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Crossover from XY critical to tricritical behavior of heat capacity
at the smectic-A –chiral-smectic-C liquid-crystal transition

Kenji Ema and Haruhiko Yao
Department of Physics, Faculty of Science, Tokyo Institute of Technology 2-12-1 Oh-okayama, Meguro, Tokyo 152, Japa

~Received 18 December 1997!

High-resolution ac calorimetric measurements have been carried out for four chiral liquid-crystal systems:
4-~1-methylheptyloxycarbonyl! phenyl 48-octyloxybiphenyl-4-carboxylate, its octylbiphenyl analog, its octy-
loxycarbonylbiphenyl analog, and 2-fluoro-4-$@~1-trifluoromethyl! undecyloxy# carbonyl% phenyl
48-~dodecyloxy! biphenyl-4-carboxylate. The heat capacity anomaly around the smectic-A to the chiral-
smectic-C transition has been analyzed in detail. It is revealed that the heat anomaly shows a crossover from
three-dimensionalXY critical to tricritical behavior. All the data are described well with a crossover function
which has been obtained by a Rudnick-Nelson type calculation.@S1063-651X~98!14105-3#

PACS number~s!: 61.30.2v, 64.70.Md, 64.60.Fr, 65.20.1w
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I. INTRODUCTION

The study of critical behavior at the liquid-crystallin
smectic-A ~Sm-A! to smectic-C ~Sm-C! or chiral smectic-C
~Sm-C* ! transition has been an active area of research.
main motivation is that this transition is theoretically e
pected to belong to the three-dimensional~3D! XY univer-
sality class @1#. Early experimental studies revealed th
these transitions exhibit mean-field behavior and are w
described by Landau theory which includes the sixth-or
term in the tilt order parameter@2–5#. Safinya et al. @6#
showed that a simple argument with the Ginzburg criter
@7# indicates that the true critical region should be unobse
ably small for most Sm-A– Sm-C transitions. On the othe
hand, we recently found that the heat capacities of 4~1-
methylheptyloxycarbonyl!phenyl 48-octyloxybiphenyl-4-
carboxylate ~MHPOBC! @8# and some related materia
@9,10# show a clear deviation from the Landau behavior
Sm-A– Sm-Ca* transition. Here, the Sm-Ca* phase is an an
tiferroelectric version of the Sm-C* phase. Further, it was
found that the observed heat-capacity anomalies close to
transition are described by the 3DXY renormalization ex-
pression. A non-Landau behavior was also reported by R
et al. for the heat capacity near the Sm-A– Sm-C transition
of 5-n-decyl-2-@4-n-~perfluoropentyl-metheleneoxy! phenyl#
pyrimidine ~H10F5MOPP! @11#.

A very interesting feature of many Sm-A– Sm-C transi-
tions is the closeness to a tricritical point, which has be
seen not only for the earlier Landau-like transitions~see Ref.
@4#, and references therein! but also for the recently found
non-Landau transitions@11,12#. In particular, it is quite prob-
able that the latter transitions can exhibit crossover from
XY critical to tricritical behavior. While theoretical ap
proaches describing crossover phenomena from tricritica
ordinary critical behavior have been quite successful@13,14#,
experimental verification of theoretical predictions has be
quite limited. The metamagnets FeCl2 @15# and Dy3Al5O12
@16# are such examples for Ising systems. The3He-4He mix-
ture is the onlyXY system for which detailed analyses of th
crossover behavior have been made@17,18#. The nematic
(N) to smectic-A ~Sm-A! liquid-crystal transition is anothe
571063-651X/98/57~6!/6677~8!/$15.00
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example of a three-dimensionalXY system which also ex-
hibits tricritical behavior. However, measurements of h
capacity and correlation length have revealed that the d
are well described by a single effective exponent value o
a wide temperature range, suggesting that the crossov
very broad @19–23#. In addition, the crossovers both i
3He-4He and some of theN– Sm-A liquid crystals men-
tioned above are complicated by Fisher renormalization@24#
which is inherent to some mixtures@25#. In this respect, the
MHPOBC-group liquid crystals have an advantage that th
are pure systems and are free from Fisher renormalizatio

In this paper we report the results of the crossover-sca
analyses of our recent heat-capacity data on four liqu
crystal systems that exhibit Sm-A– Sm-C* phase transitions
It is found that the heat-capacity anomaly at t
Sm-A– Sm-C* transition shows a universal crossover fro
3D XY critical to Gaussian tricritical behavior as a functio
of reduced temperature.

