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Analytic estimation of the Lyapunov exponent in a mean-field model
undergoing a phase transition
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The parametric instability contribution to the largest Lyapunov expongnis derived for a mean-field
Hamiltonian model, with attractive long-range interactions. This uses a recent Riemannian approach to de-
scribe Hamiltonian chaos with a large numibepf degrees of freedom. Through microcanonical estimates of
suitable geometrical observables, the mean-field behaviar, o analytically computed and related to the
second-order phase transition undergone by the system. It predicts that chaoticity drops to zero at the critical
temperature and remains vanishing above it, with scaling asN~(? to the leading order inN.
[S1063-651X98)03506-3

PACS numbgs): 05.45:+b, 05.70.Fh, 02.40:k

I. INTRODUCTION A 2k

= - 1
The largest Lyapunov exponeny, is a good quantity to 72 3A @

measure the degree of chaoticity of a generic nonintegrable

Hamiltonian system. However, its numerical computation re-with

quires computing also the microscopic dynamics for a, some-

times, very long and, theoretically, infinite time. This may

obviously turn rapidly difficult to tackle and much effort has A=
been devoted to deriving some asymptotic scaling Igls
and, more recently, to getting analytic estimates by relatin
microscopic dynamics with statistical averages, provided th
numberN of degrees of freedom is large enogh-4]. This
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nd 7, a time scale for the stochastic process estimated as

latter way of analytically computing; as a function ofe _ W\Fo
=E/N, the energy per degree of freedom, has proved to be [ Z\Fo kot ot mTK' &)

remarkably efficient. It reformulates Hamiltonian dynamics
in the language of Riemannian geometry, using the fact that

. . : : In this article, we apply these geometrical tools to a mean-
the natural motions can be viewed as geodesics of a suitablg, 4o ionian system of globally coupled rotators exhib-
Riemannian manifold5]. Chaotic motion then reflects into y g y P

the instabilitv of th desic fl hich d q iting a second-order phase transition at a certain critical en-
€ Instability ot the geodesic Tiow, which depends on Cur'ergy e.. We analytically estimate the parametric instability
vature properties of the manifold. This geometric formula-

. ¢ the d ics has | b K 4 has led contribution to\ (&) and predict a neat distinction between
tion of the dynamics has long been known and has led Qe o casesez<e, and e>e,. Numerical simulations
fundamental results in abstract ergodic theory when the €[9,10] seem to qualitatively support the analytical conclu-

godicity of geodesic flows on compact manifolds of negativesions, The remarkable behavior of the Lyapunov exponent in
curvature was demonstrated by Hedlund and Hopf in 193%ne mean-field limit, as a consequence of the simple expres-
and later exploited by Krylo6]. However, when more sjons of relevant geometrical quantities as functions of the
physical Hamiltonian systems come into play, such asrder parameter, could then be a dynamical signature of the
coupled nonlinear oscillators, a major source of chaos apphase transition.
pears to be parametric instability activated by a fluctuating The model at hand will be described in Sec. Il and some
curvature along the geodesics, even when curvature is altseful geometric expressions derived there. A detailed deri-
ways positivg 7,8]. This has been exploited in the theoretical vation of the largest Lyapunov exponent as a function of
model proposed by M. Pettini and co-workers. Modeling thethe energy density will be exposed in Sec. Ill, Sec. IV
effective curvature felt by a geodesic by a Gaussian stochageing devoted to comments and conclusions.
tic process, with the mean the average Ricci curvature and
variance its fluctuations, and under the ergodic hypothesis
replacing the previous geometrical quantities with their av-
eragesx, and ai according to the natural ergodic measure,
i.e., in the microcanonical ensemble, they derive the follow- Here we study the so-called mean-field Hamilton¥Y
ing expression foi; [2,3]: model, which can be considered as a toy model for investi-
gating long-range interactions in Coulomb systdrh%,12.
The dynamics oN interacting particles moving on the unit
*Electronic address: firpo@newsup.univ-mrs.fr circle IT=[0;2#] derives from the following Hamiltonian:

