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Crossover from XY critical to tricritical behavior of heat capacity
at the smecticA —chiral-smectic-C liquid-crystal transition
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High-resolution ac calorimetric measurements have been carried out for four chiral liquid-crystal systems:
4-(1-methylheptyloxycarbonylphenyl 4 -octyloxybiphenyl-4-carboxylate, its octylbiphenyl analog, its octy-
loxycarbonylbiphenyl analog, and 2-fluorofi4d-trifluoromethy) undecyloxy carbony} phenyl
4'-(dodecyloxy biphenyl-4-carboxylate. The heat capacity anomaly around the sn#edicthe chiral-
smecticC transition has been analyzed in detail. It is revealed that the heat anomaly shows a crossover from
three-dimensionaXY critical to tricritical behavior. All the data are described well with a crossover function
which has been obtained by a Rudnick-Nelson type calculaft®h063-651X%98)14105-3

PACS numbg(s): 61.30-v, 64.70.Md, 64.60.Fr, 65.26w

[. INTRODUCTION example of a three-dimension&lY system which also ex-
hibits tricritical behavior. However, measurements of heat
The study of critical behavior at the liquid-crystalline capacity and correlation length have revealed that the data
smecticA (Sm-A) to smectic€ (Sm-C) or chiral smecticc are well described by a single effective exponent value over
(Sm<C*) transition has been an active area of research. Tha wide temperature range, suggesting that the crossover is
main motivation is that this transition is theoretically ex- \éery4broad [19-23. In addition, the crossovers both in
pected to belong to the three-dimensiof@D) XY univer- He-He and some of thé\—Sm-A liquid crystals men-
sality class[1]. Early experimental studies revealed thattioned above are complicated by Fisher renormalizet#sh
these transitions exhibit mean-field behavior and are wel)'Nich is inherent to some mixtur¢&5]. In this respect, the
described by Landau theory which includes the sixth-ordeP/"_"DOBC'grouD liquid crystals have an advantage that Fhey
term in the tilt order parametdi2—5]. Safinyaet al. [6] are pure systems and are free from Fisher renormalization.

showed that a simple argument with the Ginzburg criterion In this paper we report the results_of the crossover-s_call_ng

[7] indicates that the true critical region should be unobservfi nalyses of our recent. heat-capacny data on foqr_ liquid-
bl It ¢ STA—SMC t i on the oth crystal systems that exhibit Sth— Sm-C* phase transitions.

ably smatl for mos —>ML ransitions. Ln the other 1 * s found that the heat-capacity anomaly at the

hand, we recently found that the ,heat capagities 0-4- gm A_SmC* transition shows a universal crossover from
methylheptyloxycarbonyphenyl 4 -octyloxyblpheny|'4' 3D XY critical to Gaussian tricritical behavior as a function
carboxylate (MHPOBC) [8] and some related materials of reduced temperature.

[9,10] show a clear deviation from the Landau behavior at™ 114 chiral liquid-crystal systems studied here are as

Sm-A-Sm-C}, transition. Here, the Sr@”, phase is an an- ¢5j;ows. (1) 4-(1-methylheptyloxycarbonyl phenyl 4

tiferroelectric version of the Sr@* phase. Further, it was _octyloxybiphenyl-4-carboxylate, which exhibits the follow-
found that the observed heat-capacity anomalies close to ”iﬁg phase sequendee];

transition are described by the 3BY renormalization ex-
pression. A non-Landau behavior was also reported by Reed
et al. for the heat capacity near the SA-Sm-C transition
of 5-n-decyl-2{4-n-(perfluoropentyl-metheleneoxyphenyl
pyrimidine (HLOF5MOPPR [11].

A very interesting feature of many St—Sm-C transi- 394.1 K 395.2 K 421 K
tions is the closeness to a tricritical point, which has been ~ Sm-C} < Sm-A < I.
seen not only for the earlier Landau-like transitigase Ref.
[4], and references thergiut also for the recently found Here SmC* and SmE* are antiferroelectric phases, Sm-
non-Landau transitiond 1,12. In particular, itis quite prob- -~ is a ferroelectric phase, and m is a ferrielectric
able that the latter transitions can exhibit crossover from 3Dphase, respectively?2) 4-(1-methylheptyloxycarbonylphe-

XY critical to tricritical behavior. While theoretical ap- nyl 4'-octylbiphenyl-4-carboxylatéMHPBC), which exhib-
proaches describing crossover phenomena from tricritical tg< o following phase sequeng27]: '

ordinary critical behavior have been quite succedsfa|14],
experimental verification of theoretical predictions has been
quite limited. The metamagnets FgCL5] and DyAl;0;,
[16] are such examples for Ising systems. Thie-*He mix-
ture is the onlyXY system for which detailed analyses of the
crossover behavior have been mdd#,18. The nematic 349.5 K 382.2 K
(N) to smecticA (Sm-A) liquid-crystal transition is another — SmM-A < |.

