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Line tension between fluid phases and a substrate
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We calculate the density distribution of a three-phase contact between the liquid-vapor interface of a simple
fluid and a planar substrate. Using a microscopic density functional theory we pay particular attention to the
long range of the underlying dispersion forces and find significant deviations from predictions of phenomeno-
logical theories. We monitor these structures and the corresponding line tension as a function of temperature
upon approaching critical or first-order wetting transitior&1063-651X%97)02612-3

PACS numbegps): 68.45.Gd, 68.16-m, 82.65.Dp

I. INTRODUCTION of Newton black films and foam filmgl6—20.
Nonetheless, as reviewed recently by Drel{@i], for

In thermal equilibrium the bulk of a thermodynamic phasemost of the systems the magnitude and even the sign of the
is characterized by translational invariance—continuous foline tension are not known experimentally within an accept-
a fluid and discrete for a solid—of its local structural prop-able margin. Moreover, the spatial density distribution at the
erties which give rise to the corresponding bulk free energyregion of three-phase contact has not yet been resolved ex-
Deviations from this translational invariance cause an excesgerimentally. Given this unsatisfactory experimental situa-
in free energy which scales with the dimensionality of thetion one is inclined to seek help from theoretical analyses.
defect. The most prominent example in the case of a thre€On the theoretical side the absence of translational invariance
dimensional bulk system is the surface tensigg, which in two directions poses also a great challenge. Early theoret-
arises when, due to appropriate boundary conditions, twécal work focused on the statistical description of the three-
distinct phases and 8 of condensed matter in thermal equi- Phase region, the contact angle, the line teng22-24,
librium meet at a planar interfacg8 between them. various aspects of the line tension concerning the spreading

Under suitable thermodynamic conditions a system ca®f liquids on a substratg27,28, local contact anglef29],
exhibit three distinct phases, 3, and y which are equally the dependence of the contact angle on the droplet size
thermodynamically stable. Under these circumstanceb30,31, perturbations of the contact lif@2,33, thin films
boundary conditions can be spatially arranged such that tHg4—37, the detachment of sessile drd@§], and nucleation
system forms three interfacedg, 8|y, anda|y which meet  [39,40.
at a lineaBy [see Fig. 18)]. The excess free energy associ-  In the meantime the behavior of line tensions at wetting
ated with this linear defect is called line tensieri1-3]. transitions has become an interesting subject in itself. The
Figure ¥a) depicts the situation of an unconstrained thermaNanishing of the contact line at a wetting transitiop leads
equilibrium as it can arise, e.g., in a binary liquid mixture to the question of a possibly singular behavior of the corre-
wherea and 3 are two liquid phases rich in one and anothersponding line tension. A vanishing line tension would be
species, respectively, angis the common vapor phase. analogous to the vanishing surface tension of a liquid-vapor

A line tension can, however, also occur in a constrainednterface at the critical point. Early theoretical studjéd—
equilibrium where one of the phases, say thphase, is an 43] gave conflicting answers to this question. Only recently
inert spectator phase. To a large extent this is realized for has agreement with respect to certain aspects been achieved
liquid-vapor interfaces|y exposed to a solid substrate In
this case the dihedral angl, of the « phase is prescribed
geometrically; for a planar substrate itigsee Fig. 1b)]. In
this case the dihedral angle of tiephase is called contact
angled. It characterizes the contact of a large volatile liquid oly
drop with a solid substrate. Upon raising the temperaiure
the contact angle decreases and vanishes continuously at the o
wetting transition temperaturg,, [4]. This implies that this b
system can support a distinaty interface only forT<T,, (@) (b)

and the_llne t_enS|0n 1S n_ot defined foe-T,, . ) FIG. 1. Three bulk phases, B8, andy in unconstraineda) and

In spite of its subdominance as compared with the surfacggnstrainedb) thermodynamic equilibrium forming the interfaces
tension, the line tension plays a significant role for a varietyy|g, gly, and a|y which meet at a triple linex8y whose cross
of important physical properties and phenomena such as thgction is denoted by a dot. The configuration is translationally
shape of small droplefs,6], heterogeneous nucleatipn— invariant in the normal direction. Ifa) the dihedral angles are
10], dynamics of the contact line during spreading of dropsdetermined by(see Ref.[2]) coa9a=(a%y—g-i B—oﬁy)/(Zo'a,yo'B,y),
[3,11], sticking and deformation of the contact line due tocosfy=(02,— 02— 0% )(20,404,),  and  co®,=(o4z— 02,
chemical heterogeneities of the substfd2-14, the attach-  —¢%)/(20,,05,). In (b) the contact anglef is given by co#
ment of solid particles to a fluid interfa¢#5], and formation  =(c,,,~0o.p)l0g,.

By

[0\

o

aly ol

1063-651X/98/5{1)/65517)/$15.00 57 655 © 1998 The American Physical Society



656 T. GETTA AND S. DIETRICH 57

[44-56. It has turned out that the type of singular behavior n
of the line tension upon approaching, depends on the

range of the interactions and on the order of the wetting L
transition. At a first-order wetting transition the line tension liquid X— +oo

does not vanish but either diverges or reaches a maximum /

value via a cusplike singularity. At a critical wetting transi- m , o . I
tion the line tension vanishes &f,. All those conclusions 0
are based on mean-field theory. A good review of this sub-
ject is given by Indeke{57]. Although already in 1981 Ben- gas X—> —oo0
ner, Scriven, and Davi§58] had pointed out that in this
context the description by local theories poses quantitative
problems, all studies mentioned above are based on local FIG. 2. Schematic phase diagram of liquid-gas coexistence at
gradient theories which neglect the nonlocal features inducegd, between the triple temperatufig and the critical temperature

by the long range of the dispersion forces acting in the fluidT, . For simplicity uq is taken to be temperature independent. Be-
system. Recent studies of the line tensions associated withw the wetting transition temperaturg, the substrate remains
the formation of thin fluid films on geometricalfp9] and nonwet if gas-liquid coexistence is approached from the gas side. If
chemically [60] structured substrates revealed very signifi-#o is approached from the liquid side the whole sample is filled
cant quantitative deficiencies of local gradient theories aith liquid. If for x— +oo the latter boundary condition is applied
compared with a fully nonlocal description. Encouraged byand fOI’X~>'—OC.‘ the former one, one obtains a density distribution
these results the purpose of the present study is to elucida@ shown in Fig. 3.

the relevance of long-ranged forces for the structure of the

three-phase contact region and the corresponding line tension0. The second possible boundary condition imposes
by comparing the predictions of the conventional local gra-p(y—«)=py leading top_(y) for u— uo(T)—0. p_(y)
dient theory with those obtained from a fully nonlocal de-resembles the emerging substrate-liquid and the liquid-vapor

scription.

