PHYSICAL REVIEW E VOLUME 57, NUMBER 6 JUNE 1998

Shear induced melting of smecticA liquid crystals
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An analysis of shear induced melting of homogeneously aligned smidtisid-crystal material is pre-
sented. The solution is based on a Landau expansion of the complex smectic order parameter and its spatial
derivative. Two solution branches are obtained and it is suggested that, in practice, shear induced melting
involves a transition from one branch to the melt stf$4.063-651X98)01906-0

PACS numbd(s): 61.30.Eb

INTRODUCTION aligned smecti@ liquid crystal was subjected to a slow os-

cillatory shear. Simultaneously they measured the shear

SmecticA liquid crystals have both orientational and po- stress transferred between the plates forming the liquid-
sitional molecular ordefrl]. The uniaxial orientational order crystal cell, i.e., through the liquid-crystal smectic layers.

parameter can be expressed in the form The key observation is that this shows a periodicity that is
spatially equal to the smectic layer pitch for this material, as
s=3((3cog6—1)), (1) independently measured by x-ray diffraction. This was ex-

plained as being due to the smectic layering melting and
where 6 is the local molecular tilt fluctuation away from the reforming periodically during the shearing process. Cagnon
mean orientation. The positional order in the smegtic- and Durand gave a mathematical description based on a
phase consists of a density modulation along the averagémple algebraic order parameter. Here we present an analy-
molecular axis. Within the layers there is only very-short-sis based on a Landau expansion of the complex order pa-
range ordering and the behavior is liquidlike. If the local-rameter[Eqg. (2)]. Smectic order parameter melting effects
density modulation amplitude is represented dwnd the have also been observed at grain boundaries in bent smectic-
local layer phase angle by, then to first order the smectic A liquid crystals[7].
behavior can be expressed through the complex order param-

eter MODEL

y=p expid(r), 2) We consider the nematic order parametdo be a fixed
quantity and examine how shear modifies the complex smec-
where in the bulk materiab would have the layer periodic- tic order parameteg. The coupling between the parameters
ity along the molecular axis and be independent of direction§as been discussed by Linhananta and SullpNnWe set
normal to this[2]. In practice both the nematic and smectic Up @ coordinate system with the smectic layers in yhe
order parameters may be modified during shear; here onlglane, the layer normal and molecular axis being in xhe
the latter is considered. direction. Cell surfaces are in they plane and shear then
A presentation of order parameter modification throughtakes place in the-z plane, along thex axis. In order to
externally imposed deformations on smeaiicsystems was Simplify the Landau energy expansif®] we assume that the
de Gennes’s ana|ogy between sme&imaterials and super- molecular axis remains in the direction during shear. This
conductorg3]. It was suggested that a smecfido nematic IS reasonable as it equates to the assumption that the smectic
phase transition could be induced through a bend deformdayer thickness is proportional to the cosine of any molecular
tion, i.e., the smectiéx phase could be caused to melt into tilt relative to the local smectic layer normal. Making this
the nematic phase. Alternatively, edge dislocations could@ssumption also removes the need to include any nematiclike
form to take up the smectic layer thickness changes. WhicRrientational elastic distortion terms in the expression. We
occurs would depend critically on the Landau-Ginsburg pacan then write
rameter[3]. In the case of shear considered here smooth
deformations and continuum behavior are assumed; melting
is then the only option. Marignan and co-workers have con-
sidered the case of instabilities in smeddayers[4,5] in-
duced by oscillating shear. The instabilities observed werghere the third term has been simplified from that presented
therefore due to dynamic effects and while melting may havéy de Gennes and Prdd] by the above assumptions.
been involved in the defect formation it was not the funda- Before discussing the meaning of the terms in it is
mental mechanism investigated. useful to substitute from Ed2) and write
Quasistatic shear induced melting of smedtidiquid ) 5
crystals has been investigated experimentally by Cagnon and +p2(d_¢)
dz

Durand [6]. In their work a thin layer of homogeneously
1063-651X/98/5(®)/67065)/$15.00 57 6706 © 1998 The American Physical Society

B dyl?
_ 2, — 4
f=Aly +2 | ] +C_dz , 3)

dp

2 B 4
f:Ap +Ep +C dZ

, 4




57 SHEAR INDUCED MELTING OF SMECTICA LIQUID... 6707

where we have defined along to a new position. If shearing continues this process
) could repeat, leading to periodic shear stress: This will be
H(2)=D(r)—P'(x), discussed in greater detail later.

