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Analysis and comparison of multiple-delay schemes for controlling unstable
fixed points of discrete maps

Joshua E. S. Socolar and Daniel J. Gauthier
Physics Department and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708
(Received 20 January 1998

We investigate theoretically the stabilization of a fixed point of a discrete one-dimensional nonlinear map by
applying small perturbations to an accessible system parameter or variable. The size of the perturbations is
determined in real time using feedback schemes incorporating only the dynamical state of the system and its
state at previous iterates without making a comparison to a reference state. In particular, we compare and
contrast two algorithms: extended time-delay autosynchronization, which uses an infinite series of past iterates
with weights that decay by a factor & with each time step, and-time-delay autosynchronization, which
uses an average ™ past iterates with equal weights. The range of feedback parameters that successfully
stabilize the fixed point and the robustness of the schemes to noise are determined. It is found that the domain
of control for the two schemes is similar for appropriately matched valug&afdN, and thatN-time-delay
autosynchronization tends to be less sensitive to noise.
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[. INTRODUCTION The simplest time-delay scheme for controlling the fixed
point of the map is to take forrid—6]

It is now well established that instabilities and chaos oc-
curring in nonlinear dynamical systems can be controlled
effectively by applying only small perturbations to an acces-
sible system parameter or varialjle]. The most common o )
class of control techniques relies on feedback of an erroyhere the gainy is an appropriately chosen real number.
signal proportional to the difference between the current statéhis basic scheme has been called the discrete version of
of the system and a known reference sf&t@]. For systems “time delay autosynchronization(TDAS) [7,13].
in which production of the reference signal is impossible, \We consider two schemes that have been suggested for
either due to the high frequencies involved or the spatiageneralizing TDAS by incorporating information from far-
complexity of the desired behavior, time-delay feedback is her in the past than a single iterate. We report on detailed
natural option to explord4—17. In time-delay feedback analyses of the parameter regimes in which these schemes
schemes, the past behavior of the system is substituted f@e successful and on numerical measurements of the effect
the predetermined reference state, so that the system itsélf noise on the controlled systems. The first scheme, termed
provides a useful error signal. With the delay time chosen to€xtended TDAS” (ETDAS) [7-11,14, uses an infinite se-
be equal to the period of the desired orbit, the differencdies of past iterates with weights that decay exponentially
between past and current states vanishes when the systemih time in a form given by
on that orbit, so that the controlled behavior remains a solu-
tion to the original system’s equations of motion and only o0
small.perturbations are applied. It has be.en argued elsewhere €= 72 R¥(Xpy— k= Xn—k_1)
that time-delay approaches are appropriate, or perhaps nec- k=0
essary, in applications ranging from diode laser stabilization
[10] to suppression of cardiac arrhythmid,13.

In this paper we analyze two methods that have been sug-
gested for employing time-delayed information to stabilize awhereR is a real parameter wittR|<1. An important rea-
periodic orbit. We investigate the control of a fixed poifit ~ son for investigating ETDAS feedback is that it can be gen-

€n=Y(Xn=Xn-1), (2

=yY(Xn—k—Xn—1) T Rep_1, ©)

of a one-dimensional discrete map erated experimentally using a recursive feedback loop with a
single delay element and it has an all-optical implementation
Xnt1=F(Xp; k), (1) [7,11). In some cases the physics of the system may not

permit more complicated controller designs that might be
wherex= ky+ €, is a parametefnominal valuex,) that can  suggested by control-theoretic analyses. A continuous ver-
be adjusted by small amoungg on each iterate of the map. sion of ETDAS has been found, both analytically and experi-
The size of the adjustments is determined from a feedbacknentally, to be an improvement over TDAS-9,11,14,
algorithm that makes a comparison between the current statehich corresponds to the special cd&e0.
of the systenx,, and its values on previous iterates; it does The second scheme, which we will call NTDAS, uses an
not make a comparison to the value of the fixed pginfthe  average oN past iterates with equal weights in a form given
reference state used in the majority of feedback schemesby
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10 (1+R)*(1-R)
€En=7Y| Xn— Ngl Xn—k |- 4

