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Periodically driven linear system with multiplicative colored noise
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A periodically driven linear system subject to multiplicative correlated noise is considered. It has been
argued recently by several authors that such a simple system exhibits stochastic resonance. By introducing a
general type of composite stochastic process, bridging two previously considered limiting cases of dichoto-
mous and Gaussian noise, it is proved that, indeed, the amplitude of the average of the driven linear process at
long times shows a pronounced maximum both as a function of the noise strength and as a function of the
autocorrelation time. However, this kind of stochastic resonant behavior can be experimentally observable only
in a special case where the initial phase of the external forcing is somehow fixed. Additional averaging over the
uniform distribution of the initial random phase, inherent in most physical systems, leads to that the periodic
output vanishes identically at long times. Moreover, the system response is typically defined in terms of the
power spectrum rather than the amplitude of the average. The output signal given by the spectral density
corresponding to the frequency of the external forcing is calculated via the long-time phase-averaged correla-
tion function. It appears that the output signal simply diverges upon approaching the second moment instability
point with increasing noise strength. No stochastic resonance is observed for any parameter settings. Interest-
ingly, the resonancelike behavior of the system response as a function of the autocorrelation time is retained.
[S1063-651%98)12906-9

PACS numbds): 02.50.Ey, 05.40t]

I. INTRODUCTION tuations acting upon collective variables. Multiplicative pro-

. . o . cesses have some common features with additive processes
Stochastic forces can play a crucial role in influencing the

T . ) -and they also have a number of striking differences. Impor-
deterministic kinetics. A representative example is StOChaSt'Fantly the most probable values in a multiplicative process

resonancéSR) observed in metastable systems driven by &yenend explicitly on the strength of the fluctuations, while in
combination of periodic and random forcify-7]. SR mani- 51 aqditive process the dependence is very weak. For a mul-
fests itself in a significant enhancement of the system regjpjicative process, the stability of the associated determinis-
sponse for a certain value of the noise strength. So far, thgc problem does not guarantee the stability in the presence
majority of the theoretical studies in this area have focusef fluctuations. On the contrary, an additive stochastic pro-
on nonlinear systems with additive white noise. It was con—ess is stable whenever the deterministic problem has a glo-
cluded that nonlinearity is an essential ingredient of SR sincéally stable steady state far away from the instability point.
in a linear system the input additive noise leads to only eHere lies a key to the explanation of the resonancelike phe-
trivial decrease in the output signal-to-noise raflNR) nomena observed in a linear periodically driven system sub-
while, in contrast, a dramatic improvement of the SNR carject to multiplicative colored noise.
be observed for a periodically modulated nonlinear potential. Consider an overdamped linear system described by the
Recently, behavior similar to what is commonly ascribedstochastic differential equation
to SR has been found in a linear system subject to multipli- .
cative colored noisg8—10]. A pronounced maximum of the X(t)=—[ap+ &(t) X+ A sinf(Qt+ o), (1.
SNR as a function of the noise intensity was observed for not ) ) o
too high frequencies of the external periodic force as soon aghereé(t) represents the noise with a vanishing mean and a
noise correlation was introduced. Analytical solutions werecertain time correlation, 2, and ¢, denote the amplitude,
obtained for two different limits of the noise, namely, for the frequency, and the initial phase of the external modula-
dichotomous nois¢8,9] and for Gaussian noidd.0], and it ~ tion, respectlve_zly. _Even this simple problem has a numl_)er (_)f
was suggested that noise multiplicativity and time correlatioimportant applications, such as fluctuating barrier crossing in
are the necessary conditions for the SR to occur in a linegghemistry [13]. By introducing the potential (x) = 3[ao
system. Interestingly, the dependence of the SNR on thd £(1)]x°—Asin(@t+¢g)x, Eq. (1.1 can be rewritten as
noise autocorrelation time also showed a nonmonotonic be¢(t)= —dU/dx. Thus the system evolution is governed by
havior. the interplay between the fluctuating potential curvature due
Multiplicative fluctuations emerge naturally in a variety to multiplicative noise and the periodic shift of the minimum
of systems with ensuing applications in different areas rangdue to the sinusoidal signal. The evolution of the average
ing from physics to biology{11,12. In fact, in a realistic (x(t)) can be described in terms of a sequence of noise-
model one must always deal with various sources for flucgenerated effective potentigl40]. Only two potentials are
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involved in the case of dichotomous noise, while an infinitetion of many two-state jump Markovian processes. In this
number of terms appears for Gaussian-type noise. Qualit&section we summarize the properties of such a composite
tively, as the noise strength increases, the stability of thetochastic process, which will be required for our further
lowest most efficient term decreases, leading to the enhancdiscussion. Previously, the analysis was performed on the
ment of the output signal. At the same time, the weight ofbasis of the time-convolution expansion using projection op-
this potential decreases with increasing noise strength. Thesgatorg 14,15. This method is very general, allowing evalu-
two competing factors generate nonmonotonic behavior oétion of any functional of the noise. Here we choose a dif-
the SNR. It should be emphasized that signal enhancement ferent approach, originally due to Kulpp6], which operates
this model is due solely to a decreasing system stabilitydirectly with the evolution equation.
typical of a multiplicative process. In the case of white noise, Consider a stochastic process composeN ofdependent
only one effective potential is involved. Thus, as the noisetwo-state jump processes, namely,
strength increases toward the marginal point of stability, a
monotonic increase of the output signal is observed. N

