
PHYSICAL REVIEW E JANUARY 1998VOLUME 57, NUMBER 1
Line tension between fluid phases and a substrate

T. Getta and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany

~Received 13 June 1997!

We calculate the density distribution of a three-phase contact between the liquid-vapor interface of a simple
fluid and a planar substrate. Using a microscopic density functional theory we pay particular attention to the
long range of the underlying dispersion forces and find significant deviations from predictions of phenomeno-
logical theories. We monitor these structures and the corresponding line tension as a function of temperature
upon approaching critical or first-order wetting transitions.@S1063-651X~97!02612-3#

PACS number~s!: 68.45.Gd, 68.10.2m, 82.65.Dp
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I. INTRODUCTION

In thermal equilibrium the bulk of a thermodynamic pha
is characterized by translational invariance—continuous
a fluid and discrete for a solid—of its local structural pro
erties which give rise to the corresponding bulk free ener
Deviations from this translational invariance cause an exc
in free energy which scales with the dimensionality of t
defect. The most prominent example in the case of a th
dimensional bulk system is the surface tensionsab which
arises when, due to appropriate boundary conditions,
distinct phasesa andb of condensed matter in thermal equ
librium meet at a planar interfaceaub between them.

Under suitable thermodynamic conditions a system
exhibit three distinct phasesa, b, andg which are equally
thermodynamically stable. Under these circumstan
boundary conditions can be spatially arranged such that
system forms three interfacesaub, bug, andaug which meet
at a lineabg @see Fig. 1~a!#. The excess free energy asso
ated with this linear defect is called line tensiont @1–3#.
Figure 1~a! depicts the situation of an unconstrained therm
equilibrium as it can arise, e.g., in a binary liquid mixtu
wherea andb are two liquid phases rich in one and anoth
species, respectively, andg is the common vapor phase.

A line tension can, however, also occur in a constrain
equilibrium where one of the phases, say thea phase, is an
inert spectator phase. To a large extent this is realized f
liquid-vapor interfacebug exposed to a solid substratea. In
this case the dihedral angleua of the a phase is prescribed
geometrically; for a planar substrate it isp @see Fig. 1~b!#. In
this case the dihedral angle of theb phase is called contac
angleu. It characterizes the contact of a large volatile liqu
drop with a solid substrate. Upon raising the temperaturT
the contact angle decreases and vanishes continuously a
wetting transition temperatureTw @4#. This implies that this
system can support a distinctaug interface only forT,Tw
and the line tension is not defined forT.Tw .

In spite of its subdominance as compared with the surf
tension, the line tension plays a significant role for a vari
of important physical properties and phenomena such as
shape of small droplets@5,6#, heterogeneous nucleation@7–
10#, dynamics of the contact line during spreading of dro
@3,11#, sticking and deformation of the contact line due
chemical heterogeneities of the substrate@12–14#, the attach-
ment of solid particles to a fluid interface@15#, and formation
571063-651X/98/57~1!/655~17!/$15.00
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of Newton black films and foam films@16–20#.
Nonetheless, as reviewed recently by Drelich@21#, for

most of the systems the magnitude and even the sign of
line tension are not known experimentally within an acce
able margin. Moreover, the spatial density distribution at
region of three-phase contact has not yet been resolved
perimentally. Given this unsatisfactory experimental situ
tion one is inclined to seek help from theoretical analys
On the theoretical side the absence of translational invaria
in two directions poses also a great challenge. Early theo
ical work focused on the statistical description of the thre
phase region, the contact angle, the line tension@22–26#,
various aspects of the line tension concerning the sprea
of liquids on a substrate@27,28#, local contact angles@29#,
the dependence of the contact angle on the droplet
@30,31#, perturbations of the contact line@32,33#, thin films
@34–37#, the detachment of sessile drops@38#, and nucleation
@39,40#.

In the meantime the behavior of line tensions at wett
transitions has become an interesting subject in itself. T
vanishing of the contact line at a wetting transitionTw leads
to the question of a possibly singular behavior of the cor
sponding line tension. A vanishing line tension would
analogous to the vanishing surface tension of a liquid-va
interface at the critical point. Early theoretical studies@41–
43# gave conflicting answers to this question. Only recen
has agreement with respect to certain aspects been ach

FIG. 1. Three bulk phasesa, b, andg in unconstrained~a! and
constrained~b! thermodynamic equilibrium forming the interface
aub, bug, and aug which meet at a triple lineabg whose cross
section is denoted by a dot. The configuration is translation
invariant in the normal direction. In~a! the dihedral angles are
determined by~see Ref.@2#! cosua5(sbg

2 2sab
2 2sag

2 )/(2sagsbg),
cosub5(sag

2 2sab
2 2sbg

2 )/(2sabsbg), and cosug5(sab
2 2sag

2

2sbg
2 )/(2sagsbg). In ~b! the contact angleu is given by cosu

5(sag2sab)/sbg .
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656 57T. GETTA AND S. DIETRICH
@44–56#. It has turned out that the type of singular behav
of the line tension upon approachingTw depends on the
range of the interactions and on the order of the wett
transition. At a first-order wetting transition the line tensi
does not vanish but either diverges or reaches a maxim
value via a cusplike singularity. At a critical wetting trans
tion the line tension vanishes atTw . All those conclusions
are based on mean-field theory. A good review of this s
ject is given by Indekeu@57#. Although already in 1981 Ben
ner, Scriven, and Davis@58# had pointed out that in this
context the description by local theories poses quantita
problems, all studies mentioned above are based on l
gradient theories which neglect the nonlocal features indu
by the long range of the dispersion forces acting in the fl
system. Recent studies of the line tensions associated
the formation of thin fluid films on geometrically@59# and
chemically @60# structured substrates revealed very sign
cant quantitative deficiencies of local gradient theories
compared with a fully nonlocal description. Encouraged
these results the purpose of the present study is to eluc
the relevance of long-ranged forces for the structure of
three-phase contact region and the corresponding line ten
by comparing the predictions of the conventional local g
dient theory with those obtained from a fully nonlocal d
scription.

II. STATISTICAL MECHANICS
FOR THREE-PHASE CONTACT

A. Boundary conditions

At first glance the most common realization of a thre
phase contact line seems to be provided by a liquid dro
contact with its vapor and residing on a substrate. Howe
this system is only stable in the limiting case of a complet
nonvolatile liquid in a canonical ensemble. Within equili
rium statistical mechanics this case is very difficult to imp
ment. Instead the generic case to be considered by mea
statistical mechanics is a fluid whose liquid and gas ph
with number densitiesr l andrg , respectively, coexist in the
bulk along a liquid-vapor coexistence curvem0(T) of the
chemical potentialm which is constant throughout th
sample. Near the substrate the requirementm5const induces
spatial variations of the density in the direction normal to
substrate which we denote as they direction. In the absence
of a lateral corrugation of the substrate potential, which
assume to be the case in the following, the density pro
r(y) does not depend on a lateral coordinate, sayx. Conse-
quently in such a grand canonical ensemble the drop c
figuration is unstable. The drop evaporates and one is
with a microscopically thin liquidlike film of thicknessl 0(T)
which can be inferred from the actual form of the equili
rium profile r(y). Below the wetting transition temperatur
Tw l 0(T) is finite whereasl 0 becomes macroscopically larg
aboveTw . This implies that forT,Tw and at coexistence
m0(T) one can maintain two distinct boundary conditions
the fluid at y→`. The first one imposes thatr(y→`)
5r l . If the substrate prefers the liquid phase, a case wh
we consider in the following, this boundary condition lea
to a sample completely filled with liquid up to substra
where the equilibrium substrate-liquid interface is form
and gives rise to the density profiler1(y) for m→m0(T)
r
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10. The second possible boundary condition impo
r(y→`)5rg leading tor2(y) for m→m0(T)20. r2(y)
resembles the emerging substrate-liquid and the liquid-va
interfaces separated by a distancel 0(T) of the liquidlike
layer in between. At coexistencem5m0(T) both profiles
r6(y) are equilibrium density distributions. This enables o
to impose mixed boundary conditions in the lateral directio
r2(y) for x→2` andr1(y) for x→1` ~see Fig. 2!. This
gives rise to a density distributionr(x,y) which interpolates
smoothly between the limiting density distributionsr6(y) at
x56`. Defining the position of the liquid-vapor interfac
by, e.g.,r„x,y5 l (x)…5 1

2 (r l1rg) renders a smooth inter
face profile l (x) which reduces to the valuel 0(T) for
x→2` and which diverges forx→1` ~see Fig. 3!. As the
proper analysis of the various surface contributions to

FIG. 2. Schematic phase diagram of liquid-gas coexistenc
m0 between the triple temperatureTt and the critical temperature
Tc . For simplicity m0 is taken to be temperature independent. B
low the wetting transition temperatureTw the substrate remain
nonwet if gas-liquid coexistence is approached from the gas sid
m0 is approached from the liquid side the whole sample is fil
with liquid. If for x→1` the latter boundary condition is applie
and forx→2` the former one, one obtains a density distributi
as shown in Fig. 3.

