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Analysis and comparison of multiple-delay schemes for controlling unstable
fixed points of discrete maps

Joshua E. S. Socolar and Daniel J. Gauthier
Physics Department and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708

~Received 20 January 1998!

We investigate theoretically the stabilization of a fixed point of a discrete one-dimensional nonlinear map by
applying small perturbations to an accessible system parameter or variable. The size of the perturbations is
determined in real time using feedback schemes incorporating only the dynamical state of the system and its
state at previous iterates without making a comparison to a reference state. In particular, we compare and
contrast two algorithms: extended time-delay autosynchronization, which uses an infinite series of past iterates
with weights that decay by a factor ofR with each time step, andN-time-delay autosynchronization, which
uses an average ofN past iterates with equal weights. The range of feedback parameters that successfully
stabilize the fixed point and the robustness of the schemes to noise are determined. It is found that the domain
of control for the two schemes is similar for appropriately matched values ofR andN, and thatN-time-delay
autosynchronization tends to be less sensitive to noise.
@S1063-651X~98!02706-8#

PACS number~s!: 05.45.1b, 07.05.Dz, 87.22.2q
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I. INTRODUCTION

It is now well established that instabilities and chaos
curring in nonlinear dynamical systems can be control
effectively by applying only small perturbations to an acc
sible system parameter or variable@1#. The most common
class of control techniques relies on feedback of an e
signal proportional to the difference between the current s
of the system and a known reference state@2,3#. For systems
in which production of the reference signal is impossib
either due to the high frequencies involved or the spa
complexity of the desired behavior, time-delay feedback
natural option to explore@4–17#. In time-delay feedback
schemes, the past behavior of the system is substituted
the predetermined reference state, so that the system
provides a useful error signal. With the delay time chosen
be equal to the period of the desired orbit, the differen
between past and current states vanishes when the syst
on that orbit, so that the controlled behavior remains a so
tion to the original system’s equations of motion and on
small perturbations are applied. It has been argued elsew
that time-delay approaches are appropriate, or perhaps
essary, in applications ranging from diode laser stabilizat
@10# to suppression of cardiac arrhythmias@12,13#.

In this paper we analyze two methods that have been
gested for employing time-delayed information to stabilize
periodic orbit. We investigate the control of a fixed pointx*
of a one-dimensional discrete map

xn115 f ~xn ;k!, ~1!

wherek5k01en is a parameter~nominal valuek0) that can
be adjusted by small amountsen on each iterate of the map
The size of the adjustments is determined from a feedb
algorithm that makes a comparison between the current s
of the systemxn and its values on previous iterates; it do
not make a comparison to the value of the fixed pointx* ~the
reference state used in the majority of feedback schem!.
571063-651X/98/57~6!/6589~7!/$15.00
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The simplest time-delay scheme for controlling the fix
point of the map is to take form@4–6#

en5g~xn2xn21!, ~2!

where the gaing is an appropriately chosen real numbe
This basic scheme has been called the discrete versio
‘‘time delay autosynchronization’’~TDAS! @7,13#.

We consider two schemes that have been suggested
generalizing TDAS by incorporating information from fa
ther in the past than a single iterate. We report on deta
analyses of the parameter regimes in which these sche
are successful and on numerical measurements of the e
of noise on the controlled systems. The first scheme, term
‘‘extended TDAS’’ ~ETDAS! @7–11,14#, uses an infinite se-
ries of past iterates with weights that decay exponentia
with time in a form given by

en5g(
k50

`

Rk~xn2k2xn2k21!

5g~xn2k2xn21!1Ren21 , ~3!

whereR is a real parameter withuRu,1. An important rea-
son for investigating ETDAS feedback is that it can be ge
erated experimentally using a recursive feedback loop wi
single delay element and it has an all-optical implementat
@7,11#. In some cases the physics of the system may
permit more complicated controller designs that might
suggested by control-theoretic analyses. A continuous
sion of ETDAS has been found, both analytically and expe
mentally, to be an improvement over TDAS@7–9,11,14#,
which corresponds to the special caseR50.

The second scheme, which we will call NTDAS, uses
average ofN past iterates with equal weights in a form give
by
6589 © 1998 The American Physical Society
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en5gS xn2
1

N (
k51

N

xn2kD . ~4!

