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Effects of elongation on the phase behavior of the Gay-Berne fluid
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In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal
model, concentrating on the effects of varying the molecular elongatidve study a range of length-to-width
parameters & k<4, using a variety of molecular dynamics and Monte Carlo techniques, obtaining a guide to
the phase behavior for each shape studied. We observe Wipoisétropic liquid (), nematic N), smectic-

A (S,) and smectid® (Sg) liquid crystal phases. Within the small range of elongation studied, the phase
diagram shows significant changes. On increaginipe liquid-vapor critical point moves to lower temperature
until it falls below thel-Sg coexistence line, around= 3.4, where liquid-vapor coexistence proves hard to
establish. The liquid-vapor critical point seems to be completely absent4dt0. Another dramatic effect is

the growth of a stabl&, “island” in the phase diagram at elongations slightly abowe 3.0. TheS, range
extends to both higher and lower temperatures @s increased. Also asg is increased, thé-N transition is
seen to move to lower densiffand pressupeat given temperature. The lowest temperature at which the
nematic phase is stable does not vary dramatically wit®n cooling, ndSg-crystal transition can be identified

in the equation of state for any of these elongations; we suggest that, on the basis of simulation eS8jdence,
and crystal are really the same phase for these mo&1€63-651X98)15505-§

PACS numbgs): 61.30.Cz, 64.70.Md, 61.20.Ja, 07.05.Tp
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(rj-&+rij-8)°

1+x(e-g)

}—1/2

wherey=(k?—1)/(k?+1) andk = 0ge/ 0ss. Ts= 07 IS the
cross-sectional diameter of the molecute,e= kog is the
molecular length along the main symmetry axis. Accord-
ingly, the parametek is a measure of the length-to-breadth
ratio of the molecule.

G'(rij , 6 ,eJ'):(To[ 1- %
Considerable progress has been made over the last two
decades in the understanding of the behavior of liquid crys- (Fi-e—r-e)2
tals by considering both detailed molecular modélg] and A R L
a family of simplified model$3—6] with the aid of computer 1-x(&-€)
simulation techniques such as molecular dynartt®) and
Monte Carlo(MC).

In the well-known Gay-Berng€GB) pair potential[3],
molecules are viewed as rigid units with axial symmetry.
Each individual molecula is represented by a center-of-
mass positiorr; and an orientation unit vectag , which . : .
define the direction of the main symmetry axis of the mol- _The interaction strength also depends on the relative

: . . orientations of the molecules, and takes the form
ecule. The GB interaction energy between a pair of mol-
ecules {,j) is given by

e(rij.&6.6)=sdle1(6,6)]Tearij .6 .€)]",

~ —_ _ — 2 21-1/2
UGB(rij,Q.ej):48(rij .6.6)0j 12_Qij6] e1(€,8)=[1—x"(&-)°] ™
! A... A... . 2 A... —A... . 2
where 82(Fij,e,,ej)=1—% (rij Q‘j‘l’u &) +(rlj Q, rij-€) .
1+x'(g-€) 1-x'(&-§)
T _O'(Fij 6 ,6)+0g Hereeg, is a parameter setting the overall energy scale of the
2ij= o0 : pair interactions y'=(x'Y*—1)/(x'¥*+1) and «’

=g €00 £4iS the minimum of the potential for a pair of
. . . , parallel side-by-side molecules, anglis the minimum for a
Here oy is a constant defining the molecular dlame_te]r,|s pair of parallel end-to-end molecules. The expongniand
the distance between the centers of mass of molecudesl '\ (o originally set to the values=2 andv=1 [3], but

j, andry=rj/rj; is a unit vector along the center-center several other possibilities have been investigated since.

vector rj;=r;—r;. a(Fij ,6,§) is the distance(for given In all the work presented here, the intermolecular poten-
molecular orientationsat which the intermolecular potential tial is truncated at a distance, = (x+1)oy and shifted
vanishes, and is given by such thatU(rij=r¢,) =0:
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k=3.0 coexistence is possible, and has been predicted for this an-
isotropic systeni21]. The behavior of the critical tempera-
ture T should also be borne in mind: based on the trend seen
earlier [26], increasingx should suppress the coexistence
envelope, and at high the critical point and the entire
liquid-vapor coexistence curve may move below th&g
coexistence line.

Here we report studies of the GB fluid for which is
increased (3 «<4), with the other parameters held fixed
(u=2,y=1,k"=5). In the following sections, the equation
of state is presented for a number of isotherms, obtained by
MD and MC techniques. The phase behavior is further stud-
05 AN [ ied using direct simulation of coexisting phases and thermo-

T == S N 4 dynamic integration along phase boundaries. Finally, the na-
! > ture of the highly ordered phase is discussed, and the results
are summarized in tentative phase diagrams.

0.0 - - - =\ The simulation techniques used here have been described
0.0 0.1 0.2 03 04 before; brief summaries will be given where appropriate. Of
P particular concern to us is the proper simulation and analysis

FIG. 1. Phase diagram for the=3.0 Gay-Berne fluid as re- of highly ordered p_hases such as sm_ectic liquid crystals,_ z_:lnd
ported in Ref[4]. Filled diamonds mark simulation results; away W€ discuss some issues of concern in Sec. II. All quantities
from these points the phase boundaries are drawn as a guidd only.aré given in reduced units, defined by setting the potential
N, and Sz phases are labeled; denotes the liquid-vapor critical Parametersoy and eo to unity, along with the molecular
point. Two-phase regions are shaded. Here and throughout, amassm and moment of inertia.
quantities are expressed in dimensionless reduced units defined by
setting the potential parameterg ande g, along with the molecular

2.0

1.5

massm and moment of inertid, to unity. Il. CHARACTERIZATION OF NEMATIC
AND SMECTIC PHASES
TC- GB(, . . I .
U(rij e ,6)=U"(ryri; 6 ,6) — U (reudij .6 ,€). Orientational ordering is characterized by the second-rank

. _ _ . _order parametel$, defined in a standard way as the largest
In a wide range of reported simulation studies, varioussigenyalue of the order tens29]. Positional ordering is
forms of the GB model have been shown to exhibit Stabletypically examined through a paramesg(k), essentially the

isotropic (), nematic (N), SmecticA (Sa), and smecti® g cture factor, defined as a function of reciprocal lattice
(Sg) mesophasept—6], and many other aspects of the GB ectors k commensurate with the box dimensiofid0].

model have been studi¢d—18|. Different perturbation theo- A%so, we may use the pair distribution functiog(r)

ries have also been developed to study the phase diagram (VIND(Z,S . 6(r — i ; ;
: L = iZj-i0(r—rj;)) where(---) is a simulation av-
GB fluids[19-23. A recent generalization of the GB pOten'_erage including an unweighted average over molecular ori-

tial has considered nonequivalent Gay-Berne particles '%ntations[?al]. It is convenient to simplify this to two func-

both uniaxial and biaxial cas¢&3]. - : _ - -
: . tions:g;(ry), depending only om;=r-n, the pair separation
In a previous papdr24], we examined the effect of vary- parallel to the directom; and g, (r,), a function ofr,