FIG. 3. Equilibrium density distribution resulting from th
boundary conditionsr(x51`,y→`)5r l and r(x52`,y→`)
5rg at liquid-vapor coexistencem0(T). l (x) is the position of the
suitably defined emerging liquid-gas interface.l 05 l (x→2`) is
the equilibrium thickness of the wetting film atT,Tw and at coex-
istencem0(T). l (x→1`) diverges linearly such that the asympto
forms the contact angleu with the substrate. Under suitable cond
tions l (x) should resemble the density distribution of the thre
phase contact region of a sessile liquid ridge. The actual shap
l (x) depends on the order of the wetting transition atTw . The
position x50 is defined as the point at which the asymptotes
l (x) intersect. The density distribution is assumed to be translat
ally invariant in thez direction normal to thexy plane
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57 657LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
free energy of this system shows, the above boundary c
ditions lead to a linear divergence ofl (x→1`) such that
the asymptote ofl (x→1`) forms an angleu with the hori-
zontal substrate which is the contact angle given by Youn
law @see Fig. 1~b!#. In this sense the tacit hypothesis is th
this well-defined equilibrium interface profilel (x) resembles
the actual time-dependent density distribution at the thr
phase contact line of a slowly evaporating, large, and vola
drop ~see Fig. 3!. Over which time scale this hypothesis
justified must be checked by an inherently dynamic theo

B. Density functional theory

Density functional theory has turned out to be succes
for the description of spatially inhomogeneous fluids~see,
e.g., Ref.@61#!. Within this approach the equilibrium numbe
density distribution minimizes the grand canonical free
ergy functionalV@$r(r )%;T,m#:

V@$r~r !%;T,m#5E
V
d3r f HS„r~r !,T…

1 1
2 E

V
d3r E

V
d3r 8w̃~ ur2r 8u!r~r !r~r 8!

1E
V
d3r @rwV~r !2m#r~r !. ~2.1!

V is the finite volume occupied by the fluid in the half spa
V15$r5(x,y,z)PR3uy>0%. In the thermodynamic limit,
which will be considered carefully and in detail below, o
hasV→V1 . For y,0 the fluid is contained by an inert wa
with number densityrw exerting a substrate potential

V~y.0!52(
i>3

ui

yi . ~2.2!

In a simple approximationV(y) can be regarded to resu
from the pairwise summation of Lennard-Jones wall-flu
pair potentials

fw f~r !54ew@~sw /r !122~sw /r !6#. ~2.3!

In this case the coefficientsu3.0, u4 , andu9,0 are deter-
mined byew , sw , and the lattice spacing of the substra
material. In the following, however, we consideru3 , u4 , and
u9 as the primary independent substrate potential parame
The pair potential between the fluid particles is taken as

f~r !54e@~s/r !122~s/r !6#. ~2.4!

Following the Barker-Henderson scheme@62# f(r ) is split
into an attractive part

w̃~r !5 Hf~r !, r>s
0, r ,s ~2.5!

and into a repulsive partf(r<s). Whereas the former is
treated perturbatively in Eq.~2.1! the latter part gives rise to
a reference free energy densityf HS(r,T) of a hard sphere
fluid with an effective hard sphere diameter
n-

’s
t

e-
le

.

ul

-

rs.

d~T!5E
0

s

dr$12exp@2f~r !/~kBT!#%. ~2.6!

For the reference free energy we adopt the Carnahan-Sta
approximation@63,64#:

f HS~r,T!5kBTrS lnh211
4h23h2

~12h!2 D , ~2.7!

with

h5
p

6
r@d~T!#3. ~2.8!

We emphasize that the functional used in Eq.~2.1! represents
a simple version of density functional. It has the virtue
describing wetting transitions properly@4,65,66# although it
does not capture fully the density oscillations which occur
an atomic scales close to the substrate due to packing e
fects. We are prepared to accept this latter deficiency bec
we shall focus on mesoscopic scales larger thans. Finally
we mention that in accordance with Eq.~2.1! we do not
consider the effects of gravity.

For a bulk system with homogeneous densityr(r )5rg ,
g5 l ,g, Eq. ~2.1! yields the bulk free energy density

Vb~rg ,T,m!5 f HS~rg ,T!1 1
2 w0rg

22mrg , ~2.9!

where

w05E
R3

d3r w̃~r !52 32
9 pes3. ~2.10!

The requirements of two-phase coexistence between
equilibrium gas and liquid densities, i.e.,

]Vb

]r U
r5rg

505
]Vb

]r U
r5r l

andVb(rg)5Vb(r l), lead to the bulk phase diagram show
in Fig. 4.

C. Surface free energy

In the case of a homogeneous boundary condition
y→1` the density distribution will depend only ony so
that the free energy functional decomposes into the bulk c
tribution given by Eq.~2.9! and into a surface contribution
proportional to the areaA of the substrate:

V@$r~y!%;T,m#5VVb@rg ;T,m#1AVs@$r~y!%;T,m#.
~2.11!

Accordingly this leads to the surface tensions

sab~T,m!5min
r~y!

$Vs@$r~y!%;T,m#%, ~2.12!

where (a,b)5(w,l ) corresponds to the boundary conditio
r(y→`)5r l , (a,b)5(w,g) to r(y→`)5rg , and (a,b)
5( l ,g) to r(y→`)5rg and r(y→2`)5r l for V(y)[0.
s lg(T) is only defined for m5m0(T); in this case the
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658 57T. GETTA AND S. DIETRICH
minima corresponding toswl and swg are given byr1(y)
andr2(y), respectively, as discussed in Sec. II A.

It has turned out@4# that wetting properties of such
system are described surprisingly well by applying the
called sharp-kink approximation within which the minimiz
tion in Eq. ~2.12! is restricted to the subspace of piecew
constant density profiles~see Fig. 5!. Inserting a trial func-
tion as shown in Fig. 5 with a variable film thicknessl into
Eqs.~2.1! and~2.12! leads to the so-called effective interfac
potential@67,68#

Vs~ l ;T,m!5 lDV1swl1s lg1v~ l !. ~2.13!

The linearly increasing termlDV with DV5Vb(r l ,T,m0)
2Vb(rg ,T,m).0 corresponds to the price of building up
liquidlike film of thicknessl in contact with an undersatu
rated vapor phase in the bulk. At two-phase coexistence

FIG. 4. Liquid-gas bulk phase diagram in terms ofT* 5kBT/e
andr* 5rs3 as predicted by Eqs.~2.1! and ~2.4!–~2.8!. The criti-
cal point ~L! is given by (Tc* ,rc* )5(1.0986,0.2722). Freezing
starts below the triple pointTt* &0.75 which, however, is not cap
tured by the simple density functional used in Eq.~2.1!.