The chiral liquid-crystal systems studied here are
follows. ~1! 4-~1-methylheptyloxycarbonyl! phenyl 48
-octyloxybiphenyl-4-carboxylate, which exhibits the follow
ing phase sequence@26#:

Sm-CA* ↔
391.6 K

Sm-Cg* ↔
392.4 K

Sm-C*

↔
394.1 K

Sm-Ca* ↔
395.2 K

Sm-A ↔
421 K

I .

Here Sm-CA* and Sm-Ca* are antiferroelectric phases, Sm
C* is a ferroelectric phase, and Sm-Cg* is a ferrielectric
phase, respectively.~2! 4-~1-methylheptyloxycarbonyl! phe-
nyl 48-octylbiphenyl-4-carboxylate~MHPBC!, which exhib-
its the following phase sequence@27#:

Sm-CA* ↔
338.2 K

Sm-Cg* ↔
339.6 K

AF ↔
345.3 K

Sm-Ca*

↔
349.5 K

Sm-A ↔
382.2 K

I .
6677 © 1998 The American Physical Society
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Here, AF is an antiferrielectric phase.~3! 4-
~1-methylheptyloxycarbonyl! phenyl 48 -octyloxycarbonyl-
biphenyl-4-carboxylate~MHPOCBC!, which exhibits the
following phase sequence@28#:

Sm-CA* ↔
372.7 K

Sm-Ca* ↔
378.7 K

Sm-A ↔
420 K

I .

~4! 2-fluoro-4-$@~1-trifluoromethyl! undecyloxy# carbonyl%
phenyl 48-~dodecyloxy! biphenyl-4-carboxylate
~12BIMF10!, which exhibits the following phase sequen
@29#:

Sm-CA* ↔
325.6 K

Sm-X* ↔
326.6 K

Sm-Ca* ↔
328.6 K

Sm-A ↔
342.8 K

I .

Here, Sm-X* is a ferrielectric phase. Chemical structures
these four materials are shown in Table I. Preliminary ana
sis of the data for MHPOBC and 12BIMF10 has appea
previously@30#.

II. METHOD AND RESULTS

The heat capacity was measured using an ac calorim
as described elsewhere@8,31#. Hermetically sealed gold cells
which contained 30–50 mg of liquid-crystal sample we

FIG. 1. Temperature dependence of the anomalous heat cap
DCp of MHPOBC. The solid line is a fit to the data with the cros
over expression given in Eqs.~3! and ~4!.
f
y-
d

ter

e

used. Temperature scan rate was about 0.03 K/h in the
sition region. Very slow drift rates in the Sm-A– Sm-Ca*
transition temperature ~25 mK/day in MHPOBC,
22.4 mK/day in MHPOCBC, and within61 mK/day in
MHPBC and 12BIMF10! indicate the stability and high
quality of the sample. The excess heat capacityDCp is ob-
tained as

DCp5Cp2Cp~background!, ~1!

whereCp(background) is the background heat capacity
termined as a quadratic function of the temperature wh
joins the observed heat-capacity data smoothly at temp
tures away from the transition on both sides. Thus obtai
DCp has been plotted in the vicinity of the Sm-A– Sm-Ca*
transition in Figs. 1–4. Preliminary reports of the data
MHPOBC, MHPOCBC, and 12BIMF10 have been pu
lished previously@8–10,32#. Small anomalies are observed
394.8 K and 392.8 K in MHPOBC, and at 326.9 K
12BIMF10, which are due to the restructuring transitions
tween the chiral smectic-C phases, i.e., Sm-Ca* – Sm-C* ,
Sm-C* – Sm-Cg* , and Sm-Ca* – Sm-X* phase transitions
respectively~the anomaly at 392.8 K in MHPOBC lies ou
side the temperature range of Fig. 1!. To avoid the possibility
that these anomalies might affect the analyses, the da

city FIG. 2. Temperature dependence of the anomalous heat cap
DCp of 12BIMF10. The solid line is a fit to the data with th
crossover expression given in Eqs.~3! and ~4!.



g
ns

on
l-

e
.

f-
ay
e
ed

, the

axi-

r

-

acity
e

ac
s-
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ranges 391.8 K,T,392.8 K and 393.8 K,T,394.8 K in
MHPOBC, and the data in a range 325.9 K,T,327.1 K in
12MIMF10 have been excluded in the fitting.