NTDAS reduces to TDAS whenN is set to 1. While this
method is not easily implemented in high-speed syste
digital implementation for relatively slow systems is straig
forward. NTDAS has been introduced into the physics lite
ture by Flakeet al. @15# and by Christiniet al. @16,17#. We
note that these two schemes differ from the recursive fe
back algorithms investigated by Rollins and collaborat
@18# in that their scheme makes a comparison to a kno
reference state~the value of the fixed point!.

It is convenient to use the following quantities in discus
ing the controlled system. Letn[d f(x* )/dx be the Floquet
multiplier associated with the fixed point of the uncontroll
map; i.e., xn112x* 5n(xn2x* ) for xn2x* sufficiently
small. The uncontrolled fixed point is unstable if and only
unu.1. Let b[g@d f(x* )/dk# be the natural measure of th
strength of the feedback gain.~Note thatg itself is not a
useful measure since the effect of the feedback on the sy
depends on the degree to which changes ink alter the trajec-
tories.! The region in~n,b! space where the fixed point i
stable for various choices ofR or N will be called thedo-
main of control.

For both ETDAS and NTDAS, we wish to determine~1!
the boundaries of the domain of control,~2! the nature of the
bifurcation that occurs asb is varied so that the boundary o
the domain of control is crossed, and~3! some measure o
the robustness of the control that can be achieved by ad
ing g for a given choice ofR or N and a given value ofn.
Section II presents the linear stability analysis and deter
nation of the Floquet multipliers for the case of ETDA
addressing points~1! and ~2!. Section III presents a simila
analysis for the case of NTDAS. Section IV addresses p
~3!: an analytical treatment of the effect of additive wh
noise is presented. Finally, Sec. V discusses some rele
points of comparison between the two methods.

II. LINEAR STABILITY ANALYSIS FOR ETDAS

The linear stability analysis for ETDAS can be carried o
in a straightforward manner by linearizing Eqs.~1! and ~3!
aboutx* , definingzn[xn2x* anden[en /g, and rewriting
the equations in the form

S zn11

en11
D 5S n b

n21 b1RD S zn

en
D . ~5!

The Floquet multipliers for the controlled system are t
eigenvalues of the matrix in Eq.~5! given by

m65
1

2
@n1b1R6A~n1b1R!224~nR1b!#. ~6!

Straightforward analysis~or application of the Shur-Cohn
criteria! shows thatn andb must lie within the triangle de-
fined by the lines

n51, ~7!

~11R!n12b52~11R!, ~8!
s,
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Rn1b51, ~9!

in order for both multipliers to have magnitude less th
unity ~i.e., the controller successfully stabilizes the fix
point!. Figure 1 depicts this domain of control.

The following points are worth noting.
~1! ETDAS fails to control an unstable fixed point wit

positive multiplier,n.1, for any choice ofR andg. ~Choos-
ing g is equivalent to choosingb.!

~2! The most unstable fixed point that can be control
for a given value ofR hasunu5(31R)/(12R), which can
be made as large as desired by choosingR sufficiently close
to 1.

~3! The optimal choice ofb for robustness in the presenc
of noise differs markedly from the criterion that the Floqu
multipliers of the controlled system be as small as possi
This point will be discussed further in Sec. IV.

The types of bifurcations encountered asb is adjusted for
fixed values ofn and R are readily determined. Upon de
creasingb so as to cross the lower boundary of the dom
of control, m2 passes through21 and a period-doubling
bifurcation occurs. Upon increasingb so as to cross the up
per boundary of the domain of control, a supercritical Ho
bifurcation occurs. A branch of the curve (n1b1R)2

24(Rn1b)50 lies within the domain of control and i
indicated by the dashed line in Fig. 1. For points above t
line the eigenvalues form a complex conjugate pair. The
tation frequencyvH of the limit cycle just beyond the Hop
boundary~the upper boundary of the domain of control! is
given by the argument ofm1 at the point where the bound
ary is crossed. Lettingd be defined by the relationn51

24( 1
2 2d)/(12R) so that the upper boundary is travers

from left to right asd varies between21/2 and 1/2, we
obtain

vH5tan21SA124d2

d D . ~10!