391.6 K 392.4 K
Sm-Cx < Sm-C} « Sm<C*

338.2 K 339.6 K 3453K
SmC; — SmLC} < AF « Sm<C}
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TABLE I. Chemical structures of materials used.

MHPOBC | CaHyr0<{OXO)-c00<(D)-CO0CH(CHy) ol
MHPBC Cattr{OX0)-c00<(0)-COOCH(CH)Celys
MHPOCBC Catir000{O)X(D)-000<(D)-COOCTH(CHy) ey
12BIMF10 Clegg,OCOObCOOC*H(CF3)CIOH21

Here, AF is an antiferrielectric phase.(3) 4- used. Temperature scan rate was about 0.03 K/h in the tran-
(1-methylheptyloxycarbonylphenyl 4 -octyloxycarbonyl-  sition region. Very slow drift rates in the S®—Sm-C¥
biphenyl-4-carboxylate( MHPOCBQO, which exhibits the transition temperature (—5mK/day in MHPOBC,

following phase sequendes]: —2.4 mK/day in MHPOCBC, and within+1 mK/day in
MHPBC and 12BIMF10 indicate the stability and high
ek ek 420K quality of the sample. The excess heat capadigy, is ob-
Sm-C, < Sm-C, < Sm-A < I. tained as
(4) 2-fluoro-44[(1-trifluoromethy) undecyloxy carbony} —~ _
phenyl 4 -(dodecyloxy biphenyl-4-carboxylate ACp=C,~ Cp(background, @
(12BIMF10), which exhibits the following phase sequence

where C(background) is the background heat capacity de-
termined as a quadratic function of the temperature which
3256 K 326.6 K 328.6 K 3428 K joins the observed heat—cgpacity data smoothly at tempera-
SmC: « SmX* <« SmC: « SmA « I. tures away from the trgnsnmn on poth sides. Thus obtained
AC, has been plotted in the vicinity of the SAk-Sm-C7,

Here, SmX* is a ferrielectric phase. Chemical structures oftransition in Figs. 1—4. Preliminary reports of the data on
these four materials are shown in Table I. Preliminary analyMHPOBC, MHPOCBC, and 12BIMF10 have been pub-

sis of the data for MHPOBC and 12BIMF10 has appearedished previously8-10,33. Small anomalies are observed at
previously[30]. 394.8 K and 392.8 K in MHPOBC, and at 326.9 K in
12BIMF10, which are due to the restructuring transitions be-
tween the chiral smecti€ phases, i.e., Sn&;—-Sm-C*,
Sm-C*-Sm<C%, and SmE;-Sm-X* phase transitions,
The heat capacity was measured using an ac calorimetegspectively(the anomaly at 392.8 K in MHPOBC lies out-
as described elsewheli@,31]. Hermetically sealed gold cells sjde the temperature range of Fig. To avoid the possibility
which contained 30-50 mg of liquid-crystal sample werethat these anomalies might affect the analyses, the data in

[29]:

II. METHOD AND RESULTS
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FIG. 1. Temperature dependence of the anomalous heat capacity FIG. 2. Temperature dependence of the anomalous heat capacity
AC, of MHPOBC. The solid line is a fit to the data with the cross- AC, of 12BIMF10. The solid line is a fit to the data with the
over expression given in Eq&3) and (4). crossover expression given in E¢8) and (4).
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FIG. 3. Temperature dependence of the anomalous heat capacity FIG. 4. Temperature dependence of the anomalous heat capacity
AC, of MHPBC. The solid line is a fit to the data with the cross- AC, of MHPOCBC. The solid line is a fit to the data with the
over expression given in Eq&3) and (4). crossover expression given in E¢8) and (4).

ranges 391.8 KT<392.8K and 393.8 KT<394.8K in  There is usually a narrow region very closeltowhere data
MHPOBC, and the data in a range 325.9K<327.1 K in  are artificially rounded due to impurities or instrumental ef-
12MIMF10 have been excluded in the fitting. fects. The extent of this region was determined in the way
described elsewher6], and data inside this region were
excluded in the fitting. The rounding region thus determined
is —4Xx107°<t<+1x10 ° for MHPOBC and MHPBC,

