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Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model
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We derive a phenomenological model of the underlying microscopic Langevin equation of the nonlinear
Fokker-Planck equation, which is used to describe anomalous correlated diffusion. The resulting distribution-
dependent stochastic equation is then analyzed and properties such as long-time scaling and the Hurst exponent
are calculated both analytically and from simulations. Results of this microscopic theory are compared with
those of fractional Brownian motionS1063-651X98)00206-3
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I. INTRODUCTION The explicit form of the nonlinear Fokker-Planck equa-
tion is given by
Anomalous diffusion is exhibited in a variety of physical

systems and is therefore the subject of much current re- df# d d2

search. It can be observed, for example, in general systems —=——(Kf®)+Q—(f"), (1)
- dt dx dx?

such as plasma flowWl], porous medig 2], and surface

growth [2], as well as in more specific situations such as
cytltrimethylammonium bromide miscelles dissolved inwhereK is the drift coefficientQ is the diffusion constant,
salted watef3] and NMR relaxometry of liquids in porous andu andv are real numbers.corresponds to time, whibe
glasse$4]. The main characteristic of anomalous diffusion isdenotes a state variable of the system. We assumextisat
the fact that the mean squared displacement is not proporescaled to be dimensionless. Equati@h reduces into the
tional to timet but rather to some power of If the scaling  standard]inear, Fokker-Planck equation fqe=v=1. Plas-
is faster thart, then we say that the system is superdiffusive;tino and Plastind6] recently found exact time-dependent
if it is slower thant, we say that it is subdiffusive. The solutions in the form of the Tsallis distribution far=1 and
underlying mechanisms giving rise to anomalous diffusionthe drift forceK proportional tox. Tsallis and Bukmari7]
may differ depending on the physical system. For examplefound exact solutions for the more general case of arbitrary
the Lew-type superdiffusion, whose mean squared displacex and v with a drift force of the formkK =k, +k,x. Stariolo
ment is infinite but possesses a well-defined anomalous scdlt9] studied the long-time behavior for systems wihk=0
ing, is different from the correlated anomalous diffusion thatand arbitraryu andv. Also, Compteet al.[8,9] have studied
describes transport in a porous medium. While a diffusiorsolutions of a similar form in several dimensions and under
equation with fractional derivatives may be used to describshear flows. Note also that it has been sh¢@@ that even
the Lew-type diffusion[5], a nonlinear Fokker-Planck dif- the standard linear Fokker-Planck equation may give rise to
fusion equation has been proposed for those systems withe stationary Tsallis distribution in a variety of peculiar
correlated anomalous diffusigé—9]. cases. However, the linear Fokker-Planck equation typically
An interesting feature of the nonlinear Fokker-Planckleads to normal diffusion and will not be discussed in the
equation is that its exact stationary solutions, and some pacurrent context.
ticular time-dependent solutions, are just those distributions Up until now, most of the discussion of correlated anoma-
that maximize the generalized entropy recently proposed bious diffusion has been done on the macroscopic level, based
Tsallis [10]. That nonextensive entropynspired by multi-  on diffusion equations such as E(l). We now know a
fractalg, together with its associated generalized thermostasubstantial amount of information about the properties of the
tistics, has also been used to provide a thermostatistical bagiobability distribution that satisfies the Fokker-Planck equa-
for Lévy-type anomalous diffusiof11]. It is of course tion of that form. However, there has yet been little or no
highly desirable to have these different types of diffusioneffort in defining and studying the underlying microscopic
related to a common general theory. In fact, there is a growdynamics that ultimately gives rise to a macroscopic level of
ing body of evidence for the physical relevance of that gendescription. This is the main objective of the current work.
eralized thermostatistics in a variety of fields. It has beerlWWe shall derive and analyze the underlying stochastic
used, for example, to successfully study turbulgd@, cos-  Langevin equation that corresponds to the nonlinear Fokker-
mology [13], self-gravitating systemfl4], linear response Planck-like equation presented below. The derivation, which
theory[15], the solar neutrino problefi6], and bremsstrah- is done in Sec. Il, is consistent with the standard theory of
lung [17] among many other interesting physical systems. Istochastic processes and Fokker-Planck equations. In Sec. llI
has also been shown to be intimately related to the scalingie discuss solutions and realizations of the microscopic sto-
properties of multifractal attractof48]. chastic dynamics and in Sec. IV we study the long-time scal-
ing behavior of the system. We then compare these results
with those obtained for the well-known microscopic system
*Electronic address: lisa@cat.cbpf.br of fractional Brownian motion, which gives rise to anoma-
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lous diffusion with a scaling power proportional to the Hurst trat
coefficientH of the process. Finally, a discussion of the (AX)= ft x dt 9
work is presented in Sec. V.
t+At t+At
IIl. THE LANGEVIN EQUATION :<f K(x,t')dt’>+<f g(x,t’)dW(t’)>,
A. The p=1 case t i (10)