FIG. 1. Domain of control for ETDAS. For values ofn and b
inside the triangular boundary the fixed point is stable. In the
sence of control~b50!, the fixed point would be stable only fo
21,n,1. The dashed curve indicates the value ofb for which the
largest magnitude Floquet multiplier is made as small as poss
for a givenn. The upper and lower boundaries of the domain
control are labeled by the type of bifurcation that occurs as they
crossed. The caseR51/3 explicitly illustrated, but the axis label
are correct for anyR.
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As may have been expected,vH approachesp at the left-
most point, which is where the Hopf line and perio
doubling line meet, and approaches 0 at the rightmost po
which is where the Hopf line meetsn51, corresponding to
pure expansion with no oscillation.

In designing devices for generating feedback signals,
often useful to consider the behavior of the controller in
frequency domain in addition to the time-domain stabil
analysis given above. For the case of discrete maps, we
each iterate to correspond to a unit interval of time. Note t
the ETDAS feedback signal linearly relates the input signax
with the output signale; hencee(v)5F(v)x(v), where
x(v) and e~v! are the Fourier amplitudes of the input an
output signals, respectively, and

F~v!5g
12e2 iv

12Re2 iv
~11!

is the transfer function for ETDAS feedback. The trans
function ‘‘filters’’ the observed state of the dynamical sy
tems, characterized byx(v), to produce the necessary fee
back signale~v!. Due to the discrete nature of the system
is sufficient to consider the transfer functionF(v) of the
controller in the interval 0<v<p.

Figure 2 shows uF(v)u and u5tan21@ Im F(v)/
Re F(v)# for R50 ~TDAS! andR50.5 ~ETDAS!. It is seen
that there is a notch dropping to zero atv50, and the notch
becomes narrower and the phaseu is closer to zero over a
larger frequency extent for largerR. The existence of the
notch in the transfer function can be understood easily
considering thaten , and hencee~v!, must vanish when the
fixed point is stabilized. Recall that the spectrum of the s

FIG. 2. Transfer function for the ETDAS controller for tw
different values of the parameterR. ~a! Absolute value of the trans
mission through the filter as a function of frequency.~b! Phase
characteristics of the filter.
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tem x(v) when it is on the fixed point consists of ad func-
tion atv50; therefore, the filter must remove this frequen
~via the notch! so that e~v!50. The ETDAS feedback is
more effective in stabilizing the fixed point for largerR
partly because it is more sensitive to frequencies that co
potentially destabilize the fixed point. The narrow notch im
plies that more feedback is generated for signals with
quency components slightly different than the desired one
addition,uF(v)u remains near one andu is closer to zero for
largerR, and so the system is less likely to be destabilized
a large, out-of-phase feedback response at these interme
frequencies.

III. LINEAR STABILITY ANALYSIS FOR NTDAS

The boundaries of the domain of control for a syste
controlled by NTDAS can be obtained in closed form
parametric equations. The linearized equations in the vicin
of the fixed point can be written in matrix form as

S zn11

zn

zn21

A

zn2N11

D 5S n1b 2b 2b ••• 2b

1 0 0 ••• 0

0 1 0

A � �

0 ••• 0 1 0

D
3S zn

zn21

zn22

A

zn2N

D , ~12!

whereb[b/N. It is immediately clear that the determina
of the matrix is6b, which means that the system must
unstable forb.1 or b.N. This turns out to be importan
only for the caseN51, which is the case of TDAS and i
easily analyzed.~It is the caseR50 in Fig. 1, for which the
upper boundary becomes a horizontal line atb51.!

For N.1, the characteristic equation for the matrix is

mN~n1b2m!2b (
k50

N21

mk50. ~13!

On the boundaries of the domain of control we must hav
solution with umu51, and conversely, any values ofn andb
for which a solution withumu51 exists must be either on th
boundary or outside the domain of control.~It can be outside
if for those same values there exists another solution w
umu.1.!

We first note thatm51 is a solution of Eq.~13! if and
only if n51, and it is easily verified that there is always
solution withm.1 for anyn.1. Next note thatm521 is a
solution if and only if

b5
2N~11n!

N1mod2N
. ~14!

This line constitutes a boundary of the domain of cont
corresponding to a period-doubling bifurcation.~See Fig. 3.!
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For any n other than 1, we can multiply by 12m and
rearrange terms to obtain

mN@m22~n1b11!m1n1b1b#5b. ~15!