First, theAC, data have been analyzed with the following —7x 10 °<t<+1x10"° for MHPOCBC, and —10
renormalization-group expression including the correctionsx 10" °<t<+1x 10" ° for 12BIMF10.
to-scaling term¢33,34: Table 1l shows the values of the critical exponenand
other adjustable parameters thus obtained. For these fits, the
second-order correction coefficierils, were fixed at zero.
Fits were made to the data over several ranges, and the maxi-
mum value of|t| used in the fit, denoted a# ., is Shown
wheret=(T—T.)/T. and the superscripts denote above in the table. It is seen that the value depends significantly
and belowT.. The exponenty, and alsoT. were adjusted on the fitting range, indicating tha&tC, shows a crossover
freely in this least-squares fitting procedure. The correctionbehavior. In particulara seems to approach the 3RY
to-scaling exponent is actually dependent on the universal- value axy= —0.0066[33] in the small|t|a limit, while it
ity class, but has a theoretically predicted value quite close tonoves in the direction of the tricritical value;,=0.5 for
0.5[33,35. Therefore its value is fixed at 0.5 in this fitting. larger|t|.x. Another trend is a violation of the scaling pre-

IIl. ANALYSIS

+

A* . .
ACp=—1It|*(1+D1[t|"+D; |t]) +Bc, )

TABLE Il. Least-squares values of the adjustable parameters for filtiag with Eq. (2). Here,»=N
—p, with N being the number of data points apahe number of free parameters. The unitsAdr andB,
are JK1g™

System  |t/max  Tc (K) a 10PAT  AT/AT Dy D; B, vooX2

MHPOBC  0.0003 396.069—0.002 26.046 0.982 -0.123 0.253 12.8315 34 1.07
0.0005 396.070  0.062 11.552 1.649 2.3824.185 —0.2760 64 1.07
0.001 396.070 0.087 8.913 1.918 3.2924.177 —0.1743 138 0.99
0.003 396.072 0.158 3.1894 3.389 —2.138 —6.415 —0.0244 422 1.52
0.01 396.072 0.210 1.7171 4.651-11.89 -—-6.885 0.0099 825 2.04
12BIMF10 0.0005 329.071  0.028 31.387 1.296 1.6802.879 —1.3847 94 1.55
0.001 329.072 0.102 11.683  2.424 3.2686.693 —0.2136 199 1.29
0.003 329.073  0.177 4.2277 4.415 —4.049 —-8.591 —0.0299 532 1.47
0.01 329.074 0.229 2.4504 5.836—11.56 —8.654 0.0079 1062 2.84
MHPBC 0.001 350.064 0.018 7.904 1.128 0.8160.630 —0.4992 222 1.37
0.003 350.065 0.064 3.9937 1.574 1.3692.276 —0.0911 513 0.97
0.01 350.065 0.094 2.7048 1.943 0.841+3.085 —0.0461 861 0.86
MHPOCBC 0.001 378.072 0.004 3.5227 1.053 0.1310.568 —0.9014 226 1.00
0.003 378.074 0.084 1.0588 2.736 —2.516 —6.537 —0.0134 460 1.30
0.01 378.073 0.120 0.8903 3.121 —1.804 —5.466 —0.0088 800 2.07
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TABLE lIl. Least-squares values of the adjustable parameters for fittiag with Eqg. (2). In these fits,
the exponent values were fixed to 30 values,a=—0.0066, andd=0.524. Quantities in brackets were
held fixed at the given values. The units #af andB; are JK1 g™

