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We study the critical relaxation of the two-dimensional Ising model from a fully ordered configuration by
series expansion in timeand by Monte Carlo simulation. Both the magnetizatiom) @nd energy series are
obtained up to 12th order. An accurate estimate from series analysis for the dynamical critical expisnent
difficult but compatible with 2.2. We also use Monte Carlo simulation to determine an effective exponent,
Ze(t) = — 2dint/dinm, directly from a ratio of three-spin correlation to. Extrapolation tot— o leads to an
estimatez=2.16%0.003.[S1063-651X98)11806-9

PACS numbegs): 05.50+q, 05.70.Jk, 02.70.Lq

I. INTRODUCTION is quite difficult due to the unknown nature of the correlation
functions. Nonequilibrium relaxatiof29—34, starting from
The pure relaxational dynamics of the kinetic Ising modela completely ordered state i, has nice features. The

with no conserved fields, which is designated as madad analysis of data is more or less straightforward. The lattice
the Hohenberg-Halperin revieft], has been studied exten- can be made very large, so that finite-size effect can be ig-
sively by various approaches. Unlike some of the other modnored(for t<L?). The catch here is that correction to scaling
els in which the dynamical critical exponentan be related due to finitet is large. Recently, the idea of damage spread-
to the static exponents, it seems tiaof model A is inde-  INd [35-39 has also been employed. Methods based on sta-

pendent of the static exponerisowever, see Ref2]). In tistical errors in equilibrium Monte Carlo simulatidd0],

the past 20 years, the numerical estimates for the dynamic%f‘ite'Size scaling of nonequilibrium relaxati¢s1,43, and

critical exponent scattered a lot, but recent studies seem tCElnlte—sme scaling of the eigenvalues of the stochastic matrix

indicate a convergence of estimated values. Our studies co 43,44 are used to compute the exponent. A recent calcula-
tribute further to this trend.

W? review briefly some of .the previous work on the COM- . 5 0012. This appears to be the most precise value reported
putation of the dynamical critical exponents, concentrating,, e jiterature.
mostly on the two-dimensional Ising model. The conven- e high-temperature series expansions for the relaxation
tional theory predictz=2—17 [3], where 7 is the critical  {ines are often used in the study of Ising dynamics. In this
exponent in the two-point correlation functiorG(r)  paper, we present a new series that directly corresponds to
ecr~ 97277, For the two-dimensional Ising model, this gives the magnetizatiorior energy relaxation at the critical tem-
z=1.75. It is known that this is only a lower boufd. Itis  perature. Our series expansion method appears to be the only
very interesting to note that series expansifis10] gave  \york that uses time as an expansion parameter. The gen-
one of the earliest quantitative estimatezobammann and  eration of these series is discussed in Secs. Il and IIl. The
Reger [10] have the longest high-temperature seri@  gynamical scaling mentioned in Sec. IV forms the basis of
termg for the relaxation times so far, obtaining the analysis, and the results are analyzed in Sec. V. We feel
z=2.183+0.005. However, reanalysis of the series by Adlerthat the series are still too short to capture the dynamics at
[11] gives z=2.165-0.015. There are two types of field- the scaling regime. We also report results of an extensive
theoretic renormalization group analysis: teeexpansion Monte Carlo simulation for the magnetization relaxation. We
near dimensiom=4 [12,13 and an interface model nedr  find that it is advantageous to compute an effective dynami-
=1[14]. Itis not clear how reliable when it is interpolated to cal critical exponent directly with the help of the governing
d=2. Real-space renormalization group analysis of variousnaster equatiorfor the rate equation The simulation and
schemes was proposed in the early 19806-18, but it  analysis of Monte Carlo data are presented in Sec. VI. We
appears that there are controversies as to whether some of t@mmarize and conclude in Sec. VII.
schemes are well defined. The results are not of high accu-
racy compared to other methods. Dynamic Monte Carlo Il. SERIES EXPANSION METHOD
renormalization group analydi$9—27 is a generalization of
the equilibrium Monte Carlo renormalization group method In this section, we introduce the relevant notations, and
[23]. The latest work22] givesz=2.13+0.01 in two dimen-  outline our method of series expansion in time variable
sions. The equilibrium Monte Carlo method is one of theThe formulation of single-spin dynamics has already been
standard methods to estimate[24-28. However, long worked out by Glaubef45], and by Yahata and Suzufs]
simulations {>L?) are needed for sufficient statistical accu- long time ago. To our knowledge, all the previous series
racy of the time-displaced correlation functions. The analysistudies for Ising dynamic§5-10] are based on high-

lon with a variance-reducing Monte Carlo algorithm for the
leading eigenvalues gives the predictipad] z=2.1665
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temperature expansions of some correlation times. As wehe flip ratew;(o;) for site j depends on the spin value at
will see, expansion i is simple in structure, and it offers at the sitej as well as the values of its nearest neighbor spins
least a useful alternative for the study of Ising relaxationo, .