Letting m5exp(if), the real and imaginary parts of th
equation give two relations involvingf, n, andb that must
be satisfied on the boundary of the domain of control. Th
can be solved forn andb in terms off, yielding

n5
2~112N!s11~11N!s21sN112sN12

s11sN2sN11
, ~16!

b5
2Ns12Ns2

s11sN2sN11
, ~17!

wheresn[sin(nf).
To map out the remaining portions of the boundary,

appropriate values off must be determined. This can b
accomplished by noting that at the special point~n,b!
5(2N21,N), Eq. ~15! reduces tomN1251, so that all of
the Floquet multipliers have unit magnitude. Asf is in-
creased from zero, this point is first reached atf52p/(N
12), and so it is values off in the interval @0,2p/(N
12)# that produce the upper boundary in Fig. 3. This bou
ary corresponds to a Hopf bifurcation with rotation fr
quency vH5f. For evenN, the lower ~period-doubling!
boundary already determined passes through the sp
point and the entire domain has now been determined.
odd N, there is an additional section of the boundary tha
obtained by allowingf to decrease from its period-doublin
value ofp until it first reaches one of the (N12)th roots of
unity; i.e., fP@p(N11)/(N12),p#. This section of the
boundary also corresponds to a Hopf bifurcation. Taking
limit of Eq. ~16! as f approachesp from below, one finds
that this curve intersects the period-doubling boundary
n53. Figure 3 shows the domains of control for the cases
even and oddN.

Parallel to the discussion in the previous section, we
plore the frequency-domain response of NTDAS feedba
The transfer function is found by Fourier transforming E
~4! and is given by

FIG. 3. Domain of control for NTDAS. For values ofn andb
inside the heavy boundary the fixed point is stable. In the abse
of control ~b50!, the fixed point would be stable only for21,n
,1. The caseN55 andN54 are shown as representatives of o
and evenN. The axis labels are correct for anyN. The upper and
lower boundaries of the domain of control are labeled by the typ
bifurcation that occurs as they are crossed.
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F~v!5F12
e2 iv ~12e2 iNv!

N~12e2 iv!
G . ~18!

Figure 4 showsuF(v)u and u5tan21@ Im F(v)/Re F(v)#
for N50 ~TDAS! andN54 ~NTDAS!. As for ETDAS feed-
back discussed in the previous section, the notch atv50
becomes narrower and the phaseu is closer to zero over a
larger frequency extent for largerN, although the curves os
cillate about their nominal values. Note thatu approaches
zero at a lower frequency in comparison to ETDAS feedba
~albeit with oscillations!, suggesting that NTDAS feedbac
may be less sensitive to perturbations over a broader
quency range in comparison to ETDAS. See the discuss
on noise sensitivity in the following section.

IV. ROBUSTNESS OF ETDAS AND NTDAS
IN THE PRESENCE OF NOISE

Determing the noise amplitude at which linear cont
fails requires a comparison of the size of the deviations fr
the linearized equations induced by the noise with the or
nal noise level itself@19#. Control will fail when the nonlin-
ear deviations, or ‘‘deviational noise,’’ become compara
in magnitude to the original additive noise. To estimate
size of the deviational noise, one may first determine
extent to which the additive noise is amplified in the pure
linear system, then consider the strength of the nonlinea
Let s be the additive noise strength~the rms magnitude of
the noise added toxn on each iteration!; assume that the
dominant nonlinearity in the vicinity of the fixed point i
czl, and let the noise amplitude that would be generated
the purely linear system with control applied beas, where

ce

f

FIG. 4. Transfer function for the NTDAS controller for tw
different values of the parameterN. ~a! Absolute value of the trans
mission through the filter as a function of frequency.~b! Phase
characteristics of the filter.
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the amplification factora is a function of the system param
eters and control parameters. A rough criterion for the ma
mum noise that can be tolerated is

c~asmax!
l5smax, ~19!

which gives accurate estimates for generic nonlinearities
noise characteristics.~For engineering applications in whic
it is imperative that one obtain conservative bounds, stand
control-theoretic methods of analysis are available@20#.!