III. ANALYSIS

First, theDCp data have been analyzed with the followin
renormalization-group expression including the correctio
to-scaling terms@33,34#:

DCp5
A6

a
utu2a~11D1

6utuu1D2
6utu!1Bc , ~2!

where t[(T2Tc)/Tc and the superscripts6 denote above
and belowTc . The exponenta, and alsoTc were adjusted
freely in this least-squares fitting procedure. The correcti
to-scaling exponentu is actually dependent on the universa
ity class, but has a theoretically predicted value quite clos
0.5 @33,35#. Therefore its value is fixed at 0.5 in this fitting

FIG. 3. Temperature dependence of the anomalous heat cap
DCp of MHPBC. The solid line is a fit to the data with the cros
over expression given in Eqs.~3! and ~4!.
-

-

to

There is usually a narrow region very close toTc where data
are artificially rounded due to impurities or instrumental e
fects. The extent of this region was determined in the w
described elsewhere@36#, and data inside this region wer
excluded in the fitting. The rounding region thus determin
is 2431025,t,1131025 for MHPOBC and MHPBC,
2731025,t,1131025 for MHPOCBC, and 210
31025,t,1131025 for 12BIMF10.

Table II shows the values of the critical exponenta and
other adjustable parameters thus obtained. For these fits
second-order correction coefficientsD2

6 were fixed at zero.
Fits were made to the data over several ranges, and the m
mum value ofutu used in the fit, denoted asutumax, is shown
in the table. It is seen that thea value depends significantly
on the fitting range, indicating thatDCp shows a crossove
behavior. In particular,a seems to approach the 3DXY
value aXY520.0066@33# in the smallutumax limit, while it
moves in the direction of the tricritical valuea t50.5 for
larger utumax. Another trend is a violation of the scaling pre

FIG. 4. Temperature dependence of the anomalous heat cap
DCp of MHPOCBC. The solid line is a fit to the data with th
crossover expression given in Eqs.~3! and ~4!.

ity
TABLE II. Least-squares values of the adjustable parameters for fittingDCp with Eq. ~2!. Here,n5N
2p, with N being the number of data points andp the number of free parameters. The units forA1 andBc

are J K21 g21.

System utumax Tc ~K! a 103A1 A2/A1 D1
1 D1

2 Bc n xn
2

MHPOBC 0.0003 396.06920.002 26.046 0.982 20.123 0.253 12.8315 34 1.07
0.0005 396.070 0.062 11.552 1.649 2.38224.185 20.2760 64 1.07
0.001 396.070 0.087 8.913 1.918 3.29224.177 20.1743 138 0.99
0.003 396.072 0.158 3.1894 3.389 22.138 26.415 20.0244 422 1.52
0.01 396.072 0.210 1.7171 4.651211.89 26.885 0.0099 825 2.04

12BIMF10 0.0005 329.071 0.028 31.387 1.296 1.68022.879 21.3847 94 1.55
0.001 329.072 0.102 11.683 2.424 3.26826.693 20.2136 199 1.29
0.003 329.073 0.177 4.2277 4.415 24.049 28.591 20.0299 532 1.47
0.01 329.074 0.229 2.4504 5.836211.56 28.654 0.0079 1062 2.84

MHPBC 0.001 350.064 0.018 7.904 1.128 0.81620.630 20.4992 222 1.37
0.003 350.065 0.064 3.9937 1.574 1.36922.276 20.0911 513 0.97
0.01 350.065 0.094 2.7048 1.943 0.84123.085 20.0461 861 0.86

MHPOCBC 0.001 378.072 0.004 3.5227 1.053 0.13120.568 20.9014 226 1.00
0.003 378.074 0.084 1.0588 2.736 22.516 26.537 20.0134 460 1.30
0.01 378.073 0.120 0.8903 3.121 21.804 25.466 20.0088 800 2.07
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TABLE III. Least-squares values of the adjustable parameters for fittingDCp with Eq. ~2!. In these fits,
the exponent values were fixed to 3DXY values,a520.0066, andu50.524. Quantities in brackets wer
held fixed at the given values. The units forA1 andBc are J K21 g21.