System  |tlmax  Tc (K)  10°AY  AT/AY DS D; Dj D, B, X2

MHPOBC  0.001 396.062 35.606 0.961—0.450 0.278 [0] [0] 5.1263 1.84
0.003 [396.06] 32.100 0.961 —0.299 0.264 [0] [0] 46387 9.07
0.01 [396.06] 29.340 0.966 —0.167 0.166 [0] [0]  4.2598 30.9
0.003 [396.06] 37.778 0.961 —0.686 0.341 4.80 —2.59 5.4265 1.33
0.01 [396.06] 28.985 0953 —0.387 0.617 173 —3.65 4.1902 3.54
12BIMF10  0.001 329.062 62.671 0.957—0.458 0.410 [0] [0] 9.0065 271
0.003 [329.06] 60.458 0.961 —0.320 0.308 [0] [0] 87128 17.08
0.01 [329.06] 58.128 0.967 —0.203 0.198 [0] [0]  8.4076 58.9
0.003 [329.06] 63.443 0955 —0.656 0622 4.41 —458 9.1043 1.25
0.01 [329.06] 59.282 0.957 —0.444 0542 194 —3.12 85341 5.63
MHPBC 0.001 350.064 10.892 0.957 —0.384 0.296 [0] [0] 15716 1.40
0.003 [350.064 10.111 0.957 —0.262 0.282 [0] [0] 1.4631 1.43
0.01 [350.064 9.923 0.961 —0.179 0.212 [0] [0] 1.4394 282
0.003 [350.064 11.474 00958 —0.569 0.314 3.80 —1.74 1.6526 0.94
0.01 [350.064 10.165 0955 —0.371 0.405 160 —1.72 1.4693 0.84
MHPOCBC 0.001 378.070 4.332 0.922-0.301 1.059 [0] [0] 0.6298 1.00
0.003 [378.07 4.568 0.931 —0.220 0.750 [0] [0] 06642 2.01
0.01 [378.07 5.408 0.949 -0.181 0.354 [0] [0] 07855 535
0.003 [378.07Q 4.448 0.921 —0.492 1410 4.16 —8.37 0.6456 1.19
0.01 [378.07 4.720 0.930 —0.332 0.990 153 —4.36 0.6852 2.18

diction Dy =D; [37,38 with only exceptions of the cases which is another support of the occurrence of the crossover.
[t| max=0.01 for MHPOBC and 12BIMF10. This violation Next we analyzed th C, data with crossover scaling
might also be an indication of the crossover. theory. We have followed the calculation presented by Rud-

Fits were also tried holding the exponents fixed at the 3Dnick and Nelson[14], and the derivation of the crossover
XY values:a=—0.0066 andd=0.524[33]. Fits were made expression is described in the Appendix. The expression
for both cases of fixindd5 to zero and allowind; to have  used here for fitting the observedC, data is
nonzero values. At firsfT; was adjusted freely. However, it A+
was found tha’F the‘l’c values were rgther unstable agfunst AC,=— [(1+a*|t|"¥3)22—1]+B, 3)
data-range shrinking. For example, in MHPOBC whan @
=0, T.=396.062, 396.049, and 396.041 K fdt|max
=0.001, 0.003, and 0.01, respectively. Using differggs  for t>0, and
for different data ranges is clearly inconsistent, and is likely N
to give artificially goodfits. To avoid this, we fixed . to the AC :A_ [(1+a*|2t|~Y?)2e—1]

; ) P

value determined in the narrowest data range. The parameter a
values are shown in Table Ill. Since higher-order correction
terms are expected to have a significar?t influence only away T10AT(1+at|2t| 5>
from T, fits with nonzeroD, are presented for data with 3t —12
|t|max=0.003 and 0.01 but not for data with]|,=0.001. X\ 1452 (1+a*[2t|¥3Y|  +B, (4
When the second-order correction terms are negleddsd ( !

=0), the fits over the data rangtlma=0.001 are moder- ¢4 {0 The critical constant termB, has been included.
ately good in they;, sense, while the fits become much worse,¢ exponent is fixed to the 3DXY value —0.0066. As

for larger |t|max. Inclusion of the second-order correction mentioned in the Appendix, the exponanis here an adjust-
term improvesy? to acceptable values. The critical ampli- gpje parameter. We fixed to —0.5 in all the fits shown
tude ratioA”/A™ agrees with the theoretical value for the pejow, because> showed a broad minimum around this
3D XY model, A"/A*=0.971+0.013[33]. However, the gjye. !

violation of the scaling predictioB; =D is still seen in all The parameter values are summarized in Table IV. The
the cases. This tendency is irrespective of fixiby to zero  fits are moderately good fgt|,,,=0.003 in MHPOBC and

or allowing D; to have nonzero values. Imposimd,  12BIMF10, and for |t|;=<0.01 in MHPBC and MH-
=D; resulted in poor fits, for exampleg2=64 for |t|nax ~ POCBC. In Figs. 1-4, solid lines show the fit ftf
=0.001 withD, =0 in MHPOBC. Such a situation indicates =0.01. A comparison of the crossover fits shown here and
that the inclusion of corrections-to-scaling terms does nothe 3D XY fits with D; =0 deserves attention, since they
explain the observed critical behavior in a consistent manneontain the same number of adjustable parameters. We see
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TABLE V. Least-squares values of the adjustable parameters for fitti@g with Egs. (3) and (4).
Quantities in brackets were held fixed at the given values. The unit& foand B, are JK1g %