First, let us start by deriving the nonlinear Fokker-Planck

equation foru=1, namely,

where special attention must be given to the variable
dW(t) = n(t)dt, which defines the stochastic integration.
The integration rules are slightly different, depending on
whether one uses the Ito or Stratonovich calculus. In the Ito
calculus, one assumes that the valuaft timet is deter-

from an arbitrary stochastic lto-Langevin equation of theMined by happenings prior to the stochastic forcenéf).

df  d @

a——&(Kf)ﬂLQ&(f ) (2
form

dx

EIK(XJHQ(XJ)W(I)- 3

We as yet make no assumptions on the nojsether than

that

(m=0. (4

This results in the statistical independencexadnd », but
also introduces some rules of calculus different from the
usual ones. In the Stratonovich calculus, the variablis
valued at timet, whereas the stochastic variabjes evalu-
ated at time intermediate toandt+dt. This does not allow
for a statistical independence betweerand 7, but does
allow for the usual rules of calculus. In our work we prefer to
use the Ito calculus, but point out that the results of one
calculus can be mapped onto the other quite easily.

Within the Ito calculus we can tregix,t) anddW(t) as

Also, letK andg be arbitrary functions. We proceed along statistically independent, so that after use(diV)=0 we

the same lines as for the standard linear d24¢. The fol-
lowing relation holds:

f(x,t+At)=f P(x,t+At|x’,t)f(x’,t)dx’, (5)

where f(x,t) is the probability distribution of the particle
having valuex at timet and P denotes the transition prob-

ability between state values. The idea now is tosetx’
+Ax and to expand the integrand in E¢) into a Taylor
series for smalAx. One obtains

d
P(x,t+At|x’,t)f(x’,t)=< —Axd—XP(x+ Ax,t+At|x,t)

(Ax)? d?

+ —P(x+AXx,t
dx? (

+At|,x,t)) f(x,t)+---, (6)
which can be integrated with respectdd x to give

f(x,1),
@)

d 1d ,
f(x,t+At)=< — (A0 5 (A0

with

<Ax)=f AX P(x,+ Ax,t+ At|x,t)dAx (8)

obtain from Eq.(10)
(AX)=K(x,t)At. 11

Similarly, for ((Ax)2) we get

5 t+At t+At
(a0m= [ [T gongourawenawe)
12)
where we have discarded terms of second order and higher in

At. In the standard theory, one assumes that the noise is
white noise such that

dW(t")dW(t"))=8(t' —t")dt’. (13
In that case it is easy to see that
(Ax%)=g%(x,t)At (14

up to orderAt. Inserting the results of Eqél1) and(14) into
Eq. (7) and taking the limitAt—0 yields the standard
Fokker-Planck equation

df 2

d 1d 2
dt= " ax K0T+ 5 g xofl, (19

with g?=Q in the simplest case of constant diffusion.

So far we have simply reviewed the standard derivation of
the linear Fokker-Planck equation from a microscopic Ito-
Langevin equation. Our quest now is to see if and how the

and likewise for (Ax)?). In the limit of At— 0, these are the derivation can be modified so that we instead obtaimithre-
first two so-called Kramers-Moyal expansion coefficients.linear Fokker-Planck equation of E(R). To achieve this we

The problem now lies in evaluating\x) and{(Ax)?). To
this end we use the Langevin equati@) so that

see that we must require all the results to stay the same,
except that for (Ax)?) of Eq. (12) we must require
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t+At [t+At , . ) , . Fokker-Planck equation. Furthermore, the Fokker-Planck
Jt Jt (9(x,t")g(x,t") ) (dW(t")dW(t")) =QF" = equation corresponding to Eq4.9) and(20) is certainly not

(16) even of the linear fornG15) due to its non-Markovian nature.