II. STATISTICAL MECHANICS
FOR THREE-PHASE CONTACT

interfaces separated by a distang€T) of the liquidlike
layer in between. At coexistence= uq(T) both profiles
p-+(y) are equilibrium density distributions. This enables one
to impose mixed boundary conditions in the lateral direction:

p_(y) for x——o andp, (y) for x— +« (see Fig. 2 This
gives rise to a density distributign(x,y) which interpolates

At first glance the most common realization of a three-smoothly between the limiting density distributiops(y) at
phase contact line seems to be provided by a liquid drop ix= *. Defining the position of the liquid-vapor interface
contact with its vapor and residing on a substrate. Howevemy, €.9.,p(x,y=1(X))=3(p|+pg) renders a smooth inter-
this system is only stable in the limiting case of a completelyface profile [(x) which reduces to the valuéy(T) for
nonvolatile liquid in a canonical ensemble. Within equilib- X— — and which diverges fox— + (see Fig. 3. As the
rium statistical mechanics this case is very difficult to imple-proper analysis of the various surface contributions to the
ment. Instead the generic case to be considered by means of
statistical mechanics is a fluid whose liquid and gas phase

A. Boundary conditions

with number densitiep; andp, respectively, coexist in the =
bulk along a liquid-vapor coexistence curyg(T) of the i
chemical potentialu which is constant throughout the e substate L

sample. Near the substrate the requirementconst induces
spatial variations of the density in the direction normal to the
substrate which we denote as thelirection. In the absence

of a lateral corrugation of the substrate potential, which we
assume to be the case in the following, the density profile
p(y) does not depend on a lateral coordinate, sagonse-
qguently in such a grand canonical ensemble the drop con-
figuration is unstable. The drop evaporates and one is left o ) o )
with a microscopically thin liquidlike film of thickneds(T) FIG. 3. Equilibrium density distribution resuiting from the
which can be inferred from the actual form of the equilib- PoUNdary conditiong(x= 0,y —e)=py and p(x=—2,y—z)
rium profile p(y). Below the wetting transition temperature —Pg k?lt |I(CZIUIf(.1-V3pOI’ Coe.X'Stel.ncﬁ.*g(T)' I.(X) 'fs (tihe_||3osmon of t.he
Tw 10(T) is finite whereas$, becomes macroscopically large suitably defined emerging liquid-gas interfadg—|(x— =) is

b T This imoli hat forT<T d . the equilibrium thickness of the wetting film & T,, and at coex-
anovel,, . Is implies that forT<T,, and at coexistence istenceuq(T). |(x— + ) diverges linearly such that the asymptote

#o(T) one can maintain two distinct boundary conditions for g the contact anglé with the substrate. Under suitable condi-
the fluid aty—o. The first one imposes thai(y—=)  tonsI(x) should resemble the density distribution of the three-
=p, . If the substrate prefers the liquid phase, a case whicl3hase contact region of a sessile liquid ridge. The actual shape of
we consider in the following, this boundary condition leads|(x) depends on the order of the wetting transitionTat. The

to a sample completely filled with liquid up to substrate position x=0 is defined as the point at which the asymptotes of
where the equilibrium substrate-liquid interface is formedi(x) intersect. The density distribution is assumed to be translation-
and gives rise to the density profife, (y) for u— uo(T) ally invariant in thez direction normal to thexy plane

liquid
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free energy of this system shows, the above boundary con- o

ditions lead to a linear divergence bfx— +) such that d(T)=J dr{l1—exd — ¢(r)/(ksT)]}. (2.6

the asymptote of(x— + ) forms an angle with the hori- 0

zontal substrate which is the contact angle given by Young's-q, the reference free energy we adopt the Carnahan-Starling
law [see Fig. 1b)]. In this sense the tacit hypothesis is thatapproximatior{63,64]:

this well-defined equilibrium interface profil€x) resembles

the actual time-dependent density distribution at the three- 45—379°

phase contact line of a slowly evaporating, large, and volatile fus(p, T)= kBTP( Inp—1+ A=z} 2.7

drop (see Fig. 3. Over which time scale this hypothesis is 7

justified must be checked by an inherently dynamic theory. yith

B. Density functional theory

o
=— p[d(T)]3 2.8
Density functional theory has turned out to be successful "% pLd(T)] @8

for the description of spatially inhomogeneous fluidgee, . . .
e.g., Ref[61]). Within this approach the equilibrium number W€ eémphasize that the functional used in E41) represents

density distribution minimizes the grand canonical free en Simple version of density functional. It has the virtue of
ergy functionalQ[{p(r)};T,u]: describing wetting transitions properﬂ_;l,6_5,66 alt_hough it
does not capture fully the density oscillations which occur on
3 an atomic scaler close to the substrate due to packing ef-
Q{p(N}T,u]= fvd r fus(o(r),T) fects. We are prepared to accept this latter deficiency because
we shall focus on mesoscopic scales larger thaffrinally
. 3 3~ , , we mention that in accordance with E®.1) we do not
+§fvd rfvd r'w(lr—r'[)p(r)p(r’) consider the effects of gravity.
For a bulk system with homogeneous dengify)=p,,
=1,0, Eq.(2.]) yields the bulk free energy densit
T P B T e
Qolpy Tow)=Frslpy T)+3Wops—ppy, (2.9

V is the finite volume occupied by the fluid in the half space
V,={r=(x,y,2) e R¥ly=0}. In the thermodynamic limit,
which will be considered carefully and in detail below, one
hasV— V. . Fory<O0 the fluid is contained by an inert wall Wozj 3d3r W(r)=—2meos. (2.10
with number density,, exerting a substrate potential R

where

The requirements of two-phase coexistence between the

V(y>0)= _2 Ui (2.2) equilibrium gas and liquid densities, i.e.,
i=3 y" '
| o0y,
In a simple approximatioV(y) can be regarded to result ap | _O_W -
from the pairwise summation of Lennard-Jones wall-fluid =g p=h

pair potentials andQy,(pg) =Qp(p), lead to the bulk phase diagram shown

bui(N=4ef(0y/0)°= (o, /®]. (23 "FO4

In this case the coefficients;>0, u,, andug<O0 are deter- C. Surface free energy

mined bye,, o,, and the lattice spacing of the substrate In the case of a homogeneous boundary condition for

material. In the following, however, we considey, u,, and  y— +« the density distribution will depend only on so

Ug as the primary independent substrate potential parametensiat the free energy functional decomposes into the bulk con-

The pair potential between the fluid particles is taken as  tribution given by Eq.(2.9) and into a surface contribution
proportional to the are& of the substrate:

Q{pWMET,w]=VQ[p,: T, u]+AQ{{p(V)}:T,1].
(2.1

&(r)=4€ (alr)?—(alr)"]. (2.9

Following the Barker-Henderson scheif@2] ¢(r) is split
into an attractive part . . .
Accordingly this leads to the surface tensions
- ry, r= : .
wn={ o =0 259 Cap(T ) =minfQL{p(y)}iT,ul}, (212
, <o p(y)

and into a repulsive pam(r<o). Whereas the former is where (@,8)=(w,l) corresponds to the boundary condition
treated perturbatively in Eq2.1) the latter part gives rise to  p(y—=)=p, (@,8)=(w,g) to p(y—=)=pgy, and (@,B)

a reference free energy densitys(p,T) of a hard sphere =(l,9) to p(y—®)=p4 and p(y— —x)=p, for V(y)=0.
fluid with an effective hard sphere diameter ag(T) is only defined foru=wuy(T); in this case the
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11 £ hasAQ=0; o, denotes the wall-liquid surface tensicior
the definition ofd,, see Fig. %
gas liquid ‘
J gw=— 40t | "dy 1)~ + oo | ay vy,
(2.19
- with
09 +
t(y)=f dy’f dx'W(x'2+y"?)
y — o0
0.8 1 t
=—> —, y>o (2.19
i=3 Y
0 02 04 06 and
p* .
~ 122y WX 2y 2472
FIG. 4. Liquid-gas bulk phase diagram in termsTdf=kgT/e w(x"“+y )—f_wdzw( X'Cty't+2'%), (219
andp* = po? as predicted by Eq$2.1) and(2.4—(2.8). The criti-
cal pOint (Q) is giVen by (Té‘ ,p:):(10986,02722) Freezing and a-lg the |iquid_gas surface tension
starts below the triple poinfy <0.75 which, however, is not cap-
tured by the simple density functional used in E2}.1). L , [”
0'|g=—§(AP) fO dy t(y)v (217)
minima corresponding te,; and 0,4 are given byp  (y)
andp_(y), respectively, as discussed in Sec. Il A. where
It has turned ouf4] that wetting properties of such a
system are described surprisingly well by applying the so- Ap=p —pg, (2.18

called sharp-kink approximation within which the minimiza-

tion in Eq. (2.12 is restricted to the subspace of piecewiseWithin the sharp-kink approximation. In E.13 w(l) de-
constant density profileGee Fig. 5. Inserting a trial func- notes the cost in free energy to maintain a wetting film of
tion as shown in Fig. 5 with a variable film thickndssto ~ Prescribed thicknesk as compared to a configuration with
Egs.(2.1) and(2.12 leads to the so-called effective interface | = :
potential[67,68 . .
w<|>=Ap(p|Jl ay )-pu [ “ay V<y>)