So far we have tacitly assumed, together with Fakiri8] Nty = n}_‘,l En(D), (2.9
and Berdichevsky and Gitterm&8], that the output signal is -

given by the amplitude of the average(t)) at long times. \yhere each constituent process has the stationary properties
However, the system response is often defined in terms of

the experimentally observable power spectriflyb]. For a (&q(1))=0, (2.2)
stationary stochastic process, the Wiener-Khintchine theo-
rem holds and the spectral density is obtained as the Fourier (En(D) Eni (1)) = Some A2exp( — [t—t|/ 7¢) 2.3

transform of the autocorrelation function, which depends on

the time difference only and thus, indeed, can be represented 1

by the average. However, stochastic processes with periodic P(Ag)=Py(—Ag)==. (2.9

modulation are essentially nonstationary stochastic processes 2

with the correlation function depending explicitly on two Th luti i

time arguments. The long-time amplitude of the average, € evolution equation

therefore, generally does not define the power spectrum. o aN)

Moreover, in many physical situations, the initial phase y()=—&7 )y, (2.9

of the modulation is unknown. It should thus be considered . - .

as a random variable and the results have to be averaged o h the initial colnd|t|ony.(0)= 1 fora tota}I of 2! states, can

the phase distributiof6]. be transformed into a direct product Nfindependent two-
The purpose of this paper is twofold. First of all, we will Staté evolution equations

present a solution to E@l.1) for a general type of noise that

bridges the Markovian two-state jump process and the dly-() _ 1 0|yt _i{ 1 —1}
Gaussian process and allows a straightforward further gener- dt|y_(t) % -—1fly_(t)] 27-1 1
alization to include noise asymmetry. Our second goal is to

clarify the above-mentioned uncertainties of the previous « y+(1) (2.6)
treatments. We will calculate the phase-averaged correlation y_ ()| '

function and thus show that the signal output defined as the

spectral density corresponding to the periodic forcing frewhere y.=[yP.(y,t)dy and P.(y,t) is the probability
guency exhibits no SR but simply a monotonic increase wittthat the valuey in the statet is realized at time. The initial

the noise strength due to a decreasing stability of the systergondition consistent with the stationary properties of the
We will also show that the resonancelike behavior of thenoise is

system response as a function of the autocorrelation time is

; 1
retained. y+(0)=y,(0)=§. 2.7

Il. PROPERTIES OF THE NOISE Introducing

The two-state jump proces®ften referred to as a di-

chotomous procegand the Gaussian process respresent two d(O=y+(O+y-(1), $(O=y,(O-y-(), (28
opposite extremes in a sense that the former is characterized . .

