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Quantum-mechanical and quasiclassical dynamics of coupled quasiparticle-boson systems
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Statistical and dynamical properties of a quasiparticle coupled to polarization vibrations in a dimer model are
investigated using a full quantum-mechanical approach. The propagation of the system is described in terms of
spin-boson coherent states and compared to various quasiclassical descriptions of the system. The spectrum of
the energy eigenvalues and the level spacing distributions of the system are calculated and turn out to be almost
regular, especially in the strong coupling limit. It is demonstrated that the usual quasiclassical approach to this
problem is not quite satisfactory. This is because the quantum fluctuations in the spin variable give rise to
entangled states and correlations which hence should be included in a quasiclassical description. We show that
a limited but satisfactory quasiclassical approximation may be given using a suitable integrable reference
Hamiltonian.@S1063-651X~98!11406-X#

PACS number~s!: 82.20.Rp, 05.45.1b, 03.65.Sq
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I. INTRODUCTION

The problem of the transfer of a quasiparticle~or a par-
ticle! coupled to vibrational modes has been under str
discussion in recent years. The Davydov model@1–3# leads
to a coupled set of Schro¨dinger equations for the occupatio
amplitudes of the quasiparticle. The influence of vibron
bath variables on the excitation transfer was studied in
framework of generalized Master equation@4# and stochastic
Liouville equation approaches@5#. Eilbeck et al. @6# intro-
duced thediscrete self-trapping equation~DST! and studied
the properties of stationary solutions. For the case of a s
metric dimer, Kenkre and Campbell@7# derived a closed
nonlinear equation for the site-occupation probability diffe
ence in terms of Jacobian elliptic functions. They demo
strated the existence of a transition from a free to a s
trapped state. Later on this model was extended to incl
dissipation effects@8–10#, asymmetry@11–15#, and several
other aspects@16–22#. Recently the role of nonadiabatic cou
plings and the role of the Born-Oppenheimer approximat
in a stepwise quantization were studied@23,24#.

However, it is still an open question whether such a~spin-
1/2) system can be described in a quasiclassical manner
@25,26#. Furthermore, since the quasiclassical equati
show pronounced chaos for strong coupling, it is interest
to ask what happens in the quantum system itself. This
been answered partially for higher (j @1/2) spin representa
tions @27,28#. In Ref. @28# it was shown that in those system
the level spacing distribution tends to the universal one,
pected in quantum systems where the classical dynam
shows chaos. However, for a two-level system (j 51/2), the
quantum dynamics is different although similar structures
classical and quantum Poincare´ sections may be identified
for intermediate coupling@29#.

Here, we will show that a complementary approach to
571063-651X/98/57~6!/6534~14!/$15.00
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usual quasiclassical treatment of the spin-boson model
be more suitable for the spin-1/2 case. In Sec. II we pres
the Hamiltonian describing the system under considerat
The Hamiltonian can be split into a trivial and a nontrivi
part, where the nontrivial part contains the coupling betwe
the two subsystems~quasiparticle and vibrational degrees
freedom!. The non-trivial part describes a harmonic oscill
tor coupled to a two-level system and is of a general ty
describing various physical situations in quantum opt
@30–33#. Furthermore, this system represents a model
energy transfer in molecular aggregates, in doped molec
crystals and for the tunneling of particles in two-state s
tems@4,5#. In Sec. III A we investigate the dynamics of th
system following the usual quasiclassical description. F
strong coupling we find a pronounced chaotic behavior. T
eigenvalues of the Hamiltonian and the level spacing dis
butions are presented in Sec. III B. Apparently, the eigenv
ues behave quite regularly, especially in the strong coup
limit. Thus we are led to search for the integrable part of
Hamiltonian responsible for this behavior~Sec. III C!, which
results in approximate expressions for the eigenvalues
eigenvectors~Sec. III D!. With the results of Sec. III C we
are able to derive new quasiclassical equations, which are
equivalent to the previous ones. Furthermore, these equa
show that the system behaves regularly in the strong c
pling limit ~Sec. III F!. In Sec. IV we introduce quasiprob
ability distributions and coherent states. The dynamical
havior of the system is illustrated by means ofQ functions.
Various expectation values of interest are calculated
compared to the results of a pure classical description.

II. MODEL AND BASIC EQUATIONS

We consider the dynamics of a quasiparticle~or a particle,
e.g., exciton or electron! in a molecular dimer. The quasipa
6534 © 1998 The American Physical Society
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57 6535QUANTUM-MECHANICAL AND QUASICLASSICAL . . .
ticle is moving between the two sites of the dimer due
dipole-dipole interaction. The motion of the quasiparticle
coupled to local vibrational modes at the two sites. The to
Hamiltonian is specified by

H tot5Hexc1Hvib1H int , ~1!

whereHexc, Hvib , and H int represent the quasiparticle, th
vibrational modes, and the interaction between the two s
systems, respectively:

Hexc5«1A1
†A11«2A2

†A21T~A1
†A21A2

†A1!, ~2a!