System utumax Tc ~K! 103A1 A2/A1 D1
1 D1

2 D2
1 D2

2 Bc xn
2

MHPOBC 0.001 396.062 35.606 0.961 20.450 0.278 @0# @0# 5.1263 1.84
0.003 @396.062# 32.100 0.961 20.299 0.264 @0# @0# 4.6387 9.07
0.01 @396.062# 29.340 0.966 20.167 0.166 @0# @0# 4.2598 30.9
0.003 @396.062# 37.778 0.961 20.686 0.341 4.80 22.59 5.4265 1.33
0.01 @396.062# 28.985 0.953 20.387 0.617 1.73 23.65 4.1902 3.54

12BIMF10 0.001 329.062 62.671 0.957 20.458 0.410 @0# @0# 9.0065 2.71
0.003 @329.062# 60.458 0.961 20.320 0.308 @0# @0# 8.7128 17.08
0.01 @329.062# 58.128 0.967 20.203 0.198 @0# @0# 8.4076 58.9
0.003 @329.062# 63.443 0.955 20.656 0.622 4.41 24.58 9.1043 1.25
0.01 @329.062# 59.282 0.957 20.444 0.542 1.94 23.12 8.5341 5.63

MHPBC 0.001 350.064 10.892 0.957 20.384 0.296 @0# @0# 1.5716 1.40
0.003 @350.064# 10.111 0.957 20.262 0.282 @0# @0# 1.4631 1.43
0.01 @350.064# 9.923 0.961 20.179 0.212 @0# @0# 1.4394 2.82
0.003 @350.064# 11.474 0.958 20.569 0.314 3.80 21.74 1.6526 0.94
0.01 @350.064# 10.165 0.955 20.371 0.405 1.60 21.72 1.4693 0.84

MHPOCBC 0.001 378.070 4.332 0.922 20.301 1.059 @0# @0# 0.6298 1.00
0.003 @378.070# 4.568 0.931 20.220 0.750 @0# @0# 0.6642 2.01
0.01 @378.070# 5.408 0.949 20.181 0.354 @0# @0# 0.7855 5.35
0.003 @378.070# 4.448 0.921 20.492 1.410 4.16 28.37 0.6456 1.19
0.01 @378.070# 4.720 0.930 20.332 0.990 1.53 24.36 0.6852 2.18
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diction D1
1.D1

2 @37,38# with only exceptions of the case
utumax50.01 for MHPOBC and 12BIMF10. This violation
might also be an indication of the crossover.

Fits were also tried holding the exponents fixed at the
XY values:a520.0066 andu50.524@33#. Fits were made
for both cases of fixingD2

6 to zero and allowingD2
6 to have

nonzero values. At first,Tc was adjusted freely. However,
was found that theTc values were rather unstable again
data-range shrinking. For example, in MHPOBC whenD2

6

50, Tc5396.062, 396.049, and 396.041 K forutumax
50.001, 0.003, and 0.01, respectively. Using differentTc’s
for different data ranges is clearly inconsistent, and is lik
to give artificiallygoodfits. To avoid this, we fixedTc to the
value determined in the narrowest data range. The param
values are shown in Table III. Since higher-order correct
terms are expected to have a significant influence only a
from Tc , fits with nonzeroD2

6 are presented for data wit
utumax50.003 and 0.01 but not for data withutumax50.001.
When the second-order correction terms are neglectedD2

6

50), the fits over the data rangeutumax50.001 are moder-
ately good in thexn

2 sense, while the fits become much wor
for larger utumax. Inclusion of the second-order correctio
term improvesxn

2 to acceptable values. The critical amp
tude ratioA2/A1 agrees with the theoretical value for th
3D XY model, A2/A150.97160.013 @33#. However, the
violation of the scaling predictionD1

