0.310 0.058 0.134 0.131
80 0.018 0.073 0.055 0.018 0.073 0.329 0.017 0.074 0.057

89 0.001 0.008 0.029 0.001 0.008 0.333 0.002 0.008 0.030
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distribution f’ coincide with those for the original distribu- ues, we calculated the distribution functibhusing the con-
tion f throughout the whole range éf, (from 0° to 90°). On  ventional maximum-entropy method and the distribution
the other hand, the average values of?édsr the deduced function f” using the modified maximum-entropy method
distribution f’ begin to deviate from those of the original and compared the distribution functidnwith the distribu-
distributionf whené, is greater than 55°. The average valuetion functionsf’ andf”. One of the comparisons is shown in
of cogd for the original distributiorf decreases continuously Fig. 2. In this case, we used = 0.20,a, =0.10,a; = 0.05,
from 1 to 0 asé, increases from 0° to 90°. However, the b; = 0.10,b, = 0.05,b; = 0.01,d; = 0.50,d, = 0.20,d;
average value of cé8 for the deduced distributiofi’ re- = 0.10, §,=60°, andoy=10°. As shown in the figure, the
mains almost unchanged f@>55°, whereas it decreases deduced distributiofi’ [Fig. 2(b)] determined using the con-
continuously from 1 to 0.33 a&, goes from 0° to 55°. The ventional maximum-entropy method is almost the same as
(cog6) value of 0.33 a,=55° means that an order param- the original distribution functiorf [Fig. 2(@)] except for the
eter defined as orientation atf=180°. The distribution density at=180°

for f' is not zero, whereas that for the origintlis zero.
Once more it is shown that the conventional maximum-
) o . ) ) entropy method gives an erroneous orientational distribution
is zero, representing isotropic orientation for the adsorbed s, for the case a,, . On the other hand, when we use the
molecules along the surface normal directianakis). For  mgogified maximum-entropy method with the constraint func-

60>55°, the conventional maximum_—entropy method givesijgn of f,=cog4, it is clear that the deduced distribution
almost a constar(ttos’6) of about 0.3 instead of low values, f;nction f” [Fig. 2(c)] is almost the same as the original

P,=(3 cog6—1)/2 (11

since the maximum-entropy method essentially provides thgistribution functionf even atd=180°.

widest distribution and there is no constraint @< 6) in the

The average values of the parametgr$ were also cal-

conventional maximum-entropy method. Thus the deduced jated. The results are summarized in Table Il. When we

distribution determined using the conventional maximum-

compare the values df;) (i=1—7) for the distributions

entropy method cannot reproduce the original distribution \yith those off’. all of the values of are almost identical to

These results indicate that the six constraint functions useﬂllose of ' except for the value o(f7>((00520>). on the

are insufficient to deduce correct information about the dis'other hand, for the case 6f, all the (,) values including

tribution. In the six constraint functionf, it can be seen

that they are composed of the combinations of Legendr

polynomials such a®,(6) andP,(¢) (I=1—3) except for
P,(6) (or cogd). The missingP,(6) (or cogd) in the con-

(cog6), resulting in an erroneous distributidii different

f,) for f” are almost the same as thosefofThus it can be
oncluded that the modified maximum-entropy method is
also valid for the determination of orientational distribution

X ; ; X functions forC,, symmetry.
straint functions causes the lack of information about

from the originalf. Therefore, we suggest that a function of B. Examples of the orientational distribution functions of the

f,=cogd must be included in the constraint functions.
Next we recalculated the distributid?i using this modi-

molecular layer

Now the modified maximum-entropy method is applied to

fied maximum-entropy method with the seven constrainthe experimental results obtained previously. Based on the

functions. The results fof” are shown in Figs. (@)—1(f),
from which it is clear that the deduced distributidiiscoin-
cide with the original Gaussian distributiohgrrespective of

experimental values of the ratios of sjx;, elements, the
distribution functions were calculated using conventional
and modified maximum-entropy methods and the results

6. Moreover, the respective values of the parametersvere compared.

(cos#), (cos’d), and(cosd) are shown to be identical fdr
andf” (see Table)l Therefore, the correct distributions us-