FIG. 5. Sharp-kink approximation of the number density pro
r2(y) corresponding to an equilibrium wetting film thicknessl 0 .
dw.(sw1s)/2 describes the excluded volume due to the repuls
part of the substrate potential. The corresponding approximation
r1(y) yields a profile which equalsr l for y.dw and which is zero
for y,dw . r l andrg are taken at coexistencem0(T) ~see Fig. 4!.
-

ne

hasDV50; swl denotes the wall-liquid surface tension~for
the definition ofdw see Fig. 5!

swl52 1
2 r l

2E
0

`

dy t~y!2dwVb~r l !1r lrwE
dw

`

dy V~y!,

~2.14!

with

t~y!5E
y

`

dy8E
2`

`

dx8ŵ~x821y82!

52(
i>3

t i

yi , y@s ~2.15!

and

ŵ~x821y82!5E
2`

`

dz8w̃~Ax821y821z82!, ~2.16!

ands lg the liquid-gas surface tension

s lg52 1
2 ~Dr!2E

0

`

dy t~y!, ~2.17!

where

Dr5r l2rg , ~2.18!

within the sharp-kink approximation. In Eq.~2.13! v( l ) de-
notes the cost in free energy to maintain a wetting film
prescribed thicknessl as compared to a configuration wit
l 5`:

v~ l !5DrS r lE
l 2dw

`

dy t~y!2rwE
l

`

dy V~y! D
5(

i>2

ai

l i , l @dw . ~2.19!

a2 is known as the Hamaker constant. The equilibrium fi
thicknessl 0(T,m) minimizes Vs( l ) and renders the wall-
vapor surface tension:

swg5min
l

$Vs~ l !%5Vs~ l 0!. ~2.20!

At coexistence, i.e.,DV50, this implies

swg5s lg1swl1v~ l 0! ~2.21!

so that the contact angle is given by

u5arccosS 11
v~ l 0!

s lg
D . ~2.22!

D. Shape of the liquid-gas interface

As discussed in Sec. II A mixed boundary conditions f
y→` lead to a laterally inhomogeneous density distributi
r(x,y) with an interface profilel (x) as shown in Fig. 3. The
asymptotic behavior ofl (x) for large uxu is determined by
the equilibriumsurfacecontributions to the free energy:

e
or



d

g

y-
-

57 659LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
l ~x→2`!5 l 0 ~2.23!

and

l ~x→1`!5 l 01x tanu. ~2.24!

The lateral inhomogeneity ofr(x,y) adds a line contribution
LzV l@r(x,y);T,m# to the free energy beyond the bulk an
surface terms in Eq.~2.11!. The line contribution scales with
the linear extensionLz of the sample in that direction in
to
d
ro

io
.

re
ti

n
s
er

w

which it still displays translational invariance. By insertin
the local sharp-kink approximation

r̂~x,y!5Q~y2dw!$r lQ„l ~x!2y…1rgQ„y2 l ~x!…%
~2.25!

into Eq. ~2.1! a systematic analysis yields in the thermod
namic limit the following expression for the line contribu
tion:
lim
Lz→`

V l@$ l ~x!%;T,m#

Lz
5E

2`

`

dx@ l ~x!2dw#D f HS1~rgr l2r l
2!E

2`

`

dxE
2`

`

dx8E
l ~x!

`

dyE
dw

`

dy8ŵ@~x2x8!21~y2y8!2#

1
1

2
~Dr!2E

2`

`

dxE
2`

`

dx8E
l ~x!

`

dyE
l ~x8!

`

dy8ŵ@~x2x8!21~y2y8!2#1E
2`

`

dxE
dw

l ~x!

dy rwDrV~y!

2E
2`

`

dx@ l ~x!2dw#mDr, ~2.26!
the

ses
om-
ex-
w-
cal

act.
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kes
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c-

ses
at
where

D f HS5 f HS~r l !2 f HS~rg!. ~2.27!

The minimization of the line contribution with respect
l (x), i.e.,dV l /d l (x)50, leads to the following nonlocal an
nonlinear integral equation for the equilibrium interface p
file l̄ (x):

DV2Dr@r l t„l̄ ~x!…2rwV„l̄ ~x!…#

52~Dr!2E
2`

`

dx8E
0

l̄ ~x8!2 l̄ ~x!
dy8ŵ@~x2x8!21y82#.

~2.28!

By enforcing a gradient expansion to the nonlocal express
on the right hand side of Eq.~2.28! one can approximate Eq
~2.28! by a local nonlinear differential equation@69#:

DV2Dr@r l t„l̄ ~x!…2rwV„l̄ ~x!…#

5s lg

d2l̄ ~x!

dx2 F11S dl̄~x!

dx D 2G23/2

1O„~ l̄ 9!2, l̄-….

~2.29!

We note that the right hand side of Eq.~2.29! equals the
negative functional derivative ofs lg*dxA11@dl̄(x)/dx#2

which is the phenomenological expression for the cost in f
energy due to the increased surface area of the configura
l̄ (x) as compared to the flat onel̄ (x)5const, disregarding
curvature contributions. For a detailed assessment of the
liability of this phenomenological and local approximatio
see Refs.@69–72#. It turns out that for long-ranged force
decaying like a power law the coefficients of the high
order terms on the right hand side of Eq.~2.29! become
infinitely large so that the gradient expansion breaks do
-

n

e
on

re-

-

n.

The consequences of this failure have been studied for
structure of the free liquid-vapor interface@69–72# and for
the morphology of wetting films on geometrically@59# or
chemically @60# structured substrates. Since in these ca
the quantitative differences between the common phen
enological, but local, approach and the correct nonlocal
pression have turned out to be very significant, in the follo
ing we want to compare the different predictions of the lo
@Eq. ~2.29!# and the nonlocal@Eq. ~2.28!# equation, respec-
tively, for the shape of the interface at three-phase cont
As demonstrated by Fig. 7 in Ref.@60# for the case of a
chemically inhomogeneous substrate the nonlocal theor
in close agreement with the full theory@Eq. ~2.1!# in which
one refrains from introducing an interface model and ta
fully into account also the smooth density variation acro
the interface position. Therefore the nonlocal interface the
can be regarded as a reliable approximation.

III. ANALYSIS OF THE SHAPE OF THE INTERFACE

The analysis of Eqs.~2.26! and ~2.28! requires the nu-
merical evaluation of multiple integrals of the potential fun
tion ŵ(x821y82) @see Eq.~2.16!# following from w̃(r ). For
the actual nonanalytic form ofw̃(r ) @see Eq.~2.5!# these
integrals cannot be carried out analytically which increa
the numerical difficulties significantly. In order to avoid th
we approximatew̃(r ) by the following analytic form@73#:

w̃~r !5w0

4s3

p2 ~s21r 2!23 ~3.1!

so that Eq.~2.10! remains valid with

ŵ~x21y2!5
3w0

2ps2 ~11 x̄21 ȳ2!25/2 ~3.2!

and
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660 57T. GETTA AND S. DIETRICH
t~x!5
w0

p S p

2
2arctan~ x̄!2

x̄

11 x̄2D , ~3.3!

wherex̄5x/s and ȳ5y/s. For this model one has@see Eq.
~2.15!#

t352
2

3

w0

p
s35

64

27
es6.0,

t450, and

t552
6

5

w0

p
s55

192

45
es8.0.

The effective interface potential@Eq. ~2.19!# is given by

v~ l !5~Drs3!H 2
32

9

e

s2 ~r ls
3!

3F11@~ l 2dw!/s#S arctan@~ l 2dw!/s#2
p

2 D G
1rws23(

i>2

1

i

ui 11

l i J ~3.4!

so that@see Eq.~2.19!#

a25 1
2 Dr~rwu32r l t3!, ~3.5!

a35 1
3 Dr~rwu423r l t3dw!, ~3.6!

and

a45 1
6 Drr l~ t529t3dw

2 !. ~3.7!