. , : .
ing the " parameter to modify the anisotropy of the attrac-_ \/rz_—r|z the transverse separation. Smectic layering gen-

tive interactions. At sufficiently low’, we observed rates a one-dimensional density wave along the layer nor-
nematic-vapor coexistence. Recently, two of us studied th& o T y we 9 ye
mal (coincident withn in the cases of interest herend this

liguid-crystal-vapor interface for this systef@5]. The pur- pears irg(r|); any transverse structutehich would dis-

pose of the current study is to investigate the consequenc%%guish aS, from a S, phas is detected by examining

of varying the length-to-width parametar. Our reference . > =
point is the phase diagram obtained by de Migehl. [4] g, (r,). For these functions we employ a cylindrical cutoff
volume, i.e., we average over pairs of molecules satisfying

for the original parametef8] u=2,»=1 andx’' =5, k=3, _ 4 < Note that. b i< of molecul
shown schematically in Fig. 1. The three phases indicated afg = Mmax@N0r, =I'may. NOLE Ihal, because pairs ot molecules
I, N, andSg. Previous work{26] investigated liquid-vapor with considerably differentr contribute tog,(r,), this
coexistence properties fae<3.0. This indicated thatde- fgnc_tlon_|s .not In-any way a two-gllmen5|or_1alf2D) pair
creasingmolecular elongation is accompanied bgraaden- distribution; for instance, at short distances it does not go to
ina of the liquid-vapor xistence redion. particularly on theZ€"©: provided the cutoff range is not too s_hort.

g of the liquid-vapor coexistence region, particularly on the For these reasons, we use other functions to probe the

liquid side, andncreasingvalues of both critical temperature . . . .
q o P intralayer and interlayer structures in the smectic phases. Us-

and density. . . )
The work reported here concentrates or 3.0. Certain ing the phase and period of the density wave alangve
sign each particle uniquely to a specific layey

trends in phase behavior might be expected to accompar&S . :
increasing elongation. For hard spherocylinders, this en- 1’2’_3' Y ?{‘n‘fl')measur(‘j) functions resolved. accordmg o
hances the stability of the smectic regidas], whereas, on layer index,g, "(r,). g1"(r,), for example, is a 2D dis-
the basis of Onsager arguments, one might expect the randgi@bution function averaged over pairs of particieand] in

of the nematic phase to be increag@®]. Nematic-vapor the same layer onlyg{*)(r,) is defined for particles in a
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given layer and in an adjacent layer. In all cases, an overallwas given a small, random displacement from the ideal po-
average over (and hence the layerss taken. sition and orientation to assist in disordering. Ro+ 3.0,

A nematic phase is characterized by nonzero orientationghis system is unstable, quickly losing positional order, and
order paramete$, a uniformg(r), and short-ranged func- becoming orientationally disordered within x80° time
tions g{°(r, ), g"(r,), etc. In aS, phase,g(r|) shows steps. As expected from the results of previous weikthe
long-ranged oscillations with a period equal to the layerequilibrium configuration under these thermodynamic condi-
Spacing, while gio)(rL) has Short-ranged structure 0n|y, tionS.iS iSOtrOpiC. The System was then SIOWIy Compr.GSSEd in
characteristic of a two-dimensional “liquid,” ang¥)(r,) ~ density steps of 0.01 or less. Far>3.0, the densityp
shows very little interlayer correlatiofMore precisely, inan = 0-27 was observed to lie within the orientationally ordered
infinite sampleg;(r;) would show quasi-long-ranged order region of the phase. diagram, and_ longer eqU|I|brat|o_n runs
[32], but we cannot easily distinguish this from true long- Were performed, typically of X 10° time steps. The configu-
ranged order in simulations of a few hundred molecjlgs. 'ation atp=0.27 was used as the starting point for both
aSs phase,g(f)(rL) develops long-ranged peaks character-increasing and dt_ecreasmg the denslty. For_ _the &asd.0,
istic of ordering within the layers, ang{’)(r,) may show the starting density wap=0.17, which equilibrated to an
some short-ranged correlation between layé&o-called isotropic fluid; the density was both increased and decreased

“hexatic” and “crystal” variants of theSg phase are distin- from this point.

guished by quasi-long-ranged and true long-ranged order i C':I' 2ﬁﬁlal\t/ilc?nsnfr??/vx\ilgrr]ebg;gr?;egic];zdalltz)}(/vgng%gq-
positional correlation functions, but once more we canno P ¥

distinguish these cases in our simulatipria a crystal, all Important pomt when simulating S'.“““? phasdsach MC .
cycle consisted oN attempted particle displacement or ori-

these functions show well-developed long-ranged structure.entation moves, and one attempt to change the box volume.
The maximum positional and angular displacements were

Ill. SIMULATION DETAILS adjusted to keep the acceptance rate for the combined move
close to 50%. Volume moves were attempted by sampling

Particle elongations from= 3.0—4.0 in steps of 0.2 were the box sided.,, L,, andL,, independently, thus allowing
considered. Both MD and MC techniques were employedthe aspect ratio of the box to vafglthough the box sides
For convenience, we divide our study into two regimes: highwere constrained to be mutually orthogonal throughout
temperature T>0.5), where attention is focused on the sta-Again, the maximum variation was adjusted so that about
bility of nematic and smectic phases, and low temperatur®0% of moves were accepted, typically resulting in a maxi-
(T<0.5), where we examine isotropic liquid and vapormum box length variation of around 1%.
phases. Sequences of MC simulations were initiated from smectic

In the first stage of this investigation, MD simulations configurations with layers arranged perpendicular to zhe
were performed on a system &f=256 particles in the axis, molecular orientations aligned with and with par-
constantNVT ensemble, adopting the procedure describedicles positioned at random in they plane. The system size
previously[4]. Two isotherms were investigated, at reducedwas N=600, and six layers were used. Typical—10
temperatures of =1.00 and 0.45. It has been shoj that X 10* cycles were performed for each state point, increasing
for k=3.0, the T=1.00 isotherm crosses the supercriticalto (1-3x10° cycles in the vicinity of phase transitions.
isotropic fluid region, shows a stable nematic region, and aBome runs, indicated below, were significantly longer than
high enough densities enters a smectic phaseTth®.45 this. The initial layered configuration was allowed to equili-
isotherm crosses the liquid-vapor coexistence region beforbrate at the chosen starting pressure, and from here steps
also entering a smectic phase at high densge Fig. L A were taken up and/or down in pressure, as appropriate.
reduction in the critical temperaturé&,, is expected to ac- Where the initial configuration melted to a positionally dis-
company an increase in elongation. Thus, at some elongatiasrdered phase, an initial layered configuration was also used
x>3.0 theT=0.45 isotherm is expected to become super-at a higher pressure, in order to study systems with layers
critical. perpendicular taz. Starting configurations at various tem-

The temperature was kept constant throughout thesperatures were taken from the most ordered region of a
simulations by rescaling the particle velocitigd]. A cubic  neighboring isotherm. For some isotherms we undertook
simulation box was employed with periodic boundary condi-compression sequences to check for hysteresis.
tions. As in previous work, the molecules were treated as Following on from studies of isotherms, we have at-
linear rotors, with the moment of inertia about the main sym-tempted to map out some of the phase boundaries. We em-
metry axis set to zero. The time step used for the numericgdloyed Gibbs-Duhen(GD) integration[33,34], using a trap-
solution of the equations of motion wa$=0.0015. Equili- ezoid rule predictor-corrector to integrate the following form
bration periods at each new state point were at least 2.6f the Clapeyron equation thermodynamically,

X 10* time steps, and were typically 3—4 times longer than

this when the system was close to a phase transition. After dinP  Ah
equilibration, quantities of interest were typically calculated dag B BPAv’
and averaged over 2&10* additional time steps.