@ being independent of the direction and having constant,
shear-independent periodicity in thalirection. The first two
Landau terms define the equilibrium bulk smectic order pa- we will set up the problem with fixed boundary condi-
rameter and perturbations away from this value will cost entions ofr=1 at both surfaces. This is equivalent to saying
ergy. There are additional energy terms associated with grahat the surface anchoring is strong and that the smectic order
dients in the order parameter amplitude and phase. The lattgarameter at the surfaces is equal to its bulk equilibrium
gradient is equivalent to tilting the director away from the yajue and is fixed at this value; also the smectic layer peri-
smectic layer normal and the associated energy can equalpticity at the surfaces is fixed at its equilibrium value, i.e.,
be considered as the first term in the Landau expansion fafhe smectic layer thickness at the surfaces is always equal to
induced molecular tilt, commonly used to model the smectiCits natural size. We believe this to be a reasonable assump-

SOLUTIONS

A to smecticE phase transitiof10]. tion as it should be determined by the phase history of the
Euler-Lagrange equations and ¢ follow from Eq.(4)  material and fixed at this value because surface diffusion is
as quite slow. Setting the surfaceszat +d/2, we then expect
|2 42 melting to occur at the origifi.e., in the center of the cgll
2Ap+2Bp3+ 2Cp<—) _oc P _ 0, (5)  for the boundary conditions we have used. Our condfaist
dz dz? a control parameter in the solution of E§); once a solution
is found the corresponding smectic layer phase angle can be
C 2<d_¢) _K’ ®) determined through Ed6).
P4z ' For very thick devicesi.e.,d— ) some analytic progress

_ - _ _ can be made in the solution of E). Multiplying through
whereK’ is a constant, the implications of which will be by dr/dz allows the equation to be integrated once with

discussed later. Eliminating thoxp/dz term gives respect taz, giving
K2 @ 2K _[dr)|?
3 _ LA _ 2 4_ _
2Ap+2Bp +20p3 2C 2=0 (7 2r24rt- Z(dz +D,
as a single equation ip requiring solution. Defining where the constard can be eliminated knowing that &
—oo we havedr/dZ—0 andr—1. At Z=0 we can also set
= ﬁ, dr/dZ=0 (by symmetry andr=r,,. We can then write
Pe
2r2 —rd—1
— K= —————, 9
sy _A, 2(1-r.2
C
which for this case is a relationship between the control pa-
—-K'?B? rameterK and the minimum normalized smectic order am-
=~ TaA3C plitude r,, (at the origin. This relationship is illustrated in

Fig. 1 (continuous ling The result is particularly interesting,
wherep,=\—A/B (A<O0 in the smecti® phasg, allows us  indicating that, at least for very thick devices, depending on

to rewrite Eq.(7) as the control parametéf there are three regions of interesj.
If K<0.125 there are two solutions with differing values of

3 d?r the minimum amplitude of smectic ordering,)). In the

—rhrtt e g2 =0 (®  Jimit of K—0 these two solutions hawg,—1 andr,—0.

The former of these solutions must be1 everywhere as

Before looking at solutions to this equation it is worth we have used this as the boundary condition: This assumes
considering qualitatively what might take place during shearthatr is not “enhanced” by any possible shear process. Sub-
For small amounts of shear we expect a corresponding smagtitution of K— 0 back into Eq.(6) shows that ifr is finite
tilt to be introduced in the smectic layers, for very large sheathroughout the device theti¢/dz is identically zero. Thus,
molecular tilt becomesr/2 and no solution is expected, and as might be expected, this solution corresponds to the case of
for intermediate shear we expect melting into the nemati®io shear. The second solution fié—0 hasr,—0 (i.e., r
phase to occur. Assuming that this melting is localized—0 at the origin. This must correspond to complete melting
(which is expected on energy groundi is likely to occur  at this point. Substitution into E@6) now shows thatl¢/dz
either at the surface or in the center of the cell, which will beis identically zero everywhere except at the origin, where it
dictated by the boundary conditions applied. In this regionis undefined. Again this is as we might expect: In the melt
the smectic order parameter will tend towards zero and thetate the smectic layers are uniform, with any phase shift
smectic layer phase change will become concentrated at thaken up at the origin where the material is effectively nem-
melt point. If complete melting takes place then a disconti-atic. In this case Eq(8) has a tanh-like analytic solution,
nuity in the layer phase can occur and the layers may slidehich is shown as a dashed line in Fig. 2. This relates di-
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FIG. 1. Plot of the relationship between the control parani€ter
and the minimum smectic order,, (located at the origin The
continuous line is the analytic solution for an infinitely thick device
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FIG. 3. Plot showing the relationship betwedw (the total