System  |t]max Te 16°AT a’ ay, B E* E- X2
MHPOBC 0.001 396.072 21.470 0.0233 0.0207  0.00860] [0] 2.56
0.003 [396.074 20.709 0.0287 0.0225  0.0044 [0] [0] 2.93

0.01 [396.07] 19.556 0.0529 0.0242 —0.0079 [0] [o] 4.74

12BIMF10  0.001  329.072 42.027 0.0170 0.0191  0.00580] [o] 1.06
0.003 [329.073 41.363 0.0246 0.0192 —0.0082 [0] [0] 3.20

0.01 [329.07] 39.463 0.0419 0.0194 —0.0251 [0] [0] 10.33

MHPBC 0.001 350.065 6.709 0.093  0.0238-0.0081 [0] [0] 2.34
0.003 [350.06§ 6.541 0.056 0.0285 —0.0025 [0] [0] 2.16

0.01 [350.063 6.411 0.083 0.0289 —0.0059 [0] [0] 1.68

MHPOCBC 0.001 378.071  4.697 0.0214 0.0271  0.002§0] [0] 1.00
0.003 [378.07] 4.627 0.0299 0.0285  0.0011 [0] [0] 1.33

0.01 [378.07] 4.491 0.0532 0.0293 —0.0018 [O] [0] 2.69

MHPOBC 0.01 [396.073 20.733 0.0247 0.0225 0.0088—-1.315 —0.949 2.28
12BIMF10 0.01 [329.073 40.903 0.0212 0.0201 —0.0008 -—1.211 -—4.239 1.09
MHPBC 0.01 [350.063 6.497 0.052 0.0292 —-0.0016 —-0.258 —0.290 1.61
MHPOCBC 0.01 [378.07] 4.581 0.0239 0.0298 0.0024 —0.285 —0.458 2.01

that the crossover fits are clearly better for MHPOBC,Table IV yieldty=(0.7—2.2)x 10 3. These are comparable
12BIMF10, and MHPOCBLC. In the case of MHPBC, the fits with the values reported for the liquid-crystal systems show-
are equally good. We also tried fits adding a te|t| to  ing Landau-like SmA—Sm-C (or C*) transitions[39,40.
Egs.(3) and(4). The results are shown in the last four lines This indicates that a large sixth-order term is quite a com-
in Table V. These results can be compared with Xhéfits mon feature among StA—Sm-C (or C*) transitions.

with nonzeroD, , which again contain an equal number of  In the tricritical regime wherdt|>(a*)? and |t|>a2,
adjustable parameters. The crossover fits are clearly better lgs. (3) and (4) become

the 2 sense for MHPOBC and 12BIMF10, while the fits are

equally good for MHPBC and MHPOCBC. AC,=2a*A*|t|""*+B,, )

IV. DISCUSSION AC,=|2a"A"27 2+ 10A"a,

—-1/2
> }|t|1’2+BC.

To summarize the above results, we have seen that the (6)
AC,, data for the four systems studied here can be described ) o o o
by the scaling crossover expression. On the other hand, fifgence the amplitude ratio in the tricritical regime is given by
with the 3D XY model with correction-to-scaling terms but

without crossover effect seem unsuccessful not only because Fo=2-1245 §) 1/22 @)
they are worse than the crossover fits in ffesense in most ‘ 2 a’
cases, but also because of the violation of the theoretical
predictionD{ =D . o (3T,
In the crossover theory used here, there are two param- =2 S 2 v ®)