A. Properties of the homogeneous wetting film

The thickness of the homogeneous wetting film cor
sponds to the positionl 0 of the minimum of the effective
interface potentialv( l ) @Eq. ~2.19!#. Figures 6 and 7 display
a first-order and a critical wetting transition, respective
together with the corresponding temperature dependenc
the contact angleu. In both casesu vanishes continuously a
the wetting transition temperatureTw . For first-order wetting
one hasu„t5(Tw2T)/Tw→0…;t1/2 andu(t→0);t3/2 for
critical wetting@4#. The potential parameters leading to Fig
6 and 7 will be used in the following for calculating th
inhomogeneous interface profile.

B. Interface profile in local approximation

For the interaction potential parameters used for Figs
and 7 we have solved the differential equation~2.29! at co-
existenceDV50 with the boundary conditionl (uxu→`)
5a(x) where

a~x!5 l 0Q~2x!1~ l 01x tanu!Q~x!. ~3.8!

Q(x) is the Heaviside function;a(x) has a break in slope a
x50 which is defined as the position of the intersection
tween the asymptotes ofl (x). We found that the slope of th
asymptote as obtained from the numerical solutionl (x@s)
agrees with tanu as obtained independently from Eq.~2.22!
-

,
of

.

6

-

to within 1026. @Here and in the following we omit the over
bar of l (x) indicating the equilibrium profile.# Figures 8 and
9 show the profile and the deviation

d l ~x!5 l ~x!2a~x! ~3.9!

from the asymptotic behavior for first-order wetting an
critical wetting, respectively. For a first-order wetting tran
tion l (x→`) approaches its asymptote from below so th
d l (x.0),0 whereasl (x→`) approaches its asymptot
from above for critical wetting so that in this cased l (x
.0).0. In both casesl (x→2`) approaches its asymptot
l 0 from above so that alwaysd l (x,0).0. For first-order
wetting this positive part ofd l (x,0) is barely visible on the
scales of Fig. 8. For critical wettingd l (x,0) is substantially
larger and comparable withd l (x.0) althoughd l (x) van-
ishes more rapidly forx→2` than for x→`. We have
found that, irrespective of the order of the transitio

FIG. 6. ~a! The effective interface potentialv( l ) @see Eq.~3.4!#
for a first-order wetting transition for various temperaturesT*
5kBT/e. The equilibrium thicknessl 0 increases slightly as a func
tion of T and jumps to infinity at the first-order wetting transitio
temperatureTw* 50.9. The contact angleu ~in rad! vanishes;t1/2

for t5(Tw2T)/Tw→0 ~b!. Here we have used the following inter
action potential parameters:u352.348es6, u9525.326es12, ui

50 for iÞ3,9,dw5s, rw5s23. The potential parameterse ands
scale out by using reduced quantities.
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d l (x→2`);uxu23 and d l (x→`);x22. There is a huge
difference of the magnitude and of the extent of the deviat
of the profile from its asymptotes between first-order a
critical wetting. At comparable temperatures the deviation
about an order of magnitude larger and two orders of m
nitude wider for critical wetting than for first-order wetting
Irrespective of the order of the transition the deviationd l (x)
increases upon approachingTw and reaches a mesoscop
scale.

By using a phenomenological local interface displacem
model Indekeu@46# has obtained qualitatively similar result
In the present context the above findings, which are base
a microscopic model instead of on a phenomenological
satz, are needed to serve for a quantitative compariso
order to test the reliability of the local theory versus t
actual nonlocal one.

FIG. 7. ~a! The effective interface potentialv( l ) @see Eq.~3.4!#
for critical wetting for various temperaturesT* . The equilibrium
thickness l 0 diverges ;t21 for t5(Tw2T)/Tw→0; here Tw*
50.9. The contact angleu ~in rad! vanishes;t3/2 ~b!. Here we
have used the following interaction potential parameters:u3

51.423es6, u459.000es6, ug520.190es12, ui50 for iÞ3,4,9,
dw5s, rw5s23.
n
d
s
g-

t

on
n-
in

C. Interface profile from nonlocal theory

We have solved the nonlocal integral equation~2.28! for
DV50 by applying a suitable iteration scheme to its d
cretized version. It is a significant challenge to find the c
rect solution and requires a substantial numerical eff
Based on the same interaction potential parameters as fo
local approach Figs. 10 and 11 show the corresponding
sults ford l (x) within the nonlocal theory for first-order wet
ting and critical wetting, respectively, as well as a dire
comparison between the predictions of the local and the n
local theory. These theories agree insofar as they both pre
that in the case of first-order wetting the profilel (x→`)
approaches its asymptote from below whereas it approa
its asymptote from above for critical wetting. However,
Figs. 10 and 11 demonstrate, the quantitative differences
very large and increase upon approachingTw . Generally
speaking the local theory overestimates significantly both
extent and the width of the deviation of the profile from
asymptotes. In the case of first-order wetting the maxim

FIG. 8. ~a! Shape of the profilel (x) of the liquid-gas interface a
T* 50.84 for a first-order wetting transition within local approx
mation using the interaction potential parameters as in Fig. 6.
wetting temperature isTw* 50.9. The dotted line is the asymptot
a(x). The angle given by the slope of the asymptote gives
contact angleu at T* 50.84. ~b! Deviation d l (x)5 l (x)2a(x) of
the profile from its asymptotes for various temperatures.
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662 57T. GETTA AND S. DIETRICH
deviation and the width ofd l (x) are predicted by a factor o
4 too large by the local theory; according to the nonlo
theory the maximum deviations occur much closer tox50
than predicted by the local theory. For first-order wetting
deviationd l (x) has a sizable value only forx.0. However,
for critical wettingd l (x) is more equally distributed aroun
x50. Even at a low temperature the width ofd l (x) for criti-
cal wetting is more than ten times larger than for first-ord
wetting. Since this width increases further with temperat
the corresponding numerical difficulties limited our evalu
tion of the nonlocal theory in the case of critical wetting
low temperatures. For critical wetting the discrepancies
tween local and nonlocal theory are even more pronoun
The local theory overestimates the maximum deviation
the width by a factor of 20 and 5, respectively.

A surprising result of the nonlocal theory is that the a
solute value of the deviation ofl (x) from its asymptotes is a
most on the order of a molecular diameter. However,
width of this small deviation is several hundred molecu
diameters. Thus a major finding of the nonlocal analysis

FIG. 9. ~a! Shape of the profilel (x) of the liquid-gas interface a
T* 50.88 for the critical wetting transition shown in Fig. 7 withi
local approximation. The wetting temperature isTw* 50.9. The dot-
ted line is the asymptotea(x). The angle given by the slope of th
asymptote gives the contact angleu at T* 50.88. ~b! Deviation
d l (x)5 l (x)2a(x) of the profile from its asymptotes for variou
temperatures.
l

e

r
e
-

-
d.
d

-

e
r
is

that the interface profile follows its asymptotes rath
closely.

Figure 12 provides a close look at the temperature dep
dence of the widthDx of d l (x). To be specific we defineDx
as that region within whichud l (x)/su.1023. Figure 12
shows that for first-order wetting the local theory predicts
divergence ofDx for T→Tw whereas within the nonloca
theoryDx seems to remain finite upon approachingTw or to
diverge only very close toTw . Our numerical analysis indi-
cates that irrespective of the order of the transition the lo
theory predicts a divergenceDx;u23/2 for u→0. The com-
parison between Figs. 8~b! and 10~a! shows that the maxi-
mum deviationud l maxu clearly diverges within local theory
whereas in the nonlocal theory it is much smaller, increa
also, but a divergence is not yet visible.

It is interesting to note that for first-order wetting the loc
theory overestimates the curvature

K~x!5
l 9~x!

@11 l 8~x!2#3/2 ~3.10!

FIG. 10. ~a! Deviation of the interface profile from its asymp
totes as obtained from the nonlocal theory upon approaching a
order wetting transition atTw* 50.9. The interaction potential pa
rameters are the same as for Fig. 6.~b! Direct comparison between
the predictions of the local and the nonlocal theory for two te
peratures.
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57 663LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
of the profile whereas it underestimates it significantly in
case of critical wetting~see Fig. 13!. For critical wetting the
curvature ofl (x) is much smaller.