NTDAS reduces to TDAS wheiN is set to 1. While this RN ~

method is not easily implemented in high-speed systems, @ EONS 1-R

digital implementation for relatively slow systems is straight-

forward. NTDAS has been introduced into the physics litera-

ture by Flakeet al. [15] and by Christiniet al. [16,17]. We

note that these two schemes differ from the recursive feed-

back algorithms investigated by Rollins and collaborators

[18] in that their scheme makes a comparison to a known BROR) FREr—

reference statéhe value of the fixed poipnt v

It is convenient to use the following quantities in discuss- )

ing the controlled system. Let=df(x*)/dx be the Floquet  FIG. 1. Domain of control for ETDAS. For values efand 3

multiplier associated with the fixed point of the uncontrolled "Side thfe t”‘i”g(lgar Og)otjhnd?ry (tjhe f.'xted po;gtt')s Stta?)lle - In lth? ab-

map; i.e., X,.1—X* =v(x,—x*) for x,—x* sufficiently S€nce of coniro(£=0), the Tixed point would be stable only Tor

smgll. The unnclontrolled(fi;ed p)oint is unstable if and or?ly jf ~1<v<1.The dashed curve indicates the valugsdbr which the

|V|>1. Let 8= y[df(x*)/dx] be the natural measure of the Iargest_magnltude Floguet multiplier is made_ as small as po_s&ble
. . . for a givenv. The upper and lower boundaries of the domain of

strength of the f_eedback gaifNote thaty itself is not a control are labeled by the type of bifurcation that occurs as they are

gzi?rll(;z,eoarfttjrrlz ?jlggtraeteh?oevf\tﬁghof:;g?];z:dggzrktﬁen ttrha?eSCySteg?ossed. The case=1/3 explicitly illustrated, but the axis labels

tories) The region in(»,B8) space where the fixed point is are correct for anfR

stable for various choices & or N will be called thedo-

main of control

For both ETDAS and NTDAS, we wish to determit®

the boundaries of the domain of contr®) the nature of the in order for both multipliers to have magnitude less than

bifurcation that occurs as is varied so that the boundary of unity (i.e., the controller SUCCGSSfU”y stabilizes the fixed

the domain of control is crossed, a8 some measure of PoinY. Figure 1 depicts this domain of control.

the robustness of the control that can be achieved by adjust- The following points are worth noting.

ing v for a given choice oR or N and a given value of. (1) ETDAS fails to control an unstable fixed pOint with

Section Il presents the linear stability analysis and determiPositive multiplier,»>1, for any choice oR andy. (Choos-

nation of the Floquet multipliers for the case of ETDAS, ing v is equivalent to choosing.)

addressing point§l) and (2). Section Il presents a similar ~ (2) The most unstable fixed point that can be controlled

analysis for the case of NTDAS. Section IV addresses poinfor @ given value oR has|»|=(3+R)/(1—R), which can

(3): an analytical treatment of the effect of additive white b& made as large as desired by choosngufficiently close

noise is presented. Finally, Sec. V discusses some relevai@ 1.

Rv+B8=1, 9

points of comparison between the two methods. (3) The optimal choice of for robustness in the presence
of noise differs markedly from the criterion that the Floquet
II. LINEAR STABILITY ANALYSIS FOR ETDAS multipliers of the controlled system be as small as possible.

This point will be discussed further in Sec. IV.
The linear stability analysis for ETDAS can be carried out  The types of bifurcations encountered@is adjusted for
in a straightforward manner by linearizing Ed4) and (3) fixed values ofv and R are readily determined. Upon de-
aboutx*, definingz,=x,—x* ande,=e¢,/v, and rewriting  creasingg so as to cross the lower boundary of the domain

the equations in the form of control, u_ passes through-1 and a period-doubling
bifurcation occurs. Upon increasingso as to cross the up-
Zntr) [V B Zn per boundary of the domain of control, a supercritical Hopf
e.1) \v—1 B+R/\e,) 5) bifurcation occurs. A branch of the curver{B+R)?