etersa® anda, which describe the crossover behavior. The
temperature where the crossover from XI¥ to the tricriti- ~ We see that this ratio is system dependent, in agreement with
cal behavior is given by.,=(a*)?. If we exclude relatively  the theoretical expectatiqi3,41]. As the system approaches
poor fits such as$t|m,=0.01 withE*=0 in MHPOBC, we the classical limit, the coefficient of the gradient term in the
see from Table IV thaa™ values are more or less alike for bare Hamiltonian becomes larger, so thatn the scaled
MHPOBC, 12BIMF10, and MHPOCBCa*=0.02-0.03, Hamiltonian[see Eq(A1)] approaches zero and therefafe
while it is slightly larger in MHPBC:a*=0.05—-0.09. This diverges, as expected. From the values listed in Table IV we
indicates that the crossover to tricritical behavior is least reobtainr,=4—6 for MHPOBC, 12BIMF, and MHPOCBC.
markable in MHPBC, which is consistent with the observa-These values are close to the valye=7—9 found for the
tion that the increase im with |t|,, Obtained in then-free  racemate MHPOBC [12], but clearly larger than
fits is least significant in MHPBC as shown in Table II. r=1.0—1.6 reported foN—Sm-A tricritical systems[20—
The parameter, measures the crossover from ordinary 22]. On the other hand, we obtain=2-3 for MHPBC,
second-order to the tricritical behavior of the underlyingwhich lies in between.
Landau anomaly. In the absence of fluctuation effests, In our previous worK 30], we reported the results of pre-
would exhibit a typical mean-field cusp anomaly with a full liminary analysis of theAC,, data. The crossover expression
width at half heightto=2a2. The values ofa, listed in  for T>T [Eq. (7) of Ref.[30]] was essentially the same as
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the one used in the present analysis, although it was derived A=4(n+2)K,, B=4(n+8)K,, K,=1/(8%?).
in a different way there. Fof <T., we assumed that the (A4)
heat-capacity anomaly can be written as a simple sum of the
critical part and the Landau pafEq. (10) of Ref. [30]]. We user as the “temperature” because it is not necessarily
Because this assumption had no theoretical basis, the higtgual to the experimentally obtained reduced temperature
quality of the fits found theréy?=1.6—1.8 for|t|,=0.0)  While it is proportional tct.
should be viewed as having an empirical significance rather Near T, where|7|<(Bu)?, Q behaves like|
than a theoretical one. that

Since examples of clear crossover between tricritical and .
critical behavior are quite limited, it is of special interest to AC?,mg~|7|_0'5+A/B- (A5)
study physical quantities other than the heat capacity for this . )
family of antiferroelectric liquid crystals. In particular, the Hence the critical exponent is
measurement of the correlation length is of great value. One
advantage is that the correlation length has the exponent val- @=05— —=—
ues substantially different from each other for ¥ (vyy B 2
=0.6689) and the tricritical cases/&0.5), and they are . ] )
distinguished easily. Furthermore, a relatively short bare coryielding a positive value fon=2, as in thee expansion to
relation length expected from the significant fluctuation ef-first order, which disagrees with the result obtained by more

fect in theAC, data can be verified by such measurement. precise theoretical calculations. Our remedy here is to put the
overall error into the valued, and replace the factor (1

—2A/B) by the more accurate exponent value
2ayy=—0.0132. We obtain instead of EGA2)
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order term. The singular heat capacity can be written as

7'| B 1/2, SO

=l (AB)
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sing_
AC 4aBu[

Q**-1]. (A7)

APPENDIX: DERIVATION OF CROSSOVER

SING_ A ~(1) 4 A (~(2)
SCALING EXPRESSION AC™=AC+AC”. (A8)

For analyzing the present data, we need a crossover scaftere ACE}) is given by the same expression with that for
ing function of the heat capacity both above and below ~ T>T., Egs.(A2) and (A3), except thair| should be re-
We also have to include the sixth-order term which is necplaced by—27=|27| [42]. On the other hand}Cff) comes
essary to describe the heat-capacity anomaly at thgom the part of the free energy which is dependent on the
Sm-A-Sm-C transition. Although there has been no explicit order parameteM :
calculation which satisfies these requirements, we can follow
Rudnick and Nelsori14], who have established the basic 1
procedure of such an approach. They started from the F(M)= ETRM2+ UrM*+vgM®, (A9)
Landau-Ginzburg-Wilson ~ Hamiltonian ~ for  isotropic
n-component spins id dimensions: where

. - - - —.O-AB —no-1 — . O%
H=fdR[%(VS)2+%r|S|2+u|S|4+v|S|6]. (A1) R=TQ TR, Ur=UQ T, ve=vQh. (ALD)

The powerx, has a value-5 for n=1 to ordere [13,43.
Hereafter, we confine ourselves to the case3 so thate  Instead of using the value for=2 which is available in the

=4—-d=1. same accuracy, we treat as an adjustable parameter be-
Rudnick and Nelson carried out calculation to the leadingcause it might contain some error of the same type as men-

order neglecting the sixth-order term in EA1). AboveT.,  tioned above for the value @/B. After minimization with

this result is still adequate for our purpose. The singular partespect tavl, the heat capacity is obtained by differentiating

of the heat capacityAC,", is given as twice with 7. Neglecting the relatively weak-dependence

throughQ, we obtain[44]
. nK, N
ACY M=o e [QT 24P -1], (A2) 1 3 -2
2B(1—-2A/B)u 2 T ~2al 1_ 27 A15+a-x,