In the local theory the spatial inhomogeneity of the int
face is penalized by a terms lg*dxA11@ l 8(x)#2 @see Eq.
~2.29!#. One could surmise that by treatings lg as a phenom-
enological parameter a suitable choice fors lg would allow
one to map the profiles as obtained by the local theory o
those as obtained by the nonlocal theory. If this would
possible the deficiencies of the local theory would appea
be less dramatic. To this end we have varied the value
s lg entering the local theory by nearly three orders of m
nitude. Figure 14 demonstrates that none of these pro
obtained from such an effective local theory is close to
profile predicted by the nonlocal theory. Therefore we co
clude that in spite of its popularity the local theory is ina
equate to describe the shape of the interface.

FIG. 11. ~a! Deviation of the interface profile from its asymp
totes as obtained from the nonlocal theory forT* 50.75 in the case
of a critical wetting transition atTw* 50.9. ~b! Direct comparison
between the predictions of the local and the nonlocal theory
T* 50.75.
e

-

to
e
to
or
-
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e
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IV. LINE TENSION

The explicit separation of the grand canonical free ene
functional V@r(r )# @Eq. ~2.1!# into bulk, surface, and line
contributions as well as the identification of all artifici
terms generated by the finite sample volumeVf are carried
out systematically in the Appendix. Within the sharp-kin
approximation@Eq. ~2.25!# the line contribution from the
three-phase contact region consists of three distinct term

t@ l ~x!#5ta@a~x!#1tv@ l ~x!#1t i@ l ~x!#. ~4.1!

The first term is solely determined by the asymptotes of
profile, i.e., byu and l 0 :

ta@a~x!#5 t̃~u!1ṽ~ l 0 ,u!. ~4.2!

It is the sum of a contributiont̃(u) which depends on the
interface profile only via the contact angleu,

t̃~u!5
1

2
~Dr!2F12

u

tanuG
3E

0

`

dxE
0

`

dyE
2`

`

dz xyw̃~Ax21y21z2!,

~4.3!

and of a contributionṽ( l 0 ,u) which is given explicitly in
terms of the wetting film thicknessl 0 andu whose tempera-
ture dependences are given in Sec. II C@compare Eqs.~2.15!
and ~2.2!#:

r

FIG. 12. The widthDx of the shape of the interface as a fun
tion of the layer thicknessl 0 for a first-order wetting transition,
which occurs atl 0 /s53.3838, as obtained by the local and th
nonlocal theory. The inset shows the data of the nonlocal theory
a smaller scale. The local theory predicts a divergence ofDx for
T→Tw whereasDx increases only slightly in the nonlocal theor
Within the widthDx the deviation of the profile from its asymptote
is larger than 1023s.
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ṽ~ l 0 ,u!5
Dr

tanu E
0

`

dy y$r l t~y1 l 02dw!2rwV~y1 l 0!%

5
1

tanu E
l 0

`

dl v~ l !5
1

tanu (
i>1

1

i

ai 11

l 0
i . ~4.4!

For the model discussed in Sec. III one has

t̃~u!52
8

9

e

s
~Drs3!2S 12

u

tanu D,0 ~4.5!

and

ṽ~ l 0 ,u!5
Drs3

tanu
X16

9

e

s
~r ls

3!H F S l 02dw

s D 2

11G
3S 2

p

2
1arctan

l 02dw

s D1
l 02dw

s J
1rws23(

i>1

1

i ~ i 11!

ui 12

l 0
i C. ~4.6!

FIG. 13. Curvature of the interface profile as obtained by
local and nonlocal theory atT* 50.89 in the case of first-orde
wetting ~a! and atT* 50.75 in the case of critical wetting~b!.
In Eq. ~4.1! the second termtv@ l (x)# does depend on the
full interface profile and resembles an integrated local eff
tive interface potential:

tv@ l ~x!#52DrE
2`

`

dxE
a~x!

l ~x!

dy$r l t~y2dw!2rwV~y!%

5E
2`

`

dx$v„l 5 l ~x!…2v„l 5a~x!…%. ~4.7!

One hastv@ l (x)5a(x)#50. Whereas in Eq.~4.1! the sec-
ond termtv depends on both the fluid-fluid interaction p
tential and on the substrate potential the third termt i , which
also vanishes forl (x)5a(x), is determined by the interac
tion between the fluid particles alone. Only this third ter
carries the difference between the nonlocal and the lo
theory. In the nonlocal theory one has

t i
~nloc!@ l ~x!#5 1

2 ~Dr!2E
2`

`

dxE
a~x!

l ~x!

dyE
2`

`

dx8

3H E
2`

a~x8!
dy8ŵ@~x2x8!21~y2y8!2#

2E
l ~x8!

`

dy8ŵ@~x2x8!21~y2y8!2#J .

~4.8!

The local approximation oft i
(nloc) is given by

t i
~ loc!@ l ~x!#5s lgE

2`

`

dxH F11S dl~x!

dx D 2G1/2

2F11S da~x!

dx D 2G1/2J , ~4.9!

e

FIG. 14. Comparison of the deviation of the interface profi
from its asymptotes as obtained by the nonlocal theory and by
local theory in which the surface tensions lg is changed between a
factor of 1

10 and 50 of its actual value@Eq. ~2.17!#. None of these
local results resembles the nonlocal one. These calculations c
spond to the case of first-order wetting andT* 50.89.
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57 665LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
with s lg from Eq. ~2.17! and da(x)/dx5Q(x)tanu. The
functional derivativedt@ l (x)#/d l (x)50 yields Eqs.~2.28!
and ~2.29! with DVb50 for the nonlocal and local theory
respectively.

It is instructive to compare in Fig. 15 the magnitude

FIG. 15. Contact angle dependence~in rad! of the various con-
tributions Dt5ṽ, t̃, tv , andt i to the total line tensiont within
local and nonlocal theory for first-order wetting~a! and critical
wetting ~b! @see Eqs.~4.1!–~4.9!#. Note that in~a! we have plotted
the absolute values oftv

(loc) andtv
(nloc) . In ~a! ṽ diverges; ln(1/u)

for u→0. tv
(loc) diverges as2const/u1const3ln(1/u) with both

constants positive so that the leading singularities ofṽ and tv
(loc)

cancel. This implies thatṽ1tv
(loc) diverges as ln(1/u). However,

the gap betweenṽ and2tv
(nloc) seems to become much larger f

u→0 compared with the gap betweenṽ and 2tv
(loc) . Therefore

ṽ1tv
(nloc) and thust behave;1/u over a wide range of contac

angle values. However, in principle we cannot rule out that
very small values ofu alsotv

(nloc) develops a singularity2const/u
1const3ln(1/u) so thatṽ1tv

(nloc) and thust behave; ln(1/u) as
predicted by the local theory. But certainly this behavior would
confined to very small values ofu. In ~b! ṽ, tv

(loc) , andt i
(loc) vanish

;u1/3 for u→0 ~see the dot!. Sinceutv
(nloc)u and ut i

(nloc)u are negli-
gibly small compared with the corresponding local expressionsṽ
is the dominant contribution. The situation is similar in~a!. Thus
irrespective of the order of the transition the total line tension
dominated by the contributionṽ. The contributionu t̃u;u2 is neg-
ligibly small in ~a! and ~b!.
f

each contribution to the total line tension@Eq. ~4.1!#. For the
model we used the termt̃(u)'u2 is always negligibly small.
The dominant contribution isṽ( l 0 ,u). Upon approaching
Tw it is approximately equal toa2 /u l 0 . Since for first-order
wetting a2.0 and l 0,`, ṽ( l 0 ,u) diverges;1/u for t
5(Tw2T)/Tw→0 for first-order wetting. In case of critica
wetting a2;2t→02 and l 0;1/t so that withu;t3/2 one
finds thatṽ( l 0 ,u) vanishes;u1/3. Whereas this behavior o
ṽ( l 0 ,u) is independent of using a local or a nonlocal inte
face theory, the remaining contributionstv andt i do depend
on the kind of approach used. Within the local theory and
first-order wetting it turns out thattv

(loc) behaves like
2const/u1const3ln(1/u) with both constants positive suc
that the 1/u singularity cancels the corresponding singular
of ṽ so thatṽ1tv

(loc) diverges; ln(1/u). Sincet i
(loc) also

diverges; ln(1/u) in the case of the first-order wetting, on
finds this kind of singularity fort itself. In the case of critical
wetting all three contributionsṽ, tv

(loc) , and t i
(loc) vanish

;u1/3 without a compensation effect. This is in accordan
with Indekeu’s results@57# obtained from a local interface
displacement model for the long-ranged forces conside
here.