Il. MEAN-FIELD MODEL AND FIRST USEFUL
GEOMETRIC EXPRESSIONS
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whereK andV stand for the kinetic and the potential energy,  Moreover, a straightforward calculation gives
respectively. Constamt may be rescaled te- 1, 0, or—1 by

a change of variables. The scaling factd¥ I6r the potential cN )

energy ensures that the interaction energy is extensive and V()= 5 (1=[IM[). (10)
emphasizes its mean-field nature. Thus, in the following, we

would not deal with the usual thermodynamic limit with Thus we obtain the key expression that the mean Ricci cur-

fixed density, but rather with the mean-field limit—c,  vature reads simply in terms of the order parameter, the
H/N—e, e finite. Note that the total momentum is also a mean-field magnetizatioM as

constant of the motion. However, this will not affect the
following calculation since the potential only depends on kr=c|M|? (11
positions.

The equilibrium statistical mechanics of this model can beup to aO(N~1) term, which, as far as the mean-field limit is
exactly derived[13]. In the case of an attractive potential concerned, gives a vanishing contribution and will be ig-
(i.e.,c>0), which will be assumed in the following, that is, nored. It will only play a part in corrections above the tran-
in the ferromagneticlike case, it predicts a second-ordesition. It should be pointed out that this expression for the
phase transition with order parameti| whereM is the = mean Ricci curvature as a smooth function of the natural
mean-field magnetizationlike variable defined as order parameter, the magnetization, is not claimed here
(since not provedto be a generic property of, for instance,

1 1 . some class of mean-field Hamiltonian systems. At present
M= lel cogqy), NZ& sin(ay) | . (3 we should thus consider the results obtained in this article as

peculiar features of the model at hand. As only positions-

This phase transition can be easily conjectured by observintjvolving quantities come into play, let us now focus on the
that at small energy{M||=0(1) with a clustered phase, contribution of the potential energy to the partition function
whereas at large energy, the central limit theorem predict¥ the canonical ensemble at temperatlire 8™+ (with kg
that||M| = O(N~ ) with particles having random ballistic =1):
motions. It is also interesting to note that introducing the
glob_al variableM enables us to reexpress the equation of Zc(ﬁ)zf exd — BV(q)]dVq
motion of any particle as N

N N

- : cN cN
Gi=—cIMIsing—¢) where ¢=argM),  (© —od -5 [ ol £ MI%| oM
I
that is, the equation of a perturbed pendulum, the full system _ _ . _
being closed by adding the evolution equations|fdi and Then, using the integral representation of Gaussian func-
& tions, we get

Let us now first express in the framework of the Eisenhart
metric the Ricci curvature associated to this system, then 7 (B)Zexl{ —,Bﬁ
derive the microcanonical averages of the geometrical quan- = ° 2
tities involved, via the canonical ensemble, which leads to

f 1
HN;

simpler calculations. Recall here that in the limit of infinite % J exp(— U2+ 2/B(cNi2)u-M)du |dNg
size, that isN— o, the averages of thermodynamic observ- R?
ables in different ensembles coincidet], but not their fluc- N\ (27N
tuations[ 15]. Therefore, in order to get the fluctuations of an =ex;{ —,BC—)( ) f exp(— u?)
observablef in the microcanonical ensemble, it will be nec- 2 R?
essary to add a corrective term according to the formula de- — N
rived in [16], which is not valid at the critical point: X[To(2VA(c/2N)[u[)] du
N ©
ae)e\ " o(f)c]? =(277)N—J' rdrexgd —Ny(r,8)]
2 —/ 82 ’
=@ o] 190 @) gl
where[17] wherey(r,8)=r2/2Bc—In[ly(r)]+Bc/2 and wherd , stands

for the modified Bessel function of order
1 Then, according to the saddle-point method, in the limit
(52f>EN<(f_<f>)2>- (8)  N—w= the previous integral is fully dominated by the mini-
mum of ¢ obtained by solving the consistency equation
So, with the Eisenhart metric, the Ricci curvature reads’;#(r,8)=0, that is,
Kr(g)=AV, whereA stands for the Euclidian Laplace op-
erator in the configuration space, so that the average Ricci r 14(r) _
curvature[ 3], defined akg(q)=[Kgr(q)/N—1], is Bc lo(r)

(12
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When Bc<2, ¢ is minimal forr =0, which corresponds 1.0
to a vanishing magnetization. F@c>2, Eq.(12) admits a Ky,0x — %
nonvanishing solution noted' (8), the phase transitiontak- L N ™7 Ox
ing place forBc=2, i.e., forT,=c/2 ande.=3c/4.