In this paper, we do not specify the nature of the nonl
earity in the system. Nevertheless, by computinga for dif-
ferent control parameters we can determine which cho
will give the optimal noise tolerance, regardless of the p
cise values ofc andl. Note that for any linearized systems
can be scaled arbitrarily, and so there is no threshold for
of control in the purely linear system.

To determine the amount of amplification of the noise
the time-delay controlled systems of interest here, we c
sider first an arbitrary stable linear system to which noise
added only to the first component in a form given by

zn115M•zn1hn , ~20!

whereM is a realL3L matrix andhn5@hn,0,0, . . . #T, with
hn being unbiased andd correlated so that

^hn&50 ;n, ~21!

^hnhm&5s2dnm . ~22!

Let E be the matrix of~right! eigenvectors ofM , with ele-
mentEi j equal to thei th component of thej th eigenvector,
let V be the inverse ofE, and let m ( j ) be the eigenvalue
associated with thej th eigenvector.

Taking z0 as a given initial condition, we have

zn115Mn
•z01 (

m50

n

Mn2m
•hm . ~23!

For n→`, the first term vanishes since the controlled syst
is stable in the absence of noise. Using Eqs.~21! and~22! it
is found that the average value ofuz1u2 after many iterations
approaches

^uz1u2&5(
i , j

Vi1* Vj 1E1i* E1 j

12m~ i !* m~ j !

. ~24!

The amplification factora is defined aŝ uz1u2&1/2/s.
For either ETDAS or NTDAS,a can be determined fo

any given choice ofn, b, andR or N from the matrices given
above. The results are illustrated in Fig. 5. In panels~a! and
~b!, each curve showsa as a function ofb for a fixed value
of n, with the values ofb spanning the width of the domai
of control. In panel ~a!, which corresponds to
ETDAS with R50.5, the large dot on each curve indicat
i-

d

rd

-

e
-

ss

n-
is

the value ofb corresponding to the smallest maximum mu
tiplier, and it is clear that this point does not correspond
the lowest noise amplification. The lowest noise amplific
tion is achieved closer to the center of the domain of cont
as might have been expected intuitively. Panel~b! shows
results for NTDAS withN54. This value ofN was chosen
for comparison because it corresponds to the number of
ates for which the weights used in ETDAS withR50 be-
come small, with the criterion for smallness being arbitrar
chosen at 5% of the weight of the first iterate.

Figure 5~c! shows howa varies at fixedn for different
values ofR in ETDAS, indicating a clear minimum in nois
amplification forR in the range 0.6–0.8. For these plotsb is
chosen at the midpoint of the domain of control for the a
propriate values ofn and R; i.e., b5(12R2n23Rn)/4.
Each curve corresponds to a different value ofn. Figure 5~d!
shows howa varies at a fixedn for different values ofN in

FIG. 5. The amplification of noise by ETDAS and NTDAS co
trollers.~a! ETDAS control withR50.5. Each curve corresponds t
a fixed value ofn and spans the values ofb within the domain of
control for thatn. From left to right, the values ofn are20.2,22.6,
25.0, and26.2. The heavy dot on each curve indicates the value
b for which the eigenvalues have the lowest magnitude, which
clearly seen to differ from the values that give the lowest no
amplification. The heavy dot on the right most curve lies on the
branch ata'84. ~b! NTDAS control withN54. Values ofn used
in this case are 0.1,21.7,23.5, and24.4. No control is possible in
this case forn,25. Note the different vertical scale from part~a!.
~c! Variation ofa with R for fixed n. The lower, middle, and uppe
curves correspond ton522, 24, and26, resepctively. For each
point on each curveb is chosen near the center of the domain
control, as described in the text.~d! Variation ofa with N for fixed
n. The lower, middle, and upper curves correspond ton522.5,
25.5, and28.5, resepctively. For each point on each curveb is
chosen near the center of the domain of control, as described in
text.
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NTDAS, indicating that larger values ofN provide better
performance. For these plotsb is taken to be2nN/(N11),
which is near the midpoint of the domain of control.

The noise sensitivity of the two control schemes for fix
R andN can be visualized quickly by a contour plot ofa in
then-b plane, as shown in Fig. 6. Consistent with Fig. 5, it
seen that the region of low noise sensitivity is confined to
center of the domain of control and to small values ofunu. In
addition, it is seen that the region of low noise sensitivity
NTDAS extends over a larger range than ETDAS, sugg
ing that is may be the control scheme of choice in high-no
situations and when it is feasible to generate
NTDAS feedback signal.