For the T=1.00 isotherm, at each elongation except forwhere 8=1/kgT, Ah is the enthalpy difference per particle
«=4.0, MD simulations were initiated from a lattice gener- between the two phases, asd the difference in volume per
ated at a density gh=0.27. The director was taken along particle. Approximate coexistence conditions were used as
the main diagonal of the simulation box, but each particlethe starting points. To investigate the liquid-vapor envelope,
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k=3.0 k=3.0
10 25
AT=1.00 (MC)
© T=1.00 (MD) — p=0350
O 7-0.85 (MD) ——- p=0370 A
8r 1 20+ . —-— p=0.390 A

0.25 0.30 0.35 0.40
P n

FIG. 2. Equations of stat@ressureP vs densityp) of the GB FIG. 3. Transverse pair distribution functiog, (r,), deter-
fluid with «=3.0. All quantities are expressed in reduced units,mined by the MD technique for the GB fluid with=3.0 at differ-
defined as in Fig. 1. Diamonds: const&T MD at T=1.00.  ent number densitieflabeled on the plgtalong the isothernil
Up-triangles: constarftPT MC at T=1.00, increasing pressure. =1.00.

Squares: constaNVT MD at T=0.85. Solid lines are drawn to

guide the eye, indicating the distinct phases. Horizontal dotted line§asex = 3.2 shortly; they are omitted here for brevityrhe

indicate estimates of the transition pressures. growing structure irg, (r,), indicates transverse positional
correlations that persist across the box. This is consistent

we used the Gibbs ensemble Monte Caf®@EMC) [35]  with the earlier identification of thé&g phase[4]. In this

technique. Details are given below. phase, the distribution function falls to zerarat=0, but this
is only because we impose a relatively short cutigff,,
IV. RESULTS AT HIGH TEMPERATURE ~40,, which means that the function does not include pairs

further apart than one layg¢the layer spacing, frong(r),

For each molecular elongation we first discuss in detail g 4nnroximately 2.4,]. Molecules in the same layer cannot
our results along the isotheri= 1.00; then we present the approach each other closely, and, since, limyg, (r,)=0
’ ’ J_ ’

supplementary MC results for temperatures in the range 0'\z/?’ve deduce that molecules in adjacent layers also do not lie
=<T=2.0. These temperatures lie well above the critical tem- ) Y

T ’ . . directly above one another, as one would expect in a well-
erature for liquid-vapor coexistence in the=3.0 GB fluid . .
?T ~0.47) ar?d sincgc is expected to fall with increasing registered(e.g., close-packedayered structure. Extending
c . '

. - I max Would change the appearancegf(r ), as more layers
eIo_ngatlon, we do not expect to encounter_l|qu|_d—vapo_r SePavere brought into range. For the same reason, the position of
ration for any of the state points reported in this section. . . 4 below — 1. reflects nosi-

Additional tabular material relating to MC simulations the first maximurm, which MOVES below =1, re posi

. . ' tional correlations between particles of adjacent layers. The

along these isothermgressureP, densityp, nematic order ¢ - (0) h indicates h lord
parameterS, and positional order parametsy) have been §ructgr§ g1 7(r,) (pot showy indicates hexagonal or er-
deposited with PAP$40]. ?ﬁa\slv;thm the smectic layers, as expected for a smeBtic-

Both MD and MC techniques agree very well for the iso-
tropic and nematic phases. The equation of state ofSthe

The casex=3.0 has been studied extensively befpt§  phase determined by the MC technique differs somewhat
and we have carried out additional simulations only to confrom the MD results: the measured density at given pressure
firm these earlier results and calculate some of the structur#d somewhat higher than that obtained with the MD tech-
functions mentioned in Sec. Il. The equation of state as obnique (or conversely the MD pressure at a given density is
tained using MD and MC techniques is shown in Fig. 2.higher than the MC input pressuréhis is probably due to
Increasing pressure or density is accompanied by a phaske additional strain imposed on ti8 phase by the con-
transition, indicated by a discontinuity in the equation of straint of fitting in a cubic box: the effect will be smaller for
state and a marked increase in orientational order. The othe larger system used in the MC runs, and in any case the
dered phase is nematic, as confirmed by the liquidlike behawox lengths are allowed to vary in the latter case. For this
ior of the orientationally averaged pair distribution function. reason, in discussing the location of the nematic-smectic
At higher densities, the system undergoes a second, weakansitions for higher values of, we take the MC results as
transition to a smectic phase, which is identifiedSasby  providing a more reliable guide. This is also why we take
studying the functions defined in Sec. Il. In Fig. 3, we showcare to prepare smectic phases with layers aligned with the
g, (r,) (examples of the other functions will be given for the box axes.

A. k=3.0
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k=3.2 k=3.4
(a) Isotherms at 7=1.00 and below

9 9 T

A T=1.00 (MC)
sl 8 I ¥ 7=1.00 (MC)

¥ 7=1.00 (MC}
7k 7L < T=1.00 (MD)

0 7=0.85 (MD)

) L L )
0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35

P P
FIG. 4. Equations of stat@ressureP vs densityp) of the GB x=3.4

fluid with k=3.2. Up-triangles: constaNPT MC at T=1.00, in- {b) Isotherms at T=1.00 and above
creasing pressure; down-triangles: decreasing pressure. Filled j '
down-triangles denote isolated simulationsTat1.00 andP=3.5,

and 4.0, using independent starting configurations. Diamonds:
constantNVT MD at T=1.00; for clarity these results are displaced
upwards by one unit. Squares: constBit-T MD at T=0.85. Lines

are drawn to guide the eye, indicating the distinct phases; for the
isotropic and nematic phases Bt 1.00, the same lines are fitted
through both MD and MC data points, displaced by one unit as
necessary. Horizontal dotted lines indicate estimates of the transi-
tion pressures.