ACY=g-Q*1-55Q . (ALY

where

We have replaced-12A/B by 2« as was done in obtaining
Q=1+Bu|7 " (A3)  Eq.(A7).
In summary, the experimentally observed singular heat
with capacity above and beloily, can be represented by
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A" a,=uv Y2712 (A17)
ACIM=—[(1+a*|t|"¥)2* 1] (A12) ‘
’ pr=Refo A18
for t>0, and " 4Bu ' (A18)
AT Ao
sing__~ + + —12\2a __ M__*Y
ACH™=—[(1+a"[2t| > 1] AV=Z2, (A19)
+AM(1+a*|2t| " Y2)2« where A, is the proportionality constant between the theo-
3lt _1p retically calculated and the experimentally observed heat ca-
x| 1+ —|L(l+a+|2t|‘1’2)y (A13) pacity. With Eq.(Aﬂ) andn=2 we further obtain from Egs.
2a, (A18) and(A19) A" =A,/80u so that
for t<0. Here, AM=10A". (A20)
y=15+a—x,, (A14) Itis easily seen that thACf)ing for both above and below,
reduces to the purely tricritical behavior in the limit-0 so
T=6t, (A15)  thata, also goes to zero, as expected. On the other hand,
putting v—0 with finite u reduces Eq(A13) to the same
a"=Bug *? (A16)  form as obtained by Rudnick and Nelson.
[1] P. G. de Gennes, Mol. Cryst. Lig. Cry&1, 49 (1973. [19] B. M. Ocko, R. J. Birgeneau, and J. D. Litster, Z. PhyssB
[2] C. C. Huang and J. M. Viner, Phys. Rev.25, 3385(1982. 487 (1986, and references cited therin.
[3] C. C. Huang and S. Dumrongrattana, Phys. Re\84A5020 [20] J. Thoen, H. Marynissen, and W. Van Dael, Phys. Rev. Lett.
(1986. 52, 204 (1984, and references therein.
[4] T. Chan, Ch. Bahr, G. Heppke, and C. W. Garland, Lig. Cryst.[21] K. Stine and C. W. Garland, Phys. Rev.38, 3148(1989.
13, 667(1993. [22] G. Nounesis, C. W. Garland, and R. Shashidhar, Phys. Rev. A
[5] F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Ré&0,E 43, 1849(1991).
2834(19949. [23] C. W. Garland and G. Nounesis, Phys. Rev3:2964(1994).

[6] C. R. Safinya, M. Kaplan, J. Als-Nielsen, R. J. Birgeneau, D.[24] M. E. Fisher, Phys. Re\l76, 257 (1968.
Davidov, J. D. Litster, D. L. Johnson, and M. E. Neubert, [25] We note that the racemic mixture is an exceptional case. This

Phys. Rev. B21, 4149(1980. is because Fisher renormalization dependsi@n T.)/dX be-
[7] V. L. Ginsburg, Fiz. Tverd. TeldLeningrad 2, 2031 (1960 ing large, andd(In T.)/dX=0 for racemates.

[Sov. Phys. Solid Statg, 1824(1960]. [26] A. D. L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K.
[8] K. Ema, J. Watanabe, A. Takagi, and H. Yao, Phys. Re32E Terashima, K. Furukawa, and A. Kishi, Jpn. J. Appl. Phys.,

1216(1995. Part 228, L1261 (1989; Y. Takanishi, K. Hiraoka, V. K.
[9] K. Ema, H. Yao, A. Fukuda, Y. Takanishi, and H. Takezoe, Agrawal, H. Takezoe, A. Fukuda, and M. Matsushita, Jpn. J.

Phys. Rev. E54, 4450(1996. Appl. Phys. Part B0, 2023(1991); K. Hiraoka, Y. Takanishi,
[10] K. Ema, H. Yao, and K. Itoh, Ferroelectrid§8 221 (1996. K. Skarp, H. Takezoe, and A. Fukuda, Jpn. J. Appl. J. Phys.
[11] L. Reed, T. Stoebe, and C. C. Huang, Phys. Re§2ER2157 Part 230, L1819(1991).