—4(Rv+B)=0 lies within the domain of control and is
The Floquet multipliers for the controlled system are theindicated by the dashed line in Fig. 1. For points above this
eigenvalues of the matrix in E@5) given by line the eigenvalues form a complex conjugate pair. The ro-
tation frequencywy of the limit cycle just beyond the Hopf
boundary(the upper boundary of the domain of conjrid
given by the argument gk, at the point where the bound-
ary is crossed. Letting be defined by the relatiom=1
—4(3—0)/(1—R) so that the upper boundary is traversed

from left to right asé varies between—1/2 and 1/2, we
obtain

Mi:%[v-{-B'F R=\(v+B+R)?>—4(vR+B)]. (6)

Straightforward analysigor application of the Shur-Cohn
criteria) shows thatv and 8 must lie within the triangle de-
fined by the lines

v=1, (7)

1

wy=tan” (10)

=]

(1+R)v+28=—(1+R), (8) 5
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2 temXx(w) when it is on the fixed point consists of&func-
R=0 tion at 0=0; therefore, the filter must remove this frequency
(via the notch so that e(w)=0. The ETDAS feedback is
o S — more effective in stabilizing the fixed point for larg&
% ;| _— R=0.5 partly because it is more sensitive to frequencies that could
g potentially destabilize the fixed point. The narrow notch im-
/ plies that more feedback is generated for signals with fre-
gquency components slightly different than the desired one. In
(@) addition,|F (w)| remains near one anglis closer to zero for
0 . . . largerR, and so the system is less likely to be destabilized by
a large, out-of-phase feedback response at these intermediate
/2 frequencies.
(0) g
R=0 Ill. LINEAR STABILITY ANALYSIS FOR NTDAS
\ The boundaries of the domain of control for a system
T controlled by NTDAS can be obtained in closed form as
\ parametric equations. The linearized equations in the vicinity
R=0.5 “~_ of the fixed point can be written in matrix form as
\
o — Zni1 v+B8 —-b —-b .-+ =D
0 al2 x Zy r o 0 -0
» Zn_1 = 0 1 0
FIG. 2. Transfer function for the ETDAS controller for two : '
different values of the parametBr (a) Absolute value of the trans- Zn_N+1 0 .. 0 1 0
mission through the filter as a function of frequengl) Phase
characteristics of the filter. Zy
Zn-1

As may have been expectedy approachesr at the left-

most point, which is where the Hopf line and period- X1 “Zn-2 |, 12
doubling line meet, and approaches 0 at the rightmost point, ;
which is where the Hopf line meets=1, corresponding to
pure expansion with no oscillation.

In designing devices for generating feedback signals, it isyhereb= g/N. It is immediately clear that the determinant
often useful to consider the behavior of the controller in thest the matrix is=b, which means that the system must be
frequency domain in addition to the time-domain stability ,,staple forb>1 or B>N. This turns out to be important
analysis given above. For the case of discrete maps, we tal&emy for the caseN=1, which is the case of TDAS and is
each iterate to correspond to a unit interval of time. Note tha&asily analyzed(lt is the caseR=0 in Fig. 1, for which the

the ETDAS feedback signal linearly relates the input signal upper boundary becomes a horizontal line3at1.)

Zh—N

with the output signale; hence e(w) =F(w)x(w), where For N>1, the characteristic equation for the matrix is
X(w) and e(w) are the Fourier amplitudes of the input and
output signals, respectively, and N—1
| pNv+B—p)=b X uk=0. (13
1— e*lw k=0
Flo)=y ——— 11 : :
1-Re™'® On the boundaries of the domain of control we must have a

solution with|u|=1, and conversely, any values sfand 8

is the transfer function for ETDAS feedback. The transferfor which a solution withu|=1 exists must be either on the
function “filters” the observed state of the dynamical sys- boundary or outside the domain of contr@t.can be outside
tems, characterized by(w), to produce the necessary feed- if for those same values there exists another solution with
back signale(w). Due to the discrete nature of the system, it|y|>1.)
is sufficient to consider the transfer functiéi{w) of the We first note thatu=1 is a solution of Eq(13) if and
controller in the interval & w<mr. only if =1, and it is easily verified that there is always a

Figure 2 shows |F(w)| and 6#=tan '[Im F(w)/  solution with u>1 for any »>1. Next note thaju=—1 is a
Re F(w)] for R=0 (TDAS) andR=0.5(ETDAS). Itis seen  solution if and only if
that there is a notch dropping to zeroat0, and the notch
becomes narrower and the phasés closer to zero over a ~ —N(1+v)
larger frequency extent for largd®. The existence of the ~ N+mod,N*
notch in the transfer function can be understood easily by
considering thak,, and hences(w), must vanish when the This line constitutes a boundary of the domain of control
fixed point is stabilized. Recall that the spectrum of the sys€orresponding to a period-doubling bifurcati¢Bee Fig. 3.