Within the nonlocal theory Fig. 15~b! demonstrates that in
the case of critical wetting the termṽ dominates completely
all other contributions so that its singularity;u1/3 remains
valid for the total line tensiont; it also shows that within the
nonlocal theoryt is less negative than within the loca
theory. Whether the logarithmic singularity oft in case of
first-order wetting remains valid also for the total line tensi
t within the nonlocal theory is less obvious. As describ
above, the occurrence of the logarithmic singularity relies
the cancellation of the 1/u singularity ofṽ by a correspond-
ing one intv

(nloc) . On the basis of the available data in Fi
15~a! it is difficult to imagine that this compensation effe
prevails also within the nonlocal theory. If not, one wou
find that t;1/u instead of ln(1/u). Regrettably, due to nu
merical difficulties, we were unable to obtain data within t
nonlocal theory for smaller values ofu. This prevents us
from ruling out the aforementioned cancellation mechani
so that we cannot exclude the possibility that also within
nonlocal theoryt diverges; ln(1/u). But even if ultimately
for u→0 a logarithmic singularity would appear, Fig. 15~a!
demonstrates that over a wide range of contact anglest ap-
pears to diverge;1/u in case of first-order wetting. Sinc
utv

(nloc)u,utv
(loc)u the line tensiont within the nonlocal theory

is larger as obtained within the local theory.
Figure 16 shows the numerical results fort in local and

nonlocal approximation which were obtained by inserting
numerical solutions for the corresponding equilibrium pr
files into Eqs.~4.1!–~4.9!. For first-order wetting the loca
theory underestimates the line tension by about 20–80
For critical wetting t is negative and vanishes within th
local approximation forT→Tw asu1/3 in agreement with the
singularity found by Indekeu@46#. As described above we
expect that this singularity also holds within the nonloc
theory. It turns out that for critical wetting the local theo
overestimatesutu by about 25%. Away fromTw and irrespec-
tive of the order of the wetting transition the absolute va
of the line tension is of the order ofe/s. This yields values
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666 57T. GETTA AND S. DIETRICH
of about 10211 J/m compared with experimental values ran
ing between 1025 and 3310212 J/m @21#.

In Sec. III C we have found that the profilel (x) deviates
only slightly from the asymptotesa(x). Therefore one would
surmise thatta@a(x)# @see Eq.~4.2!# provides already a good
approximation for the actual line tensiont@ l (x)# @Eq. ~4.1!#
which takes the smooth variation ofl (x) fully into account.
The inspection of Fig. 15 confirms this expectation. In t
case of first-order wetting and sufficiently belowTw one
finds thattv is about 25% ofta andt i is about 5% ofta ;
furthermoreu t̃u is much smaller thanṽ @Eq. ~4.2!#. Upon
approachingTw the contribution ofṽ becomes even muc
more dominant than all the others. In the case of criti
wetting for all temperatures the contributionst̃, tv , andt i
are negligibly small compared withṽ. These statements re

FIG. 16. Comparison of the prediction of the local and nonlo
theory for the line tensiont for first-order wetting~a! and critical
wetting ~b!. The data correspond to the systems studied in Fig
and 7. In~a! the insets probe the logarithmic divergencet;2 lnu
for T→Tw and show the relative deviationDt/tloc5~tnloc2tloc!/tloc,
respectively. For critical wetting the local theory predicts that
vanishes;u1/3 for T→Tw ~see the inset!. u is measured in rad. In
both casesTw* 50.9. For first-order wettingt is positive and for
critical wetting t is negative. Away fromTw t is of the order of
e/s.
-

l

fer to the results obtained from the nonlocal theory. Cons
tently we find that within the local theory, which predic
large deviations ofl (x) from the asymptotesa(x), the con-
tributions t i

(loc) and tv@ l loc(x)# are smaller but comparabl
with the contributionṽ, which is independent from the typ
of theory used. Therefore we conclude that Eqs.~4.4! and
~4.6! provide a rather accurate estimate for the actual va
of the line tension.

As far as the comparison with experimental data is c
cerned one should keep in mind that the present analys
based on a mean-field theory which neglects thermal fluc
tions of the contact line along thez direction. Their contri-
bution to the line tension as well as to the shape of the m
interface profile still awaits a thorough analysis. For a fi
step in that direction see Refs.@51, 74, 75#. Our present study
serves as a prerequisite of such further analyses.
capillary-wavelike fluctuations of the liquid-vapor interfac
broaden the interfacial width of the density transition regi
aroundl (x). For a free liquid-vapor interface these fluctu
tions lead to a roughening of the interface which is on
limited by gravity or system size@76#. Model calculations for
short-ranged forces show that this feature occurs also a
three-phase contact line@77#. Thus the shapel (x) of the
interface will play a similar role as the intrinsic density pr
file of the liquid-vapor interface@76# as far as the roughenin
by capillary waves is concerned. It is not known yet wheth
these fluctuations can even induce a distortion of the loc
the liquid-vapor interface as compared to the functionl (x)
computed here.

V. SUMMARY

Based on a microscopic density functional theory@Eq.
~2.1!# we have obtained the following main results for th
structural properties of the region of three-phase con
where the liquid-vapor interface of a liquid drop meets t
supporting substrate at a contact angleu.

~1! By assuming a steplike density variation across
liquid-vapor interface the lateral shapel (x) of this interface
minimizes the line contributiont@ l (x)# of the corresponding
grand canonical free energy. The minimum value is the l
tension. Equations~4.1!–~4.8! provide the analytic expres
sion for the explicit functional dependence oft@ l (x)# on
l (x), on the underlying pair potentialf(r ) between the fluid
particles, and on the substrate potential.

~2! t@ l (x)# is a nonlocal functional ofl (x) @Eq. ~4.8!#. By
enforcing a gradient expansiont@ l (x)# can be cast into a
local functional@Eq. ~4.9!# which resembles the form com
monly used in a phenomenological ansatz. This local the
must be regarded as an inferior approximation of the
nonlocal theory.

~3! The equilibrium profilel (x) has been determined nu
merically both for the local~Figs. 8 and 9! and the nonlocal
theory ~Figs. 10 and 11! as a function of temperatureT and
for different interaction potentials. For a system undergo
a first-order wetting transitionl (x) approaches its asymptot
on the liquid side from below~Figs. 8 and 10! whereasl (x)
approaches this asymptote from above in the case of a
tinuous wetting transition~Figs. 9 and 11!.

~4! Although both the local and the nonlocal theory pr
dict qualitatively similar profiles there are large quantitati

l
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57 667LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
differences between the local and nonlocal results for
absolute value and the lateral width of the deviationd l (x)
5 l (x)2a(x) of the profile from the asymptotesa(x) which
are fixed by the surface free energies~see Figs. 10 and 11!.
Also the predictions for the curvature ofl (x) differ signifi-
cantly ~Fig. 13!. These differences increase upon approa
ing a wetting transitionTw at which the contact angleu van-
ishes~Fig. 12!.