Before examining these two cases, we establish some use- 0.5
ful canonical relations: agV(q)).=— dgIn(Z;) and((V(q)
—(V(q)>)2>c=aéln(zc), one obtains, respectively,

2 00 T T
(krye=c+ dpIN(Zc), (13 1.0 1.5

FIG. 1. Analytic expressions for the microcanonical averages of
(52K ) =£((K —(K >)2> :i(len(Z ) (14) the average Ricci curvature, (solid curve and of its fluctuations
R/c™ N R R/ 7T N“B ¢/ o, (dot-dashed curyean the mean-field limit, below and above the
phase transition.
Moreover the energy densig(g) is given by
2

-1
1 1 (%K) =<52KR>C( 1+ —(62KR)C) (18)
e(B)= 55~ §8INZo)- (15) g 2
_ S _ ~ with (8°Kg)e=4INIZIN(Ze)~4r* 1 B2c(dpr* —r*1p).
In the following, when dealing with microcanonical esti-  Figure 1 displays the behaviors of both the average Ricci
mates, this expression will be implicitly systematically usedcyrvaturex, and fluctuationsr,., with the control parameter

to express3 as a function of the energy density. We definec set equal to 1 in both figures. Using E¢&7) and(18), one

also the two notationgo=(kg), ando5=(5°Kg),, . can then derive\;(g) in the clustered phase. The result,
obtained through Eqg1-3), is reported in Fig. 2. When
. ANALYTIC ESTIMATE FOR A, BELOW approachese., expanding the expression for the largest
AND ABOVE THE TRANSITION Lyapunov exponenk () provides the scaling law
Let us now derive the analytic estimate foy below and N(e)x(e.—€)Y8 (19
above the transition. Below the critical energy, the saddle-
point method gives associating thereby a critical exponent, equal to 1/6, to the

dynamical observablg,. Above the critical energy, one ob-
Z.(B)=(2 NNr* N ) 2 tains, in the same way,
= exg — r*, —_—
«(B)=(2m)" - exil ~Ni ﬁ]\/Nﬂf¢(F*,B) ol pel
(16) zc(ﬁ):(zw)Nexp( - N7> ( 1- 7) . (20)

As the ensemble averagékg). and(kg), coincide in the
mean-field limit, this gives

Here, as|M||?> becomes of orde®©(N~1), we shall use
the full expressiorkg=c|M||?—c/N+O(N~2). Then

2
(ke =C+ 15 0pIN(Ze)~ =205 Y(r* (B).B)] pc?

<kR>“:N(Tﬁc)+O(N_2)’ (21)

zdr* 3 il rx — 20 5] 2( e i3 A
=Cr e Ol T 20pYl i =CT 2| — 5/ 1 i ==+ N=80
ds 2p%c 2 sl B e N=200
, 3N — N infinite
that is, R
0.2+ "\\\
r*(B)? RO
(Kr) ™ > an ) Tl ST
cp o1+ /| 0 Tl
Remember thakg is proportional to the square norm of
the magnetizatior(11) so that we expect it to exhibit the 0.0 F——i—t -y} } et
same behavior at the transition point with twice the charac- 0.0 05 10 €15 20 25

teristic exponent. Actually, a straightforward expansion near

o FIG. 2. Analytic expression for the largest Lyapunov exponent
the transition leads to Y p g yap p

\1 in the mean-field limit(solid curve below and above the phase
transition. Analytic correctiongdot-dashed curveso the mean-
20c72) 8 o) for s,z field limit for finite N with N=80 andN=200 aboves, . Here the
] 1+4c "¢ e derivation is not restricted to the leading tef@8) but computes
Egs.(1-3 up to further orders, aNl is not very large. There is a
Taking into account the correctioi7) and noting that nice fit with results exposed ifL0] apart from the vicinity of the
d5(kr)e=3(8%Kg)c, one finally obtains critical energy.