(14)
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FIG. 3. Domain of control for NTDAS. For values efand 8

inside the heavy boundary the fixed point is stable. In the absence

of control (8=0), the fixed point would be stable only forl<v

<1. The casdN=5 andN=4 are shown as representatives of odd

and everN. The axis labels are correct for aiN; The upper and

lower boundaries of the domain of control are labeled by the type of
bifurcation that occurs as they are crossed. @

/2
(b)

For any v other than 1, we can multiply by-1x and
rearrange terms to obtain

uN w?—(v+B+1)pu+v+pB+b]=b. (15 ' ' '

Letting u=exp(¢), the real and imaginary parts of this

equation give two relations involving, v, and 8 that must FIG. 4. Transfer function for the NTDAS controller for two

be satisfied on the boundary of the domain of control. Theséifferent values of the paramethsi: (a) Absolute value of the trans-

can be solved fow and 8 in terms of ¢, yielding mission through the filter as a function of frequen¢y) Phase
characteristics of the filter.

_ _(l+2N)Sl+(l+ N)Sz+ SN+1_SN+2

V= — s (16) ) _ a—iNw
Sy Sy— SN+ 1 Flw)= 18 (1 ? ) 18
N(1—e™'®)
2Ns;—Ns,
(17)  Figure 4 showsF(w)| and §=tan [Im F(w)/ReF(w)]

S17+ SN Sn+ for N=0 (TDAS) andN=4 (NTDAS). As for ETDAS feed-

. back discussed in the previous section, the notclw-ad

wheres,=sin(n¢). . _ becomes narrower and the phasés closer to zero over a

To map out the remaining portions of the boundary, thejzrger frequency extent for largét, although the curves os-
appropriate values of must be determined. This can be gjjate about their nominal values. Note thatapproaches
accomplished by noting that at mez special polMpB)  ,erg at a lower frequency in comparison to ETDAS feedback
=(—N-1N), Eq. (15 reduces tou""“=1, so that all of (5peit with oscillationy suggesting that NTDAS feedback
the Floguet multipliers have unit magnitude. Asis in- gy pe less sensitive to perturbations over a broader fre-
creased from zero, this point is first reachedfat 277/(N  quency range in comparison to ETDAS. See the discussion

+2), and so it is values ofp in the interval [0,27/(N  on nojse sensitivity in the following section.
+2)] that produce the upper boundary in Fig. 3. This bound-

ary corresponds to a Hopf bifurcation with rotation fre-
quency wy= ¢. For evenN, the lower (period-doubling
boundary already determined passes through the special
point and the entire domain has now been determined. For Determing the noise amplitude at which linear control
odd N, there is an additional section of the boundary that isfails requires a comparison of the size of the deviations from
obtained by allowingp to decrease from its period-doubling the linearized equations induced by the noise with the origi-
value of 7 until it first reaches one of theN(+ 2)th roots of  nal noise level itself19]. Control will fail when the nonlin-
unity; i.e., pe[m(N+1)/(N+2),7]. This section of the ear deviations, or “deviational noise,” become comparable
boundary also corresponds to a Hopf bifurcation. Taking thén magnitude to the original additive noise. To estimate the
limit of Eq. (16) as ¢ approachesr from below, one finds size of the deviational noise, one may first determine the
that this curve intersects the period-doubling boundary aextent to which the additive noise is amplified in the purely
v=3. Figure 3 shows the domains of control for the cases ofinear system, then consider the strength of the nonlinearity.
even and oddN. Let o be the additive noise strengfthe rms magnitude of

Parallel to the discussion in the previous section, we exthe noise added ta, on each iteration assume that the
plore the frequency-domain response of NTDAS feedbackdominant nonlinearity in the vicinity of the fixed point is
The transfer function is found by Fourier transforming Eq.cz*, and let the noise amplitude that would be generated by
(4) and is given by the purely linear system with control applied be, where

IV. ROBUSTNESS OF ETDAS AND NTDAS
IN THE PRESENCE OF NOISE
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the amplification factok is a function of the system param- 40
eters and control parameters. A rough criterion for the maxi- [ (a)