dynamics. The full probability distribution clearly contains all the
We consider the standard Ising model on a square latticdynamic properties of the system. Unfortunately its high di-
[46] with the energy of a configuratiom given by mensionality is difficult to handle. It can be shown from the

master equation, Eq4), that any function of the state
(without explicitt dependengeobeys the equation

E(0')=—JZ ooy, (1)

I

N W en ®
where the spin variables; take +1, J is the coupling con- dt v
stant, and the summation runs over all nearest neighbor pairs.
The thermal equilibrium value of an observabler) attem-  Where
peratureT is computed according to the Boltzmann distribu- N
tion, £=j21 w;(oj)(1-F)), €)

f —E(o)/kgT . . '
(fy= EU: (o)exd —E(o)/ks ]:2 H(0)Peg ). (2) and the average df at timet is defined by
od ).

> exd —E(o)/kgT] g
Y (f)=> f(a)P(a1). (10
The equilibrium statistical-mechanical model defined above v
has no intrinsic dynamics. A local stochastic dynamics cal
be given and realized in Monte Carlo simulatidd§]. The
dynamics is far from unique; in particular, cluster dynamics
[48] differs vastly from the local ones.

A sequence of Monte Carlo updates can be viewed as

'Note that the time dependence(d} is only due toP(o,t).
For the series expansion of this work, it is sufficient to look
at a special class of functions of the fomrf*:HjEAaj,
\é/hereA is a set of sites. In such a case we have

discrete Markov process. The evolution of the probability d( P,
distribution is given by —5 = _ZEA w;( o) ™). (11)
P(o,k+1)= E P(o’ ,K)\W(a'|0o), 3 With this set of equations, we can compute title derivative
o’ of the average magnetizatidmr,), . A formal solution to Eq.

. " . . . 8) is
whereW is a transition matrix satisfying the stationary con- ®

dition with respect to the equilibrium distribution, .62 “ (=Lt
=PeW. A continuous time description is more convenient (M) =(e o) o= D, < | 0A> . (12
for analytic treatment. This can be obtained by fixihg n=0 n: 0

=k/N, and lettingst=1/N—0, whereN=L? is the number . . . .
of spins in the system. The resulting differential equation is' S €quation or equivalently the rate equation, EH),

given by forms the basis of our series expansion in time
A few words on high-temperature expansions are in order
IP(a,t) here. They are typically done by integrating out the time
o =I'P(o,1), (4)  dependence—the nonlinear relaxation time can be defined as
whereT is a linear operator acting on the vect®(o,t), Tﬁ:f <0A>tdt:<J dte_aUA> =(LoM),.
which can be viewed as a vector of dimensidh thdexed 0 0 0
by o. If we use the single-spin-flip Glauber dynamjes], (13

we can write The equilibrium correlation timéinear relaxation timgcan

N N be expressed as
F=-2 wj(o)+2 wi(—a)F;, ) = (m(0)m(t e
o - - [ B ey 3 | dtooe eoeix
0 (M(0)%)eq T Jo
where
1
1 J :_Z <O'0[’710'j>eqy (14
Wi(o;)= = 1—o;tanh K E o, K==——=, (6) X'
1 2 ! nn of j kBT

where)(=N<m2)eq is the reduced static susceptibility. The
andF; is a flip operator such that average is with respect to the equilibrium distribution,
Pef o). A suitable expansion in small paramekgT can
FiP(...,05,...)=P(...,—0aj,...). (7) be made by writingZ=Ly+AL.
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It is clear that we can also perform the Kawasaki dynam-their associated coefficients, which form a symbolic repre-
ics with a corresponding rate. Of course, since the magnetsentation of the rate equations. The derivatives are repre-
zation is conserved, only energy and higher order correlasented as polynomials ig. Since each node is linked to