As a remark, we point out that it can be sho{@2] that

The question now is how this can be achieved. The mogior large y one can neglect Eq20) and replaceh(t) with
straightforward way that leaves the rest of the theory invarinoise of Stratonovich type. Those results can then be trans-
ant is to assume that the noise satisfies the standard conditi®ermed into the Ito calculu§22] so that the corresponding
(13), which implies that Ito process is given by

g(x,)2=Qf " (x,1). 17 dx 1 d
i~ | SO+ 591 5o g(x,) [dt+g(x,H)dW(D).
This result appears at first quite counterintuitive. However, X

let us focus on the mathematics for a moment. It follows 2D
from our derivation that, fors-correlated white noise, the . :
only way in which the nonlinear Fokker-Planck equation canBy choosing to usg as above in Eq(17) and
arise from a microscopic Langevin equation is if Ef7)

. v—1 df
holds. Furthermore, we see that inlependence iy does s(x,t) =K (x,t) — —— —f""2, (22)
not interfere with the derivation of the macroscopic differen- 4 dx

tial equation forf, so this choice is possible within the ex-

isting theory. The resulting Ito-Langevin equation has theVe see that this system also gives rise to the nonlinear
form Fokker-Planck equatiorf2). These results are essentially

what we would have obtained if we had started out by using
dx (r—1)12 the Stratonovich calculus in the first place, even with
ar K+ Jf(x,t) 7(t), (18 s-correlated white noise. This is because the additional term
in the drift coefficient(22) is a direct result of the correlation
where the evolution of is given by the Fokker-Planck equa- between the variabbe and the noise. This effect is, however,
tion of equation(2). A trajectory of Eq.(18) is determined by already incorporated within the Stratonovich calculus.
both equations simultaneously. It is apparent that there is Based on the above discussion, we conclude that the non-
feedback from the macroscopic level of description of thelinear terms in Eq(16) do not arise as an effect of colored
system in terms of the probability distributidnto the mi-  noise. It is important to realize that colored noise turns the
croscopic kinetics. problem into a non-Markovian one, so that the form of the
resulting Fokker-Planck equation itself will be non-
B. Colored noise Markovian anchot of the form of Eq.(2), which is obviously
. . o . Markovian. Only in the limit of white noise is a Markov
Before discussing the physical interpretation of the resulgn,-6yimation valid and we can recover the form of the non-
(18), let us return to Eq(16) and see if there is any other |ihear Fokker-Planck equatici2) within a Stratonovich rep-

way in which it could be satisfied. This would entail lifting asentation. Here again, however, a microscopic dependence
the constraint that the noisg(t) is o-correlated Gaussian g ¢ s required.

noise and studying what may happen then. To this end we
guote well-known results[22]. If Gaussian distributed
S-correlated noise is used then the Fokker-Planck equation
(15) is exact in the sense that the higher-order Kramers- In summary then, in order to obtain the nonlinear Fokker-
Moyal coefficients of the Taylor expansidii) are equal to  Planck equatior{2) we are led to accept that the stochastic
zero. If one useg-correlated non-Gaussian noise then someorce depends, as in E¢L6), on the probability distribution
of those terms typically do not vanish, but the linear Fokker-f. In the Ito calculus, within which we prefer to work in this
Planck equation is still a good approximation in most casespaper, this results in thedependent Langevin equati¢hs).

No nonlinearities inf are introduced. Colored noide(t) What does thi§ dependence mean and how can it arise?
with a finite correlation time proportional tp~ ! also results Let us illustrate what is going on by visualizing the sto-
in a linear yet non-Markovian problem. The memory effectschastic trajectories described by the Langevin equatl@

in the noise can typically be dealt with by introducing anas the motion of a particle in a potential well defined\by

C. Interpretation

additional variable into the system, such that =—[K(x)dx. In the absence of a stochastic force the par-
q ticle would sit still at the minimum of the well. In the pres-
X . .
—~ =s(x,t)+g(x,Hh(t), (19) ence of_a stochasnp f(_)rce the particle gets knocked around,
dt so that it may in principle traverse the entire well.Jf 1,

standard Brownian motion is recovered. In that case, the
~ ~ sizes of the random kicks are uniform and do not depend on
gt s(h+a(h)n(v), (20 \where in the well the particle happens to be. If one waits
long enough, the entire well will become traversed. How-
where 7 can now be treated a$correlated white noise and ever, in thev#1 cases, we see that the size of the random
s, 9,3, and{ are arbitrary functions. In other words, the kicks changes in space and time. In particular, it will change
introduction of colored noise only raises the dimension of thesuch that highly frequented regions of the well will tend to
problem. It does not introduce nonlinear ordersfah the  have largeror smallej kicks, depending on the value of
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This creates a bias in the ergodic behavior of the systendown a Fokker-Planck equation in the usual way, with Eq.
Some regions of the well will become traversed at a muchb5) as the starting point. We denote the probability distribu-
higher rate than others, while others will become forbiddentjon by ¥ and obtain
Though in principle the entire well may be traversed if one
waits long enough, the dependence on the powers of prob- di d _ d 3
abilities serves to cleave the phase space of the system. An —=- d—Kf+ —2(fV‘“f), (25
effectively nonergodic space is created for the stochastic sys- dt X dx
tem to exist in. The phase space might even have the char- - .
acter of something similar to a multifractal. wheref satisfies the nonllneaNr Fokker-PLanck equatitn