QT w) =100+ 0y + o1+ o(l). (2.13 w
The linearly increasing termAQ with AQ=Qu(p,, T, o) =2, 7, I>d,. (2.19
—Qp(pg,T,u)>0 corresponds to the price of building up a
liquidlike film of thicknessl in contact with an undersatu-

. . a, IS known as the Hamaker constant. The equilibrium film
rated vapor phase in the bulk. At two-phase coexistence o g

icknesslo(T,u) minimizes Q4 (1) and renders the wall-
vapor surface tension:

R (y) .
Twg=min{Qg(1)}=Q4(lo). (2.20
[
At coexistence, i.e. AQ)=0, this implies
p| .
Tyg=01gt+ oW+ o(lp) (2.21)
so that the contact angle is given by
I
YR I S 0=arcco%1+ o 0)). (2.22
0 ‘ y e
0 dw I0

D. Shape of the liquid-gas interface
FIG. 5. Sharp-kink approximation of the number density profile . . . .
p_(y) corresponding to an equilibrium wetting film thickness As discussed in Sec. Il A mixed boundary conditions for
d,,= (0, + o) /2 describes the excluded volume due to the repulsivey — = lead to a laterally inhomogeneous density distribution
part of the substrate potential. The corresponding approximation fop(X,y) with an interface profilé(x) as shown in Fig. 3. The
p.(y) yields a profile which equals, for y>d,, and which is zero asymptotic behavior of(x) for large|x| is determined by
for y<d,,. p andpg are taken at coexistenge,(T) (see Fig. 4 the equilibriumsurfacecontributions to the free energy:
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[(x——o)=l, (2.23 which it still displays translational invariance. By inserting
the local sharp-kink approximation
and
|(x— +0)=1y+Xx tand. (2.24 b(x,y)=®(y—OIW)~{p|®(I(><)—y)+pg®(y—I(x))(}2 2

The lateral inhomogeneity gf(x,y) adds a line contribution

L, [p(x,y);T,u] to the free energy beyond the bulk and into Eq. (2.1) a systematic analysis yields in the thermody-
surface terms in Eq2.11). The line contribution scales with namic limit the following expression for the line contribu-
the linear extensior, of the sample in that direction in tion:

Q{IxX)}T, © ° * * ©
lim MJ mdx[l(x)—dW]Astﬂpgp.—p.z>f_mdxf_wdx'fl(x)dyfdwdy'wnx—x')%(y—y')z]

[I— -

1 © S s s R 0 1(x)
52| ax] T ax [ ay| " ayaroexozey-yoa [ dx] dy puspviy)
—o —o 1(x) 1(x") - dw

- axti00-duluan, (226
|
where The consequences of this failure have been studied for the
structure of the free liquid-vapor interfa¢69—72 and for
Afps=frs(pr) = frus(pg)- (227 the morphology of wetting films on geometricall$9] or

chemically [60] structured substrates. Since in these cases
The minimization of the line contribution with respeCt to the quantitative differences between the common phenom_
1(x), i.e., 08, /61(x) =0, leads to the following nonlocal and enological, but local, approach and the correct nonlocal ex-
nonlinear integral equation for the equilibrium interface pro-pression have turned out to be very significant, in the follow-
file 1(x): ing we want to compare the different predictions of the local
_ _ [Eqg. (2.29] and the nonlocalEq. (2.28)] equation, respec-
AQ—Ap[pit(1(x))—puV(I(X))] tively, for the shape of the interface at three-phase contact.
. — = As demonstrated by Fig. 7 in Reff60] for the case of a
=—(Ap)2f dx’fl =1 (X)dy’v"v[(x—x’)2+y’2]. chemically inhomogeneous substrate the nonlocal theory is
— 0 in close agreement with the full theofq. (2.1)] in which
(2.29 one refrains from introducing an interface model and takes
' fully into account also the smooth density variation across

By enforcing a gradient expansion to the nonlocal expressiofi'€ interface position. Therefore the nonlocal interface theory
on the right hand side of Eq2.28 one can approximate Eq. ¢an be regarded as a reliable approximation.
(2.28 by a local nonlinear differential equati¢f9l:

Ill. ANALYSIS OF THE SHAPE OF THE INTERFACE

AQ=Ap[pit(1(x))— pu,V((X))] The analysis of Eqs(2.26 and (2.28 requires the nu-
d2l(x) di(x)|?] 32 R merical evaluation of multiple integrals of the potential func-
O I +O((1")%,1). tion w(x'2+y’?) [see Eq(2.16] following from W(r). For

the actual nonanalytic form ofi(r) [see Eq.(2.5] these
(2.29 integrals cannot be carried out analytically which increases
. ) the numerical difficulties significantly. In order to avoid that
We note that the right hand side of E@.29 equals the e approximatév(r) by the following analytic forn{73]:
negative functional derivative Of)'|gde\/1+[d|(X)/dX]2
which is the phenomenological expression for the cost in free
energy due to the increased surface area of the configuration
I(x) as compared to the flat olé€x)=const, disregarding
curvature contributions. For a detailed assessment of the reo that Eq(2.10 remains valid with
liability of this phenomenological and local approximation
see Refs[69-72. It turns out that for long-ranged forces
decaying like a power law the coefficients of the higher-
order terms on the right hand side of E@.29 become
infinitely large so that the gradient expansion breaks downand

=04

3
v~v(r)=wo%(az+r2)‘3 3.1)

3w,
2mo?

W(x2+y?) = (1+x%+y?) 52 (3.2



660 T. GETTA AND S. DIETRICH 57

_Wo (T — X 33 )
t(X)—? E—arctam )—1? , ( . ) 001 I (a)
_ - _ £ 10
wherex=x/o andy=y/o. For this model one hgsee Eq.
(2.19] 0.005 1 0 Lrerreetereny
2 64 &J 075 08 085 09
__tWo 5 5% ¢ o T
t3= 3 o —2760' >0, _\§ i
t,=0, and
— Tr=084
6w, . 192 P L T"=086
- — — —_ >0. ’ --- T*=0.88
ts 577 45 7 0 —— T*=090
The effective interface potentigEq. (2.19] is given by 2 4 6 8 10 12 14
32 Ie]
€
w<|)=<Apa3>{—3;<p|a3>
02 1
a
X[ 1+[(I=dy)/ o] arctarﬂ(l—dw)/o]—EH
L 0.15 1
u.
+pwo'_32 - ITl) (3.9
= i | @
01 +
so that[see Eq(2.19)]
a,=3Ap(pyuz—pits), (3.5 005 1
az=3Ap(pyls—3pitady), (3.6
0 + + + + + } t }
and 076 078 08 082 084 0.86 0.88 0.9
T*
a,=§Appy(ts—9tsdy). (3.7