B. k=3.2 and 3.4

Now we considerk=3.2 and 3.4; the isotherms are
shown in Figs. 4 and 5. ThieN transition is seen for both
systems, as fok= 3.0, on increasing the density; the transi- %% 055 080 035
tion density falls with increasing elongation, as expected. P
_On_ce more, smectic _ordering sets _in at hig_her_densities, a5 FiG. s. Equations of stat@ressureP vs densityp) of the GB
indicated by the density wave seengy{r), which is Shown  qi4 with «=3.4. (3 T=1.00 and 0.85. Up-triangles: constant-
in Fig. 6 for k=3.2. Oscillations can be seen@t0.300 as NPT MC at T=1.00, increasing pressure; down-triangles: decreas-
smectic regions develop, and on increasing the densipy 10 ing pressure. Filled down-triangles denote isolated simulations at
=0.305 the structure is greatly enhanced. & 0.340 a T=1.00 andP=2.5, and 2.7, using independent starting configura-
strong density wave is established. In all cases, the smections. Diamonds: constatyT MD at T=1.00; for clarity these
layers form perpendicular to the director. results are displaced upwards by one unit. Squares: corl$iét-

From the MD results, the nature of this phase is differenfVD at T=0.85. (b) ConstantNPT MC at higher temperatures.
from that seen fok=3.0. The behavior of, (r, ) just above Circles: T=1.00 (for reference Up-_trlangles:Tz 1.20. _Squares:
the nematic-smectic transition, in the range 035 T=1.40. Down-trianglesT=1.60. DiamondsT=1.80. Lines are

. Lo . . rawn to guide the eye, indicating the distinct phases; for the iso-
=0.320, remains liquidlike, without the features descrlbedﬁoIoiC and nematic phases #t=1.00, the same lines are fitted
above fork=3.0. This is shown in Fig. 6 fok=3.2 atp

= oA ) ’ . through both MD and MC data points, displaced by one unit as
:9-310- Even lclearer 'n.d|Cat|0n5 are given in the fL_mQt'O”%ecessary. Horizontal dotted lines indicate estimates of the transi-
9'9(r,) andg{™(r,) which show two-dimensional liquid- tion pressures.

like structure within each layer, and almost no correlation

between adjacent layers, at these densities. These are illugme stepg did configurations at these state points reach the
trated fork=3.2 in Fig. 7. Similar functions are observed for stableSg phase.

k=3.4 in the density range 0.2%}=<0.290. This leads us In the MD runs, a third transition is seen at higher densi-
to identify the phase as a smec#ic To our knowledge, no ties, to theSg phase, as indicated by the functioms(r, ),
stableS, phase has been identified for thke=3.0 fluid in  g{%(r,), andg!¥(r ), which clearly show the onset of ad-
this or earlier work, although indications ofraetastable §  ditional transverse ordering within a layer, and strong regis-
phase fork=3.0 are reported in Ref4] at T=0.80 for try between layergsee Figs. 6 and)7 The S,-Sg transition
0.30<p<0.34: only after extensive simulation~@x10*  density is reduced as elongation is increased. The distinction
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k=3.2 k=3.2
(a) Longitudinal pair distribution function (a) In-layer pair distribution function
3.0 T T T T T T T T
1
—— p=0280 4f A —— p=0310 ]
——- p=0.300 / l.‘l ——- p=0.320
25 L ---- p=0.305 FERY ] 0 —-— p=0.340
™, e 920,320 [AERY "
Y —-— p=0.340 / \ B
/ s N
!

giin)

k=3.2 k=3.2
(b) Transverse pair distribution function (b) Between—layer pair distribution function
2.0 T T T T 25 T T T T
— p=0.280 — p=0.310
—=—- p=0.310 ——- p=0.320
—-— p=0.340 —-— p=0.340

20 f

s

FIG. 6. (a) Longitudinal pair distribution functiorg(r;), and FIG. 7. (a) In-layer pair distribution functiomy{®(r,), and (b)
(b) transverse pair distribution functia, (r, ), for GB fluid with  between-layer pair distribution functiog{¥(r,), determined by
«= 3.2 at different number densitiésbeled on the plof along the  MD simulation for GB fluid withx=3.2 at different number den-
isothermT=1.00. sities (labeled on the pl9t along the isothernT=1.00.

between the hexati€; and crystalB phases is not easy to g(r|) disappeared. FOP=4.0, the smectiéx ordering re-
make in simulation, due to the smallness of the systemsained throughout the runs, as shown by structural functions
[4,5]; we discuss this further in Sec. V B. very similar to those seen in the MD runs at densities around
The constanNP T MC simulations produce much weaker p=0.310(see Figs. 6 and)7although the smectic order pa-
indications of theS, phase for these elongations. @m  rameter continued to decrease slowly. For3.4 andP
creasingthe pressure from the nematic phase, #we3.2 =2.5, once more the smectic layering disappeared and a
fluid gives a very narrows, range (0.316p=<0.315), and nematic phase resulted, butRt 2.7 the relevant structural
the k= 3.4 fluid seems to give none. @ecreasinghe pres- functions showed more signs of stabilizing at values charac-
sure from theSg region, neither fluid shows 8, phase, both teristic of a smecti®A phase.
transforming directly fromSg to N. At the lowest pressure Our results are consistent with the view that tBe is
on this path for which theésg persisted, the simulation was metastable aik=3.2, and possibly just becoming stable as
extended, and for both elongations the structure showed nihe elongation increases to=3.4, at this temperature. A
signs of melting after % 10° sweeps. In both cases, new, possible explanation of the greater apparent range oSthe
layered starting configurations were introduced at pressurgshase in the MD runs is that, once smectic layers have
in the hysteresis region, and runs of (5->6)0° sweeps started to form at an arbitrary angle in the cubic box, the
were undertaken; these results are shown in Figs. 4 and additional Sz ordering within layers, and strong registration
For k=3.2 and P=3.5, the system joined the nematic between layers, would involve additional strain energy due
branch of the equation of state, and all signs of layering irto the periodic boundary conditions.
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(@) Isotherms at 7=1.00 and below
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FIG. 8. N-S; phase boundary of the GB fluid obtained by x=3.6
Gibbs-Duhem integration fat= 3.4 in the density-temperature and (b) Isotherms at 7=1.00 and above

pressure-temperature planes. Left-pointing trianglBk: phase.
Right-pointing trianglesSg phase. Diamonds: approximate coexist-
ence data from equation-of-state simulations.

Additional MD runs and constaMd-PT MC simulations
with variable box shape, system sid&=600, were con-
ducted for isotherms above and beldw 1.00, for x=3.4.

No S, phase is observed at these temperatures, and the dis-
continuity at theN-Sg transition narrows as the temperature
increases.

Following the determination of these isotherms, we at-
tempted to map out thBl-Sg phase boundary by GD inte-
gration with a starting point inferred from the=1.40 data
shown in Fig. 5. Systems &d=600 were prepared for both
nematic and smectiB-phases aP =5.05 using the constant-

NPT MC technique with variable box aspect ratio, from the 0

well-equilibrated systems at neighboring pressures. Heating

and cooling runs followed. At each step, temperature was FIG. 9. Equations of statpressureP vs densityp) of the GB
changed byAT=0.1 (both up and dowy and 5x 10° equili- fluid with k=3.6. () .T= 1.0Q and below. Up-trlaqgles: constant-
bration sweeps were allowed at the predicted pressure. THEP TMC atT=1.00, increasing pressure. Down-triangles: decreas-
refinement process typically converged after a further 4319 Pressure. Diamonds: consta‘T MD at T=1.00; for clarity

. these results are displaced upwards by one unit. Squares: constant-
X . .
10° SWeeps The production phasc_e coveredl@"' SWEEpS, NPT MC at T=0.9. Circles: constartPT MC at T=0.8.(b) T
completing the procedure. Integration down in temperature

tinued toT=1.0. at which point th ist =1.00 and above, all determined by the constd®T MC tech-
con I?ue bo h_b. ' abW Ich poin e_coﬂex_lj encg curve nique. Circles: T=1.00. Up-triangles:T=1.20. Diamonds:T
was lost, both boxes becoming isotropic fluids. The maxi-_ 1.50. SquaresT=2.00. Lines are drawn to guide the eye, indi-

mum temperature considered whs: 2.0, already above the 4iing the distinct phases; for the isotropic and nematic phases at
highest isotherm studied. Results of these simulations arg— 1 0o the same lines are fitted through both MD and MC data

shown in Fig. 8, along with approximats-Sg boundary points, displaced by one unit as necessary. Horizontal dotted lines
values from equation-of-state runs. Agreement between th@dicate estimates of the transition pressures.

different sets of results is reasonable, but worsens noticeably

at the lower temperatures.