by two values of realization, whereas the latter is character’’® obtain for their Laplace transforms

ized by an infinite number of realizations. These two pro- _1

cesses have been widely used in stochastic modeling mainly B(s)= (st 7.7)$(0)—Ao¢(0) 2.9
due to their mathematical simplicity. The higher-order partial s(s+ 7. 1) —A3 ' '
cumulants in the former and the cumulants in the latter van-

ish identically, yielding simple expansion formulas. Several SU(0)— Ay d(0)

years ago, a general model was formulated for a composite ds)=——2 "0~ (2.10
stochastic process that bridges the two-state jump and the s(s+ 7. 1)—A(2,

Gaussian processes while retaining the simplicity of the two
[14]. The composite process was introduced as a superposthe Laplace transform is defined by
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f(s)= f:f(t)e—stdt. (2.11)

6557

It can be shown that both the noise amplitudes and the tran-
sition probabilities must be asymmetric for the average
(&n(t)) to be zero. The stationary correlation function is

Taking into account the initial conditions and inverting 9iven by

the Laplace transform in E@2.9), we finally arrive at

<y(t)>=<exp[— J;dt’é”)(t’)b =[N

=exp —Nt/27.){cosht/2br.)

+bsinh(t/2b7,) N
N
=n§=jo B, (N, m)exp( — knt), (2.12
where
b=(1+4a?/N)"*2  a=Ar,, A?=NAZ,
(2.13
u=(1-0b)/2, k,=(n—uN)/br, (2.19
and
N -
Bn(N,u)= n u(L=p)™ " (2.19

is the binomial weight factor with the megaN. We also
note the relationship

B(t)=—Aoy(t) (2.16
and thus
(t)=— 2les'nf(t/Zb Yexp(—t/27;) (2.1
Y(t)= N i 7o) eXH( 7o), .

which will be used later.

In the limit of N— o, the binomial coefficients tend to the

Poissonian weight factors

Bn(N,u)—Pp(a?)=(a®/nexp—a?) (2.18

and Eqg.(2.12 reduces to the well-known result for the

Gaussian noisgl6]

(y(©))=exd x(1)]= ngo Pa(a?)exp(— knt), (2.19

where
x(O)=a?(tlTe—1+e Y7), (2.20

(2.21

kn=(n—a?)l 7.

The above results can be generalized to asymmetric noise

[17] with the values of realization

E.=FAy(1lxe) (2.22
and the stationary probabilities
Ps(é+)=(1%e)/2. (2.23

(Ea(D & (1)) = S AS(1—e?)exp(—[t—t'|/ 7).
(2.29

Again, the evolution equation can be transformed into a di-
rect product ofN independent two-state evolution equations,
which now have the form

dly«(0]_ [1+e 0 ]ly.(t)
dily_(t)] "9 0 —1+elly_(t)
1| 1+e —1+el|yL ()
27 —1-¢ 1—¢ y_(t)]
(2.2
with the initial condition
1-¢ 1+¢
yi(0="5 y(0)=——. (220

All the final results for the asymmetric noise will be exactly
the same as above after we make the substitutions

Te—Te,  Ag—Ag, (2.27
where
~_ Tc T2 A2(1_ .2
Tc 1+28A07'C, AO Ao(l & ). (2.2&

We also haveA?=NA3.
Another quantity of our interest is the correlation function

t
G(tm)=<g(t,r>>=<y(t)t(t+r)>=<exr{—fodtléN)(tl)

t+7
—f dtzg(N)(tz)D- (2.29
0
By definition we have
d
S-9(t 7= — &N+ 7)g(t, 7). (2.30

We can calculate the correlation function for each of the
constituent two-state jump processes by considering two suc-
cessive evolutions: the first ovérdescribed by Eq(2.6)

with the amplitude of A, instead ofA; and the second over

7 described again by Eq2.6) but with the initial conditions
resulting from the first evolution, namely,

(p+ 7. 1) h(8,2A0) — Agih(s,2A)
p(p+ 7o) — A3

o»

(s,p)= , (2.3)

where the functiongs(s) and y(s) are defined by Eqg2.9)
and (2.10, respectively.G(s,p) denotes double Laplace
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transform ovett andr. Inverting the Laplace transforms, we ability distribution for such a linear problem is not normal-
finally obtain the expression for the correlation function of izable[11]. The moments, however, can be stable at certain
the composite process parameter values. Different moments have different ranges