tions can relax. other nodes, the computation of tm¢h derivative can be
A very convenient form for the Glauber transition rate, thought of as expanding a tre@ith arbitrary number of
Eq. (6), on a two-dimensional square lattice is branchesof depthn.
1 The traversal or expansion of the tree can be done in a
Wo(00) = =[1+Xao(0y+ 0p+ 0a+ 0g) + Yoo 010203 depth-first fashion or a breadth-first fashion. Each has a dif-
2 ferent computational complexity. A simple depth-first tra-
versal requires only a small amount of memory of order
+ + + , 15 . I
020504F 030401+ 040102)] (15) However, the time complexity is at least exponentta,
x=—Ltanh K - L tanh &K, (16) with a large basd_a. A breadth-first algorithm consumes
memory exponentially, even after the number of the rate
y=+itanh X -3 tanh &, (17)  equations has been reduced by taking the symmetry of the

problem into account. The idea of dynamic programming can
where the site 0 is the center site, and sites 1, 2, 3, and 4 abe incorporated in the breadth-first expansion where the in-
the nearest neighbors of the center site. At the critical temtermediate results are stored and referred to. To achieve the
perature, tanK,=\2—1, we havex=-52/24 andy best performance, a hybrid of strategies is used to reduce the

=2/24. computational complexity:
(i) Each configuratioripattern is transformed into its ca-
IIl. COMPUTER IMPLEMENTATION AND RESULTS nonical representation, since all configurations related by lat-

tice symmetry are considered as the same configuration.
A series expansion inamounts to finding the derivatives (i) We use breadth-first expansion to avoid repeated com-

evaluated at=0: putations involving the same configuration. If a configuration
" has already appeared in an earlier expansion, a pointer refer-
A= E d*(a*) 18 ence is made to the old configuration. Each configuration is
(o >t_n:0 n!  dt" (18) stored in memory only once. However, storing of all the

=0 distinct configurations leads to a very fast growth in memory

The derivatives are computed using Efjl) recursively. A consumption.

general function is coded in C programming language to find (iii) The last few generations in the tree expansion use a
the right-hand side of Eq11) when the configuration”, or ~ simple depth-first traversal to curb the problem of memory
the setA, is given. The setA is represented as a list of explosion.

coordinates constructed in an ordered manner. By specializ- (iv) Parallel computation proves useful. The longest series
ing the flip rate as given by Eq15), and considering each is obtained by a cluster of 16 Pentium Pro PCs with high
site inA in turn, the configurations on the right-hand side of speed network connectidknown as Beowult

the rate equation are generated in three wéisthe same The program is controlled by two paramet&sandC. D
configuration as\, which contributes a factdcoefficient of  is the depth of breadth-first expansion of the tree. When
a term of —1; (2) a set of configurations generated by in- depthD is reached, we no longer want to continue the nor-
troducing a pair of nearest neighbor sites in four possiblénal expansion in order to conserve memory. Instead, we
directions, with one of the sites being the siteAnunder  consider each leaf node afresh as the root of a new tree. The
consideration, and making use of the fat=1. We notice ~ derivatives up to§—D)th order are computed for this leaf
that the site inA under consideration always gets annihilated.node. The expansion of the leaf nodes is done in serial, so
Each resulting configuration contributes a factor-of. (3)  that the memory resource can be reused. The parar@eter
Same as iff2) but two more sites, which are also the nearestcontrols the number of last generations that should be
neighbors of the site irA under consideration, are intro- computed with a simple depth-first expansion algorithm. It is
duced. These two extra sites form a line perpendicular to th@ Simple recursive counting algorithm, which uses very little
line joined by the first pair of neighbor sites {@). Each ~memory, and can run fast if the depthis not very large. In
configuration has a factor of y. It is instructive to write  this algorithm the lattice symmetry is not treated. The best
down the first rate equation, taking into account of the latticechoice of parameters B=6 andC=2 on a DEC AlphaS-

symmetry(e.g.,{a;)= (o), for all i): tation 250/266 workstation. The computer time and memory
usage are presented in Table I. As we can see from the table,

d{og) each new order requires more than a factor of ten CPU time

qr (1 F4x)(00) —4y(010207). (19 and about the same factor for memory if memory is not