It is a harder task to explain the physical origin of the However, we can set—u=u(v—1), with v= v/, result-
dependence in the microscopic dynamics. For systems iig In
which we interpref as a density this poses no philosophical _
problems. The microscopics may well depend on actual den- df ~ d T T
sities. However, if we wish to interprdt as a probability a_ h &KH &[(f )" (26)
distribution, then perhaps the natural place to look is to the
treatment of the bath variab!es. _Remember that the Sto‘_:hasqi%wever, we know from Eq(1) that the solution to this
term in the Langevin equation is the net result of the inter- tion is i b=~ We h th h that th
action of the system variabke with a bath, whose variables equation 1S given .yf - We have thus shown that the
have been appropriately eliminated. The classic works o robability _dlstrlbutlon of the kinetic process corresponding
Ford et al. [23] and Zwanzig 24] treat this problem for the 0 the nonlinear Fokker-Planck equatidh) with general.

i i M
standard case i =1. Yet their result is strongly dependent IS given by #* and not by f. N_ote that although one was
on ad hocassumptions about the interaction Hamiltonian Ofprewously aware that the nonlinear Fokker-Planck equation

the bath variables together with their initial distribution. It (1) could be mapped onto the=1 case by introducing a

may be possible to generalize those assumptions to result W variablef = f* and usingy= v/ [7], it was not pointed
the f-dependent term that we obtain in the nonlinear Ito-Out that the probability distribution of the process is given by
Langevin equation. That work is currently in preparation butf=f# and not byf. This is an important distinction because
beyond the scope of this paper. For now, we simply proposé can otherwise lead to mistakes. For example, in the paper
that thef-dependent term ia phenomenological description by Stariolo[19] f is used as the probability distribution from
of the interaction of the particle with the bathiVe assume which certain long-time properties of the system are calcu-
that the bath variables afcorrelated, yet the entire dynam- lated. In particular, he finds that the system both violates the
ics is only defined on gpossibly multifractal subset of fluctuation-dissipation relationship as well as exhibits prop-
phase space, which is modeled by tH&¢~12 term. Of erties of aging. However, if instead the probability distribu-
course, in a real experimental situation many different typegion f# is used, the aging effects disappear. The violation of
of interactions between the bath and the system could givéhe fluctuation-dissipation relationship is nevertheless still
rise to the same phenomenologidatiependent description. valid.

Indeed, the exact form of these interactions must be guided

by the physics of the particular system under study. II. SOLUTIONS

D. The u#1 case A. Stationary nonlinear Fokker-Planck equation

We now look at the nonlinear Fokker-Planck equation of Exact solutions to the nonlinear Fokker-Planck equation
the form (1) with general values of the parameter The in form of the time-dependent Tsallis distribution have been

derivation remains the same, except that we are now seekir@unOI by Plastino and Plastino fg¢=1 [6] and Tsall_|s and
a differential equation fof#. In particular, this implies that ukman foru#1 [7]. HOW‘?Ve“ for the reasons discussed
we must start out with the relation above, we focus our attentl(_)n on ttn_e=1 case in _most of
what follows. Our system of interest is therefore given by the
Langevin equatioril8) together with Eq(2). We emphasize
f"(X,HAt):f P(x,t+At|x",t")f“(x",0)dx’, (23  that thef occurring in the Langevin equation is the solution
to the nonlinear Fokker-Planck equation and not just any
arbitrary distribution. For linear drift, this probability distri-
“bution is a Tsallis distribution. The form that satisfies the
stationary nonlinear Fokker-Planck equation is

instead of Eq(5). Using the same arguments as before, w
obtain the kinetic equation

x=K(x)+Qf(x,t) =¥ 1), (24) 1 i
fq(><)=Z—[l—,B(l—q)V(X)]”(l 9, (27)
where f satisfies the nonlinear Fokker-Planck equati@n a
The important observation to make at this point is that alyyhere 7
though Eq.(24), together with Eq.(1), describes a kinetic
Ito-Langevin equationthe probability distribution of the
process is not given by fnstead, the probability distribution
of the process is given by#. This can easily be seen as =

q takes care of normalization andv(x)
=[K(x')dx’ is the potential. The parametg@ris given by

q-1

2
follows. Using the Ito-Langevin equatiof24) we write Q(2—q)