FIG. 6. (a) The effective interface potential(l) [see Eq(3.4)]
for a first-order wetting transition for various temperaturgs

The thickness of the homogeneous wetting film corre-=kgT/e. The equilibrium thicknesk, increases slightly as a func-
sponds to the positioh, of the minimum of the effective tion of T and jumps to infinity at the first-order wetting transition
interface potentialo(l) [Eq. (2.19]. Figures 6 and 7 display temperatureT;,=0.9. The contact anglé (in rad vanishes~ 7_1’2
a first-order and a critical wetting transition, respectively,r 7=(Tw—T)/T,—0 (b). Here we have used the following inter-
together with the corresponding temperature dependence 8ftion potential parameterst, = 2.3480°", Ug=—5.326e0", U;
the contact anglé. In both case® vanishes continuously at — 0 f0'1#3.9,dw=0, p,=0c"". The potential parameteesand s
the wetting transition temperatufe, . For first-order wetting ~ SC21€ 0ut by using reduced quantities.
one hasf(r=(T,,— T)/T,—0)~ 72 and 6(7— 0)~ 2 for
critical wetting[4]. The potential parameters leading to Figs.
6 and 7 will be used in the following for calculating the
inhomogeneous interface profile.

A. Properties of the homogeneous wetting film

to within 10" 8. [Here and in the following we omit the over-
bar ofl(x) indicating the equilibrium profilé.Figures 8 and
9 show the profile and the deviation

Sl(x)=1(x)—a(x) (3.9
B. Interface profile in local approximation
For the interaction potential parameters used for Figs. 6/°M the asymptotic behavior for first-order wetting and

and 7 we have solved the differential equati@29 at co- critical wetting, respectively. For a first-order wetting transi-
existenceAQ =0 with the boundary conditior(|x|— ) tion |(x—) approaches its asymptote from below so that

—a(x) where ol (x>0)<0 whereasl(x—®) approaches its asymptote
from above for critical wetting so that in this cag®(x
a(xX)=1y0(—x)+(lg+x tand) O (x). (3.9 >0)>0. In both case$(x— —x) approaches its asymptote

I, from above so that alwaysl (x<0)>0. For first-order
O (x) is the Heaviside functiorg(x) has a break in slope at wetting this positive part 06l (x<<0) is barely visible on the
x=0 which is defined as the position of the intersection be-scales of Fig. 8. For critical wettingl (x<<0) is substantially
tween the asymptotes bfx). We found that the slope of the larger and comparable withl (x>0) althoughdl(x) van-
asymptote as obtained from the numerical solutibrs o) ishes more rapidly foxx— —o than for x—o. We have
agrees with taf as obtained independently from EQ.22  found that, irrespective of the order of the transition,
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25
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6x10° T .
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0.025 | \/ |
Lo /
2 l'\"\ / // ®
| i(/ l ;
0.02 ® ; /
\ /
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N \ I --~ T*=0.86
. _\: :’ —— T*=0.88
\l —— T*=0.89
v
0.005 =3 :
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0 x/c

076 078 0.8 0.82 0.84 085 088 0.9
™ FIG. 8. (a) Shape of the profil&(x) of the liquid-gas interface at
T*=0.84 for a first-order wetting transition within local approxi-
mation using the interaction potential parameters as in Fig. 6. The
wetting temperature i§;,=0.9. The dotted line is the asymptote
a(x). The angle given by the slope of the asymptote gives the
contact angled at T* =0.84. (b) Deviation &8l (x)=1(x)—a(x) of
the profile from its asymptotes for various temperatures.

FIG. 7. (a) The effective interface potential(l) [see Eq(3.4)]
for critical wetting for various temperaturés®. The equilibrium
thickness|, diverges ~7~ 1 for r=(T,—T)/T,—0; here T}
=0.9. The contact angl® (in rad vanishes~ %2 (b). Here we
have used the following interaction potential parametears:
=1.4230°, u;=9.0000°, ug=—0.19Cc"% u;=0 fori+#3,4,9, .
do= _ I3 C. Interface profile from nonlocal theory

w=, pPw=0 .

We have solved the nonlocal integral equati@r28 for
81(——)~|x| ~* and ol (x=)~x 2. There is a huge 2% ~0 bY applying a suitable fteration scheme to fts dis-
difference of the magnitude and of the extent of the deviatiorf' €11£€C VErsion. 1 1S a significant chailenge fo find the cor-

. ; : ect solution and requires a substantial numerical effort.
of the profile from its asymptotes between first-order an : . :
critical wetting. At comparable temperatures the deviation i ased on the same interaction potential parameters as for the
) . Jocal approach Figs. 10 and 11 show the corresponding re-
about an order of magnitude larger and two orders of mag

: . . ) . . sults for 8l (x) within the nonlocal theory for first-order wet-
nitude wider for critical wetting than for first-order wetting.

) o - ting and critical wetting, respectively, as well as a direct
Irespective of the order of the transition the devia®(x)  omparison between the predictions of the local and the non-

increases upon approachifig, and reaches a mesoscopic |ocq| theory. These theories agree insofar as they both predict
scale. that in the case of first-order wetting the profllex— )

By using a phenomenological local interface displacemengpproaches its asymptote from below whereas it approaches
model Indekey46] has obtained qualitatively similar results. jts asymptote from above for critical wetting. However, as
In the present context the above findings, which are based drigs. 10 and 11 demonstrate, the quantitative differences are
a microscopic model instead of on a phenomenological anvery large and increase upon approachifig. Generally
satz, are needed to serve for a quantitative comparison ispeaking the local theory overestimates significantly both the
order to test the reliability of the local theory versus theextent and the width of the deviation of the profile from its
actual nonlocal one. asymptotes. In the case of first-order wetting the maximum
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FIG. 9. (8) Shape of the profilé(x) of the liquid-gas interface at FIG. 10. (a) Deviation of the interface profile from its asymp-
. " . . - .
IT _|0'88 for. the_cr't'f:l_il wetting transition shc;wrlln Flg.h7 WIthin 44165 as obtained from the nonlocal theory upon approaching a first-
oca_apprommatlon. e wetting tempergture (»=0.9. The dot- order wetting transition al;,=0.9. The interaction potential pa-
ted line is the asymptot&(x). The angle given by the slope of the , oter5 are the same as for Fig(i®). Direct comparison between
; S e

asymptote gives the contactl ang19at.T =0.88. (b) DeV|at|qn the predictions of the local and the nonlocal theory for two tem-
Sl(x)=I1(x)—a(x) of the profile from its asymptotes for various peratures
temperatures. '

deviation and the width ol (x) are predicted by a factor of that the interface profile follows its asymptotes rather
4 too large by the local theory; according to the nonlocalclosely.
theory the maximum deviations occur much closexte0 Figure 12 provides a close look at the temperature depen-
than predicted by the local theory. For first-order wetting thedence of the widtiAx of 61(x). To be specific we definax
deviationsl (x) has a sizable value only far>0. However, as that region within which l(x)/a|>10"3. Figure 12
for critical wetting 81 (x) is more equally distributed around shows that for first-order wetting the local theory predicts a
x=0. Even at a low temperature the width &fx) for criti-  divergence ofAx for T—T, whereas within the nonlocal
cal wetting is more than ten times larger than for first-ordertheory Ax seems to remain finite upon approachihgor to
wetting. Since this width increases further with temperaturediverge only very close t@,,. Our numerical analysis indi-
the corresponding numerical difficulties limited our evalua-cates that irrespective of the order of the transition the local
tion of the nonlocal theory in the case of critical wetting to theory predicts a divergendex~ 8~ %2 for §—0. The com-
low temperatures. For critical wetting the discrepancies beparison between Figs.(I8) and 1Ga) shows that the maxi-
tween local and nonlocal theory are even more pronouncednum deviation| 8l .., clearly diverges within local theory
The local theory overestimates the maximum deviation andvhereas in the nonlocal theory it is much smaller, increases
the width by a factor of 20 and 5, respectively. also, but a divergence is not yet visible.