reused. This is the case until the orde# C+ 1, where no

The core of the computer implementation for series exfresh leaf-node expansion is made. There is a big jenp
pansion[49] is a symbolic representation of the rate equa-factor of 6Q in CPU time from 9th order to 10th order, but
tions. Each rate equation is represented by a node togethefith a much smaller increase in memory usage. This is due
with a list of pointers to other nodes. Each node represents @ the change of expansion strategy. Finally the longest 12th
function{c”"), and is characterized by the set of splnsThe  order series is obtained by parallel computation on a 16-node
node contains pointers to the derivatives of this node obPentium Pro 200 MHz cluster in 12 days. The number of
tained so far, and pointers to the “children” of this node anddistinct nodes generated to orderis roughly 13511". To



57 NONEQUILIBRIUM RELAXATION OF THE TWO- ... 6551

TABLE I. CPU time and memory usage for the series expansion The same relation can be derived from a more general
of relaxation of magnetization, measured on an AlphaStation 2504caling assumptiofb1],
266 workstation.

) =T

n CPU time(seg Memory (Mbyte) m(t,e)~ePp(te’?), e= < c (21)

6 0.13 0.03 ‘

7 18 0.27 By requiring thatm(t, €) is still finite as the scaling argument

8 25 3 te””—0 ande—0 with fixedt, we get Eq.(20).

9 358 34 Equation(20) is only true asymptotically for largé. It
10 23600 51 seems that there is no theory concerning leading correction
11 939 000 70 to the scaling. As a working hypothesis, we assume that
12 1.6x 10 85

~t—B -A
2actual computations are done on a 16-node Pentium Pro 200 clus- m~ct™#"%(1+bt™%). (22)

ter.

_ o The Monte Carlo simulation results as well as current series
12th order, we have examined about?distinct nodes. The analysis seem to support this with near 1. Another possi-

series data are listed in Table II. bility might be z=2 with logarithmic correctio52].

IV. DYNAMICAL SCALING V. ANALYSIS OF SERIES

The traditional method of determining the dynamical .
. . . . > - A general method for extending the range of convergence
critical exponentz is to consider the time-displaced equilib- L . . I
of a series is the Padanalysis[53,54 where a series is

rium correlation functions. However, one can alternatively ; . . )
: S approximated by a ratio of two polynomials. We first look at
look at the relaxation towards thermal equilibration. The ba- ) : :
the poles and zeros of the Padpproximants in variable

?_IC assumption is the algebraic decay of the magnetization aztt/(t+1) for m. Sincet varies in the range dfo®), it is
¢ easier to look as, which maps the intervdlO,~) to [0,1).
There are clusters of zeros and poles in shiaterval (1,2),
which corresponds to negativeBut interval[ 0,1) is clear of
This scaling law can be obtained intuitively as follows. Sincesingularities, which gives us hope for analytic continuation
the relaxation time and the correlation length are relatedo the whole interval[0,1). If we assume the asymptotic
through 7« & by definition, after timet, the equilibrated re- behaviormect =2, thend In m/dt=—a/t~—a(1—s) for larget
gion is of sizet??. Each such region is independent of the or s—1. This means that the Padpproximant should give
others, so the system behaves as a finite system of linearzero around=1. We do observe zeros near 1. But it is
length £éxt'2. According to finite-size scalings0], the mag-  typically a pair of zeros off the real axis together with a pole
netization is of orde& #'” on a finite system of lengtl.  at the real axis near 1, or sometimes, only a pair of real zeros.
Each region should have the same sign for the magnetizatiohhese complications make a quantitative analysis difficult.
since we started the system with all spins pointing in the Since we know the exact singular poiebrresponding to
same direction. The total magnetization is equal to that of 4=«), we use the biased estimates by considering the func-
correlated region, givingnoct ~#/72, tion

(ggy=m=~ct Pt (20

TABLE Il. Series-expansion coefficientsith derivative for a single spin{o), and nearest-neighbor spin correlatiaryoy); -

d(aoh dYogo1)