. ) 30
mum noise that can be tolerated is
3 20

C(ao'max))\: O max: (19

which gives accurate estimates for generic nonlinearities and
noise characteristicg§For engineering applications in which
it is imperative that one obtain conservative bounds, standard
control-theoretic methods of analysis are availd2i@].) =
In this paper, we do not specify the nature of the nonlin-
earity in the system. Nevertheless, by computinépr dif-
ferent control parameters we can determine which choice
will give the optimal noise tolerance, regardless of the pre-
cise values ot and\. Note that for any linearized system 5
can be scaled arbitrarily, and so there is no threshold for loss 4
of control in the purely linear system. 3 o
2
1
0

To determine the amount of amplification of the noise in 3 10 | 3
the time-delay controlled systems of interest here, we con- Q
sider first an arbitrary stable linear system to which noise is

added only to the first component in a form given by

| o o

+
Ty
'---32999566T‘

0
0.0 0.5 1.0 0 5 10 15
R N

Zne1=M- 2yt 9, (20 FIG. 5. The amplification of noise by ETDAS and NTDAS con-

trollers.(a) ETDAS control withR=0.5. Each curve corresponds to
a fixed value ofv and spans the values @gfwithin the domain of
control for thatv. From left to right, the values af are—0.2, —2.6,
—5.0, and—6.2. The heavy dot on each curve indicates the value of
(7)=0 Vn 21) B for which the eigenvalues have the lowest magnitude, which are
n ’ clearly seen to differ from the values that give the lowest noise
amplification. The heavy dot on the right most curve lies on the left
(Do) = 0'25nm- (22) branch ata~84. (b) NTDAS control withN=4. Values ofr used
in this case are 0.1;:1.7,—3.5, and—4.4. No control is possible in
this case forw<—5. Note the different vertical scale from p&d).
(c) Variation of o with R for fixed v. The lower, middle, and upper
curves correspond to=—2, —4, and —6, resepctively. For each
point on each curved is chosen near the center of the domain of
control, as described in the text) Variation of « with N for fixed

whereM is a reallL X L matrix and»,=[7,,0,0, . . .]", with
7, being unbiased and correlated so that

Let E be the matrix of(right) eigenvectors oM, with ele-
mentE;; equal to theth component of thgth eigenvector,
let V be the inverse oE, and letu ) be the eigenvalue
associated with th¢th eigenvector.

Taking z, as a given initial condition, we have v. The lower, middle, and upper curves correspondvto—2.5,
—5.5, and—8.5, resepctively. For each point on each cuprés
n chosen near the center of the domain of control, as described in the
Zn+1:Mn'ZO+ z Mnim"’m- (23) text.
m=0

Forn— oo, the first term vanishes since the controlled systempe value of3 corresponding to the smallest maximum mul-
is stable in the absence of noise. U23|ng E@4) and(22) it tiplier, and it is clear that this point does not correspond to
is found that the average value [af| after many iterations e |owest noise amplification. The lowest noise amplifica-

approaches tion is achieved closer to the center of the domain of control,
as might have been expected intuitively. Paft®l shows
results for NTDAS withN=4. This value ofN was chosen
<|21|2>=2 (24)  for comparison because it corresponds to the number of iter-
I ST ates for which the weights used in ETDAS wiR=0 be-
come small, with the criterion for smallness being arbitrarily
The amplification factow is defined ag|z;|?)Y% o. chosen at 5% of the weight of the first iterate.

For either ETDAS or NTDAS can be determined for Figure 5c) shows howa varies at fixedv for different
any given choice of, 8, andR or N from the matrices given values ofR in ETDAS, indicating a clear minimum in noise
above. The results are illustrated in Fig. 5. In parfg@lsand  amplification forR in the range 0.6—0.8. For these plgtss
(b), each curve showa as a function ofg for a fixed value chosen at the midpoint of the domain of control for the ap-
of v, with the values of8 spanning the width of the domain propriate values ofv and R; i.e., 8=(1—R—v—3Rv)/4.
of control. In panel (@, which corresponds to Each curve corresponds to a different valueoFigure gd)
ETDAS with R=0.5, the large dot on each curve indicatesshows howa varies at a fixed for different values oN in

Vi1V ELiEy;
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‘ I €= Y(Zh—2p-1) +Rey-1, (26)

with 7, uniformly distributed in the interval < 3¢, /30)

for increasingo. We find that control is lost abr=7

X 107° for \=2 ando=6x10"* for A=3, both of which

are in reasonable agreement with the estimates. The determi-
nation that control is lost is made easily in these systems by
monitoring the value ofx,|. When control is successful, the
maximum value of|x,| over many(10 000 iterations lies

. within about 10% ofao. When control is lostx,, diverges
rapidly. The smallest value o for which control is lost

(b) depends only weakly on the number of iterates monitored.
4 ~ ] The quoted results changed by less than 1% when 10 times
as many iterates were monitored.