~5! There is no effective local theory which can reprodu
the results of the nonlocal theory~Fig. 14!. Thus for a quan-
titative analysis the local theory must be discarded.

~6! For first-order wetting the line tension is positive a
diverges forT→Tw @Fig. 16~a!# whereas for a continuou
wetting transition it is negative and vanishes forT→Tw @Fig.
16~a!# proportional tou1/3. In the case of first-order wetting
the line tension increases;1/u although we cannot rule ou
a crossover to a behavior; ln(1/u) very close toTw as pre-
dicted by the local theory. Away from wetting transitions t
absolute value of the line tension is of the order ofe/s
where 2e is the potential minimum of the pair potentia
f(r ) ands the diameter of the fluid particles. However, w
emphasize that bothl (x) and t do depend also on the sub
strate potential@see Eqs.~4.4! and ~4.7!#.

~7! A somewhat surprising result of the nonlocal theory
that the approximation of the actual smooth profilel (x) by
its straight asymptotesa(x) is very good. Even in the core o
the three-phase contact region the maximum absolute v
of the deviationd l (x)5 l (x)2a(x) is at most of the order o
the diameters of the fluid particles@Figs. 10~a! and 11~a!#.
However, the lateral width of this deviation, which may
regarded as the spatial extension of this three-phase co
region, reaches several hundred fluid diameters~see Fig. 12!.
Nonetheless the integrated deviation*2`

` dx d l (x) diverges
upon approaching a wetting transition.

~8! Equations~4.4! and ~4.6! provide a rather accurate
analytic estimate for the actual value of the line tension.
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APPENDIX: REFERENCE CONFIGURATIONS

The analysis in the main text is based on a system
decomposition of the free energy given by Eq.~2.1! into
bulk, surface, and line contributions. This requires one
study a finite size fluid sample with volumeV which is trun-
cated such that outside ofV the fluid density is set to zero
and called vacuumv. This truncation generates artificial su
face and line contributions to the free energy which add
the one we are interested in due to three-phase coexist
aroundx5y50. Since the actual calculation yields only th
sum of these physically relevant contributions and of
artificial ones we have to compute the artificial contributio
separately by considering suitable reference configurati
Their knowledge enables us to subtract them from the af
mentioned sum and to get access to the physically rele
contributions alone. One important artificial line contributio
which appears in this calculation is the line contribution
e
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the free energy generated by the edge of a wedgelike vol
with an arbitrary opening anglea filled homogeneously with
a fluid and surrounded by vacuum. In order to solve t
nontrivial problem it turned out that it is suitable to consid
the reference configuration depicted in Fig. 17 which
translationally invariant in thez direction. The volume filled
with liquid is part of a sector with radiusr and opening angle
a. The liquid is surrounded by vacuum. The linear exte
sions of this system are characterized byL(a)5r sina,
L̄(a)5L(a)tana, and L̂(a)5r 2L̄(a) ~see Fig. 17!. The
arc, denoted as 1 in Fig. 17, is given bys(x;a)5Ar 22x2

2L̄(a) with 0<x<L and has the lengths(a)5ar . The
area of the cross section of the liquid filled segment perp
dicular to thez axis is Ã'(a)5 1

2 @ar 22L(a)L̄(a)#. The
linear extension inz direction isLz for which we take peri-
odic boundary conditions so that there are no additional s
face and line contributions generated by truncating the liq
ridge atz56Lz/2. The volume of this reference system
V(a)5LzÃ

'(a). Inserting the density distribution

r̂~x,y;a!5r lQ~y!Q„s~x;a!2y…Q~x!Q~L2x! ~A1!

into Eq.~2.1! leads in the thermodynamic limit to the follow
ing bulk, surface, and line contributions:

V~a!5V~a!Vb~r l ,T,m!1Ãi~a!Vs1LzV l , ~A2!

whereVb is given by Eq.~2.9!, Vs5s lv where

s lv52 1
2 r l

2E
0

`

dx t~x! ~A3!

FIG. 17. Reference configuration for determining the line te
sion of a liquid wedge with arbitrary opening anglea surrounded
by vacuum. 1, 2, and 3 denote the surface tensions arising betw
the liquid and the surrounding vacuum. I, II, and III denote the li
tensions arising from the edges of this liquid ridge which exten
translationally invariantly into thez direction normal to thexy
plane. In the thermodynamic limit the line tensions at I and
reduce to that of a rectangular liquid wedge surrounded by vacu
denoted ast lvvv , and the line tension II reduces to that of th
corresponding liquid wedge with arbitrary opening anglea, denoted
ast lvvvv(a), so thatt lvvvv(a5p/2)5t lvvv . L(a)5r sina, L̄(a)
5L(a)tana, and L̂(a)5r 2L̄(a). The arc of a circle is given by
s(x;a)5Ar 22x22L̄(a) for 0<x<L.
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668 57T. GETTA AND S. DIETRICH
is the liquid-vacuum surface tension associated with
overall surface areaÃi of the liquid ridge:

Ãi5Lz@s~a!1L~a!1L̂~a!#. ~A4!

In Fig. 17 the three liquid-vacuum surface tensions are
noted as 1, 2, and 3.

According to Fig. 17 there are three line contributio
proportional toLz due to the lines denoted as I, II, III in Fig
17. In the thermodynamic limitL→` the line contribution
V l is the sum of these three individual line tensions. In t
limit the line tensions due to I and III become equal to ea
other and are given by the line tension of a rectangular liq
wedge surrounded by vacuum:

t lvvv5 1
2 r l

2E
0

`

dxE
0

`

dy t̄~x,y!, ~A5!

where

t̄~x,y!5E
x

`

dx8E
y

`

dy8ŵ~x821y82!. ~A6!

In the notationtabcd the indices stand for the phases occ
pying the quadrants meeting at that line which the line t
sion tabcd corresponds to;l stands for liquid andv for
vacuum. Equations~A5! and ~A6! are known independently
from Ref. @60#. In the thermodynamic limitL→` the line
tension due to II reduces to that of a liquid wedge with
opening anglea as discussed in the second paragraph of
appendix. This line tension is denoted byt lvvvv(a) which
carries five indices because the first two form a pair si
one quadrant is partly occupied by liquid and partly
vacuum ~see Fig. 17!. Thus we haveV l(a)5t lvvvv(a)
12t lvvv and find

t lvvvv~a!5
1

2
r l

2S 11
p2a

tan a D E
0

`

dxE
0

`

dy t̄~x,y!.

~A7!

Equation ~A7! is in accordance with a result obtained b
Blokhuis@78#, who considered the case of three phases m
ing at anglesa, b, andg. Note thatt lvvvv(a5p/2)5t lvvv
andt lvvvv(a5p)50.

With the knowledge oft lvvvv(a) we are in the position to
determine all line contributions for the reference geome
considered in Fig. 18 which describes the case that the in
face profile is approximated by its asymptotesa(x) @see Eq.
~3.8!#:

r̂~x,y!5Q~y2dw!$r lQ„a~x!2y…

1rgQ„y2a~x!…%Q~L2uxu!. ~A8!

Inserting Eq.~A8! into Eq. ~2.1! yields after a tedious calcu
lation the following expression for the free energy of th
configuration which depends onl 0 andu:

V~ l 0 ,a!5V~ l !~u!Vb~r l !1V~g!~u!Vb~rg!1AiVs
i
~ l 0 ,u!

1A'~u!Vs
'1LzV l~ l 0 ,u!. ~A9!
e

e-

s
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d
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-

is

e
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The bulk contributions are given by Eq.~2.9! and by
V( l )(u)5 1

2 LLzL̃(u) and V(g)(u)5 3
2 LLzL̃(u) with L̃(u)

5L tanu. There are two types of surface contributions:
contribution which is proportional to the horizontal areaAi

5LLz and one which is proportional to the vertical ar
A'(u)5L̃(u)Lz . The surface contributionVs

i ( l 0 ,u) which
corresponds toAi consists of the following terms:

Vs
i
~ l 0 ,u!52l 0Vb~r l !12swl12sgv1s lg

1
1

cosu
s lg1v~ l 0!. ~A10!