Sa phase is identified for both increasing and decreasing
pressure series. MD and MC simulation results are in quite
good agreement; for these elongations, the pressures in the
At elongationsk=3.6 and 3.8, the same sequence oftransition region are lower than the corresponding MD val-
phases is seen as far=3.2 and 3.4, but the evidence for a ues or, where hysteresis effects have been investigated,
stable S, phase is much stronger from both MD and MC bracket them. As at=3.0, the smectic phases have a
runs. The isotherms are shown in Figs. 9 and 10. Again, thslightly higher density for a given pressure in the MC simu-
phases can be clearly distinguished by examining order pdations.
rameter values and distribution functions. There is some hys- As the elongation increases, it can be seen that the density
teresis around the phase transitions for these systems, but taed temperature range of tl$ phase is increasing in both

C. k=3.6,3.8
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k=3.8 FIG. 11. S,-Sg phase boundary of the GB fluid by Gibbs-
(b) Isotherms at 7=1.00 and above Duhem integration fork=3.6 in the density-temperature and
' ' ' pressure-temperature planes. Left-pointing triandigor N phase.

Qi Right-pointing trianglesSg phase.

O T=1.50 S,
R 777 Fig. 11. On heating, the system clearly has passed through
the N-S,-Sg triple point before the temperature reachies
=1.50, as inferred from equation-of-state results, but the pre-
cise temperature at which ti8 phase melts tiN is hard to
locate from either the density or order parameters. For de-
creasing temperatures, it was hoped thatShehase would
disappear, to be replaced byyand then, on further lowering
the temperaturd,; or alternatively that a direct transition to
| would be observedRecall that on the' =0.90 isotherm,
neitherN nor S, are seeh This would distinguish between
the two schematic phase diagrams shown in Fig. 12. Recog-
0 o5 oo o5 nizing that the transition from th8, phase may be sluggish,

P we extended the production phase f6=0.90 to 2x 10°
sweeps. Unfortunately, th®, phase remained metastable in
these simulations: af=0.85, the smecti¢positiona) order

arameter is still high and not changing with time. Conse-
uently, we are unable to resolve the situation 4cr 3.6,

FIG. 10. Equations of stat@ressureP vs densityp) of the GB
fluid with k=3.8.(a) T=1.00. Up-triangles: constabdP T MC at
T=1.00, increasing pressure. Down-triangles: decreasing pressu

Diamonds: constarfttVT MD at T=1.00; for clarity these results which must be close to the elonaation at which the phase
are displaced upwards by one urit) T=1.00 and above, all de- 9 P

termined by the constaPT MC technique. CirclesT=1.00. diagram to,pOIO_gy changes frofa) to (b), in Fig. _12' ForK
Up-triangles: T=1.20. Diamonds:T=1.50. Squares:T=2.00. =3.8 the situation seems to be unambiguous, judging by the
Lines are drawn to guide the eye, indicating the distinct phases; for
the isotropic and nematic phases Tat 1.00, the same lines are
fitted through both MD and MC data points, displaced by one unit
as necessary. Horizontal dotted lines indicate estimates of the tran- 1 N
sition pressures.

directions, but that it remains bounded below and above in
temperature. Ak = 3.6, theS, region is small, but th&,-Sg
transition is shown clearly af =1.20 (see Fig. 9. We at- B B
tempted to map out this transition line by GD integration,
starting from this temperature: the two phases were sepa- p p
rately equilibrated atP=3.55 for 2x10* sweeps before b

starting separate heating and cooling integration runs. A tem- @ (b)
perature stepAT=0.05 was used. The initial equilibration  FIG. 12. Schematic phase diagrams in Brd plane around the
covered X 10* sweeps; convergence was achieved in typi-S, phase(a) Topology deduced from simulations fer< 3.6, albeit
cally (3—5)x 10° sweeps, and a further10° sweeps were  with very small or metastabl&, region at low. (b) Topology
allowed for the production phase. The results are shown ineduced from simulations for>3.6.
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Kk=4.0 ing long rungof order(2—3)x 10° time step$in this region.
{a) Isotherms at 7=1.00 and below At p=0.185, the order parameter takes a vaf®e0.375
' ' +0.006, which is significantly nonzero even with this system
size, but the equation of state is relatively featureless at this
density.S, ordering appears at=0.190, and at still higher
densities there is a transition to tBg. Bearing in mind that
the nematic density range is quite narrow e« 3.8, this
suggests that anN-S, triple point exists close by, and that
the N phase will be absent for elongations significantly
greater thank=4.0 at this temperature. As a further investi-
gation, we performed a series of MD simulations on a system
of N=400 particles in a cuboid@&honcubig simulation cell.
The initial configuration was a smectic for which the box
aspect ratio was allowed to relax, using the MC technique at
a constant pressure, equilibrated at a fixed densityp of
=0.200 using the MD technique, and then slowly reduced in
density. TheS, phase persisted gt=0.200 over 1.% 10°
time steps, but ap=0.190 the modulation o (r|) was

3.0

A 7=1.00 (MC)
¥ 7=1.00 (MC)
25 L | ©7m=1.00(MD)
@ 7=1.00 (MD)
(
(

O 7=0.90 (MC)
O T=0.80 (MC)

05

0.10

xk=4.0 very weak. Nematic ordering was still preser8=0.418
s {b) Isotherms at 7=1.00 and above +0.003) on expanding tp=0.185, but orientational order
' ' dropped toS=0.129+0.003 atp=0.180. These results are
2;128 shown in Fig. 13, and suggest that a stable nematic phase
0 7=2.00 may indeed exist over a very narrow density range. In the

constantNPT MC simulations, there is also difficulty in iso-
lating the nematic phase, and it appears only in the
decreasing-pressure branch of the hysteresis loop.

At lower temperatures, the nematic phase seems to have
disappeared altogether, the isotropic liquid being converted
directly intoS, and then, at higher pressures, ig9. As the
_ temperature is raised above=1.00 we see the progressive
squeezing out of th&, phase byN, as observed for lower
elongations.

V. RESULTS AT LOW TEMPERATURE

0.30 Now we turn to the low-temperature region. Two features
of the phase diagram are of interest: the determination of the

FIG. 13. Equations of stat@ressure® vs densityp) of the GB  liquid-vapor coexistence curve, and the clarification of the

fluid with k=4.0. (8 T=1.00 and below. Up-triangles: constant- nature of theSg phase.