To confirm the validity of the criterion of Eq.~19!, we
have numerically iterated an ETDAS-controlled map of t
form f (x)5nxn1cxn

l , takingc to be 10 andl to be 2 or 3.
The criterion indicates that the effect of noise will be mo
dramatic wherea is large. This occurs for all values ofn and
R if g is chosen so as to place the system very near
boundary of the domain of control. More importantly, how
ever, one is forced to a region of largea if control of a
highly unstable fixed point, say,n5250, is desired. Choos
ing R50.95 and then settingg so as to minimizea, we find
a'77. Forl52 ~or 3! the noise tolerance criterion implie
that control should fail fors.231025 ~or 531024). We
have iterated the equations

zn115nzn1cxn
l1en1hn , ~25!

FIG. 6. Contour plots of noise sensitivity for~a! ETDAS control
with R50.5 and~b! NTDAS control for N54. The dashed lines
indicate the boundary of the domain of control. In~a!, the contours
correspond toa5A2, 8, and 32, and in~b! they correspond to&, 2,
and&, where the lowest area contour is for the smallest value oa.
e

r
t-
e
e

t

e

en5g~zn2zn21!1Ren21 , ~26!

with hn uniformly distributed in the interval (2A3s,A3s)
for increasing s. We find that control is lost ats57
31025 for l52 ands5631024 for l53, both of which
are in reasonable agreement with the estimates. The dete
nation that control is lost is made easily in these systems
monitoring the value ofuxnu. When control is successful, th
maximum value ofuxnu over many~10 000! iterations lies
within about 10% ofas. When control is lost,xn diverges
rapidly. The smallest value ofs for which control is lost
depends only weakly on the number of iterates monitor
The quoted results changed by less than 1% when 10 ti
as many iterates were monitored.

V. CONCLUSIONS

We have investigated two feedback schemes for stab
ing the dynamics of discrete maps about unstable fi
points. The techniques do not require a comparison to a
erence state; rather, they make a comparison of the cur
state of the system with past iterates of the map. In addit
the techniques we have studied permit generalization t
continuous mode of operation, which might be necessar
fast systems.~References@7,8,11,14# discuss the continuou
version of ETDAS.!

Our analysis reveals that the domains of control
ETDAS ~characterized by feedback parameterR) and
NTDAS ~characterized by feedbackN) are roughly compa-
rable whenRN;0.05. We also find that NTDAS is some
what more tolerant to uniform noise over the entire dom
of control in comparison to ETDAS, which is counterba
anced by the fact that NTDAS is somewhat more difficult
analog systems. It should be noted that a third technique
been suggested, in which the feedback signal is switched
for every other iterate of the map@5#. This approach has
certain advantages, especially in that it permits stabilizat
of maps with postiven, though it is by nature not suitable fo
continuous operation. It has not been treated in detail h
only because a parallel treatment would require some~pos-
sibly subtle! extensions of our methods of analysis. Our pu
pose here is to examine two schemes that have rece
some attention recently, not to argue for their optimality ov
all other conceivable approaches.

We conjecture that both ETDAS and NTDAS are suitab
for tracking trajectories in the presence of slow parame
drift as long asb can be continually adjusted so that th
system remains within the domain of control. An intriguin
possibility is that the noise level itself could be used as
measure of parameter drift and used to make slow adj
ments tob. Depending on the parameter regime of intere
this might beeasierto do with ETDAS, since the noise sen
sitivity varies more rapidly as a functionb, whereas for
NTDAS the noise level increases only very slightly until o
gets very close to the stability boundary.

Finally, our analysis of noise amplification serves as
example which should be of interest to physicists design
feedback-control devices. As is well documented in the c
trol theory literature, the fact that a system possesses
stable Floquet multipliers gives no guarantee of robust
eration. Trefethen has emphasized that the interaction
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nonlinearities with transient growth that may occur in t
linearized system can result in extreme sensitivity
noise@21#. We have shown a simple way to obtain a meas
of the level of noise that can be tolerated by a given cont
ler and presented an example in which control is lost at no
levels for which the nonlinear terms associated with b
noise appear at first glance to be negligibly small.
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