For the first case, we take as an example'anbctyl
-4-cyanobipheny(8CB) LC monolayer on unrubbed polyim-

ing this modified maximum-entropy method can be deteride alignment layer, which has.,, symmetry[1]. Using the

mined.

experimental results of,,,: x,y,= 1.1:3.7, we obtained dis-

Then our modified maximum-entropy method for the caseribution a using the conventional method and distributton

of C,, symmetry was tested. A theoretical arbitrary distribu-

tion functionf was used:
f(6,4)=Ciexp{—[ 60— 0($)1?/20%($)}[1+d;cosp
+d,cos2p+ d;cos3p], (12
where
()= 0| 1+ a,cos ¢+ a,cos 2p+ascos ],
o(¢)=0o[1+Db;cos ¢+ b,cos 26+ bscos 3p].

Note that this distribution allows both the molecular tilt
angle# and the widtho to depend onp. With the arbitrary
values ofa; , b;, andd; (i=1-3), the values off;) that are
responsible for SHG can be calculated. With théke val-

using the modified method. Distributioasandb are plotted

in Figs. 3a) and 3b), respectively. Distributiora exhibits
two peaks at#=60° and#=180°, while distributionb ex-
hibits only one peak a#=77°. The percentage of molecules
at #=180° in distributiona is approximately 34%, while
that in distributionb is zero. As shown in Sec. lll A, this
large distribution aty=180° in distributiona is an artifact.
This is due to lack of the information about axial ordering
({(coh)) from the conventional maximum-entropy method.
If one uses the conventional maximum-entropy method, re-
sults can be easily misinterpreted that these molecules at
=180° point their polar end group away from the substrate
surface while the rest of the molecules points their polar
group towards the surface. Another peak in distribution
also shifts towards a lower value @fthan that in distribution

b. This is caused by the presence of the ghost peall at
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FIG. 2. Three-dimensional plots of orientational distribution
functions:(a) the original distribution functior given by Eq.(12),
(b) the deduced distributiofi’ determined using the conventional
maximum-entropy method, an@d) the deduced distributiofi’ de-
termined using the modified maximum-entropy meth®dnd ¢ are
the tilt and azimuth angle@legreg, respectively.

=180° in distributiona. Applying a simplified analysis and
assuming ad-functional distribution,§=69° is obtained.

DETERMINATION OF ORIENTATIONAL DISTRIBUTION ...

6721

ventional simplified analysis. Thus the, [=(3(cog¥6)
—1)/2] value of—0.01 along the surface normal direction for
distributiona is larger than that of- 0.39 for distributionb.

In this way, we can prove the significance of using the modi-
fied maximum-entropy method as shown by the wide differ-
ence between the two distributions.

Another example of an 8CB LC monolayer on unrubbed
polyimide[2] was also tested. Using the experimental results
Of X227:Xzyy = 0.5:3.2, we obtained almost the same results
as those shown in Figs(& and 3b).

For the second case, we take as an example an 8CB LC
monolayer on rubbed polyimide, which h&5, symmetry
[1]. Using the experimental results ®fi:x>:x3:X2:X5:Xs =
0.8:1.7:1.8:3.7:0.15:0.37, we obtained distributiorusing
the conventional method and distributidnusing the modi-
fied method. Distributiong andd are plotted in Figs. @)
and 3d), respectively. Distributiort exhibits three peaks at
(6=57°, $=0°), (6=64°, $=180°), andH=180° with
the value ofP,=—0.09, while distributiond exhibits only
two peaks at §=72°, $=0°) and (f=73°, ¢=180°) with
P,=—0.37. In this distributionc, considerable molecules
are seen at=180°, while the molecules &= 180° do not
appear in the corrected distributi@h In distributionc the
other peaks also shift towards lower valuegdghan those in
distributiond. As shown in the figure, when the conventional
maximum-entropy method is used, it is possible to overesti-
mate the proportion of molecules oriented &t 180°. It
should be noted that the distribution given by the modified
method has only a small dependence 6f,x on ¢. The
independence betweehand ¢ hasa priori been employed
in the analysis of LC monolayers without any experimental
or theoretical confirmatiofd,5]. The present result using the
modified maximum-entropy method provides us with proof
of the independence, at least for the experiment of Réf.