: dt" |, dtt |
0 1 1

1 —1+(2y2)/3 —2+(4y2)13
2 13/9- 2 (56-39y2)/9
3 (15—-11y2)/27 2(—249+175/2)/27
4 —53/3+ 2512 (1988-1399,2)/54
5 (41175-29111,/2)/486 (30834-21919,2)/486
6 (—66133+46680,2)/1458 2(- 142869+ 101087/2)/243
7 (— 125718825 88903747%/2)/34992 5(18191091 12867401/2)/17496
8 17(92513582 65418301/2)/34992 (219071983015488468092)/69984
9 (—429437553903 30366067571§2)/1259712 { 289028693217 2043711928132)/314928
10 (4931635327666 34872156926192)/3779136 (4314686405575805093180922182)/3779136
11 (18214253913815311287938652305892)/181398528 € 95779208965521:8677259915390702)/10077696
12 7(—107616336677573247609621330268028)/272097792  (42596216422377429801200006005168632)/1088391168
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dinm B 23 ; ] /
F(t)= qnt =" (23 } // b
An effective exponent z4(t) is defined by z.(t) J /
=—BI[vF(t)]=—1[8F(1)]. 22 | 1
Again we prefer to use the variabdeto bring the infinity G 1 | u//
to a finite value 1. Due to an invariance theorfs3], the N g/ Z 1]
diagonal Padapproximants irs andt are equal exactly. For o ]
off-diagonal Padepproximantss is more useful since the v, | , ra
approximants do not diverge to infinity. ar / / =
We use methods similar to that of Dickmanal.[55] and B
Adler [11]. The general idea is to transform the function
m(t) into other functions that one hopes to be better behaved “
than the original function. In particular, we require thattas 20 L — 1125 L

— oo, the function approaches a constant related to the expo-
nentz. The first transformation is E¢23). A second family
of transformations is

A

FIG. 1. Padeestimates of the dynamical critical exponent
using G, (t=x), plotted as a function od, the transformation pa-
rameter. On this scale, the Padpproximant of ordefN,D] is

t
din [ m(t")Pdt’ indistinguishable froniD,N].

P

Gph)= 8z

(29)

dint the parameten\, for G;(t=%). Good convergence is ob-

) . tained atA =1.217 withz~2.170. The estimatesvary only
wherep is a real positive number. One can show that the tWOinghtIy with p, at about 0.005 ag varies from 0.5 to 2.

functions are related by Using F(t) of Eq. (23), the optimal value is\=1.4 with z
~2.26. Using the functiotd does not seem to improve the

F(t)= E(Gp(t)—ljL dinGy(t) (25)  convergence. Even though the value 2.170 seems to be a
P dint very good result, we are unsure of its significance since there
The last transform is are large deviations of the Padgproximation to the func-
tion F(t) for 1/4<0.2 from the Monte Carlo result of Fig. 2.
1 dF An objective error estimate is difficult to give. Estimates
H(t)=F(t)+ K‘H’ (26) from the standard deviation of the approximants tend to give

a very small error but incompatible among different methods
of analysis. Different Padapproximants are definitely not
independent; we found th&N,D] Padeis almost equal to
[D,N] Padeto a high precision. A conservative error we
quote from the series analysis is 0.1.

Analysis of the energy series is carried out similarly with

dn replaced by oo1) — V2/2, where the constari2/2 is the
1/z

where A is an adjustable parameter, aRdcan also be re-
placed byG,, . If the leading correction to the constant part is
of the formt~2, the transformation will eliminate this cor-
rection term.

The transformation of the independent variable other
variables is important to improve the convergence of th

Padeapproximants. We found that it is useful to consider a€auilibrium value. The large asymptotic behavior i~
generalization of the Euler transform, [56]. BothF andG functions give comparable results, better

1
EERRNCEILE

(27)

218 |

The parameten is adjusted in such a way as to get best
convergence among the approximants. Sincetferc or u
—1, a Padepproximant nean= 1 is an analytic function in

u, which implies that the leading correction to scaling is of
the formt 2. Note thatA =1 corresponds to the Euler trans-
formation U=s whenA=1).

One of the fundamental difficulties of the transformation
method is that one does not knoavpriori that a certain
transformation is better than others. Worse still, we can eas-
ily get misleading apparent convergence among different ap-
proximants. Thus, we need to be very careful in interpreting
our data. Specifically, we found that E(3) gives a less

212 |

Zett

2.00
0.0

01 02 03
7

satisfactory result than that of E(R4), where the indepen-
dent variablet is transformed intas according to Eq(27).