(L7 =[$(7.A0) $(1.2A0) + t(r- At ZA Y of stability. The solution for the average valuexgt) reads,
th: 7,80 t1 0 +l/IT, 0 lﬂt, 0 ’
(2.32 (x(1))=xpe™2Ky(1)),

where we introducedb(7,A,) and ¢(7,Aq) to specify the wherexy=x(0) and(y(t)) was calculated in the preceding
argumentA in the expressions fop(r) and (7). Gener-  section. With the help of the expansion in E§.12 we can
alization to asymmetric noise is straightforward, as describeimmediately obtain the stability condition for the first mo-
above for the averagg(t)). ment

In the limit of N—oo, G(t,7) converges to the correlation

3.

function of the Gaussian noise ao>uN/br, (3.2
G(t,r)=exgd 2x(t) +2x(t+7) —x(7)], (2.33  Which can also be rewritten as
where x(t) is defined by Eq(2.20. This result can be ob- A%<ag(7; " +ao/N). 3.3

tained directly by performing the cumulant expansion in Eq

(2.29 and using the Gaussian property of the noise ‘Clearly, the range of stability is wider for dichotomous noise

Closing this section, we present the expansiorndr, 7),
which will be used later,

G(t,7)=>, He x17g 2!,
{N}

(2.39

where{N} indicates that the summation is performed over all

nj (j=1,...,4) from 0 to N under the restriction of
Si_nj=N,
4 .
(hy)"
H=N!Jl:[lT, (2.35

! i =l
hy =51+ by(— 1)/ J[L+Dby(— 1) 17]

2 ‘

+ Nazblbz(—l)[”z], (2.36
K.:l+ = i n(—1)i-0A6-
! 27'c 2biTC =1 ] !

bi=(1+4i%a?/IN)~ %2, (2.37)

wherei=1,2 and[x] denotes the largest integerx. Note
thatH and; are functions of alh; . In the limit of N—c,
Eq. (2.34 reduces to

©

G(t,7)= 2 Pum(a@?)(— 1)m2kHle= KamiTg ™ Kauit,
k,I,m=0

(2.38

where
Pum(@®) =Pi(a®)P(a?)Pr(a?), (2.39
ki =(k+1—ia®)/ 7. (2.40

Ill. STABILITY

than for Gaussian noise.

Noise asymmetry effectively changes the autocorrelation
time. Therefore, the stability condition for asymmetric noise
is given by

A2<ag(7; t+ay/N), (3.9
where7, was defined by Eq(2.29 in terms of A, and 7.
Solving Eq.(3.4) for the noise strengtih?=NA3(1-&2),
we obtain the inequality
1 IREG
+

N(1—e?)

(3.5

lag

&
< +
[N(1-&%)]" AoTc
The effect of the noise asymmetry vanishes in the limit of
N— oo,
The stability conditions for the higher moments can be
derived in a similar fashion. We have

(XM(t))=xg'e” M p(t,mA) " (3.9
and consequently
1 aoT
2 [
A“<ag mrc+ N (3.7
For the asymmetric case we obtain
P S . "
a =
"TIN(1-£2)]Y2 |[N(1—¢?)  agmr,
(3.8

The stability range for the higher moments is considerably
narrower than for the first moment, particularly for the
Gaussian noise. This is a very important thing to notice. The
moment stability conditions derived from E¢L.1) are the
same for arbitraryA#0. Thus the fact that different mo-
ments have different ranges of stability for a periodically
driven linear system with multiplicative noise gives us the
first indication that the definitions of the output signal in
terms of the long-time amplitude of the average and in terms

Let us now consider the noisy relaxation described by Eqof the autocorrelation functiofthe power spectrujrare not

(1.2) with A=0. It is well known that the stationary prob-

equivalent.
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IV. THE AVERAGE

Now that we have reviewed the properties of the multi-
plicative noise in a linear system and derived the relevant
moment stability conditions, we can focus on the solution of
Eq. (1.1). The average of the solution is given by