(28)
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and the relation
v=2—( (29

holds. Furthermore, this distribution maximizes the general-

ized Tsallis entropy10], which has the form x
L q=-4, t=100
_ q
_1-Jaxf(x)] (30 q=1.5, t=100
q—1
and is the foundation of the actively studied generalized ther- 0 T T T
mostatistics. The Tsallis entropy reduces to the standard -4 -2 0 2 4
Boltzmann-Gibbs entropyp= — [ fInfdx in the limit g—1 X
and possesses most of the same qualities, but not that of
extensivity The degree of thisionadditivity of the Tsallis FIG. 1. Tsallis distributions, the exact solutions to the time-
entropyS, is quantified by the Tsallis inde. dependent nonlinear Fokker-Planck equation, are shown at times
Becausef is a positive quantity, we must impogg(x) =0 and 100 fog=1.5 and—4 with K=—0.5x andQ=0.5.xis a

=0 if the term in square brackets on the right-hand side ofimensionless state variable antepresents time in arbitrary units.
Eqg. (27) becomes negativgThis is known as the Tsallis
cutoff.) By looking at the behavior of the stationary distribu- tions. The fluctuations are larger if the particle approaches a

tion fo(x) we see that this happens when forbidden (or low probability region of state space, which
essentially serves to drive it back to the more favaiegh-
1-q Q probability) region where the noise is lower and more con-

2—q>22q’1V(x)’ (3D fining. A quite different behavior is demonstrated by the

q = —4 example. The amplitude of the noise is suppressed all
where bothQ and Z, are under the physical constraints of
positivity: Z, because it is the integral of positive probabili- 1
ties andQ because it is the square of the amplitudes of the
stochastic fluctuations. For< 2 this inequality can easily be
satisfied because the left-hand side of the equation is q=1.5
bounded from above by 1. However, there is a singularity at
g=2, beyond which the left-hand side soars to infinity and 0 -
becomes bounded from below by 1. We shall discuss the
parameter regioq>2 later on. For now, let us focus on the

g<2 region. L;,
B. Realizations forq<2 -1 q=1
The time-dependent solution to the nonlinear Fokker-
Planck equation with linear drift has the form
1 q=-4
fa(x,t)= {1-B(t) (1= [x—xu(H) ]9, -2 1
Zy(1)
(32
0 1
where
t
B(t) Zq(O) 2 FIG. 2. Simulations of the stochastic trajectories obtained from
B(0) = Z,(1) : (33 the f-dependent Ito-Langevin equati¢i®) for different values ofj
q with K= —0.5x and Q=0.5. The main distinguishing feature be-

Here we takeZ,(0)=Z, and B(0)=8 as defined above tween paths is in the behavior of the fluctuations and the tendency

: P T . f the paths to fill out the phase space. Ber 1.5 the fluctuations
from the stationary distributiorZ,(t) andxy(t) are givenas  °© ; . ) -
in Refs.[6],[7] Anyexample of t%(is) Soluti(’\)ﬂrg 2:1’[ twogdifferent arellarger if the particle ap'p'roaghes a forbiddenlow probab!llt)b
times f;)r différent values of] is shown in Fig. 1. Corre- region of state space, driving it back to the more favofeidh-

. . . . robability) region where the noise is lower and more confining.
spondingly, simulations of the stochastic paths generated or g= —4, the amplitude of the noise is suppressed all over state

the probability-dependent Ito-Langevin equatith) can  g5ce 5o that the particle stays close to the most prolaiset
read_lly be computed. Several reallzano_ns are shown in Fig. ﬁequente@i region. Forq=1 we have normal Brownian motion of
for different values ofy but constant choice df andQ. The 3 particle with constant noise amplitude. The behavior of the trajec-
main distinguishing feature between paths with differg@nt tories is well reflected in the shapes of their corresponding prob-
values is, as expected, in the behavior of the fluctuationsability distributions(see Fig. 1 x is a dimensionless state variable
Note that forg=1.5 there are sharp swings in the fluctua- of the system andl corresponds to time in arbitrary units.
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6 the distribution quite well. However, after a certain time, the
a) peaks in the distribution become very narrow, limited&o
functions at+. This narrowing down of the allowed values
of x is unphysical because it implies that one would have
more specific information about the location of the particle
as time goes on, defying the basic principle of entropy pro-
duction. This is reflected in the simulations of the trajectories