NPTMC atT=1.00, increasing pressure. Down-triangles: decreas-

ing pressure. Diamonds: constad¥T MD at T=1.00 with N

=256. Filled diamondsN=400. For clarity these results are dis- A. Liquid-vapor region

placed upwards by one unit. Squares: conskRfF MC at T

=0.90. Circles: constarittPT MC at T=0.80. (b) T=1.00 and

above, all determined by the const&BRT MC technique. Circles: |:0'4ﬁ |sothgrlm, rlgcglllnfg tr?a’;\lfor: 3.0, tbhls lies well be;}
T=1.00. DiamondsT = 1.50. Squarest =2.00. Lines are drawn to ow the stability limit of theN phase, but traverses the

guide the eye, indicating the distinct phases; for the isotropic andiquid-vapor region at low densities and shows smectic or-
nematic phases at=1.00, the same lines are fitted through both d€ring at high density. We have carried out preliminary
MD and MC data points, displaced by one unit as necessary. Horisimulations using the constaNty T MD technique, as in the

zontal dotted lines indicate estimates of the transition pressures. high-temperature regime, at the same elongatiors:
=3.0,...,4.0 inintervals of 0.2. The initial configuration
T=1.0 isotherm: theN phase is very narrow, and likely to gorzeﬂac_g valu_edlok wa_s”;a Iatt:jce alp—O.ZO._'_I'heKI—S(.jO and
disappear on further lowering the temperature, while the den:’ uids ra!m y equil r_ate to lose positional and orienta-
sity range of theS, phase is larger. tional order; at elqngatlon$<>3.4_, an ordered phase_re—
sulted. Other densities were obtained by slow expansion or

compression. The system containde- 256 molecules, ex-
cept for some checks made with=500. Sudden changes in

Finally, we come to the case=4.0, for which the rel- the equation of state, and mechanical instability measured by
evant equations of state are presented in Fig. 13. Here, r negative pressure, provide rough indications of the extent
clear|-N transition could be identified in the MD runs &t  of two-phase regions, and hence a first guess at the transition
=1.00 for the chosen system si2¢5= 256, despite perform- densities.

We have begun by simulating state points along The

D. k=4.0
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The results of thé-Sg transition densities fok=3.0 are k=3.0, 3.2
consistent with those of Ref4]: the isotropic phase under-
goes a transition tdSg within a density range ¢ ,pg)
~(0.26,0.30). We note that the isotropic liquid density is TN
comfortably higher than the upper limit of the liquid-vapor G N
coexistence curve at this temperatuf@4], p=0.179 046 | nd
+0.006. The data fok = 3.2 indicate that thé-Sg transition a O\
is shifted to significantly lower density: p(,pg) j ’R

0.48

~(0.220,0.260), but still apparently lying outside the liquid-
vapor coexistence region.

For k=3.4, there is a much wider range of density over
which the pressures indicate two-phase behavior. kor
=3.4 we found negative pressures over the density range o042t
0.14<p=0.26, while for x=3.6—4.0 the mechanically un-
stable range was 0.8 < 0.22-0.24. The thermodynamic
two-phase region must bat leastas wide as these ranges. 040 , )
We further investigated these cases using condidhi-MC 0.0 01 02 0.3
simulations with variable box shapes. Starting with a smectic
configuration ofN=400 particles, layers aligned in they FIG. 14. The liquid-vapor envelope obtained by Gibbs ensemble
plane of the simulation box, the systems were simulated atlonte Carlo for the GB fluid withx=3.0 (squarep and x=3.2
T=0.45 andP=0. In all cases the configuration quickly (diamonds. Filled symbols indicate estimates of the critical points.
relaxed to a well-ordered smectic phase. Overl®* MC Triangles indicate liquid-vapor coexistence points for the 3.2
sweeps, the systems maintained steady orientational ord@id obtained by Gibbs-Duhem integration. Lines are to guide the
parameter values d=0.939+0.001 forx=3.4 at equilib-  €Y& Estimated errors in the densities are smaller than the plotting
rium densities ofp=0.2569+ 0.0002, andS=0.951+0.001  Symbols.
for k=3.6 atp=0.2461-0.0003, andS=0.964+0.001 for
xk=4.0 at p=0.2262t0.0002. At this relatively low tem- departed from the coexistence envelope, with both boxes dis-
perature, we expect the coexisting vapor pressure to be eplaying the vapor phase. The lowest temperature used was
tremely low, so these figures provide a reasonable guide t8=0.42, at which positional ordering in the dense phase
the equilibrium smectic densities and orientational order pastarted to appear, making particle exchange an unreliable
rameters at coexistence. mechanism for equalizing chemical potential. The situation

The conclusions from these preliminary runs were thatwas confirmed by GD simulations, startingTat 0.44 from
for k=3.0, and 3.2, th&g phase melts to a dense isotropic equilibrated GEMC configurations, and reducing the tem-
liquid on expansion; fork=3.4 it may melt to a fluid of perature in stepdT=0.1, to follow previous state points.
intermediate density; at higher elongatidgsmay well sub-  The resulting data is also shown in Fig. 14. Agreement be-
lime to a dilute gas. tween the two methods is reasonable. &t 0.42, fluctua-

Using the GEMC technique with a system Nf+N,  tions in the orientational order parameter of the dense phase
=1000 particles, liquid-vapor coexistence data for the GBcould be seen; af=0.41 the dense fluid took on a layered
fluid with k=3.2 were obtained. Typically, 210* MC  structure with positional order consistent with tBg phase.
sweeps were allowed for equilibration, and production averSince thel-Sg phase transition is usually rather strong, the
ages were measured over a furthet 10° sweeps. The ini- results at this temperature cannot be relied upon as the cor-
tial configurations were taken from=3.0 simulations af rect coexistence point; they are included to indicate the lower
=0.44. Moving to this higher elongation, the phases redimit on |-V coexistence.
mained separated, and, after equilibration, the configurations At «=3.4, the MD results at =0.45 indicate that th&;
were used to start heating and cooling sequences of simulghase may melt to an isotropic fluid of intermediate density.
tions. The vapor branch fot=3.2 is almost indistinguish- Given the change of . from x=3.0 to 3.2, one would ex-
able from that fork=3.0. Although the liquid density for pect this temperature to be close to the critical point #or
xk=3.2 is~5% lower than that of th&=3.0 system at the =3.4, but still subcritical. However, GEMC simulations at
same temperature, the volume occupied by the particles will =0.45 suffered from poor acceptance rates for particle ex-
be higher by the ratio of the molecular volumése., change, and the liquid phase indicated some smectic order-
3.2/3.0). As a result, the rate of successful particle exchangesg, suggesting thaff=0.45 is also rather close to the
between phases was lower 3.2 for given temperature, V-I-Sg triple point. Direct GEMC simulations were not at-
making the simulations more expensive. The results are preaempted for higher elongations.
sented in Fig. 14. The critical point, as estimated from the The difficulties associated with liquid-vapor measure-
law of rectilinear diameters and assuming a critical exponentnents for the higher-elongation fluids suggests that the phase
of 1, is indicated on the plot. The estimated values kor behavior in the region of the critical point is changing rather
=3.2 areT.=0.47+0.04, andp.=0.10+0.03. With these rapidly with . For increasingx, the V—I-Sg triple point
uncertainties the values cannot be distinguished fromxthe may move up to a temperature abdvg so that there would
=3.0 results. Coexistence data at temperatures clos€t to no longer be a distinct liquid phase, and the triple point
should reduce the uncertainty, but simulationsTa¢0.46  would collapse to ath-Sg transition.