1.D1
2 is still seen in all

the cases. This tendency is irrespective of fixingD2
6 to zero

or allowing D2
6 to have nonzero values. ImposingD1

1

5D1
2 resulted in poor fits, for example,xn

2564 for utumax

50.001 withD2
650 in MHPOBC. Such a situation indicate

that the inclusion of corrections-to-scaling terms does
explain the observed critical behavior in a consistent man
t

y

ter
n
y

t
r,

which is another support of the occurrence of the crosso
Next we analyzed theDCp data with crossover scaling

theory. We have followed the calculation presented by R
nick and Nelson@14#, and the derivation of the crossove
expression is described in the Appendix. The express
used here for fitting the observedDCp data is

DCp5
A1

a
@~11a1utu21/2!2a21#1Bc ~3!

for t.0, and

DCp5
A1

a
@~11a1u2tu21/2!2a21#

110A1~11a1u2tu21/2!2a

3F11
3utu
2au

2 ~11a1u2tu21/2!yG21/2

1Bc ~4!

for t,0. The critical constant termBc has been included
The exponenta is fixed to the 3DXY value 20.0066. As
mentioned in the Appendix, the exponenty is here an adjust-
able parameter. We fixedy to 20.5 in all the fits shown
below, becausexn

2 showed a broad minimum around th
value.

The parameter values are summarized in Table IV. T
fits are moderately good forutumax<0.003 in MHPOBC and
12BIMF10, and for utumax<0.01 in MHPBC and MH-
POCBC. In Figs. 1–4, solid lines show the fit forutumax
50.01. A comparison of the crossover fits shown here a
the 3D XY fits with D2

650 deserves attention, since the
contain the same number of adjustable parameters. We
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TABLE IV. Least-squares values of the adjustable parameters for fittingDCp with Eqs. ~3! and ~4!.
Quantities in brackets were held fixed at the given values. The units forA1 andBc are J K21 g21.

System utumax Tc 103A1 a1 au Bc E1 E2 xn
2

MHPOBC 0.001 396.072 21.470 0.0233 0.0207 0.0086@0# @0# 2.56
0.003 @396.072# 20.709 0.0287 0.0225 0.0044 @0# @0# 2.93
0.01 @396.072# 19.556 0.0529 0.0242 20.0079 @0# @0# 4.74

12BIMF10 0.001 329.072 42.027 0.0170 0.0191 0.0059@0# @0# 1.06
0.003 @329.072# 41.363 0.0246 0.0192 20.0082 @0# @0# 3.20
0.01 @329.072# 39.463 0.0419 0.0194 20.0251 @0# @0# 10.33

MHPBC 0.001 350.065 6.709 0.093 0.023820.0081 @0# @0# 2.34
0.003 @350.065# 6.541 0.056 0.0285 20.0025 @0# @0# 2.16
0.01 @350.065# 6.411 0.083 0.0289 20.0059 @0# @0# 1.68

MHPOCBC 0.001 378.071 4.697 0.0214 0.0271 0.0028@0# @0# 1.00
0.003 @378.071# 4.627 0.0299 0.0285 0.0011 @0# @0# 1.33
0.01 @378.071# 4.491 0.0532 0.0293 20.0018 @0# @0# 2.69

MHPOBC 0.01 @396.072# 20.733 0.0247 0.0225 0.008821.315 20.949 2.28
12BIMF10 0.01 @329.072# 40.903 0.0212 0.0201 20.0008 21.211 24.239 1.09
MHPBC 0.01 @350.065# 6.497 0.052 0.0292 20.0016 20.258 20.290 1.61
MHPOCBC 0.01 @378.071# 4.581 0.0239 0.0298 0.0024 20.285 20.458 2.01
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that the crossover fits are clearly better for MHPOB
12BIMF10, and MHPOCBC. In the case of MHPBC, the fi
are equally good. We also tried fits adding a termE6utu to
Eqs.~3! and~4!. The results are shown in the last four lin
in Table IV. These results can be compared with theXY fits
with nonzeroD2

6 , which again contain an equal number
adjustable parameters. The crossover fits are clearly bett
thexn

2 sense for MHPOBC and 12BIMF10, while the fits a
equally good for MHPBC and MHPOCBC.