(1) =08 N0 +A | QUSITO(-1)+ o]t
0
4.7

Using the expansiof2.12) of the kernel, we can rewrite Eq.
(4.1) in the form

N
(x(0)= 2 Ba(N,s)exp—Bb)| Xo+ %l —
—Ccog Qt+ o+ @), (4.2 @ A2
where
Bn=ag+kn,, C=A(C3+C3)2 (4.3
p=arctariC,/C,). 4.5 <

Our previously derived solution for the Gaussian ndike|
is obtained in the limit oN—oc. Relevant to further consid-
eration is the long-time behavior

(X(1))s= — Ccog Qt+ ¢+ o) (4.6 | |
0.5 1 1 1
under the stability condition of Ed3.3). 038 12 1.6 2.0
The output SNR can be defined as (b) A

a,C FIG. 1. Signal-to-noise rati®=a,C/a?A as a function of(@)
N (47 A2 ang (b) A? for (a) ag=1, 7.=0.7, andQ=0.2 and(b) ao=1,
7.=2, and(=0.17, for different values oN=1,2,5, andc=. A2
Here we have modified the previous definitionRby Fu-  =A%(1+ao7c/N) maps the stability region on{d,ao /] for all

linski [8], i.e., R=C/AA?, in order to make it a dimension-

less parameter. For colored noise, a pronounced maximum of

the SNR well separated from the point of instability can beThe maximum appears for not too high frequendiesf the
observed by changing the noise strength, as shown in Fig. kxternal periodic forcing immediately as soon as noise cor-
This behavior is very similar to what is commonly ascribedrelation is introduced. No maximum is observed for the
to SR. In fact, it was defined as SR by several autfidrs  white noise. Asr, increases, the position of the maximum
10]. A qualitative explanation of this phenomenon is given inshifts farther from the instability point; its amplitude first
the Introduction. The underlying mechanism is the same foincreases and then decreases before the maximum finally dis-
all N. Interestingly, for certain values of the input parametersappears. In the case of finii, there is a range df2 where

the maximum can disappear when the number of constituenhe maximum exists for at.>0.

two-state jump processes is increased, as illustrated in Fig. Let us consider the case Nf=1 in more detail. We have
1(b). A nonmonotonic behavior is also found for the depen-

dence of the SNR on the autocorrelation time, as shown in

Fig. 2. . 02+ (ag+ 1r)?
In Fig. 3 we analyze the range ©f and 7 for which the (CIA) =, (4.9
SR-like behavior occurs. The boundary condition for the ex- (Q°+ B (Q°+B7)

istence of the maximum is defined by

dRII(A?)=5’RII(A?)?=0. (4.8  with
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1 — 1 1 T 1 10 T T T T
gk £=0 02 04 0608 _
0.95 i 1
6 - p
Wt y
= o 1
L 09 A .
2+ -
0.85 0 L . L .
0.1 0.2 0.3
Q
08 FIG. 4. Existence boundaries, above which the maximum in the
R vs A2 dependence disappears, fiy3=1, N=3, and asymmetric
TC noise withe =0,0.2,0.4,0.6, and 0.8.
FIG. 2. Output signal amplitud€/A as a function of the auto- A?(BoBr—0?)=(Q2%+ B3)(Q2%+ B2). (4.13
correlation timer, for ag=1, A=1, 1=0.7, and different values
of N=1,2,5, and». The existence boundary is defined by the complemetary con-
dition on the second derivative, i.e., H4.8). We obtain for
1 1 i1 the position
=aot 5 — F5—. .
Bo1=20 27'(;+2ch (4.19 3
: . . : A2=—(aZ+ -0?), 4.1
This result has been obtained by Berdichevsky and Gitter- 4(a0 3o/ ) .19

man (BG) [9]. They considered the behavior of the normal- _ _ o
ized signali.e., C/A, notthe SNR as a function of the noise The relationship betweef} and 7 is given by
strength. The condition for the maximum is them?
= i 2a 1
BoP or, as given by BG, (024 342302+ af) + 2 (a3~ 1702) + (a3~ 80%) =0,
[ TC
(4.15