A surprising result of the nonlocal theory is that the ab- Itis interesting to note that for first-order wetting the local
solute value of the deviation dfx) from its asymptotes is at theory overestimates the curvature
most on the order of a molecular diameter. However, the ,
width of this small deviation is several hundred molecular K(x)= 1"(%) (3.10
diameters. Thus a major finding of the nonlocal analysis is [1+1"(x)2]3R :
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, FIG. 12. The widthAx of the shape of the interface as a func-
21 (b) ' — nonlocal tion of the layer thickness, for a first-order wetting transition,
" --- local which occurs atl,/o=3.3838, as obtained by the local and the
10 1 l.' 1 nonlocal theory. The inset shows the data of the nonlocal theory on
! ‘. a smaller scale. The local theory predicts a divergenca»offor
8 1 ! ) T—T,, whereasAx increases only slightly in the nonlocal theory.
b ! '\‘ Within the widthAx the deviation of the profile from its asymptotes
X & R is larger than 103¢-.
o ! \
! \
4 ] ! \ IV. LINE TENSION
1 AY
! . The explicit separation of the grand canonical free energy
2 1 / N functional Q[ p(r)] [Eqg. (2.2)] into bulk, surface, and line
N el contributions as well as the identification of all artificial
0 - " ‘ , , - terms generated by the finite sample volukeare carried
10°  -5x10° 0 5x10° 10" 1.5x10° out systematically in the Appendix. Within the sharp-kink
/o approximation[Eq. (2.25] the line contribution from the

three-phase contact region consists of three distinct terms:

FIG. 11. (a) Deviation of the interface profile from its asymp-
totes as obtained from the nonlocal theory T8r=0.75 in the case
of a critical wetting transition afr;,=0.9. (b) Direct comparison
between the predictions of the local and the nonlocal theory fofThe first term is solely determined by the asymptotes of the
T* =0.75. profile, i.e., by6 andl,:

) ]=rla(x¥)]+ 7, [ )]+ 7n[1(x)]. (4.1

of the profile whereas it underestimates it significantly in the
case of critical wettindsee Fig. 13 For critical wetting the
curvature ofl (x) is much smaller. It is the sum of a contribution(#) which depends on the
In the local theory the spatial inhomogeneity of the inter-interface profile only via the contact anghe
face is penalized by a terr17r|gfdx\/1+[l’(x)]2 [see Eq.
(2.29]. One could surmise that by treatiog, as a phenom-
enological parameter a suitable choice &g would allow
one to map the profiles as obtained by the local theory onto
those as obtained by the nonlocal theory. If this would be
possible the deficiencies of the local theory would appear to
be less dramatic. To this end we have varied the value for
a4 entering the local theory by nearly three orders of mag-
nitude. Figure 14 demonstrates that none of these profiles
obtained from such an effective local theory is close to theand of a contributioris(l,8) which is given explicitly in
profile predicted by the nonlocal theory. Therefore we conterms of the wetting film thickneds and # whose tempera-
clude that in spite of its popularity the local theory is inad- ture dependences are given in Sec. [ll@mpare Eqs2.15
equate to describe the shape of the interface. and(2.2)]:

rLa(xX)]1=7(0)+@(ly,0). 4.2

tang

~ 1 6
r(0>=§(Ap>2[1——

xf dxf dyf dz xyWVx?+y?+7?),
o Jo —2

4.3
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FIG. 14. Comparison of the deviation of the interface profile
axd0® + — nhonlocal from its asymptotes as obtained by the nonlocal theory and by the
- local local theory in which the surface tensiony, is changed between a
oca factor of 1—10 and 50 of its actual valugEq. (2.17)]. None of these
ex10° | local results resembles the nonlocal one. These calculations corre-
* spond to the case of first-order wetting afiti=0.89.
o (b)
< | In Eqg. (4.1) the second termr,[1(x)] does depend on the
X full interface profile and resembles an integrated local effec-
tive interface potential:
2x10° 1 © 1(x)
rl101==2p | x| " ayipity—du=puvy)
e X
0 SR o
40° 51 0 5x10°  10°  1.5x10° = ﬁxdx{w(l =)~ w(=a(x)}. (4.7
x/c

One hasr,[l(x)=a(x)]=0. Whereas in Eq(4.1) the sec-

FIG. 13. Curvature of the interface profile as obtained by theond termr, depends on both the fluid-fluid interaction po-

local and nonlocal theory at* =0.89 in the case of first-order
wetting (a) and atT* =0.75 in the case of critical wettingp).

A oo
B0,0)= s |y Ypity +1o=d) ~puV(y+10)

tential and on the substrate potential the third teymwhich
also vanishes fof(x) =a(x), is determined by the interac-
tion between the fluid particles alone. Only this third term
carries the difference between the nonlocal and the local
theory. In the nonlocal theory one has

. 1 * . 1 1 aH,l ® 1(x) ]
_m Lodl w(|)—m igl I——'—llo . (44) Ti(nIoC)[l(X)]z%(Ap)Zf_ dxfa(x)dyf_ dx’
For the model discussed in Sec. Il one has ax’) . 2 "2
Xo | dy'wi(x=x")+(y=y')7]
Ho)=— o= (a 3>2(1 ’ )<o 4.9
T = po - T . 0
90 tang _fl( ,)dyr\;‘v[(x_x/)2+(y_y/)2]].
X
and
(4.8
_ Apo® [16 € 3 lo—dy\?
&(lo,0)=—7 g 5 (o)) || ——| +1 The local approximation of{"°® is given by
lo—dy| lo—d @ di(x)\2]¥2
X —gnLarctar‘.O W)+ OU W} Tf"’c)[l(x)]:mgf_ dx{ 1+( d(x))
B 1 U da(X) 211/2
3 i+2 _
TP e TG D) 1y ) 49 [1+ i~ , 4.9
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FIG. 15. Contact angle dependen@e rad) of the various con-
tributionsAr=®, 7, 7,, and7; to the total line tensiom within
local and nonlocal theory for first-order wettifg@) and critical
wetting (b) [see Eqs(4.1)—(4.9)]. Note that in(a) we have plotted
the absolute values of°9 and <9 . In (a) @ diverges~In(1/6)
for 6—0. 7!°9 diverges as—consth+consxIn(1/6) with both
constants positive so that the leading singularitiegoodnd rﬂ“c)
cancel. This implies thai+ {9 diverges as In(#). However,
the gap betwee@ and — 7{"°9 seems to become much larger for
6—0 compared with the gap betwe@h and — 7°® . Therefore
@+ "9 and thusT behave~1/6 over a wide range of contact
angle values. However, in principle we cannot rule out that for
very small values of also 7"° develops a singularity- consth
+constxIn(1/6) so thats + 7"°9 and thusr behave~In(1/6) as
predicted by the local theory. But certainly this behavior would be
confined to very small values @ In (b) @, 7/°, and{*® vanish
~ 6% for —0 (see the dot Since|7{"°9| and|#"°| are negli-
gibly small compared with the corresponding local expressians,
is the dominant contribution. The situation is similar(&. Thus
irrespective of the order of the transition the total line tension is
dominated by the contributio®. The contribution7|~ 62 is neg-
ligibly small in (a) and (b).

with o4 from Eq. (2.17) and da(x)/dx=0(x)tand. The
functional derivatived7[1(x)]/81(x)=0 yields Egs.(2.28
and (2.29 with AQ,=0 for the nonlocal and local theory,
respectively.