IV. DISCUSSION

To summarize the above results, we have seen that
DCp data for the four systems studied here can be descr
by the scaling crossover expression. On the other hand
with the 3DXY model with correction-to-scaling terms bu
without crossover effect seem unsuccessful not only beca
they are worse than the crossover fits in thexn

2 sense in most
cases, but also because of the violation of the theore
predictionD1

1.D1
2 .

In the crossover theory used here, there are two par
etersa1 andau which describe the crossover behavior. T
temperature where the crossover from 3DXY to the tricriti-
cal behavior is given bytco5(a1)2. If we exclude relatively
poor fits such asutumax50.01 with E650 in MHPOBC, we
see from Table IV thata1 values are more or less alike fo
MHPOBC, 12BIMF10, and MHPOCBC:a1.0.02– 0.03,
while it is slightly larger in MHPBC:a1.0.05– 0.09. This
indicates that the crossover to tricritical behavior is least
markable in MHPBC, which is consistent with the observ
tion that the increase ina with utumax obtained in thea-free
fits is least significant in MHPBC as shown in Table II.

The parameterau measures the crossover from ordina
second-order to the tricritical behavior of the underlyi
Landau anomaly. In the absence of fluctuation effects,DCp
would exhibit a typical mean-field cusp anomaly with a fu
width at half heightt052au

2 . The values ofau listed in
,

in

he
ed
ts

se

al

-

-
-

Table IV yield t0.(0.7– 2.2)31023. These are comparabl
with the values reported for the liquid-crystal systems sho
ing Landau-like Sm-A– Sm-C ~or C* ! transitions@39,40#.
This indicates that a large sixth-order term is quite a co
mon feature among Sm-A– Sm-C ~or C* ! transitions.

In the tricritical regime whereutu@(a1)2 and utu@au
2 ,

Eqs.~3! and ~4! become

DCp.2a1A1utu21/21Bc , ~5!

DCp.F2a1A1221/2110A1auS 3

2D 21/2G utu21/21Bc .

~6!

Hence the amplitude ratio in the tricritical regime is given

r t5221/215S 3

2D 21/2 au

a1 ~7!

5221/215S 3

2D 21/2

v21/2. ~8!

We see that this ratio is system dependent, in agreement
the theoretical expectation@13,41#. As the system approache
the classical limit, the coefficient of the gradient term in t
bare Hamiltonian becomes larger, so thatv in the scaled
Hamiltonian@see Eq.~A1!# approaches zero and thereforer t
diverges, as expected. From the values listed in Table IV
obtain r t.4 – 6 for MHPOBC, 12BIMF, and MHPOCBC
These values are close to the valuer t.7 – 9 found for the
racemate MHPOBC @12#, but clearly larger than
r t.1.0– 1.6 reported forN– Sm-A tricritical systems@20–
22#. On the other hand, we obtainr t.2 – 3 for MHPBC,
which lies in between.

In our previous work@30#, we reported the results of pre
liminary analysis of theDCp data. The crossover expressio
for T.Tc †Eq. ~7! of Ref. @30#‡ was essentially the same a
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the one used in the present analysis, although it was der
in a different way there. ForT,Tc , we assumed that th
heat-capacity anomaly can be written as a simple sum of
critical part and the Landau part@Eq. ~10! of Ref. @30#‡.
Because this assumption had no theoretical basis, the
quality of the fits found there~xn

2.1.6– 1.8 forutumax50.01!
should be viewed as having an empirical significance ra
than a theoretical one.

Since examples of clear crossover between tricritical
critical behavior are quite limited, it is of special interest
study physical quantities other than the heat capacity for
family of antiferroelectric liquid crystals. In particular, th
measurement of the correlation length is of great value. O
advantage is that the correlation length has the exponent
ues substantially different from each other for theXY (nXY
50.6689) and the tricritical cases (n t50.5), and they are
distinguished easily. Furthermore, a relatively short bare c
relation length expected from the significant fluctuation
fect in theDCp data can be verified by such measuremen
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APPENDIX: DERIVATION OF CROSSOVER
SCALING EXPRESSION

For analyzing the present data, we need a crossover
ing function of the heat capacity both above and belowTc .
We also have to include the sixth-order term which is n
essary to describe the heat-capacity anomaly at
Sm-A– Sm-C transition. Although there has been no expli
calculation which satisfies these requirements, we can fol
Rudnick and Nelson@14#, who have established the bas
procedure of such an approach. They started from
Landau-Ginzburg-Wilson Hamiltonian for isotrop
n-component spins ind dimensions:

H5E dR@ 1
2 ~¹SW !21 1

2 r uSW u21uuSW u41vuSW u6#. ~A1!