Another example of an 8CB LC monolayer on rubbed
polyimide [2] was tested. Using the experimental results of
X1:X2:X3:Xa:X5:Xs = 0.4—1.7:1.8:3.8-0.1:—0.4, results
almost identical to those shown in FigdcBand 3d) were
obtained. The independence ®find ¢ was also seen in this
case.

Next, for the third case, other example of 8CB molecules
on rubbed polyimid¢9] were tested. Taking the experimen-
tal results of y1:x2ix3ixaxsixe = 1:—0.67:1.18:1.50:
—0.10:-0.25, we obtained distributioa using the conven-
tional method and distributioh using the modified method.
Distributionse and f are plotted in Figs. @) and 3f), re-
spectively. Distributione exhibits three peaks atd& 62°,
$=0°), (6=56°, »=180°), andd=180° giving aP, value
of —0.09, while distributionf exhibits only two peaks at
(#=64°, »=0°) and (p=58°, $=180°) giving aP, value
of —0.15 along the surface normal. In distributienmost
molecules are seen &t 180°, while in the corrected distri-
butionf no molecules are found &= 180°. In distributiore
the other peaks also shift towards lower valuesfothan
those in distributiorf. As shown in the figure, the proportion
of molecules oriented a=180° can be overestimated when
using the conventional maximum-entropy method. In this

This value increases if the Gaussian distribution of a finitecase,f,,,, changes withp, indicating that the simplified dis-
width is assumed. Thus the present result using the modifiettibution function assuming the independencedoand ¢,
maximum-entropy method is also consistent with the conEq. (1), is not always valid.
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TABLE Il. Average values of the paramete) for the originalf, the deduced’ determined by the
conventional maximum-entropy method, and the dedd€edktermined by the modified maximum-entropy

method.
Function (f1) (f2) (fa) (fa) (fs) (fe) (f2)
f 0.116 —-0.291 0.135 0.136 —0.005 —0.064 0.205
f’ 0.115 —0.292 0.138 0.139 —0.003 —0.065 0.231
f” 0.117 —-0.292 0.139 0.140 —0.002 —0.065 0.203

Finally, we take an example of rubbed polymer with LC- similar distributions betweeg andh are a consequence of
substituted side chains, which give rise to SHG actiit$]. the distribution at relatively small tilt angles with respect to

Using the experimental results afi:x>:xaixa:xs:xs = 1: the magic angle.
—0.63:0.75:0.78:0.05:0.21, we obtained distributiog us-

ing the conventional method and distributitnusing the
modified method. Distributiong andh are plotted in Figs.
3(g) and 3h), respectively. Distributiong exhibits three To summarize, the determination of the orientational dis-
peaks at §=67°, $=0°), (§=44°, $=180°), and(# tribution function of organic molecular monolayers from
=169°, $=1809 (very smal) giving a P, value of —0.02  second-order nonlinear coefficients were studied using the
along the surface normal, while distributitnexhibits only =~ maximum-entropy method. It was shown that the conven-
two peaks at §=67°, $=0°) and (#=44°, $=180°), giv- tional maximum-entropy method does not give sufficient in-
ing aP, value of —0.04. In distributiong a small number of formation about the axial ordering along the surface normal,
molecules are seen &&= 180°. In contrast, no molecules can though the distribution function could be obtained without
be found atfé=180° in the corrected distribution. The any bias. As a consequence, the molecular density adsorbed

IV. CONCLUSIONS

(a) (b)

(c) (d)

FIG. 3. Three-dimensional plots of the deduced orientational distribution functions obtained for the four experimental results reported

previously.f and ¢ are the tilt and azimuth anglédegree, respectively. The left and right columns display the results determined using the
conventional and the modified maximum-entropy methods, respectively.
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at 6=180° on the surface or at the interface may be overesplicable to surfaces, and interfaces such as Langmuir mono-
timated when using the conventional maximum-entropylayer surfaces, Langmuir-Blodgett monolayer surfaces, and
method. We proposed a modified method that involves thénterfaces of polymer films.

constraint functiorf,=(cog6) as well as the six constraint

functions. Using this modified maximum-entropy method,

more realistic distribution functions were obtained. As prac- ACKNOWLEDGMENT
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