<kR>M~
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i.e., the microcanonical average of the Ricci curvature vansmall neighborhood of., all the smaller ad is large. So

ishes in the mean-field limit. Similarly, the analytic estimate fok.(¢) in the mean-field limit is
expected to be quite reliable except maybe for smalhd in
) 4 4¢2 . . the vicinity of ... It should also be noted that the time scale
(0°Kr)e=y 9pIN(Ze) = (2= BC) “=O(N""). r estimated as Eq(3), that is, the time under which the

effective curvature felt by a geodesic cannot be regarded as a
As &(B)~(1/2B) +(c/2), the correcting term needed to random process, is the less solid point of the geometrical
get the microcanonical fluctuations is of orddr 2, thus  modeling[3,4] as Eq.(3) relies mainly on phenomenological

negligible. Then arguments. Then it can, if necessary, be slightly adjusted to
fit numerical calculations. Nonetheless, that estimaterfigr
4¢2 also a powerful tool, as it provides a natural time scale, de-
(52KR>#~W(Z—,BC)_2=O(N_1). (22)  pending one, that should be taken into account to connect,

for instance, results for mapping$] to results for continu-
We can keep in further calculations the dominant order irPUs flows as is the case here.

N, and derive the scaling law wittN for the largest Keeping these remarks in mind, we can now comment on
Lyapunov exponent. Using expressiofis-3), in the limit  the results obtained in Sec. lll. Expressi@8) means that,
N— oo, one obtains in this mean-field model, above the critical energy, chaos

does not survive to the limil—oo. This can be conjectured
s straightforwardly from the equatiof6) governing the time
_ 4% e N (13 23) evolution of any particle, which predicts ballistic motion as
(2— Bc)32 ' [M] vanishes above.. Moreover, one obtains the scaling
law N~ for the largest Lyapunov exponent to the leading
order inN. The same scaling law has been found numerically
by Latora, Rapisarda, and Ruff@]. A rather nice fit(see
Fig. 2 is also obtained with Yamaguchi's simulatioff0]
Let us first comment here on the reliability expected foron a wide range ok, except in the vicinity ofe,, where
the expressions just derived. As developed in REfs:5], finite size effects smooth the transition. Here strong metasta-
the geometrical approach aims at extracting information onbility related to critical slowing down may also affect nu-
at least, an average degree of chaoticity of the dynamiceerical results with relaxation times towards equilibrium in-
from mean global geometrical properties of the Riemanniarcreasing greatly witiN. Besides, for a givelN large enough,
manifold constructed from a given Hamiltonian. This implies expression(23) rightly gives a vanishing Lyapunov exponent
the crucial assumption of ergodicity as a way of bypassindn the integrable limit of large energy where rotators tend to
the knowledge of the trajectories, i.e., the numerical integrabehave as free particles.
tion of the equations of motion. This ergodic hypothesis is Concerning the transition region, in spite of the above
not expected to be realized in the integrable limits of smalimentioned remarks on the validity of our results at the criti-
and large energy, the latter following from the boundednessal energy, let us mention the remarkable features exhibited
of the potential energy in Eq4). However, it is well known by Figs. 1 and 2k, o,, and\; display singular behaviors
that chaos is not a necessary condition for ergodicity, thet the critical point. Here curvature fluctuations exhibit a
most striking piece of evidence being provided by the idealliscontinuity that is similar to the “cusp” numerically ob-
gas of point particles, for which there is no velocity mixing served in[4]. In our case, this appears as a direct conse-
at all. Also, recent studigd.8] have emphasized that ergodi- quence of the second-order phase transition exhibited by the
clike properties should depend mainly on the observable anodel and, following Eq(11), of the expressions of the
hand, irrespective of the degree of chaoticity of the dynamdifferent parameters used in the geometrical approach in
ics. Concerning our model, Ruffo already observefllif] a  terms of smooth functions of the order parameter. Following
good agreement between Gibbsian predictions and numericabnjectures exposed [d], the geometrical meaning of these
simulations for the observablé/|. Moreover, in the mean- singular behaviors might be that a topology change of the
field limit, this happens even in the integrable limit of large “mechanical” manifold underlying the dynamics occurs at
energy, an explanation for this being provided by a result othe critical energy.
Kac [12,19, so that the mean-field magnetization appears Finally, as for\,, its maximal value would be reached
like a good observable with respect to ergodicity. Thereforeslightly below the critical point and not at the critical point.
it is not surprising to observe that numerical calculations ofNumerical simulations made {i9] for 20 000 particles show
the mean Ricci curvature and its variance fit well the micro-such a tendency. Moreover, whenapproaches the critical
canonical predictions presented in Fig.9120|, except inthe energy, calculation§19) show that\; goes to 0 as
vicinity of the phase transition where finité-effects domi- —&)Y/®. This suggests that a critical exponent could be asso-
nate. Concerning the transition region, as noted before, theiated to the largest Lyapunov exponent as a dynamical ob-
formula[16] used to get fluctuations in the microcanonical servable.
ensemble from canonical ones is not valid at the critical en- Further studies should inspect more precisely the region
ergy. Therefore we should exclude in our conclusions avhere the amplitudes of the curvature and fluctuations are