(1995. [27] N. Okabe, Y. Suzuki, I. Kawamura, T. Isozaki, H. Takezoe,

[12] It was found that racemate of MHPOBC exhibits a non- and A. Fukuda, Jpn. J. Appl. Phys., Par82 L793(1992.
Landau tricritical SmA—Sm-C transition. See K. Ema, A. [28] T. Isozaki, Y. Suzuki, |. Kawamura, K. Mori, N. Yamamoto,

Takagi, and H. Yao, Phys. Rev. 33, R3036(1996); 55, 508 Y. Yamada, H. Orihara, and Y. Ishibashi, Jpn. J. Appl. Phys.,
(1997. Part 230, L1573(1991); T. Isozaki, K. Hiraoka, Y. Takanishi,
[13] I. D. Lawrie and S. Sarbach, irhase Transitions and Critical H. Takezoe, A. Fukuda, Y. Suzuki, and I. Kawamura, Lig.
Phenomenaedited by C. Domb and J. L. Lebowit#\ca- Cryst. 12, 59 (1992.
demic, New York, 198% Vol. 9. [29] K. Itoh, M. Kabe, K. Miyachi, Y. Takanishi, K. Ishikawa, H.
[14] D. R. Nelson and J. Rudnick, Phys. Rev. L&8, 178(1975; Takezoe, and A. Fukuda, J. Mater. Chem407 (1997).
J. Rudnick and D. R. Nelson, Phys. Rev1B, 2208(1976. [30] K. Ema, M. Ogawa, A. Takagi, and H. Yao, Phys. Re\6&
[15] M. B. Salamon and H.-T. Shang, Phys. Rev. Ldd4, 879 R25(1996.
(1980; H.-T. Shang and M. B. Salamon, Phys. Rev.2B [31] K. Ema, T. Uematsu, A. Sugata, and H. Yao, Jpn. J. Appl.
4401 (1980. Phys., Part 32, 1846(1993.
[16] N. Giordano and W. P. Wolf, Phys. Rev. Le30, 342(1977). [32] Because of an insufficient calibration of the thermometer used
[17] E. K. Riedel, H. Meyer, and R. P. Behringer, J. Low Temp. just after the completion of the improved calorimeter, it was
Phys.22, 369(1976. found that the temperature scale should be shifted by about 0.4
[18] T. Takada and T. Watanabe, J. Low Temp. Ph&. 221 K in the results of Ref[8].

(1980. [33] C. Bagnuls and C. Bervillier, Phys. Rev.3, 7209(1985; C.



6684 KENJI EMA AND HARUHIKO YAO 57

ABervillier, ibid. 34, 8141(1986; C. Bagnuls, C. Bervillier,
D. I. Meiron, and B. G. Nickel, Phys. Rev. 85, 3585(1987).
[34] The theory in Ref[33] has been applied for thBl—Sm-A

transition in C. W. Garland, G. Nounesis, M. J. Young, and R.

J. Birgeneau, Phys. Rev. &, 1918(1993.
[35] S. Y. Zinn and M. F. Fisher, Physica 226, 168 (1996.

Lebowitz (Academic, New York, 1991 Vol. 14.

[39] M. Michle and C. W. Garland, Phys. Rev. 2V, 2624(1983.
[40] S. C. Lien and C. C. Huang, Phys. Rev.38, 624(1984; C.

C. Huang and S. C. Lienbid. 31, 2621(1985.

[41] M. E. Fisher and S. Sarbach, Phys. Rev. L411.1127(1978;

S. Sarbach and M. E. Fisher, Phys. Rev2® 2797(1979.

[36] H. Haga, A. Onodera, Y. Shiozaki, K. Ema, and H. Sakata, J{42] To be precises should be replaced byr rather than— 27,

Phys. Soc. Jpr64, 822(1995.

[37] Dy =Dj is expected in the-expansion calculation to leading
ordere. See A. Aharony and G. Ahlers, Phys. Rev. Lé&d,
782 (1980.

[38] The values oD /D] obtained in the: expansion up to higher
order and in the field theory are only slightly larger than unity

for 3D XY universality class: 1.17 and 1.6, respectively. See

V. Privman, P. C. Hohenberg, and A. AharonyHhase Tran-
sitions and Critical Phenomena&dited by C. Domb and J. L.

whereo is determined in a consistent manner at each tempera-
ture. If v =0 theno=—2 for all . For nonzeraw, o takes a
value between-3 and —2. However, we found that the de-
pendence ofr on 7 yields only small effect and can be ne-
glected practically in fitting the experimental data.

[43] Also see, for instance, I. D. Lawrie, J. Phys18 919(1979.
[44] We also tried fits by numerically differentiating(M) by 7.
The result was essentially the same.