It is instructive to compare in Fig. 15 the magnitude of
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each contribution to the total line tensip&q. (4.1)]. For the
model we used the teri( §) ~ 62 is always negligibly small.
The dominant contribution i%(lg,6). Upon approaching
T, it is approximately equal ta,/6l,. Since for first-order
wetting a,>0 and ly<w, @(ly,0) diverges~1/6 for
=(T,—T)/T,—0 for first-order wetting. In case of critical
wetting a,~ — 7—0~ andl,~1/7 so that withd~ 7> one
finds thata(ly,6) vanishes~ 6. Whereas this behavior of
w(ly,0) is independent of using a local or a nonlocal inter-
face theory, the remaining contributiong and r; do depend
on the kind of approach used. Within the local theory and for
first-order wetting it turns out that{®® behaves like
—consth+consXIn(1/8) with both constants positive such
that the 164 singularity cancels the corresponding singularity
of @ so thatw+ 7° diverges~In(1/6). Since 7 also
diverges~In(1/6) in the case of the first-order wetting, one
finds this kind of singularity foritself. In the case of critical
wetting all three contributiongs, 7°9, and 7{°® vanish

~ 93 without a compensation effect. This is in accordance
with Indekeu’s result§57] obtained from a local interface
displacement model for the long-ranged forces considered
here.

Within the nonlocal theory Fig. 16) demonstrates that in
the case of critical wetting the terim dominates completely
all other contributions so that its singularity 6*° remains
valid for the total line tension; it also shows that within the
nonlocal theoryr is less negative than within the local
theory. Whether the logarithmic singularity efin case of
first-order wetting remains valid also for the total line tension
7 within the nonlocal theory is less obvious. As described
above, the occurrence of the logarithmic singularity relies on
the cancellation of the #/singularity ofw by a correspond-
ing one in7"°9_ On the basis of the available data in Fig.
15(a) it is difficult to imagine that this compensation effect
prevails also within the nonlocal theory. If not, one would
find that 7~1/6 instead of In(14). Regrettably, due to nu-
merical difficulties, we were unable to obtain data within the
nonlocal theory for smaller values @ This prevents us
from ruling out the aforementioned cancellation mechanism
so that we cannot exclude the possibility that also within the
nonlocal theoryr diverges~In(1/6). But even if ultimately
for 6—0 a logarithmic singularity would appear, Fig.(4b
demonstrates that over a wide range of contact angbgs
pears to diverge~1/6 in case of first-order wetting. Since
| 7{Me) < | 71°9)| the line tensionr within the nonlocal theory
is larger as obtained within the local theory.

Figure 16 shows the numerical results fom local and
nonlocal approximation which were obtained by inserting the
numerical solutions for the corresponding equilibrium pro-
files into Eqgs.(4.1)—(4.9). For first-order wetting the local
theory underestimates the line tension by about 20-80 %.
For critical wetting 7 is negative and vanishes within the
local approximation foif — T,, as #*2 in agreement with the
singularity found by Indekeli46]. As described above we
expect that this singularity also holds within the nonlocal
theory. It turns out that for critical wetting the local theory
overestimate$r] by about 25%. Away fronT,, and irrespec-
tive of the order of the wetting transition the absolute value
of the line tension is of the order @f o. This yields values
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T

fer to the results obtained from the nonlocal theory. Consis-
tently we find that within the local theory, which predicts
large deviations of (x) from the asymptotea(x), the con-
tributions 7{1°9 and 7,[1,«(x)] are smaller but comparable
with the contributionw, which is independent from the type
of theory used. Therefore we conclude that E@s4) and
(4.6) provide a rather accurate estimate for the actual value
of the line tension.

As far as the comparison with experimental data is con-
cerned one should keep in mind that the present analysis is
based on a mean-field theory which neglects thermal fluctua-
tions of the contact line along tredirection. Their contri-
bution to the line tension as well as to the shape of the mean
interface profile still awaits a thorough analysis. For a first
step in that direction see Ref&1, 74, 79. Our present study
serves as a prerequisite of such further analyses. The
capillary-wavelike fluctuations of the liquid-vapor interface
broaden the interfacial width of the density transition region
aroundl (x). For a free liquid-vapor interface these fluctua-
tions lead to a roughening of the interface which is only
limited by gravity or system sizgZ6]. Model calculations for
short-ranged forces show that this feature occurs also at the
three-phase contact ling’7]. Thus the shapé(x) of the
interface will play a similar role as the intrinsic density pro-
file of the liquid-vapor interfacg76] as far as the roughening
by capillary waves is concerned. It is not known yet whether
these fluctuations can even induce a distortion of the loci of
the liquid-vapor interface as compared to the functi¢x)
computed here.

V. SUMMARY

Based on a microscopic density functional thedEg.
(2.1)] we have obtained the following main results for the
structural properties of the region of three-phase contact

\where the liquid-vapor interface of a liquid drop meets the

supporting substrate at a contact angle

wetting (b). The data correspond to the systems studied in Figs. 6 (1) By assuming a steplike density variation across the

and 7. In(a) the insets probe the logarithmic divergence —Iné
for T—T,, and show the relative deviatia/ 7jo.= (Tni0c— Tiod) Tioe
respectively. For critical wetting the local theory predicts that
vanishes~ 6% for T—T,, (see the inseét 6 is measured in rad. In
both casesT;,=0.9. For first-order wettingr is positive and for
critical wetting 7 is negative. Away fronl,, 7 is of the order of

elo.

liquid-vapor interface the lateral shapgx) of this interface
minimizes the line contribution(|(x)] of the corresponding
grand canonical free energy. The minimum value is the line
tension. Equation$4.1)—(4.8) provide the analytic expres-
sion for the explicit functional dependence dfl(x)] on
[(x), on the underlying pair potentig(r) between the fluid
particles, and on the substrate potential.

(2) 7[1(x)] is a nonlocal functional of(x) [Eqg. (4.8)]. By

of about 10! J/m compared with experimental values rang-enforcing a gradient expansioril(x)] can be cast into a
ing between 10° and 3<10 %2 J/m[21].

In Sec. Il C we have found that the profiléx) deviates
only slightly from the asymptotes(x). Therefore one would
surmise thatr,[ a(x)] [see Eq(4.2)] provides already a good
approximation for the actual line tensiafl (x)] [Eq. (4.1)]
which takes the smooth variation bfx) fully into account.

local functional[Eq. (4.9)] which resembles the form com-
monly used in a phenomenological ansatz. This local theory
must be regarded as an inferior approximation of the full
nonlocal theory.

(3) The equilibrium profilel (x) has been determined nu-
merically both for the localFigs. 8 and ®and the nonlocal

The inspection of Fig. 15 confirms this expectation. In thetheory(Figs. 10 and 1ilas a function of temperatue and

case of first-order wetting and sufficiently beloly, one
finds thatr, is about 25% ofr, and 7; is about 5% ofr,;
furthermore[7| is much smaller thaw [Eq. (4.2)]. Upon

for different interaction potentials. For a system undergoing
a first-order wetting transition(x) approaches its asymptote
on the liquid side from belowFigs. 8 and 1pwheread (x)

approachingT,, the contribution ofo becomes even much approaches this asymptote from above in the case of a con-
more dominant than all the others. In the case of criticatinuous wetting transitiorfFigs. 9 and 11

wetting for all temperatures the contributions r,,, and 7;

(4) Although both the local and the nonlocal theory pre-

are negligibly small compared wifld. These statements re- dict qualitatively similar profiles there are large quantitative
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differences between the local and nonlocal results for the

absolute value and the lateral width of the deviati#i(ix)

=1(x)—a(x) of the profile from the asymptotesx) which

are fixed by the surface free energisse Figs. 10 and }11

Also the predictions for the curvature bfx) differ signifi- vacuum
cantly (Fig. 13. These differences increase upon approach-

ing a wetting transitiorT,, at which the contact anglévan-
ishes(Fig. 12.