Hereafter, we confine ourselves to the cased53 so thate
542d51.

Rudnick and Nelson carried out calculation to the lead
order neglecting the sixth-order term in Eq.~A1!. AboveTc ,
this result is still adequate for our purpose. The singular p
of the heat capacity,DCp

sing, is given as

DCp
sing5

nK4

2B~122A/B!u
@Q122A/B21#, ~A2!

where

Q511Buutu21/2, ~A3!
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A54~n12!K4 , B54~n18!K4 , K451/~8p2!.
~A4!

We uset as the ‘‘temperature’’ because it is not necessa
equal to the experimentally obtained reduced temperatut
while it is proportional tot.

Near Tc , where utu!(Bu)2, Q behaves likeutu21/2, so
that

DCp
sing;utu20.51A/B. ~A5!

Hence the critical exponent is

a50.52
A

B
5

1

2 S 42n

n18D , ~A6!

yielding a positive value forn52, as in thee expansion to
first order, which disagrees with the result obtained by m
precise theoretical calculations. Our remedy here is to put
overall error into the valueA, and replace the factor (1
22A/B) by the more accurate exponent valu
2aXY520.0132. We obtain instead of Eq.~A2!

DCp
sing5

nK4

4aBu
@Q2a21#. ~A7!

Below Tc , we proceed in a way similar to that used b
Rudnick and Nelson, except that here we retain the six
order term. The singular heat capacity can be written as

DCp
sing5DCp

~1!1DCp
~2! . ~A8!

Here DCp
(1) is given by the same expression with that f

T.Tc , Eqs. ~A2! and ~A3!, except thatutu should be re-
placed by22t5u2tu @42#. On the other hand,DCp

(2) comes
from the part of the free energy which is dependent on
order parameterM :

F~M !5
1

2
tRM21uRM41vRM6, ~A9!

where

tR5tQ2A/B, uR5uQ21, vR5vQxv. ~A10!

The powerxv has a value25 for n51 to ordere @13,43#.
Instead of using the value forn52 which is available in the
same accuracy, we treatxv as an adjustable parameter b
cause it might contain some error of the same type as m
tioned above for the value ofA/B. After minimization with
respect toM , the heat capacity is obtained by differentiatin
twice with t. Neglecting the relatively weakt-dependence
throughQ, we obtain@44#

DCp
~2!5

1

8u
Q2aF12

3vt

2u2 Q1.51a2xvG21/2

. ~A11!

We have replaced 122A/B by 2a as was done in obtaining
Eq. ~A7!.

In summary, the experimentally observed singular h
capacity above and belowTc can be represented by
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DCp
sing5

A1

a
@~11a1utu21/2!2a21# ~A12!

for t.0, and

DCp
sing5

A1

a
@~11a1u2tu21/2!2a21#

1AM~11a1u2tu21/2!2a

3F11
3utu
2au

2 ~11a1u2tu21/2!yG21/2

~A13!

for t,0. Here,

y51.51a2xv , ~A14!

t5ut, ~A15!

a15Buu21/2, ~A16!
st

D
rt,

e

n-
.

l

p

au5uv21/2u21/2, ~A17!

A15
nK4A0

4Bu
, ~A18!

AM5
A0

8u
, ~A19!

whereA0 is the proportionality constant between the the
retically calculated and the experimentally observed heat
pacity. With Eq.~A4! andn52 we further obtain from Eqs
~A18! and ~A19! A15A0/80u so that

AM510A1. ~A20!

It is easily seen that theDCp
sing for both above and belowTc

reduces to the purely tricritical behavior in the limitu→0 so
that au also goes to zero, as expected. On the other ha
putting v→0 with finite u reduces Eq.~A13! to the same
form as obtained by Rudnick and Nelson.
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