1

IV. COMMENTS AND CONCLUSIONS
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comparable, around=0.45 (see Fig. 1L As observed in ACKNOWLEDGMENTS

other models, for such a situation strong stochasticity may be The author is greatly indebted to Y. Elskens and M. Pet-
expected. A more refined treatment may imply some COrTeCep; for their advice and explanations, and thanks M. Antoni,
tions to the Gaussianity of the effective curvature, whichg Ryffo, V. Latora, and A. Rapisarda for fruitful communi-
would take into account further moments of the mean RicCiations. M.C.E. was supported by a grant from the Minéste
curvature. Also, the vicinity of the critical energy, as well asde I'enseignement sugeur et de la recherche. This work is
a possible extension of the results obtained in this article to @art of the European research network on stability and uni-
larger class of mean-field Hamiltonian systems deserve, obrersality in classical mechanicfContract No. ERB-

viously, further investigations. CHRXCT940460.
[1] G. Parisi and A. Vulpiani, J. Phys. A9, L425 (1986. [12] S. Ruffo, inTransport and Plasma Physicsdited by S. Ben-
[2] L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Lef, 375 kadda, Y. Elskens, and F. DovéWorld Scientific, Singapore,
(1995. 19949, pp. 114-1109.
[3] L. Casetti, C. Clementi, and M. Pettini, Phys. Revo4& 5969  [13] Y. Elskens and M. Antoni, Phys. Rev. &5, 6575(1997).
(1996. [14] The equivalence of canonical and microcanonical ensembles in
[4] L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. the mean-field limit for this model has recently been explicitly
Lett. 79, 4361 (1997); G. Pettini, M. Pettini, and R. Gatto, proved, M. Antoni(private communication
Phys. Rev. E57, 3886(1998. [15] R. Balian,From Microphysics to Macrophysie#ethods and
[5] M. Pettini, Phys. Rev. B7, 828(1993, and references guoted Applications of Statistical Physic&Springer-Verlag, Berlin,
therein. 1991).
[6] D. Szaz, Stud. Sci. Math. Hun@®1, 299 (1996. [16] J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. R&83
[7] M. Cerruti-Sola and M. Pettini, Phys. Rev.33, 179 (1995. 250 (1967).
[8] H. E. Kandrup, Phys. Rev. B6, 2722(1997). [17] A rigorous definition would replacK by N—1, but this would
[9] V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. L&@.692 contribute to negligible terms throughout the paper.
(1998. [18] C. Giardinaand R. Livi, Report No. chao-dyn/9709015.
[10] Y. Y. Yamaguchi, Prog. Theor. Phy85, 717 (1996. [19] M. Kac, Am. J. Math.65, 609 (1943.

[11] M. Antoni and S. Ruffo, Phys. Rev. &2, 2361(1995. [20] V. Latora, A. Rapisarda, and S. Ruffanpublishedl