Hvib5v1B1
†B11v2B2

†B21
1

2
~v11v2!, ~2b!

H int5g1~B1
†1B1!A1

†A11g2~B2
†1B2!A2

†A2 . ~2c!

Hexc describes the excitation of the quasiparticle and
transfer between the two sites.An

† ,An (n51,2) are creation
and annihilation operators for the quasiparticle obey
Fermi commutation relations.«n is the site energy of the
quasiparticle at siten and T is the transfer matrix elemen
~dipole-dipole interaction!. Throughout this paper we useT
520.5 in all numerical calculations. The vibrational mod
are described byHvib , wherevn are the frequencies of th
intramolecular vibrations at siten. Bn

† ,Bn are the corre-
sponding boson amplitude operators. The coupling betw
quasiparticle and vibrational degrees of freedom is speci
by the interaction termH int , with coupling constantsgn .

In order to simplify our HamiltonianH tot , we assume tha
there is exactlyonequasiparticle excited on the dimer:

A1
†A11A2

†A251. ~3!

Because of Eq.~3!, the quasiparticle subsystem has the pro
erties of a spin-1/2 system. Therefore we introduce three
operators

sx5A1
†A21A2

†A1 , ~4a!

sy52 i ~A1
†A22A2

†A1!, ~4b!

sz5A1
†A12A2

†A2 ~4c!

instead of the four Fermi operators. The expectation va
^sz& corresponds to the occupation difference between
two sites of the dimer. Using Eq.~3!, we can show that

sx
21sy

21sz
25const ~5!

is an integral of motion and therefore the motion ins space
~subspace of the quasiparticle! is restricted to the sphere~5!,
the so-called Bloch sphere. It is more convenient to use p
coordinates (f,u) in the figures instead of expectation va
ues of the spin operators. The spin operators satisfy the c
mutation relation (j ,k,l cyclic!

@s j ,sk#252is l .

Furthermore, new boson operators

B15b1 cosw2b2 sin w, ~6a!
l
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B25b1 sin w1b2 cosw ~6b!

for the vibrational modes are introduced by a Bogoliub
transformation (tanw5g1 /g2). It should be noticed that in
the case of the symmetric dimer (g15g2), we have sinw
5cosw51/A2 and therefore the vibrational modeb2 ,b2

† cor-
responds to the difference of the original coordinatesq1

2q2 @with qn5(Bn1Bn
†)/A2vn#.

Substituting Eqs.~3!–~6! andv15v25:v in Eq. ~1! the
total Hamiltonian splits into two parts:

H tot5H11H2 ,

whereH1 represents a displaced harmonic oscillator depe
ing only on the operatorsb1 andb1

† . The nontrivial partH2

contains the second boson mode and the coupling betw
the quasiparticle and second vibrational mode (b2 ,b2

†). The
two parts of the HamiltonianH1 ,H2 are completely decou
pled. Therefore we consider only the nontrivial partH2.
Dropping the index ‘‘2’’ we finally obtain

H52hsz~b†1b!1Tsx1vS b†b1
1

2D1«sz1t~b†1b!,

~7!

with the new parameters

«5
1

2
~«22«1!, ~8a!

h5Ag1
21g2

2, ~8b!

t5
1

2

g2
22g1

2

Ag1
21g2

2
. ~8c!

The Heisenberg equations for this Hamiltonian read

ṡx522~«2A2vhQ!sy , ~9a!

ṡy52~«2A2vhQ!sx22Tsz , ~9b!

ṡz52Tsy , ~9c!

Q̇5P, ~9d!

Ṗ52v2Q1A2v~hsz2t!. ~9e!

III. MIXED QUANTUM-CLASSICAL DYNAMICS
AND SPECTRAL STATISTICS

A. First approach to a mixed quantum-classical description

A first step towards an understanding of the dynami
properties of a quantum system is the investigation of
classical counterpart. We will proceed in this direction
replacing the operatorsb,b† by the Hermitian position and
momentum operatorsQ,P of the harmonic oscillator with
frequencyv,

Q5
1

A2v
~b†1b!, P5 iAv

2
~b†2b!. ~10!
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Rewritten in terms of these operators, the Hamiltonian~7!
reads

H5«sz1Tsx1A2vQ~t2hsz!1
1

2
~P21v2Q2!.

~11!