T2
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-

3
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TABLE I. Results of direct simulation of isotropic-smectic co- peared forx=4.0. We have not proved that the critical point
existence fork=4.0.n, indicates the number of smectic layeds, disappears fok=3.4-3.8, but neither have we been able to

the layer spacingpg the smectic bulk density, ang| the isotropic  equilibrate coexisting isotropic liquid and vapor for these
bulk density. shapes

Total run length

T (10° 1) n d P o B. Sg or solid?

0.50 21 12 3647 0236810 0.01483) In our smplaﬂons, we have failed thus far to.o.bserve a
phase transition from th8g phase to a crystal, as it is com-

0.55 21 12 3.72a) 0.22818) 0.01473) . . L
pressed. Furthermore, the pair distribution functions indicate

0.60 24 12 3818 021526 0.01583) strong positional correlations within each layer and between

0.65 60 6 3.80) 0.213919) 0.08785) gp y

layers. Phases historically designafggdhave in some cases
been shown to be crystals with rather weak coupling between
Given that the gap between triple and critical points islayers, having small elastic moduli, closer in nature to graph-
narrowing with increasing elongation, the most extreme casie than to any liquid crystal phad@6]. In our finite-size
examined so farg=4.0, was chosen for an investigation of simulations it is almost impossible to draw a distinction be-
vapor-smectic coexistence. Previous results imply that at tween quasi-long-ranged and true long-ranged offlErthe
=0.45 the smectic phase sublimes directly to vapor. Bearinglistribution functions indicate that positional correlations in
in mind that the critical point foikc=3.0, and 3.2 is approxi- a layer persist across the box, and although decaying in am-
mately T=0.47, and that the liquid-vapor coexistence curvesplitude, layer-layer correlations also persist across the box.
seem to be falling in temperature with increasing elongationOne may therefore question whether tgjsphase is a liquid
this raises the real possibility that the critical point disap-crystal or a solid.
pears completely between=3.2 and 4.0. To investigate =~ We have investigated the nature of tBg phase forx
this, we conducted direct simulations of a slab of smectic=3.4 by cooling it to low temperatures, and observing
phase in equilibrium with vapor. changes in density, orientational and positional order param-
A starting configuration fok=4.0 was generated by tak- eters, and shear elastic modulus. Ar=648 system was
ing a smectic configuration of 648 particles, previouslygenerated as a defect-free structure with hexagonal in-layer
equilibrated atT=0.50 using the constattPT MC tech-  packing. This was equilibrated @&t=0.40 using the constant-
nique atP=0, replicating the box in the direction, then NPT MC technique at zero pressufi practice indistin-
duplicating the simulation box in the direction and adding guishable from the coexistence pressure with the vapor at
204 vapor particles at randomly generated positions and orthese low temperaturgsA sequence of cooling runs, &
entations to givéN=1500. The layers were arranged perpen-=0, down toT=0.08 was undertaken, in steps &{1/T)
dicular to the long box axis. The new system was equili-=2.5 or less, and also a sequence of heating run8=,
brated atT=0.50, and subsequently the temperature wasip to T=0.60, where the smectic phase evaporated. At each
increased in small stepd T=0.05. ConstanNVT molecu- temperature, at least>610* sweeps were performed, with
lar dynamics was used, with additional Monte Carlo movedinal averages being taken over the last BY* sweeps.
to allow relaxation of the aspect ratio of the box. The results To calculate the shear elastic modulus, simulations were
are summarized in Table I. The values shown are based gperformed by equilibrating the system under conditions of
profiles measured typically over the final X80* time fixed strain(applied through sheared boundary conditjons
steps. The layer spacing and the density in the bulk smectignd measuring the response of the appropriate component of
phase are obtained by averaging over the central six layetbe stress tensor. Simulations were performed at tempera-
(or 4 for T=0.65). The isotropic density is calculated ex- tures fromT=0.50 to 0.20 at intervals of 0.05. At eadh a
cluding particles in the neighborhood of the smectic-system was prepared with six hexagonally ordered layers ar-
isotropic interface. ranged perpendicular to with ABC packing, i.e., a uniaxi-
The measured bulk isotropic density increases only ratheally distorted fcc structure. This was equilibrated with the
slowly until, moving fromT=0.60 to 0.65, it changes quite variable-aspect-ratio constaNt* T MC technique, aP=0,
markedly. Such a sharp change in the coexistence conditionmior to imposition of the shear in the-z plane. Three val-
introduces practical difficulties; care must be taken that theues of strain were applied at each temperature, viz. 3%, 5%,
smectic region remains sufficiently large. At each temperaand 7%. After equilibration for X 10* time steps, stress ten-
ture, profiles of orientational order parameter indicate thesor components were measured over a furthed @ time
low density phase to be isotropic; distribution functions mea-steps.
sured over the central layers of the dense slab indic&g a The results of these runs are shown in Fig. 15. No discon-
structure. The inferred smectic bulk valuesat 0.65 should tinuity is seen in the equation of state, or in the order param-
be taken with caution, due to the small humber of layers ireters, as functions of. The shear elastic modul@ shows
the final equilibrium configuration. There is, however, noa slow decrease with increasing temperature, and is essen-
doubt that this coexistence is stable, and that an investmetitlly independent of strain, except at the highest tempera-
of sufficient computing time would allow simulation with a ture; it shows no discernible discontinuity @svaries. The
wider smectic region. Given the location of this “shoulder” degree of interdigitation falls steadily as the temperature is
in the 1-Sg coexistence curve, at~0.65, and the low iso- raised; afT =0.50 very little remains, and coupling between
tropic densities at temperatures below this, the evidenckayers appears to be very weak and correspondingly hard to
seems to indicate that the critical point has indeed disapmeasure, as indicated by the violation of linear response at
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1 F ] FIG. 16. Summary of results and approximate phase diagram for
the k=3.2 fluid. Symbols indicate the different techniques em-
Y ST . ployed. Filled diamonddNPT MC, N=600, cuboidal box, variable
0.0 01 0.6 aspect ratio. Open diamonds: GEMRE, + N,= 1000, liquid-vapor

coexistence. SquarebtVT MD, N=256, cubic box. Away from
these points the phase boundaries are drawn as a guidel pNly.
and Sg phases are labeled;denotes the liquid-vapor critical point.
A metastableS, point is indicated al ~ 1.0. Two-phase regions are
shaded.