U in that the fluctuations in the stochastic paths quite quickly
L J drive the system into the paradoxical region whéreO.
0 . . - x This region is forbidden in thg>2 case because of the
2 0 2 singularity that appears in the nonlinear Fokker-Planck equa-
30 tion for those values of].

b) q=2.5 The physically more relevant form of the nonlinear
Fokker-Planck equation in the regime<® <3 is defined by

x=—K(x)+ JOf(x,t)*"V2p(t), (34)

q=2.5, =0

f(x)

q=2.5, t=5

x(t)

. d dz
== axKD=Q45(f, (35

0 10 with v=2—q. The negative sign of) in the Fokker-Planck
t equation is motivated as follows. Fgr>2 the effective dif-
fusion of the system is divergent. Therefore, our original

FIG. 3. Unphysical solutions fog>2. The distribution in(a) postulate(5) must be changed to read
has a two-peaked shape, reflecting the symmetry breaking in the

paths shown ir(b). In time, the peaks in the distribution are limited
to & functions at+ . This narrowing of the allowed values gfis f(x,t+At)=— f P(x,t+At|x",t)f(x’,t)dx’. (36)
unphysical, defying the basic principle of entropy production. Fur-

thermore, the stochastic paths soon get kicked into the forbidden ) o -
f=0 region.x is a dimensionless state variable andenotes time  This reflects the fact that the divergent diffusion coefficient

in arbitrary units. has a repulsive effect. Interpretinfgas a density, this is
easier to understand. The density of particles at positiah
over state space so that the particle stays close to the mad#e t+ At is not equal to the flux that flows in at that time,
probable(most frequentedregion, with very low chance of but rather equal to what is left after flux has been spewed out
departing. As a comparison, we also show the standard due to the repulsion. Using E36) as the starting point to
=1 case, which represents the usual Brownian motion of @erive a macroscopic Fokker-Planck equation for the Lange-
particle with constant noise amplitude. Note that for this sysvin equation in the same fashion as we did before in Sec. I,
tem the noise appears quite homogeneous and the partidegs. (35) and(34) follow naturally.
wanders off freely in any direction. The behavior of the tra- The effectively negative diffusion coefficient-@Q) in the
jectories is also well reflected in the shapes of their correnonlinear Fokker-Planck equation contributes a minus sign
sponding probability distributions, a few of which are shownto the inequality of Eq(31). Because of this, it is now easily
in Fig. 1. Note the narrow shape of the Tsallis distributionfulfilled for a general choiceof Q andV. A solution to Eq.
for q=—4 as opposed to the broader one obtaineddor (35) is shown in Fig. 4 foK=2x, Q=0.1, andq=2.5. Note
=1.5. Furthermore, we point out that the long-time station-that the Tsallis probability distribution disperses in a physi-
ary probability distributions for thg<2 regime all have the cal manner as time increases. Also, our simulations of the
appearance of stable, well-defined packets, even in the freeorrespondingf-dependent stochastic paths appeared to be
particle case K=0). stable and well behaved.

C. Realizations forg>2 IV. SCALING

Now let us return to the case @f>2. As discussed in
Ref.[7], the regiong>3 leads to unphysical solutions due to
the fact that it becomes impossible to normalize the tempo- We shall use the kinetic Ito-Langevin equatiGt) to-
rally dependent Tsallis distribution. However, we must still gether with Eq(2) to calculate the long-time scaling behav-
look at the region 2 q<3. For those values, the inequality ior of the process fop.= 1. To this end, we consider the free
(31) is satisfied only by a select choice & andV. The particle case wher =0 and Eq.(18) reduces to
resulting distribution has the two-peaked shape presented in .

Fig. 3. Some sample trajectories are also presented. We see x=QF D2y (1), (37
that initially there is a symmetry breaking. Because values

x=0 have low probability, the paths diverge toward eitherThe question is, ifx(t)x(t")) behaves in a certain way, then
x>0 orx<0. The behavior of the paths reflects the form ofhow does(x(bt)x(bt’)) behave? We obtain

A. The free particle
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1.0

a) 08 q=25 =0

0.6

f(x)

0.4 -

02 4 =100

0.0 T

b) 24 g=25

x(t)

0 t

FIG. 4. Physical solutions fog>2 with K=2x, Q=0.1, and
g=2.5.x is a dimensionless state variable darmbrresponds to time
in arbitrary units. The Tsallis probability distribution i@ dis-
perses in a physical manner as time increases(bjn a well-
behaved stochastic trajectory is shown.