In this form,H can be thought of describing a spinsx , sy ,
sz coupled to an harmonic oscillatorQ, P via the interaction
term A2vQ(t2hsz).

One way of assigning a classical interpretation to
quantum motion is to investigate the time dependence of
mean values, thus neglecting all fluctuations and correlat
present in the quantum motion. In order to get the best c
respondence between the classical and the quantum mo
the initial state should be an almost classical state, i.e., a
which has minimal fluctuations.

As the main assumption in our calculation, we use
initial spin-boson coherent state

uc~0!&5uq0 ,p0& ^ us0&, ~12!

whereuq,p& represents a coherent state of the boson part
us& a state of the two-level system

us&5uf,u&5sin ~u/2!u↓&1e2 if cos~u/2!u↑&. ~13!

The most reasonable approximation for the time propaga
is the ansatz

uc~ t !&5eiw~ t !uq~ t !,p~ t !& ^ us~ t !&. ~14!

This is reasonable only ifuc(t)& remains factorized and n
entanglement will show up, i.e., the initial spin-boson coh
ent state shouldnot develop as

uc~ t !&5c1uq1 ,p1& ^ u↑&1c2uq2 ,p2& ^ u↓&,

whereq1Þq2, p1Þp2.
Inserting this ansatz into thetime-dependent variationa

principle @34# ~TDVP!, and performing the variation with
respect to the coordinatesq(t), p(t), and the spin partus(t)&,
we finally arrive at a classical set of differential equations
the behavior of the expectation values in this approximat
~see Appendix A 2 for a detailed derivation!:

ṡx522~«2A2vhq!sy , ~15a!

ṡy52~«2A2vhq!sx22Tsz , ~15b!

ṡz52Tsy , ~15c!

q̇5p, ~15d!

ṗ52v2q1A2v~hsz2t!. ~15e!

These equations can also be obtained by simply replacing
operators byc-numbers in the Heisenberg equations~9! ac-
cording to

Q°q, P°p, sk°sk ,
e
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as well as from the corresponding classical Hamiltonian@35#.
This treatment of the model is often denoted as a mix
quantum-classical description. However, we want to str
that this description neglects the correlations present in
combined motion~cf. Sec. III F and Appendix A 1 for a de
tailed discussion!.

A detailed investigation of the system~15! can be found
in Ref. @35#. Here we give only a brief summary of the re
evant results. The dynamics of the system in this approac
found to be both regular and chaotic. The transition fro
regular to chaotic behavior depends on the coupling stren
h and the total energy

E5«sz1Tsx1A2vQ~t2hsz!1
1

2
~p21v2p2! ~16!

of the system. The behavior can be analyzed by Poinc´
sections in both subsystems, quasiparticle and oscillator

We used a fourth order Runge-Kutta method@36# in con-
nection with a method proposed by He´non @37# allowing us
to find the intersections of a trajectory with the surface
section accurately. Despite the long integration rangevt
'103), the relative errors in the two known integrals of m
tion, namely, the energy~16! and the radius of the Bloch
sphere~5!, turned out to be less than 1027. In Fig. 1 we show
some typical Poincare´ sections of the Bloch variables corre
sponding to the left turning point of the oscillator (P

50, Ṗ.0).
For small values of the couplingh and low energies, the

system shows regular behavior. If the energy exceeds s
critical value, a stochastic layer in the vicinity of the sym
metric ground state of the quasiparticle appears@Fig. 1~a!#.
Increasing the energy further, chaos spreads over large p
of the Bloch sphere, leaving islands of regular behavior
the region of the energetically higher antisymmetric state
the quasiparticle. For stronger coupling, the chaotic beha
already appears at the lowest allowed energies@Fig. 1~b!#.
For fixed energy, the chaotic region grows when the c
pling is increased or when the oscillator frequency is d
creased.

B. Spectral statistics

In the following, we restrict ourselves to the case of
symmetric dimer@«5t50, cf. Eqs. ~8a! and ~8c!#. The
Hamiltonian of the symmetric dimer,

H5Tsx2hsz~b†1b!1vS b†b1
1

2D , ~17!

is equivalent to the Jaynes-Cummings model@30–32#, which
is a basic model in quantum optics. The symmetric dime
invariant under an exchange of the two sites, i.e., the pa
operator

P5sx exp~ ipb†b! ~18!

commutes withH. The eigenvalues ofP are p561 ~even
$1% and odd$2% parity!.

In order to calculate the eigenvalues of the Hamilton
~17! we expand the wave functionuc& into the simultaneous
eigenvectors ofb†b andsz :
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uc&5 (
n50

`

Cn
↑un,↑&1 (

n50

`

Cn
↓un,↓&. ~19!