(5) There is no effective local theory which can reproduce
the results of the nonlocal theofffig. 14). Thus for a quan-
titative analysis the local theory must be discarded.

(6) For first-order wetting the line tension is positive and
diverges forT—T,, [Fig. 16a)] whereas for a continuous
wetting transition it is negative and vanishes Tor T, [Fig.
16(a)] proportional to6'>. In the case of first-order wetting
the line tension increases1/6 although we cannot rule out
a crossover to a behavierIn(1/6) very close toT,, as pre-
dicted by the local theory. Away from wetting transitions the
absolute value of the line tension is of the order edtr
where — € is the potential minimum of the pair potential

¢(r) ando the diameter of the fluid particles. However, We ., nqationally invariantly into the direction normal to thexy
emphasize that both(x) and 7 do depend also on the sub- 356 | the thermodynamic limit the line tensions at | and I
strate potentiafsee Eqs(4.4) and(4.7)]. _ reduce to that of a rectangular liquid wedge surrounded by vacuum,
(7) A somewhat surprising result of the nonlocal theory iSgenoted asr,,,,, and the line tension Il reduces to that of the
that the approximation of the actual smooth prof{®) by  corresponding liquid wedge with arbitrary opening anglelenoted

its straight asymptotes(x) is very good. Even in the core of 557 (4), so thatr,,,,(a=m/2)=17,,,. L(a)=T sina, L(a)
the three-phase contact region the maximum absolute valug| (,)tana, andL(a)=r—L(a). The arc of a circle is given by

of the deviationsl (x) =1(x) —a(x) is at most of the order of s(x: @)= rZ—x?—L(«) for 0=x<L.
the diametewr of the fluid particledFigs. 1Ga) and 11a)].
However, the lateral width of this deviation, which may be e free energy generated by the edge of a wedgelike volume
reg_arded as the spatial extension qf th_ls three-ph_ase contaghn an arbitrary opening angle filled homogeneously with
region, reaches several hundred fluid diamefsee Fig. 12 5 fiuid and surrounded by vacuum. In order to solve this
Nonetheless the integrated deviatiffi..dx 81(x) diverges  nontrivial problem it turned out that it is suitable to consider
upon approaching a wetting transition. the reference configuration depicted in Fig. 17 which is
(8) Equations(4.4) and (4.6) provide a rather accurate, transiationally invariant in the direction. The volume filled
analytic estimate for the actual value of the line tension.  \yith liquid is part of a sector with radiusand opening angle
a. The liquid is surrounded by vacuum. The linear exten-
ACKNOWLEDGMENTS sions of this system are characterized bfa)=r sine,
L(a)=L(a)tany, andL(a)=r—L(a) (see Fig. 1¥. The
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with Professor M. Napikowski. We thank Dr. E. M. arc_,denoj[ed as 11in Fig. 17, is given B a)=re—x
—L(a) with O=x=<L and has the lengts(a)=ar. The

Blokhuis for providing us with unpublished results. area of the cross section of the liquid filled segment perpen-
dicular to thez axis is At (a)=3[ar?—L(a)L(a)]. The
APPENDIX: REFERENCE CONFIGURATIONS linear extension irz direction isL, for which we take peri-
The analysis in the main text is based on a systemati@dic boun_dary con_ditiqns so that there are no a_dditiona_l sur-
decomposition of the free energy given by H8.1) into fgce and line contributions generateq by truncating the I|qg|d
bulk, surface, and line contributions. This requires one tdidge atz==L,/2. The volume of this reference system is
study a finite size fluid sample with volurvewhich is trun-  V(a)=L,A"(a). Inserting the density distribution
cated such that outside &f the fluid density is set to zero -
and called vacuurn. This truncation generates artificial sur- p(X,y;@)=pO(Y)O(s(X;a) —y)O(x)O(L—x) (Al)
face and line contributions to the free energy which add tq _ L
the one we are interested in due to three-phase coexistenl¥0 Ed-(2.1) leads in the thermodynamic limit to the follow-
aroundx=y=0. Since the actual calculation yields only the N9 Pulk, surface, and line contributions:
sum of these physically relevant contributions and of the ~,
artificial ones we have to compute the artificial contributions Q(a)=V(a)Qp(p, T, ) +A(a) Qs+ Ly,  (A2)
separately by considering suitable reference configurations. .
Their knowledge enables us to subtract them from the aforeVhere€, is given by Eq.(2.9), Q= oy, where
mentioned sum and to get access to the physically relevant
corjtributions alqne. Qne imporﬁant_ artificigl line contribution O1y=— %pffwdx t(x) (A3)
which appears in this calculation is the line contribution to 0

FIG. 17. Reference configuration for determining the line ten-
sion of a liquid wedge with arbitrary opening anglesurrounded
by vacuum. 1, 2, and 3 denote the surface tensions arising between
the liquid and the surrounding vacuum. I, Il, and IIl denote the line
tensions arising from the edges of this liquid ridge which extends
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is the liquid-vacuum surface tension associated with the S
overall surface areA' of the liquid ridge: y

Al=L[s(a)+L(a)+L(a)]. (A4)

In Fig. 17 the three liquid-vacuum surface tensions are de-
noted as 1, 2, and 3. s
According to Fig. 17 there are three line contributions
proportional tol, due to the lines denoted as I, 11, Il in Fig.
17. In the thermodynamic limit —« the line contribution
), is the sum of these three individual line tensions. In this
limit the line tensions due to | and Il become equal to each
other and are given by the line tension of a rectangular liquid
wedge surrounded by vacuum:

[}
=

7/ a(x)

: gas
1
1
I

Tluvvz%plzfo dXJ;) dyt—(X,y), (AS)

FIG. 18. Reference configuration for determining the bulk, sur-

where face, and line contributions to the free energy if the density con-
figuration is given by the straight linegx) of the asymptotefsee

_ @ @ Eq. (3.8)]. For x<0 the substrate is nonwet and covered by a mi-

t(x,y)= f dx'f dy'w(x'2+y'?). (AB6)  croscopic film with thicknesk,. For x>0 the substrate is covered

X y by liquid with a contact angl®. The system is truncated at=

. . +L and aty=L’" and is surrounded by vacuum. The system is
In the notation7,p.q the indices stand for the phases occu-(ansjationally invariant in the direction normal to they plane.

pying the quadrants meeting at that line which the line ten-rhe Arapic numbers from 1 to 7 denote the corresponding surface
sion 744 COrresponds toj stands for liquid andv for  tensions, whereas the Roman numbers I-V denote the correspond-
vacuum. EquationgA5) and (A6) are known independently ing line tensionsd,, indicates the excluded volume at the wall.
from Ref.[60]. In the thermodynamic limit — the line

tension due to Il reduces to that of a liquid wedge with anThe bulk contributions are given by Eq2.9) and by
opening anglex as discussed in the second paragraph of thiq/(l)(g): %LLZ’[(‘g) and V@(g)= %LLZE( 6) with [(g)
appendix. This line tension is denoted by,,,(a) which = | ‘tang. There are two types of surface contributions: a
carries five indices because the first two form a pair sinc&ontribution which is proportional to the horizontal a4
one quadrant is partly occupied by liquid and partly by_| | and one which is proportional to the vertical area
vacuum (see Fig. 17. Thus we haveQd(a)=m,...(a)  AL(g)=T(g)L,. The surface contributiof(14,6) which
+271,,, and find corresponds té\' consists of the following terms:

fmdxfmdyt_(x,y). Qulo,0)=210Qu(p)) + 20+ 204, + 014
o Jo
(A7)