The term 2l 0Vb(r l) stems from the liquid film of thickness
l 0 ; 2swl is the wall-liquid surface tension denoted as 3
Fig. 18 which takes into account the excluded volumedw
@see Eq.~2.14! and Fig. 5#. The third termsgv stems from
the truncation of the fluid sample aty5L8; this gas-vacuum
surface tension is indicated as 1 in Fig. 18 and its value
given by Eq.~A3! with r l replaced byrg . The fourth term in
Eq. ~A10! is the liquid-gas interfacea(x,0) denoted as 6 in
Fig. 18. Similarly the liquid-gas interfacea(x.0) denoted
as 7 in Fig. 18 gives rise to the term (1/cosu)slg . The last
term v( l 0) in Eq. ~A10! describes the interaction betwee
wall-liquid interface~3! with the liquid-gas interface~6! at a
distancel 0 @see Eq.~2.19!#. The surface contributionVs

' is
induced by the truncation of the fluid atx56L and is the
sum of the gas-vacuum and the liquid-vacuum surface
sion: Vs

'5sgv1s lv @see Eq.~A3!#.
In Eq. ~A9! the line contributionV l( l 0 ,u) collects all

contributions to the free energy which scale with the syst
sizeLz only. There are seven terms:

FIG. 18. Reference configuration for determining the bulk, s
face, and line contributions to the free energy if the density c
figuration is given by the straight linesa(x) of the asymptotes@see
Eq. ~3.8!#. For x,0 the substrate is nonwet and covered by a m
croscopic film with thicknessl 0 . For x.0 the substrate is covere
by liquid with a contact angleu. The system is truncated atx5
6L and aty5L8 and is surrounded by vacuum. The system
translationally invariant in thez direction normal to thexy plane.
The Arabic numbers from 1 to 7 denote the corresponding sur
tensions, whereas the Roman numbers I–V denote the corresp
ing line tensions.dw indicates the excluded volume at the wall.
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57 669LINE TENSION BETWEEN FLUID PHASES AND A SUBSTRATE
V l~ l 0 ,u!52~ l 02dw!s lv1ṽ~ l 0 ,u!1tgvvv12t lwwv

1dt lgvv1 t̃ lgvvv~u!1 t̃ l l lgg~u!. ~A11!

The first term 2(l 02dw)s lv is due to the truncations a
x56L and is denoted as 4 in Fig. 18. The second te
describes the interaction between the tilted gas-liquid in
face and the substrate:

ṽ~ l 0 ,u;L !5DrS r lE
0

L

dxE
a~x!2dw

`

dy t~y!

2rwE
0

L

dxE
a~x!

`

dy V~y! D . ~A12!

For L fixed andu→0 one hasṽ( l 0 ,u→0;L)5Lv( l 0) with
v( l 0) given by Eq.~2.19!. In this limit ṽ( l 0 ,u50;L) would
lead to a factor 2 in front of the last term in Eq.~A10! and
thus to the correct effective interface potential for a flat w
ting film because in Eq.~A10! Vs

i ( l 0 ,u) is measured in units
of LLz instead of 2LLz which is the total surface area of th
substrate. This explains why in the thermodynamic limit

ṽ~ l 0 ,u!:5ṽ~ l 0 ,u;L5`! ~A13!

the contributionṽ( l 0 ,u) diverges;1/u for l 0 fixed and
u→0 @see Eq.~4.4! which follows from Eqs.~A12! and
~A13!#. Thus the thermodynamic limitL→` and the limit
u→0 cannot be interchanged.tgvvv and 2t lwwv correspond
to the dots indicated as I and III, respectively, in Fig.
which represent in an obvious notation the gas-vacuu
vacuum-vacuum line tension at (x,y)5(2L,L8) and the
liquid-wall-wall-vacuum line tension at (x,y)5(6L,0).
tgvvv is given by Eq.~A5! after replacingr l by rg . Since the
liquid film is separated from the substrate by a vacuum la
of thicknessdw one hast lwwv5t lvvv . The term

dt lgvv5t lgvv2r lDrE
0

`

dxE
l 02dw

`

dy t̄~x,y! ~A14!

describes the line tension at (x,y)5(2L,l 0) denoted as IV
in Fig. 18. This is the liquid-gas-vacuum-vacuum line te
sion

t lgvv5 1
2 ~Dr!2E

0

`

dxE
0

`

dy t̄~x,y! ~A15!

corrected by the fact that the quadrant filled with liquid is n
infinitely thick but has only a finite thicknessl 0 . The expres-
sion

t̃ lgvvv~u!5
1

2
Frg

2S 11
p2u

tanu
D 2rgr lS 11

p2u

tanu
1

p2 ū

tanū
D

1r l
2S 11

p2 ū

tanū
D G E

0

`

dxE
0

`

dy t̄~x,y!, ~A16!
r-

-

-

r

-

t

with ū5p/22u gives the line tension at (x,y)5(L,L8) de-
noted as II in Fig. 18 which is generated by the meeting
the liquid and the gas phase under the anglesu andū and the
vacuum. This provides also a self-explanatory notation as
as the five indices oft̃ are concerned. The last term in E
~A11!,

t̃ l l lgg~u!5
1

2
~Dr!2F11

u

tan~p2u!G E0

`

dxE
0

`

dy t̄~x,y!,

~A17!

represents the liquid-gas line tension at (x,y)5(0,l 0), de-
noted as V in Fig. 18, in the limitl 0→`. The correction due
to l 0,` is contained in the termṽ( l 0 ,u). Note that as ex-
pectedt̃ l l lgg(u→0)50. Equation~A17! can be transformed
into Eq. ~4.3! where we introduced the short notationt̃(u)
5 t̃ l l lgg(u).

With these results the total line contribution can
grouped into physically relevant and into artificial contrib
tions:

V l~ l 0 ,u!5V l~ l 0 ,u!phys1V l~ l 0 ,u!art, ~A18!

where

V l~ l 0 ,u!phys5ṽ~ l 0 ,u!1 t̃~u! ~A19!

andV l( l 0 ,u)art5V l( l 0 ,u)2V l( l 0 ,u)phys. This leads to Eq.
~4.2!.

The explicit knowledge of the bulk, surface, and line co
tributions for the reference geometry shown in Fig. 18 e
ables us to determine the corresponding quantities for
actual case that the interface profilel (x) is not given by
piecewise straight linesa(x) but by a smooth variation as in
Figs. 8~a! and 9~a!. Since l (uxu→`)5a(x) the difference
d l (x)5 l (x)2a(x) vanishes foruxu→`. This implies that
both the bulk and the surface contributions of the free ene
for the configurationl (x) are the same as for the casel (x)
5a(x). The line contribution corresponding to the config
ration l (x) contains all terms present forl (x)5a(x) plus
additional termsṼl@ l (x)# which vanish forl (x)5a(x). Fur-
thermore, all artificial free energy contributions are genera
by the truncation of the sample at large distances. Sinc
these large distances the actual profilel (x) reduces to the
asymptotesa(x), the artificial contributions for the smoot
casel (x) are identical to those for the casea(x) shown in
Fig. 18. On the other hand, the differenced l (x) does not
generate new artificial contributions. Therefore we can c
clude that the physically relevant line contributionV l@ l (x)#
for the actual, smooth profilel (x) is the sum ofV l( l 0 ,u)phys

@see Eq.~A19!# and Ṽl@ l (x)# ~see above!. A lengthy calcu-
lation shows that

Ṽl@ l ~x!#5tv@ l ~x!#1t i
~nloc!@ l ~x!#, ~A20!

wheretv@ l (x)# is given by Eq.~4.7! andt i
(nloc)@ l (x)# by Eq.

~4.8!.
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@71# M. Napiórkowski and S. Dietrich, Phys. Rev. E47, 1836

~1993!.
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