In the numerical calculations we have to truncate the sum
Eq. ~19! at a finite number of terms, sayN. Because the
eigenvalues with even and odd parity are independent,
calculation of the eigenvalues reduces to the diagonaliza
of two tridiagonal realN3N matrices, one for each parit
$6%. Plotting the energy spectrum the curves with differe
parity $6% intersect, whereas the curves with same pa
show avoided level crossings~level repulsion!.

For a statistical analysis of the spectrum, we calculate
spectral staircase function~the integrated level density!

N~E!5N$nuEn,E%, ~20!

which counts the number of energy levels below the ene
E. N(E) can be divided into a smooth partN̄ and a fluctu-

FIG. 1. Poincare´ sections for weak (g51, g52h/v) and
strong coupling (g54). In the former case~a! the formation of a
stochastic layer in the vicinity of the separatrix can be seen if
energy exceeds a critical value (E53.0). In the latter case~b! the
whole Bloch sphere shows chaotic behavior at this energy. Ch
spreads over large parts of the Bloch sphere already for lower
ergies@e.g.,E50.3 in ~b!#. In the upper part of~b! we see remain-
ing regular elliptic islands. The region near (f,u)5(6p,p/2) is
not accessible because the energy (E50.3) of the system is too low
@cf. Eq. ~16!#.
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ating partNfl . For our system the dominant behavior of th
smooth part is a linear function of the energy

Nlin~E!5
1

v
E1const.

This is quite reasonable because the termvb†b is the domi-
nant part of the Hamiltonian~17!, i.e., the mean level densit
— averaged over many (*10) levels — does not depend o
E. A more detailed investigation of the spectral stairca
function N(E) shows that the deviation

N~En!2Nlin~En!

from the linear behavior is oscillating quite regularly,
shown in Fig. 2. The frequency of the oscillations depen
on E. When studying statistical properties of the spectru
one should take this apparently nonstatistical contribut
into account in the smooth partN̄. Thus we have

N~E!5Nlin~E!1Nosc~E!1Nfl~E! ~21a!

5N̄~E!1Nfl~E!. ~21b!

If the smooth partN̄ of the staircase function is known, th
usual approach is to pass from the set of eigenvalues$En% to
the unfolded spectrum$En8% using the smooth partN̄ of the
staircase function:

En85N̄~En!. ~22!

The unfolded spectrum$En8% has a mean of unity~the quan-
tities En8 are dimensionless!.

In order to understand this apparently regular behavio
the energy eigenvalues we consider the strong coupling l
analytically. This is done in the following section. The r
sults of both exact numerical calculation and approxim
analytical treatment are presented in Sec. III E.

e

os
n-

FIG. 2. Difference between the staircase functionN(E) and its
dominant~linear! partNlin as a function ofn ~number of the eigen-
value!. As one can easily see, the deviation is oscillating regula
This nonstatistical contribution has to be considered in the smo

part N̄ of the staircase function and not in the fluctuation partNfl .
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C. The strong coupling limit

In this section we want to investigate the behavior of
system for strong couplingh, the range where the quasicla
sical equations~15! show dominant regions of chaos in pha
space. We will show that in the strong coupling limit th
system is in fact nearly integrable, in the sense that we
give analytical expressions for eigenvalues and eigenvec
to this Hamiltonian to a reasonable accuracy~see also the
derivations in Ref.@38#!. This will be done by a suitable
transformation to a new Hamiltonian~27!, which extracts the
integrable part of the original Hamiltonian~17!. Further-
more, the quasiclassical equations~33! coming from this
transformed HamiltonianH̃ show a pronounced regular be
havior and the strange level spacing distribution can be
produced analytically.

For strong couplingh, the dynamics of the system is e
sentially governed by the combined vibronic and two-le
normal mode oscillations originating from the diagonaliz
tion of the part

Hvib,int52hsz~b†1b!1vS b†b1
1

2D ~23!

of the HamiltonianH. Using the unitary transformation

U5exp S h

v
sz~b†2b! D ~24!

the partHvib,int can be put into diagonal form. The transfo
mationU(h/v) results in a replacement of the operators
cording to

b→U21b U5b1
h

v
sz ,

b†→U21b† U5b†1
h

v
sz , ~25!

sx→U21sx U5DS 2
2h

v Ds11DS 2h

v Ds2,

wheres6 represent the spin flip operators

s15S 0 1

0 0D , s25S 0 0

1 0D
andD(g) is the displacement operator@39#

D~g!5egb†2g* b.

Applying the transformations to the HamiltonianH we get
the transformed oneH̃5U21HU as

H̃5vb†b1
v

2
2

h2

v
1TFDS 2

2h

v Ds11DS 2h

v Ds2G .
~26!