X(t) = @J;f(x( 7),7) VW 1) (38)

and consequently

t [y
(x(t)x(ﬂ)):QfO fo (F(x(7), ) V2E(x( 7', 7') (1= D12y

X{(dW(7)dW(7"))
t
0 fof(x<T>,T>Vf1dT:<x<t>2>, (39

t=min(t,t")

where we have used the Ito calculus and the relatik3).
We adopt the exact solution féx,t) for K=0 from Refs.
[7] and [19], which is of the form(32) and (33) with the
normalization given by

Zo()={Z4(0)* "+ 20(v+1)QB(0)[ Z4(0) Pt} V17,
(40)

Furthermorexy (t) =xy(0) is the mean position and can be
treated as a constant. Equati39) becomes

(x(H?%)= Qf07(3+ ar) =D — e[ x(7) —xy]?

X(a+at) tdr, (41)

with a=Z,(0)**", a=2v(r+1)QB(0)Z4(0)?, and c
=,802q(0)2. Using the relationshig29) betweenq and v,
we can alternatively express the exponent

-2 -1 0 1
log, (1)

FIG. 5. Scaling coefficients from ensembles of simulated sto-
chastic trajectories using E¢37) for different values ofg were
calculated. The results shown here in this,lplpg; plot indicate
good agreement with the analytic res(#). Forg>1 the scaling
is superdiffusive and foq<<1 it is subdiffusive.

1-v g-1
1+v 3—q

F(q). (42)

The integral in Eq(41) is nontrivial to evaluate because of
the termx(7) occurring in the integrand. However, Ff(q)
=—1, which is satisfied for values »=<q<3 that are of
physical interest to us here, then the integral will be domi-
nated by the first term, which is easy to integrate. We obtain

<x(t>2>=Q32_—aq(a+ at) 379, (43

Consequently, we see that the process satisfies the scaling
relationship

(x(bt)2)=b#3=N(x(1)?) (44)

for t—oo. This result reproduces that obtained by Stariolo
[19] for =1, which was calculated as an ensemble average
using the solution to Eq1) with w=1. We also calculated
the scaling coefficients from ensembles of simulated stochas-
tic trajectories using Eq37) for different values ofg. The
log-log plot in Fig. 5 shows these results, which agree well
with the analytic result of Eq44).

As a final remark, let us turn our attention to tpet1
case of Eq{(24). We wish to calculate the scaling behavior
for arbitrary u. However, because Eq24), together with
Eq. (1), can be mapped onto Eq4.8) and(2) by substituting
v with 7= v/, we obtain the same results as in E4g) for
the u=1 case, except that we now have

14
Q=2—; (45
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instead of Eq(29). This result does not agree with ther1 2
result obtained by Stariolfl9], which was calculated as an
ensemble average based on using the fundtiaa the prob-
ability distribution of the process described by the nonlinear
Fokker-Planck equatioril). Our results indicate that the
long-time scaling ofx(t)x(t’)) doesnot exhibit the aging
phenomena that he found. As mentioned earlier in this paper,
we attribute this discrepancy to the fact that the true prob-

ability distribution of the process is given Hy=f* and not
by f.

q=2.5

q=-4
q=

—
(7))

E q=1.5
Vg 1 —

(=2

2

B. Comparison with fractional Brownian motion

It has already been pointed out that both the nonlinear
Fokker-Planck equation and a diffusion equation with frac-
tional derivatives are good candidates for describing pro-
cesses with anomalous diffusi¢i,9,5]. The fractional dif-
fusion equation is better suited to describe Levy-type
processes, whereas the nonlinear diffusion equation treats 0 T
correlated anomalous diffusion. Compg¢al. [9] recently 0 1 2
discussed a comparison of scaling within these two formal- log,4(1/2)
isms, based on the level of the diffusion equation. They
showed that a process that scales(a)?) «t” may be FIG. 6. Hurst coefficienH defined byR/S=(7/2)", calculated
described either as the result of nonlinear diffusion or by wayfrom simulated stochastic trajectories for different valueg.ofhis
of a diffusion equation with fractional derivatives. Their log;q-l0g;o plot shows thaH=0.5 in all cases, reflecting the fact
comparison was made based on studies of the macroscogft there is no memory in these systems.
distribution equations, with the goal of elucidating which of
the two formalisms provides a better description of anomaf-dependent Langevin processes is equal to-@3 *,
lous diffusion under specific circumstances. Here we wouldvhich can easily be misread as E¢48), is not true. We
like to make a similar comparison, but based on the analysisalculated the Hurst coefficient for different valuesgotis-
of the microscopic dynamics of the stochastic paths insteadng simulated data obtained from numerical realizations of