FIG. 15. Low-T, P=0 behavior of the GB fluid withk=3.4.
We show variation of density, orientationdircles, and smectic
(squarep order parameters and shear elastic moduyigs, stress
and/or strain G. For G, we report results for three strains: Dia-
monds:(3%). Squares(5%). Triangles:(7%). For clarity, only the

error bars on the 3% results are shown. coexistence line; this occurs at arouke 3.4, where liquid-

vapor coexistence proves hard to establish using GEMC or

these low strains. The Lennard-Jones fcc solid has a reporte D techniques. There is some indication of an intermediate-
ensity isotropic phase af=0.45 for k=3.4, from the

- 2 }
shear modulu37] G="57.2,/05 along the(100 crystal constantNV T MD runs withN=256. For higher values of

lographic_direction. This is §|gn|f|cantly higher than the we have not found any evidence of coexisting isotropic lig-
present values. We note that in our case the fcc structure IS

taken along thé111) direction to obtain hexagonally packed uid and vapor, and the disappearance of the critical point is
layers, and stretched along one axis, as are the particles, so
that the value above is not expected to be directly compa-
rable. This said, a low value of shear modulus is expected in 54

this phase. ® P=0 NG

aoNVTMD
@ NPTMC

k=3.4

VI. SUMMARY AND DISCUSSION
1.5 1

In this paper, we have presented studies of the GB phase I
diagram at a number of elongations in the range<&&4.0.
In Figs. 16—20 the simulation results are summarized in ap-
proximate phase diagrams. The points shown indicate the™ 101
approximate locations of phase boundaries; they are not ex-
act, and uncertainties due to hysteresis should be borne in
mind. A variety of simulation methods have been applied, 051 =
using both MD and MC techniques; where discrepancies ex- | | .
ist (particularly near the smectic-phase boundaries at low £ =Y
values of k) we rely on MC methods with variable box =Y
shape, for reasons discussed earlier. Our results allow us tc o.0 = = —
infer trends in phase behavior, as indicated in the approxi- 0.0 01 02 0.3 0.4
mate phase diagrams for these systems. We have not carrieu P

out any free-energy calculations, which must be the subject gG. 17. Summary of results and approximate phase diagram for
of further study. the k= 3.4 fluid. Symbols as for Fig. 16. In addition, filled circles:

Within this small range of elongation, the phase diagramvmc NPT, P=0, N=648, cuboidal box, variable aspect ratio. To
shows significant changes. On increasinghe critical point  avoid clutter, Gibbs-Duhem results for the Sg transition are not
moves to lower temperature until it falls below theSg shown. A metastabl&, point is indicated af ~1.0.
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k=3.6 k=4.0
2.0 2.0 +
A ® NPTMC = I=
1.5 1 = SA 1.5 é :
| = S,
~ 1.0 =10
S
B =" SB
14,( r S —
051/ 051 ‘ %
0.0 = = ! 0.0 = =
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
P

P
FIG. 20. Summary of results and approximate phase diagram for

FIG. 18. Summary of results and approximate phase diagram for
the k=3.6 fluid. Symbols as for Fig. 16. To avoid clutter, Gibbs- the x=4.0 fluid. Symbols as for Fig. 16. In addition, filled triangles:
direct coexistencd'slab”), MD + MC aspect ratio movesN

Duhem results for th&,-Sg transition are not shown.
=1500, isotropic-smectic transition.

clearly demonstrated at=4.0. These results are consistent
with previous studief26], which showed how the liquid side far from this regime, and it remains to be seen whether a

of the coexistence envelope moves to lower density on insimilar mechanism applies for the Gay-Berne system.
creasingk for k<3.0. N o o For the more elongated molecules, the low-temperature
Disappearance of the critical point is also seen in simpléyart of the phase diagram is dominated by a wide two-phase
models .of polymer-colloid mixtures, where the d.epletlonregiOn where theSg phase is in equilibrium with a very
mechanism allows the range and strength_ of attractions to b§ilute gas. This leads to an important practical point: we
tuned([38]. There, the crucial parameter is the ratio of they,ye ghserved many examples of simulations using versions
attractive range of the potential to the molecular hard core 4 o Gay-Berne potential with high values &f which
Slimeetg'rs.alt 'Za?.?]ss'tgﬁ dtoascer('et'éZ? I'Oqlrjl'td;g‘:igggfqrfx'S.;e?hcgapidIy form glassy, partly disordered, configurations con-
urve disappearing, anc iucal point rging 1 sisting of many smectic domains, separated by large cavities,
solid region, when the width of the attractive well is less than . . L
when they enter this two-phase region. Proper equilibration

~7% of the molecular diameter. Although the trend is simi- . . d e A
lar in our case(increasingx with fixed ' will reduce the of such samples is a_lmost.|mposs_|ble. This S|tua_t|on is in
stark contrast to the simulation of simple hard-particle mod-

ratio of attraction range to average molecular gizee are els such as ellipsoids and spherocylinders, where the study of
highly elongated molecular shapes is quite straightforward.

k=3.8 Another dramatic effect in the phase diagram is the
growth of a stables, “island” in the phase diagram at elon-
gations abovec=3.0, and our simulations have given us a
consistent picture of the effects of changiagThe S, region
may be quite small, aroun=1.00, and possibly metastable
for k=3.2, but becomes well established and extends to both
higher and lower temperatures asis increased. For 3.0
< k<3.6, theS, phase is bounded both above and below by
N and Sz phases, as indicated in Fig. (B2 For 3.6«
<4.0, there is clear evidence of an extendgd phase,
bounded above bl and Sz phases and below byand Sg
phases, as indicated in Fig. (b2
051 \ i The anisotropic attractions in the GB model are highly
I | significant in the formation of smectic phases: in a study of a
) purely repulsive form of the«=3.0 GB potential[4] the
nematic density range was much increased, an&qénor
indeedS,) phase was observed. Also, for hard ellipsoids no
smectic phases are seen. Thus, we have every reason to ex-
pect theS, phase to disappear at high temperatuvken the

2.0

1.54

0.0 T : —
0.0 0.1 0.2 0.3 0.4
p

FIG. 19. Summary of results and approximate phase diagram foattractions are less importardnd it is interesting to see it
squeezed out at low temperature By and Sz phases

the k= 3.8 fluid. Symbols as for Fig. 16.
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(for the lower values of«) and byl and Sz phases(for  pected in &g phase. Nonetheless, since this phase continues
higher k). smoothly to very low temperatures, it may equally well be
We have examined the effect of changing elongation onermed a solid phase. This also means that the high-
the stability of the nematic phase. Asis increased, the-N  temperature limits of the phase diagrams we have presented
transition is seen to move to lower density and pressure, atigere are similar to those seen for hard ellipsdatsd, prob-
given temperature, although the lowest temperature at whichply, for a purely repulsive version of the GB potentiak.,
the nematic phase is stable does not change dramatically: fahowing three phases only: isotropic fluid, nematic liquid
the lower elongations, the nematic phase extends down tgystal, and solid. While we do not expect such a comparison
T~0.80, while, at higher values of, T=1.00 seems to be {5 pe precisdsince the effective core of the molecule is not
the lower limit, as theS, phase takes over. The effect on the exactly ellipsoida[39], and will depend slightly on tempera-
I-N transition of changes im (and «’) has recently been yrg) this is reassuring.
studied theoretically in Ref.28] using a second virial ap-  Although preliminary, in that more precise determinations
proximation for the free energy. This reproduces the trendgf the phase boundaries are no doubt needed, the current
in the location of the -N transition presented here, but the \ygrk, together with the previous studg4], has started to
transition pressure is seriously underestimated, even @roduce a coherent picture of the effects of attractive forces

higher elongations, where the transition density is lower anénd molecular shape on the phase diagram of systems of this
the inadequacies of a second virial treatment are expected {gnd.

be less significant. As expected at the second-virial level, the
width of the coexistence region is overestimated, and the
transition density somewhat underestimated. ACKNOWLEDGMENTS
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