The parity operator~18! remains invariant under the tran
formation ~24!, U21P U5P. Instead ofb,b†, we again in-
e

n
rs

e-

l
-

-

troduce the operatorsQ andP ~10! of the harmonic oscilla-
tor and reexpress the Hamiltonian~26! in terms of these
operators:

H̃5
1

2
~P21v2Q2!2

h2

v
1cos~g8P!sx2sin ~g8P!sy .

~27!

For simplicity of notation, we introduced the abbreviatio
g52h/v and g85gA2/v. This Hamiltonian will be the
starting point of a second approach to a mixed quantu
classical description~see Sec. III F!.

D. Approximate calculation of the eigenvalues

As already mentioned above, the transformationU diago-
nalizes the partHvib,int explicitly. The calculation presente
below is a kind of perturbative treatment of the remaini
part Hexc5Tsx , i.e., the approximation is valid for the
strong coupling–high energy case.

Calculating the eigenvalues of the transformed Ham
tonian ~26!, we neglect the contribution of nondiagonal b
son matrix elements

^nuH̃um&, nÞm.

The diagonal boson matrix elements are

^nuH̃un&5S vn1
v

2
2

h2

v
T^nuDS 2h

v D un&

T^nuDS 2
2h

v D un& vn1
v

2
2

h2

v

D
and the matrix elements ofD(g) are

^nuD~g!un&5e2ugu2/2Ln~ ugu2!,

whereLn are the Laguerre polynomials@40#. In this approxi-
mation the eigenvalues and eigenvectors for even (1) and
odd (2) parity are explicitly given by

Ẽn
65vn1

v

2
2

h2

v
6~21!nTe2 ~2h2/v2 !LnS 4h2

v2 D .

~28!

The corresponding eigenvectors can be written as a supe
sition

ucn
6&5

1

A2
@ un& ^ u↑&6~21!nun& ^ u↓&], ~29!

where u↑& and u↓& are eigenstates ofsz and un& are eigen-
states ofb†b. Thus the eigenvectorsucn

6& have the following
parity:

Pucn
6&56ucn

6&. ~30!

The results of the approximate analytical calculation
the eigenvalues~28! and the exact numerical results are pr
sented in the following section.
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E. Results for the spectral statistics

In order to avoid nonuniformities at the lower end of t
spectrum and truncation effects in the highest levels we u
only levels from an intermediate energy range for the sta
tics. Furthermore it is necessary to check how many lev
are reliable.

In Fig. 3 we compare the eigenvaluesẼn @Eq. ~28!, strong
coupling–high energy approximation# to those obtained by
the exact numerical diagonalization of the Hamiltonian~17!.
Evidently the approximation holds for large coupling co
stantsg. The energy range in Fig. 3 starts with eigenva
number 100. For higher energies the agreement is better
for smaller energies.

Because only the linear part of the staircase function
known, the spectra were unfolded using this linear part

En85Nlin~En!. ~31!

The distributions of the level spacingssn5En118 2En8 of the
exact and the approximate calculations are compared in
4. Obviously the distributions show no significant diffe

FIG. 3. Eigenvalues from an intermediate energy range~levels
100–120!. The solid lines show the exact numerical calculatio
whereas the dashed lines were calculated using the approxim
described in the text.~a! presents an overview over a large range
the coupling (g52h/v). Evidently the approximation does no
hold for small couplings. For higher values of the coupling t
approximation is in good agreement with the exact numerical
culations.~b! is a magnification of the lower right corner of~a!. The
number of Fock states isN5800 and the corresponding eigenfun
tions have odd parity.
ed
-

ls

an

is

ig.

ences. Even for small coupling@g51, Fig. 4~a!#, where the
approximation is not too good for the levels, there are o
nonsignificant differences in the distribution of the spacin
That is, the level spacing distribution can be explained us
the approximate energies~28! coming from the diagona
contribution of the transformed Hamiltonian~26!. In particu-
lar, the absence of small spacings, that have previously b
interpreted as an evidence for quantum chaos@23,41# can be
attributed to the integrable part

H̃05vb†b1
v

2
2

h2

v
1Te22h2/v2

Lb†bS 4h2

v2 D sx

of the system@cf. Eq. ~28!#.
As already mentioned above, one should take the reg

oscillationsNosc into account in the smooth partN̄ of the
spectral staircase function. If we consider the eigenval
coming from the approximate calculation~28! as the regular
part of the spectrum, the distribution of the differencess̃n

[En2Ẽn is Poissonian, which is typical for the level spa
ing distributions of integrable systems.