“hus we obtain in the two important limits of small and large
correlation times

A’=a’+ay/7,— Q2. (4.10

This proves that upon increasing the external force frequen
the maximum is shifted away from the instability point.,
A2=a§+ ay/7;) towards zero. The condition for the exis-

tence of the maximum is thus O<ag/2y2 for 7.—0, (4.19

Q<(a+agl/r.)Y2 4.1
(8o+ao/7c) 412 O<agy17-12y2~a,y/\34 for r,—». (4.17)

The position of the maximum in the dependence of the

SNR on the noise strength is defined df/dA2=0 or It is difficult to derive a general expression for the maxi-
mum existence boundary for arbitral, Here we shall dis-
10 — cuss only the limit ofr,—0. In this casep~a?/N<1 and
I | thus we can take only two first terms in the seiisl). The
3 § i corresponding binomial coefficients aBgy(N,u)~1—uN
i andB;(N,u)~ uN. We have approximately
6 F , V=l . 21024 32 2 421-1
ol o | (CIA) =[O +ai—2apA°T .+ A% (4.18
4+ . Note thatA2~1/7.. Now we see that the maximum disap-
s 1 pears atA’r.= 2a, and the range of existence is defined by
2+ -
i ] O<ag/2y2 for 7.—0 (4.19
00 ' 0!1 ' 012 03 04 for all N. The limit of 7.—o is more difficult to analyze
o analytically. Here we emphasize only that there is a finite

range of() where the maximum exists even fef—« pro-
FIG. 3. Existence boundaries, above which the maximum in the/ided N is_finite. _ _ N
R vs A2 dependence disappears, foy=1 and different values of The_ existence boundary of the maximum s sensitive to
N=1,3,10, and». The dotted line shows the boundary valuetbf ~ the noise asymmetry, as shown in Fig. 4. The effect is more
in the limit of 7,— o for N=1. pronounced for smaN since the autocorrelation time can be
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considerably altered in this case. On the other hand, as mestrength is what we have to find out.
tioned above7,— 7. in the limit of N—oo. It is possible to All the relevant information is contained in the long-time

find such conditions for finitél where the noise asymmetry correlation functior{2]
leads to the appearance of a maximum that does not appear
in the corresponding symmetric system. K(t,7)=lim{x(t)x(t+7)). (5.0

In this section we have shown that the output SNR, de- t—oo
fined in terms of the amplitude d(t)) at long times, ex-
hibits a maximum both as a function of the noise strengthThe stability condition for the second moment applies. It is
and as a function of the autocorrelation time. This SR-likeconvenient to set,=0 for the time being. We can always
behavior is observed for a general type of the noise thatestore the initial phase in the end via a transformafidn
bridges the dichotomous and the Gaussian noise. However, it. Ot + ¢,, as we saw in Sec. IV. We have
is essential in the above derivations that the initial phage
of the external forcing is fixed. In many physical situations, t t+r
@ is unknown. It should thus be considered as a randorrK(t,r)=A2f dtlf dt, sim Q(t—ty)]sin Q(t+7—1,)]
variable and the resulting expression fo«(t)) has to be 0 0
averaged over the distribution qf; [6]. It is natural to as- X exf —ag(ty+1,) ]G(to |ty —t5]), (5.2
sume a uniform distribution of the initial phase. Averaging
over the uniform distribution o leads to the periodic term
in the expression fofx(t)) as well as the output signal van-
ishing identically. Only if a nonuniform distribution @, is
somehow prepared in a system can the SR-like behavior bé
observed.

An important example of a system where the phase of the
external modulation is correlated with the internal stochastic
dynamics is found in biology. Experimental data on active
transport of ionic species in biomembranes under the influ-
ence of ac electric fields.8] has recently been interpreted as where the functions;(t, 7) are defined to ensure time order-
evidence of SR between the external field and the fluctuapg,
tions of the membrane potentifl9]. lon channel currents
under stimulation exhibit a strongly irregular character N
mostly of dichotomous type with the intensity of the noise fl(t,T):f dt; sifQ(t—ty)]exd — Bit;]
depending on the amplitude of the applied field. If passive 0
membrane permeability can be neglected, the ion channel

wheret_=min{t; t,} and G(t_,|t;—t,|) is defined by Eq.
(2.32. It can be readily shown that other terms(ix(t)x(t
7)) vanish at long times.