sheay and the control parameté&t. The direction traveled around
the loop asr,, decreases from 1 to O is clockwise. This curve is

and the discrete points are the numerical solution for a device Oénalogous to that shown in Fig. 1.

normalized thickness 24/5.

order of the in-layer smectic coherence length., around

rectly to thick cells, i.e., those wheteis much greater than 100 A), allowing the melt region to take up a significant

the width of the melt region(ii) If K=0.125 there is iden-

portion of the solution space. Results are, however, also rep-

tically one solution(iii) If K>0.125 there are no solutions to resentative of the central region of a thicker cell, as can be

Eq. (8).

seen from the analytic limit discussed in the preceding para-

In order to investigate the solutions further we use a nugraph. Although the boundary conditions considered here
merical approach to solving E8). Here we use a finite dictate that the melt always occurs in the center of the cell,

thickness of deviced/2=2/5, chosen to show a “nice”

we would expect that in practice small perturbations in the

melting solution. The chosen illustrative thickness is of theboundary conditions may shift the melting point towards one
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FIG. 2. Set of numerically determined curves far As the

surface. A shooting method is used in the analysis, where the
initial slope (atZ= —d/2) is adjusted untit =1 at the oppo-

site surface. This process is undertaken for a range of values
of the control parametef in order to find a complete solu-
tion set. The relationship betwedh andr, in this case is
also illustrated in Fig. Aby the discrete poinjs Although

the change to a finite thickness has perturbed the relation-
ship, the form is as before, and again #€rsmaller than
some critical value the solutions are paired. The correspond-
ing set of solutions to Eq8) (r as a function o) is shown

in Fig. 2. We see that as,, decreases the region becomes
narrower, being concentrated around the origin. For com-
pleteness we also wish to consider the corresponding solu-
tion to Eq.(6), which is available directly by substitution and
numerical integration. In our normalized form E@) be-
comes

d¢
I’z( E) = \/R (10)

This has a solutionp= ¢(Z) and we also define the total
shearA ¢ by integrating this over the normalized thickness of

minimum value ofr decreases the melting is concentrated around™ d/2. The A¢ relationship to the control paramet#r is

the origin. The point corresponding to the maximum valu&as
indicated. The dashed line shows the analytamh-like solution
for K=0 in a very thick device.

illustrated in Fig. 3, which is analogous to the result shown
in Fig. 1. The set of solutions fo$ as a function ofZ is
shown in Fig. 4.



57 SHEAR INDUCED MELTING OF SMECTICA LIQUID. .. 6709

-0.%

(rad)
3 4
units)
-0.7 -0.6

Shear
2

Energy (arb.
-0.8

-0.9

.0

° [ I I

-
~4.472 -2.236 0.000 2.236 4.472 ! ‘ l |
Normalized distance across cell o

1 2 3 4
Total shear (rad)
FIG. 4. Set of curves for the local shear of the smectic layers FIG. 5 D d f lized | sh h

(phase anglep) across a device. The increasing steepness in the, - 5. Dependence of normalized energy on total shear. The

center of the device corresponds to the decreasing minimum smegf’jIShecj line indicates the energy corresponding to the melt state,

tic ordering in this region. Note that this does not correspond to e\tNhereAd’ is not defined. Where the solution crosses the melt state

monotonically increasing total shear. energy (at A¢p~4.34 a branch jump may take place, leading to
melting of the smectic layers.