,
ion
f

l-

FIG. 4. Comparison of the level spacing distribution betwe
the exact numerical calculation~solid lines! and the approximation
described in the text~dashed lines!. Although the approximation is
valid only for large coupling strengths and high energies, the
proximation leads to good results for the level statistics, even in
case of weak coupling~a!. For higher coupling~b! the agreement is
even better.
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F. Second approach to a mixed quantum-classical description

In the same way as for the Hamiltonian~7!, we can derive
quasiclassical equations of motion for the transformed s
tem H̃:

H̃5
1

2
~P21v2Q2!2

h2

v
1cos~g8P!sx2sin ~g8P!sy .

Like Eq. ~7! this Hamiltonian describes a harmonic oscillat
coupled to a spin. However, the coupling between the s
and the oscillator is now a parametriclike coupling in whi
the frequency of the spin motion depends on the oscilla
through higher powers of the momentum operatorP. We use
the same ansatz as in Sec. III A, i.e.,

uc̃~ t !&5uq̃~ t !,p̃~ t !& ^ us̃~ t !&,

whereuq̃(t),p̃(t)& is a Bose coherent state andus̃(t)& a pure
quantum state of the spin subsystem. Performing the va
tion with respect to the coordinatesq̃(t), p̃(t), and the spin
part us̃(t)&, we get the following mixed set of equations~see
Appendix A 3 for detailed derivations!:

q̇̃5 p̃2g8Te2~1/2!ugu2@sin ~g8p̃!s̃x1cos~g8p̃!s̃y#,
~32a!

ṗ̃52v2q̃, ~32b!

coupled to the Schro¨dinger equation for the spin subsyste

i ] tus̃&5Te2~1/2!ugu2@cos~g8p̃!sx2sin ~g8p̃!sy#us̃&.
~32c!

Passing to the time dependence of the mean values, we
the system

ṡ̃x522Te2~1/2!ugu2 sin ~g8p̃!s̃z , ~33a!

ṡ̃y522Te2~1/2!ugu2cos~g8p̃!s̃z , ~33b!

ṡ̃z52Te2~1/2!ugu2$sin ~g8p̃!s̃x1cos~g8p̃!s̃y%, ~33c!

q̇̃5 p̃2g8Te2~1/2!ugu2$sin ~g8p̃!s̃x1cos~g8p̃!s̃y%,
~33d!

ṗ̃52v2q̃. ~33e!

If the factore2(1/2)ugu25e22h2/v2
becomes small~intermedi-

ate and strong coupling:h'v and h@v), the system is
nearly integrable. In this case we get

ṡ̃x'0, ṡ̃y'0, ṡ̃z'0, ~34a!

i.e., the spin will hardly show any motion. For the oscillat
we have

q̇̃' p̃, ṗ̃52v2q̃. ~34b!

Thus oscillator and spin are almost decoupled and the sys
is nearly integrable.
s-

in

r

a-

get

m

In the small coupling case (h!v) the Hamiltonian is
almost integrable as well because in this case the two s
systems are nearly decoupled. Thus in both limiting cas
the classical system ofH̃ shows regular behavior. Comparin
the above equations~33! to the Heisenberg equations for th
operatorssk ,

ṡx522T sin ~g8P!sz , ~35a!

ṡy522T cos~g8P!sz , ~35b!

ṡz52T$sin ~g8P!sx1cos~g8P!sy%, ~35c!

and the operatorsQ andP,

Q̇5P2g8T$sin ~g8P!sx1cos~g8P!sy%, ~35d!

Ṗ52v2Q, ~35e!

we recognize the same structure. The transfer matrix elem
T, however, is effectively reduced to

T→T exp ~2ugu2/2!,

which is caused by the fluctuations

^Pn&2^P&nÞ0

in the boson mode.

IV. QUANTUM-MECHANICAL DYNAMICS

A. Time evolution and initial states

In this section we investigate the time evolution of t
state vectoruc(t)& for various initial conditions. The time
propagation has been calculated in the basis of the simu
neous eigenvectors ofb†b andsz as in Eq.~19!:

uc~ t !&5 (
n50

`

Cn
↑~ t !un,↑&1 (

n50

`

Cn
↓~ t !un,↓&. ~36!