Figure 1 is a plot of all the Padapproximants of order
[N,D], with N=4, D=4, andN+D=12, as a function of

FIG. 2. Effective exponentgy(t) plotted against inverse time
1. The circles are Monte Carlo estimates based on(Z8); the
continuous curve is obtained from tfi6,6] Padeapproximant of
G, in variableu, transformed back t& through Eq.(25).
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convergence is obtained far>1. The value forz is about checked the finite-size effect. Clearly, &isL?, the finite-
2.2, but good crossing of the approximants are not observedize effect begins to show up. We start the system with all
We feel a better analysis method or longer series is neededpins up,m(0)=1, and follow the system tb6=99. Fort
<100, we did not find any systematic finite-size effect for
VI. MONTE CARLO SIMULATION L=10%. So the finite-size effect at=10* andt<100 can be
o ) safely ignored.
Our motivation for a Monte Carlo calculation was t©©  Figyre 2 shows the Monte Carlo result for the effective
check the series result. It turns out that the data are SUff'éxponent as a function of tl/The quantitiesm, ms, and

piently accurate to t_)e dispussed in their own right. Such ala0'00-1> are averaged over 1868 runs, each with a system of
improved accuracy is achieved by using EtP), which per- 8 gpins. The total amount of spin updating is comparable

mits a direct evaluation of the effective exponeg(t). to the longest runs reported in the literature. Based on a
We compute the magnetization= (o), energy per bond least-squares fit frorb=30 to 99, we obtain
{(og04), and the three-spin correlation,={o,0,03) where

the three spins are the nearest neighbors of a center site hav- z=2.169+0.003. (29

ing one of the neighbors missing in the product. With these . . .
quantities, the logarithmic derivative, E(23), can be com- The error is obtained from the standard deviation of few

puted exactly without resorting to finite differences. From9roups of independent runs. An error estimate based on the

Eq. (19) we can write(at T=T,) residues in the _Iine_ar least-squares fi'g is only half o_f th_e
above value, which is understandable since the points in Fig.
dinm NA ms 1 2 are not statistically independent.
F(t)= damt +F(m - 5) == m In Fig. 2, we also plot a series result for thét), obtained

(28) from the[6,6] Padeof G,(u) and Eq.(25). Substantial de-
viations are observed for 0.2, even though in the t/

The above equation also defines the effective exponent-0 limit, both results are almost the same. This casts some

Ze(t), which should approach the true exponerdtst—c.  doubt on the reliability of the series analysis. We note that
The estimates for the effective exponent based on the rahe t—oo limit of the functionF(t) is invariant against any

tio of one spin to three-spin correlation, ER8), have transformation irt which mapg = to 0. Thus, the discrep-

smaller statistical errors in comparison to a finite differenceancy might be eliminated by a suitable transformation in the

scheme based om(t) and m(t+1). Error propagation Padeanalysis.

analysis shows that the latter has an error 5 times larger.

Both methods suffer from the same problem that ednr VIl. CONCLUSION

«t. Thus, working with very largé does not necessarily lead

We have computed a series for the relaxation of magne-
to any advantage.

In order to use Eq.28), we need exactly the same flip rate tization and energy at the crmoal point. The same method
can be used to obtain a series at other temperatures or for

as in the analytic calculations, namely, the Glauber rate, Eqbther correlation functions. The analyses of the series are

(6). The continuous time dynamics corresponds to a random L
. o / npntrivial. We may need many more terms before we can
selection of a site in each step. Sequential or checkerboard, - : .
. . : . obtain results with accuracy comparable to the high-
updating cannot directly be compared with the analytic re-

e 4 . o temperature series. We have also studied the relaxation pro-
sults. However, it is believed that the dynamical critical ex- ; . X . .
. ; cess with Monte Carlo simulation. The ratio of three spin to
ponentz does not depend on the details of the dynamics.

; . ; magnetization is used to give a numerical estimate of the

We note that a Monte Carlo simulation is precisely de—I ithmic derivai directly. Thi hod ai
scribed by a discrete Markov process while the series expa pgarithmic derivatives directly. This method gives a more
Co . : ccurate estimate for the dynamical critical exponent.
sion is based on the continuous master equation. However,
the approach to the continuous limit should be very fast since
it is controlled by the system size—the discreteness in time
is 1.2. We have used a system of“010%, which is suffi- This work was supported in part by Academic Research

ciently large. Apart from the above consideration, we alsoGrant No. RP950601.
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