V. CONCLUSIONS

We have investigated two feedback schemes for stabiliz-
ing the dynamics of discrete maps about unstable fixed
points. The techniques do not require a comparison to a ref-
erence state; rather, they make a comparison of the current
state of the system with past iterates of the map. In addition,
the techniques we have studied permit generalization to a
continuous mode of operation, which might be necessary in

FIG. 6. Contour plots of noise sensitivity f@) ETDAS control ~ fast systems(Reference$7,8,11,14 discuss the continuous
with R=0.5 and(b) NTDAS control for N=4. The dashed lines Version of ETDAS)
indicate the boundary of the domain of control.(&, the contours Our analysis reveals that the domains of control for
correspond tar= 2, 8, and 32, and itb) they correspond te2, 2, ETDAS (characterized by feedback paramet®) and
andv2, where the lowest area contour is for the smallest value of NTDAS (characterized by feedbadk) are roughly compa-
rable whenRN~0.05. We also find that NTDAS is some-
what more tolerant to uniform noise over the entire domain
NTDAS, indicating that larger values o provide better Of control in comparison to ETDAS, which is counterbal-
performance. For these plogsis taken to be- vN/(N+1), anced by the fact that NTDAS is somewhat more difficult in
which is near the midpoint of the domain of control. analog systems. It should be noted that a third technique has

The noise sensitivity of the two control schemes for fixedP&€n suggested, in which the feedback signal is switched off
R andN can be visualized quickly by a contour plotefin ~ for every other iterate of the maf5]. This approach has
the -3 plane, as shown in Fig. 6. Consistent with Fig. 5, it is certain advantages, especially in that it permits stabilization
seen that the region of low noise sensitivity is confined to theé>f Maps with postive;, though it is by nature not suitable for
center of the domain of control and to small valuegifin ~ Continuous operation. It has not been treated in detail here
addition, it is seen that the region of low noise sensitivity foroNly because a parallel treatment would require sépus-
NTDAS extends over a larger range than ETDAS, suggests'bly subtlg extensions of our methods of analysis. Our pur-
ing that is may be the control scheme of choice in high-nois@0S€ here is to examine two schemes that have received
situations and when it is feasible to generate theSOMe attention recently, not to argue for their optimality over
NTDAS feedback signal. all other conceivable approaches.

To confirm the validity of the criterion of Eq19), we We conjecture that both ETDAS and NTDAS are suitable
have numerically iterated an ETDAS-controlled map of thefor tracking trajectories in the presence of slow parameter
form f(x) = vx,+cx, takingc to be 10 anch to be 2 or 3 drift as long asB can be continually adjusted so that the

n? .

The criterion indicates that the effect of noise will be mostSyStem remains within the domain of control. An intriguing

dramatic wherex is large. This occurs for all values ofand ~ POSSibility is that the noise level itself could be used as a
R if y is chosen so as to place the system very near thB'€asuré of parameter drift and used to mgke sIovy adjust-
boundary of the domain of control. More importantly, how- MeNts t03. Depending on the parameter regime of interest,
ever, one is forced to a region of largeif control o’f a this might beeasierto do with ETDAS, since the noise sen-
highly unstable fixed point, say;=—50, is desired. Choos- sitivity varies more rapidly as a functio@, whereas for
ing R=0.95 and then setting so as to minimizex, we find NTDAS the noise level increases only very slightly until one
a~T77. ForA=2 (or 3) the noise tolerance criterion implies gets very close to the stability boundary.

that control should fail forr>2x 10" (or 5x10°%). We Finally, our analysis of noise amplification serves as an
have iterated the equations ' example which should be of interest to physicists designing

feedback-control devices. As is well documented in the con-
trol theory literature, the fact that a system possesses only
stable Floquet multipliers gives no guarantee of robust op-
Z11=VZy+HCXy+ €t 7y, (25  eration. Trefethen has emphasized that the interaction of

|
N
[T
- ===
I
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