Using the expansio®.34), Eq. (5.2) can be rewritten as

K(t,T)=A2{E} H[ fq(t,7)+fo(t,7)], (5.9
N

t
fluctuations and, consequently, the ion traffic start as soon as X f 1dt2 sifQ(t+7—t,)Jexd — (B— B)t,],
the external field is switched on. Therefotg, can be taken 0
as fixed(zero, without losing generality However, the ob- (5.4)

served nonmonotonic behavior of the SNR as a function of

the noise strength cannot be regarded as SR in conventional .

sense because the noise strength itself is totally governed by fz(t,T):f dt, sifQ(t—t,)]exg —(Bo— B)ty]
the external field in this case. 0

t+7
V. THE CORRELATION FUNCTION Xft dt, sifQ(t+7—1,) Jexd — Batz],
1

The system response is often defined in terms of the (5.5)
power spectrum rather than the amplitude of the average '
[2,6]. For a stationary stochastic process, the Wiener-
Khintchine theorem holds and the spectral density is Obyvhere
tained as the Fourier transform of the autocorrelation func-
tion, which depends on the time difference only and thus, in Bi=iagtki, 1=1.2. (5.6)
fact, can be represented by the average. However, stochastic
processes with periodic modulation are essentially nonstaNote that sincen;<N, all B; are positive when the stability
tionary with the correlation function depending explicitly on condition is fulfilled.
two time arguments. Therefore, the long-time amplitude of The integrations are most conveniently performed using

the average generally does not define the power spectrurnamace transformation over We obtain forf (s, 7)
The generalized Wiener-Khintchine theorem can be formu-

lated in terms of the phase-averaged autocorrelation function _

[6]. For a uniform distribution of the initial phase, averaging f1(S,7)=QIme'®7Ts(s—21Q)(s+ B —1Q)(s+B2)] "
over the phase is equivalent to averaging over time. Thus the (5.
phase-averaged autocorrelation function depends only on the

time difference. Whether the corresponding power spectrun®nly the residues at=0 ands=21() contribute to the long-
shows a nonmonotonic behavior as a function of the noiséime solution
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_ B1cog Q1) —Qsin()7)
2B,(Bi+02)

fl(t,T)

3 B1B,—207
2(82+0?)(B3+402)

cog Q(2t+7)]

B Q(2B1+ B2)
2(B2+02)(B3+402)

SifQ(2t+7)].
(5.9
Similarly, for f,(s,7) we obtain
fo(s,7)=0IMe' Y s(s—21Q)(B1+1Q)(s+ B)] 1
—Qe AIm[ (B +1Q){(s+ B1)2+ Q2

X (s+B,)] L (5.9
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The second term vanishes at long times. In the first term, FiG. 5. Output signal-to-noise ratio, defined in terms of the

only the residues a&=0 ands=21{) contribute to the long-
time solution. The final expression fés(t,7) is almost the
same as that forf,(t,7), except that the minus sign is
changed to plus in the numerator of the firdhdependent
term. We obtain finally

K(t,7)=Cy cogQ71)—Cq cog2Qt+ Q7+ ¢q),

(5.10
where
HB,
=AY —— 5.1
{Ew}ﬁ2<ﬁi+92> (519
C,=(C5,+CH™, (5.12
HQ(281+ B2)

C =A? , 5.1
H {Zm(ﬁ§+92)(5§+492) 513
H(B182—20%)

C,=A? , 5.1
. {Ew}<ﬁi+92>(/3§+492> 519

Q1= — aI’Ctaan/Clz). (515)

The expression for the long-time correlation function in

the limit of N—co can be derived in a similar way using the
expansion(2.39. The general form of Eq(5.10 still ap-

plies, but the coefficients should be modified. For instance,

we obtain forC,

[}

Co=A2 >
k,I,m

Blml( - 1)m2k+l

, (5.1
Boki( B+ Q)