In the fractional derivative formalism, a stochastic path isEgs. (18) and (2). We used the original definition of Hurst

described by 25] (see Ref[26]), namely, that
—rft —n)H= Yy 46 E=(Z)H (49)
X(t)= O(I 7) T (46) s~\3)

where H is the Hurst exponent defined in the interval 0 Where the rang® is given by
<H<1 andI is a positive constant. Normal Brownian mo- _ -
tion is obtained wittH = 3. It is a well-known result that the R—lrgtagrx(t,r) 12'2TX“'T)’ 0
process defined by E@46) scales as
5 oH ) with X equal to the accumulated departure from the mean of
(x(bt)%)=b=(x(1)). (47)  the stochastic increment within the time intervalnamely,

A comparison with our results of E¢44) shows that the t
process generated by the Langevin equati®@f scales in x(t,T):E [Z(i)—(2),], (51)
time as a fractional Brownian motion process where the i=1
Tsallis parameterq is related to the Hurst parametét .
through with

1

1 T
et (49) (0)=7 2 4. (52

H

However, this relationship is only valid foro<q<2 be- Here{(t) represents the increment of the stochastic variable

cause of the range of definition of the Hurst parameter. We of Eq. (37) in the intervalét. Similarly, the standard de-

can therefore say that if a process diffuses(ad)?) «t”  viation Sis defined as

with 0<y<2 it may be described by either E(6) or a L 12

process of the typ€37). If y>2 then it is more likely de- _ 2

scribed by Eq(37). S=| 7 & [eh—~(027] (53
The relationshif48) betweerq andH is valid only when

discussing the scaling behavior of the two processes. Thesing these definitions, we calculat&dS for different g.

stronger statement that the Hurst parameter of th&he results are shown in the log-log plot of Fig. 6. We see
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thatH=0.5 in all cases, independently @f This result is to Several realizations of the stochastic paths generated by
be expected because it reflects the fact thatftdependent the f-dependent Langevin equation in the case of linear drift
Langevin processes have no memory in time and are thus tHerce were simulated. In that caf®,7], the time-dependent
result of completely uncorrelated statistical events. The fracsolutions to the nonlinear Fokker-Planck equation are just
tional Brownian motion, on the other hand, has a memorythose distributions that maximize the generalized entropy re-
which is described by theé term under the integral in Eq. cently proposed by Tsallis. We analyzed the behavior of
(46). These results indicate that a calculation of the Hurssomef-dependent stochastic paths corresponding to different
coefficient for a process showing anomalous scaling of thevalues of the Tsallis indeg. This illustrates how the ergodic
form (x(t)?) «t” may be used to discriminate whether it behavior of the system depends on the valug.o®ur find-
stems from a process within the framework of the nonlineaings support other connections recently found between non-
Fokker-Planck equation as opposed to a fractional Browniaextensivity and ergodicity27].
motion process. Furthermore, we studied the long-time scaling behavior of
the free particle, based on tliedependent microscopic dy-
namics of the system. No aging effects were found, contrary
o _ to the results 0f 19]. Our results were compared with those
We have in this paper explored a form for the underlyingoptained for the well-known system of fractional Brownian
microscopic Langevin equation that gives rise to the no”””'motion, which gives rise to anomalous diffusion with a scal-

ear Fokker-Planck equation. We have seen that the stochasmg power proportional to the Hurst coefficigHtof the pro-

force in the Ito-Langevin equation depends on powers of th@ess. We found that although both systems lead to anoma-
probability of the process itself. This dependence serves tgy,s scaling behavior, the Hurst coefficient of the
cleave the phase space within which the process May_dependent Langevin process is always=0.5 and does
traverse, essentially creating a nonergodic system. We sug depend on the scaling powéand therefore not on the
gest that an explanation for the dependence on the probabi~g)jis parameterg). This reflects the fact that our

ity distribution of the system may be due to a particular antk_gependent Langevin equation does not contain long-term
specific interaction between the system and the bath Varmemory.

ables. Details of these ideas are, however, the subject of
current work and lie outside the scope of this paper. If one

instead interprets the probability distributiéras a distribu-

tion of real densities rather than a statistical description of | am indebted to C. Tsallis for inspiring discussions and

the ensemble, there are no problems in understanding arlpful comments. | also thank A. K. Rajagopal for many

interpreting our result. In such a case, the microscopic dyfruitful conversations. This material is based upon work sup-
namics may well depend on a real field of densities in theported by the National Science Foundation under Grant No.
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