In this representation the Schro¨dinger equation

i ] tuc~ t !&5Huc~ t !&

for the Hamiltonian~7! is equivalent to the set of first orde
differential equations for the coefficientsCn

↑(t) andCn
↓(t):

i ] tCn
↑~ t !5(

m
Hn,m
↑↑ Cm

↑ ~ t !1(
m

Hn,m
↑↓ Cm

↓ ~ t !,

i ] tCn
↓~ t !5(

m
Hn,m
↓↑ Cm

↑ ~ t !1(
m

Hn,m
↓↓ Cm

↓ ~ t !,

with the matrix elements

Hn,m
↑↑ [^n,↑uHum,↑&5~n11/2!vdn,m2h~Andn,m11

1An11dn,m21!,
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Hn,m
↓↓ [^n,↓uHum,↓&5~n11/2!vdn,m1h~Andn,m11

1An11dn,m21!,

Hn,m
↑↓ [^n,↑uHum,↓&5Tdn,m ,

Hn,m
↓↑ [^n,↓uHum,↑&5Tdn,m .

The time evolution has been calculated for certain ini
spin-boson coherent states

uc~0!&5uq0 ,p0& ^ us0&, s05~f0 ,u0! ~37!

i.e., coherent states for both subsystems. The coefficient
given by

Cn
↑~0!5e2~1/2!ub0u2

b0
n

An!
e2 if0 cos~u0/2!,

Cn
↓~0!5e2~1/2!ub0u2

b0
n

An!
sin ~u0/2!,

with

b5Av

2
q1

i

A2v
p, b* 5Av

2
q2

i

A2v
p.

In order to get a valuable image of the inherent correlati
and fluctuations of the quantum motion, we illustrate t
dynamical behavior by means of the fourQ functionsQj ,
j 50, . . . ,3

Qj~b,t !5Tr$s j ub&^bur~ t !%. ~38!

The representation in terms ofQ functions proves to be mos
suitable, because they are built upon coherent states and
reflect most of the classical dynamics hidden in the quan
motion @39,42–45#.

B. Time propagation in the transformed system

The time dependence of a state vectoruc(t)& governed by
the original HamiltonianH ~7! may equivalently be de
scribed by a state vectoruc̃(t)& governed by the Hamiltonian
H̃ ~26!:

uc̃~ t !&5exp ~2 iH̃ t !uc̃~0!&.

The relation between corresponding states

uc̃~ t !&5U21uc~ t !&5exp S 2
h

v
sz~b†2b! D uc~ t !&

and operatorsX̃5UXU21 is given via the unitary transfor
mationU(h/v). For an initially coherent state

uc0&5uq0 ,p0& ^ us0&5uq0 ,p0& ^ u~f0 ,u0!&

we get

uc̃0&5e2 if0@cos~u0/2!uq02g8/2,p0& ^ u↑&
l

re

s
e

hus
m

1sin ~u0/2!uq01g8/2,p0& ^ u↓&], ~39!

whereg85(2h/v)A2/v as before.
Considering the dynamics of the transformed system~27!,

it is found from the classical equations~33! that — in the
strong coupling limit — the spin part shows only a min
time dependence, whereas the boson mode performs a si
rotation in its phase space, the (q,p) plane.

C. Trapped states

Starting with a spin-boson coherent state polarized in
positivesz direction,

uc0&5uq0 ,p0& ^ u↑&, ~40!

one has to consider the time dependence of the stateuc̃0&
where

uc̃0&5uq02g8/2,p0& ^ u↑&. ~41!

This is obviously a spin-boson coherent state withq̃05q0

2g8/2, p̃05p0. In the transformed system the classical m
tion shows only a simple time dependence@cf. Eq.~34!#. The
spin remains almost constant,

s̃i'const,

whereas the boson part performs a simple rotation in
oscillator phase space:

q̃~ t !5q̃0 cos~vt !1~ p̃0 /v! sin ~vt !,

p̃~ t !5 p̃0 cos~vt !2vq̃0 sin ~vt !.

The time dependence ofuc̃(t)& can now be approximated b
the expression

uc̃~ t !&5eiw~ t !uq̃0 ,p̃0& ^ u↑&.

The additional phasew(t) accounts for the time dependenc
of the quantum phase, see Appendix A. In the original s
tem ~applying the transformationU to the corresponding op
erators! q(t) andp(t) are explicitly given by

q~ t !5g8/21~q02g8/2! cos~vt !1~p0 /v! sin ~vt !,

p~ t !5p0 cos~vt !2v~q02g8/2! sin ~vt !.

Henceuc(t)& will perform an elliptic motion around the cen
ter q5g8/2, p50 where the two major axes are given b
Dq5q02g8/2 andDp5p0. In particular, for the initial state
q05g8/2 and p050, the state vector will show no motio
and thus will appear to be trapped at this point. Obviou
the same arguments will hold for a state polarized in ne
tive sz direction:

uc0&5uq0 ,p0& ^ u↓&.