Pum(a?)
0

Whereﬁim = ia0+ Kikl -

The initial phase of the periodic external forcing contrib-
utes additively to the phase of the second term in(&d.0),
i.e., 20t—20t+2¢y. Thus, averaging over the uniform
distribution of ¢, leaves only the first term in the expression

amplitude of the long-time phase-averaged correlation fund&ion
=Co(ag/aA)?, as a function of the input noise strenght? for
ap=1, 7.=1, 01=0.15, and different values di=1,2,5, and.
A?=A?/(1/2+a,7./N) maps the stability region ontp0.a,/7]
for all N.

ground band for multiplicative noise. The amplitude of the
output signalC, simply diverges upon approaching the in-
stability point with increasing noise strength becausegBof

in denominator; so does the SNR, defined Bs
Co(ag/aA)?, as shown in Fig. 5. No SR is observed for any
parameter settings. However, when the autocorrelation time
of the noise is varied instead of the intensity, the output
signal goes through a maximum, as illustrated in Fig. 6. The
resonancelike behavior induced by correlated noise has re-
cently been predicted for a number of systems, even in the
absence of the external periodic fof@®]. Under the condi-
tion of

0.32

0.30

C,/A°

0.28

FIG. 6. Output signal amplitud€,/A? as a function of the

for the long-time correlation function. This term correspondsautocorrelation time-, for a,=1, A=0.5,Q =1, and different val-
to a kink in the power spectrum at the forcing frequency. Inues ofN=1,3,5, and». The dotted line shows the instability point

contrast to the case of additive noigd, there is no back-

7% =a,/2A? for the Gaussian noise.
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Al< aﬁ/N, (5.17)  two-state jump process to the Gaussian process. Previously,
only these two limiting cases had been considered. Here we
the system is stable for alt, and the maximum is most have described a generalized composite stochastic process,
clearly observed. Otherwise, there is a marginal pointiat defined as a suporposition df independent two-state jump
=1ay(A%—a3/N) . The signal diverges upon approaching processes, which bridges the two limits.
this point. As a result, the maximum can disappear. Although the results obtained seem to be very exciting,

However difficult it might seem to practically realize the we have to admit that the observed resonance is realizable
variation of 7, it is not impossible. Zwanzig's model for experimentally only if a nonuniform distribution of the initial
passage through a fluctuating bottleneck is an exaf@de  phaseg, of the external periodic modulation is somehow
In describing ligand binding by a simple first-order rate prepared in a system. In many physical situations, however,
equation, Zwanzig assumed that the rate constant depends g external periodic forcing has a random, uniformly distrib-
the radius of the bottleneck, which in turn fluctuates becausgye initial phase. Averaging over the uniform distribution of
of thermal noise and its time dependence is given by g ‘16545 to the output signal, defined as the amplitude of
e o et e el )l long tmes, vnishing detcaly. Moreover,

. : . 8ystem response is often defined in the literature in terms of
solvent viscosity and can thus be controlled. The relaxatior ;
time in Zwanzig's model corresponds to the noise autocor:[he expe_nmentally measurable power spe_ctrun_w rather _than
relation timer, in this paper. the amplitude of the average. The putput signal is then given
by the spectral density corresponding to the frequency of the
external forcing. We have calculated the long-time correla-
tion function. According to the generalized Wiener-

It has been argued recently that stochastic resonance c#hintchine theorem, the Fourier transform of the phase-
occur in a linear system driven by periodic external forcingaveraged correlation function gives the power spectrum. It
provided the input noise is multiplicative and correlated.appears that the output signal simply diverges with increas-
Starting with the Langevin equation, it was found that theing noise strength upon approaching the instability point,
amplitude of the average at long times, defined as the outputhich is in fact different from the instability point corre-
signal, shows a pronounced maximum both as a function o$ponding to the first moment. No SR, in a conventional
the noise strength and as a function of the correlation timsense, is observed in a linear system for any parameter set-
for not too high frequencies of the external forcing. In thistings. However, a very interesting phenomenon is still re-
paper we have proved that this resonant behavior is quiteained, namely, the resonancelike behavior as a function of
general and occurs for any type of the noise ranging from théhe noise autocorrelation time.

VI. CONCLUDING REMARKS
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