1, T—
Tlvvuu(a): z P 1+ tan a

+ co gt o(ly). (A10)

Equation (A7) is in accordance with a result obtained by

Blokhuis[78], who considered the case of three phases meetrpa term 2,0,(p;) stems from the liquid film of thickness

ing at anglesy, B, and y. Note thatr,,,,(e¢=7/2)=7,,, lo; 20y, is the wall-liquid surface tension denoted as 3 in

and 7y, (a=m)=0. _ - Fig. 18 which takes into account the excluded voludye
With the knowledge of,,,, () we are in the position 10 [see Eq(2.14) and Fig. 5. The third termay, stems from

determine all line contributions for the reference geometryiy o - ncation of the fluid sample gt=L’; this gas-vacuum
considered in Fig. 18 which describes the case that the intely t5ce tension is indicated as 1 in Fig. 18 and its value is

face profile is approximated by its asymptotdx) [see Ed.  iven by Eq.(A3) with p, replaced by . The fourth term in

3.8 Eq. (A10) is the liquid-gas interfaca(x<0) denoted as 6 in

- _ _ _ Fig. 18. Similarly the liquid-gas interfaca(x>0) denoted

p(x.y)=0(y=du){pO@(x)=y) as 7 in Fig. 18 gives rise to the term (1/éps. The last
+pg®(y—a(x)}O(L—|x). (A8) termw(lg) in Eq. (A10) describes the interaction between

wall-liquid interface(3) with the liquid-gas interfac€6) at a
Inserting Eq.(A8) into Eq.(2.1) yields after a tedious calcu- distancel, [see Eq.(2.19]. The surface contributiofg is
lation the following expression for the free energy of thisinduced by the truncation of the fluid &&= =L and is the

configuration which depends dg and 6: sum of the gas-vacuum and the liquid-vacuum surface ten-
sion: Qg = og, + 0y, [see Eq(A3)].
Q(lo,a)=VI(0)Qp(p) +V'I(0)Qp(pg) +A'Q g, 0) In Eq. (A9) the line contributionQ,(l4,6) collects all

B . contributions to the free energy which scale with the system
TAT(0) Qg+ L (1o, 0). (A9)  sizel, only. There are seven terms:
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Q(lo,0)=2(Ig—dw) oy, + @0, 0) + Tguuu + 2T1wwe with 8= 7/2— 6 gives the line tension atx(y)=(L,L’) de-
noted as Il in Fig. 18 which is generated by the meeting of
the liquid and the gas phase under the anglaad 8 and the
vacuum. This provides also a self-explanatory notation as far

The first term 2lo—dw) oy, |s_du¢ to the truncations at as the five indices of are concerned. The last term in Eq.
x==*L and is denoted as 4 in Fig. 18. The second term(All)

describes the interaction between the tilted gas-liquid inter-
face and the substrate:

+5Tlgvv+;lgvvv(0) +’;Illgg(0)- (All)

~ 1 0 o e
L Tiigg(0) = > (A/D)z{lJr m} fo dXJO dy t(x,y),
a(|0’6;L):Ap(p|f0 dxfa(x)—d dy t(y) (Al?)

L o represents the liquid-gas line tension aty)=(0,,), de-
—PWJ dxf dy V(Y))- (A12)  noted as V in Fig. 18, in the limity— . The correction due
0 Jak to o< is contained in the terr(l,, ). Note that as ex-
_ _ _ pectedrqq(6—0)=0. Equation(A17) can be transformed
ForL fixed and¢—0 one hass(lo,0—0;L)=Lw(lo) With it Eq (4.3 where we introduced the short notatiate)
w(lg) given by Eq.(2.19). In this limit w(IO,on;L) would :7|||gg(9)-
lead to a factor 2 in front of the last term in EGA10) and With these results the total line contribution can be

thus to the correct effective intHerface potential for a flat wet-grqyped into physically relevant and into artificial contribu-
ting film because in EqA10) Q(lo,6) is measured in units  tjgns:

of LL, instead of 2 L, which is the total surface area of the

substrate. This explains why in the thermodynamic limit
QI(|Ov0)=QI(|01a)phys"—QI(IO!‘9)arta (A18)

w(lg,0):=w(ly,H;L=x) (A13) where
the contribution®(ly,8) diverges~1/6 for |, fixed and _ _
6—0 [see Eq.(4.4) which follows from Egs.(A12) and (1o, 0) phys= @(lo, 0) + 7(0) (A19)
(A13)]. Thus the thermodynamic limit—c and the limit
6— 0 cannot be interchanged,,,, and 27, correspond andQ(lg,0)a=Qi(lo,6) —Q(lo,0)pnys- This leads to Eq.
to the dots indicated as | and lll, respectively, in Fig. 18(4.2).
which represent in an obvious notation the gas-vacuum- The explicit knowledge of the bulk, surface, and line con-
vacuum-vacuum line tension ak,f)=(—L,L’') and the tributions for the reference geometry shown in Fig. 18 en-
liguid-wall-wall-vacuum line tension at x(y)=(%L,0). ables us to determine the corresponding quantities for the
Tguuw IS 0iven by Eq(A5) after replacing, by p,. Since the actual case that the interface profllgx) is not given by
liguid film is separated from the substrate by a vacuum layepiecewise straight linea(x) but by a smooth variation as in
of thicknessd,, one hasrw, = 7,0, - The term Figs. §a) and 9a). Sincel(|x|—x»)=a(x) the difference
Sl (x)=1(x)—a(x) vanishes for|x|—c. This implies that
- - both the bulk and the surface contributions of the free energy
5T|gUU=T|gUU—p|Apf dxf dy t(x,y) (Al4) for the configuratiori(x) are the same as for the calge)
0 lo—dy =a(x). The line contribution corresponding to the configu-
ration I(x) contains all terms present fo(x)=a(x) plus
describes the line tension at,{/)=(—L.lo) denoted as IV additional terms,[1(x)] which vanish forl (x) =a(x). Fur-
in Fig. 18. This is the liquid-gas-vacuum-vacuum line ten-thermore, all artificial free energy contributions are generated
sion by the truncation of the sample at large distances. Since at
these large distances the actual profilg) reduces to the
o © asymptotesa(x), the artificial contributions for the smooth
Tlgvv:%(Ap)zf de dy t(x,y) (A15)  casel(x) are identical to those for the caséx) shown in
0 0 Fig. 18. On the other hand, the differenég(x) does not

. L generate new artificial contributions. Therefore we can con-
corrected by the fact that the quadrant filled with liquid is notq| de that the physically relevant line contributien[I(x)]

infinitely thick but has only a finite thicknesg. The expres- . he actual, smooth profil(x) is the sum of2(ly, 6) pnys

sion [see Eq(A19)] and ([I(x)] (see above A lengthy calcu-
lation shows that

tand  tand QLX) ]=7,[1(x) ]+ 7™ 1 ()], (A20)

T— 60
tang

fwdxfwdyt_(x,y), (A16) wherer,[1(x)] is given by Eq.(4.7) and7{"°9[1(x)] by Eq.
0 0 (4.8).
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