DISCUSSION
multaneously for the whole cell

This solution set is very interesting. The increasing steep- The calculation we have performed is of course quasi-
ness in the center of the devidat Z=0) corresponds to static and in the process of jumping branches there will be
decreasing ,, in Fig. 2. Clearly this does not, however, cor- some dynamics of liquid-crystal reorientation involved. Thus
respond to monotonically increasidgp. It is difficult to see it is reasonable to expect that at the point where melting
directly from this what happens physically and the qualita-occurs(by either of the mechanisms discussed abdhe
tive understanding outlined above needs refinement. Appatayering will re-form one step back, at some point lower
ently, increasing the shear from zero to the maximum valuelown the energyx¢ line. If shearing continues this process
observed in Fig. 4 would not cause melting. However, thereould repeat, leading to steps in the surface shear stress with
are no solutions beyond this point, so what happens if furtheperiod equal to the layer spacing. This process will, however,
shear is applied? In order to understand what takes place wee highly dependent on device thickness. For a tlinkch
must consider the energy as a function of the shear distancgreater than the smectic coherence lehg#vice a moderate
This is easily obtained by numerically integrating Edg) amount of shear will be required before any such process can
using the solutions we have obtained for the smectic ordetake place; thus the periodic shear stress will be preceded by
amplitude and phase. We scale the energy te-tefor the ~ a monotonically increasing shear stress. For a thinich
equilibrium state(before shear is appligdA plot of energy less than the smectic coherence lengtévice, however, we
againstA¢ is shown in Fig. 5. This also shows the energyexpect melting to take place much earlier; if the device is
calculated for the melt stat@r branch, which is of course sufficiently thin this may occur for shears of less than one-
independent ofA¢ becausey is not defined at the melting half the smectic layer spacing. In this case the melt state will
point. be formed and will exist for shears up to the point where a

What we expect to take place when a device is shearestate with opposite shear can form, which would show nega-
now becomes clear. Initially we move along the enefgy- tive shear stress. During the melt state the measured surface
line, starting at the lower left-hand corner. HoweverAat shear stress will be dictated by material viscosity. Continued
~4.34 the energy of the melt state is crossed. States abowdearing would again lead to periodicity.
this line (the shaded region in Fig) @re therefore not global It is further interesting to note that with differing bound-
minima. Physically, there are two possibiliti€s. If a nucle-  ary conditions the solution set could be somewhat more com-
ation point or layer structure defect site is present then welex. For values of the control paramekebetween zero and
may expect local melting to occur in this region as soon adts maximum value consideration of E@) indicates that the
the melt state energy is crossed. This may be expected ®plution space for can be broken into three regions. These
seed melting, which then grows throughout the dewuicg!f regions are defined by the values0, r=1, and the two
no nucleation points are present then we may expect to corsolutions ofr*(1—r?)=K; in these regions the curvature of
tinue to move along the shearing branch, even though this is is respectively positive, negative, and positive. For ex-
at a higher energy: We might call this a supersheared statample, if K=0.05 then in the regionQr<0.5098 the cur-
This would continue until we meet the end of this branch,vature ofr is positive, in the region 0.5098r <0.9715 the
where we are forced to jump directly to the melt stege  curvature ofr is negative, and in the region 0.9&b<1
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the curvature of is again positive. With the boundary con- with “free” (Neumann boundary conditions omr (i.e.,
dition we have usedr=1 at the surfacesthis allows two dr/dZ=0 at the surfacgsmelting occurs simultaneously for
solutions: one in which the curve remains in the regionall Z. This takes place at the point in shear whekg/dZ
0.9715<r<1 and one in which the curve crosses through=1 or d¢/dz=(—A/C)*2

the region 0.5098r<0.9715 and into the region <Or It appears that the mathematics developed here may be
<0.5098, this is what we have observed. However, if theable to explain periodic shear stress, but there is a richer
launch point of the curvéoundary conditiopis such that at  solution set than that observed experimentally by Cagnon
the surfaces is in the region 0.5098r <0.9715 then it is and Durand.

possible that the curve could cross between this region and

Fhe lower positive_ curve regio_n one or more times. Interest- ACKNOWLEDGMENT
ingly, these solutions are similar to those for Jeffrey-Hamel
flows between nonparallel wall¢ 1] and could be worthy of S.J.E. wishes to acknowledge the Royal Society for sup-

further investigation. Finally, it should also be noted thatport.
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