In this case,uc(t)& will perform an elliptic motion around
the centerq52g8/2, p50 with the two major axes given by
Dq5q01g8/2 and Dp5p0. For the initial stateq05
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FIG. 5. Time evolution of quantum vs quas
classical description in the oscillator phase spa
for the initial stateuq05

3
2 qtr

1 ,p05ptr
1& ^ u↑& (g

54). In the left-hand side of the figure, the sol
line represents the quantum trajectory up to t
indicated time (vt50.8,4,7.2). The final point of
the trajectory is marked by a square. For the qu
siclassical description we used a dashed line
the trajectory and a cross for the final point. Ad
ditionally the contour lines of theQ function
Q3(t) are plotted. The right-hand side shows th
Q function Q3(t), where the spin orientation ca
be seen. For detailed explanations see the tex
a
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2g8/2 andp050 the state vector will appear to be trapped
well. Thus the state vectors

uc tr
1&5uqtr

15g8/2, ptr
150& ^ u↑&,

uc tr
2&5uqtr

252g8/2, ptr
250& ^ u↓&

will remain almost constant in time. This fits perfectly to th
exact quantum treatment calculated numerically using
expansion~36! for the state vector. The infinite sums we
truncated at an appropriate number of statesN. This number
is determined by the dynamical behavior of the system. O
has to make sure that the contribution of the states witn
.N is negligible by checking the distributions ofuCn

↑(t)u2

and uCn
↓(t)u2 which must decrease sufficiently fast forn

→N.

D. States starting in the ‘‘vicinity’’ of a trapped state

For states starting in the ‘‘vicinity’’ of a trapped state w
expect that the spin state remains nearly constant, whe
the oscillator will perform a rotation in the phase spa
around the center (qtr

1 ,ptr
1), the location of the trapped stat

In Fig. 5 such a state
s

e

e

as

uc0&5Uq05
3

2
qtr

1 , p05ptr
1L ^ u↑&,

starting in the ‘‘vicinity’’ of the trapped one is plotted. Th
Q function performs the expected rotation in the phase sp
of the oscillator. The circle corresponding to the rotation
plotted as a dash-dotted line in the figure. At least the os
lator variables can be described by the classical treatm
@see Fig. 6~a!#.

The spin variables show very small oscillations but t
behavior of the mean value of the spin operator var
smoothly as compared to the fast oscillations of its quasic
sical counterparts@Figs. 6~b! and 6~c!#.

E. Switching the spin orientation

The next initial state we want to discuss is

uq05qtr
1 , p05ptr

1& ^ u↓&,

i.e., the boson part fits to the trapped stateuc tr
1&, but the state

of the spin system is switched fromu↑& to u↓&. For this state
we can — as a simple approximation — assume that it
haves like a state starting near the trapped stateuc tr

2& and
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thus performs a rotation around the center (qtr
2 ,ptr

2). But we
have to stress that it is starting at a considerable dista
from the point (qtr

2 ,ptr
2).

In Fig. 7 we have plotted the time evolution of theQ
function Q3 for this state. We recognize the largest pe
rotating around the center (qtr

2 ,ptr
2) ~dash-dotted circle!. The

negative values ofQ3 show that this rotating peak is corre
lated with the spin stateu↓&.

The additional small structures, which become more a
more enhanced as time goes on, can be addressed to s
but still existing correlations. Regarding the time evoluti
of this state it is obvious that the state splits into three
herently superposed packets, which are themselves c
lated with different spin states.

We also perceive that up tovt54 the quasiclassical an
quantum trajectories lie close together. Later in time th
drift more and more away from each other. This is due to
contribution of the additional structures. The classical traj
tory apparently follows the peak moving outside the da
dotted circle.

F. Superposition of states

Now we consider as an initial condition a spin-boson c
herent state polarized in the positivesx direction:

FIG. 6. Quantum expectation values~solid lines! vs quasiclassi-
cal description@dashed lines, respectively dotted lines in~b!# for the
oscillator coordinateq(t) and the occupation differencesz(t) for
the same initial state as in Fig. 5. There is no significant differe
between quantum and quasiclassical calculation concerning th
cillator variables, whereas the quantum mean valuesz(t) of the spin
operator varies smoothly as compared to its quasiclassical cou
part.
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uc0&5uq0 ,p0& ^ ~ u↑&1u↓&)/A2.

The transformed state can be expressed as a superpositi
two states

uc̃&5~ uc̃0
1&1uc̃0

2&)/A2,

where the two parts are given by

uc̃0
1&5uq02g8/2,p0& ^ u↑&,

uc̃0
2&5uq01g8/2,p0& ^ u↓&.

Obviously uc̃0& does not represent a simple product state
in Sec. IV C, however, it may be interpreted as the super
sition of the two orthogonal spin-boson coherent statesuc̃0

1&
and uc̃0

2& which are nearly dynamically independent.
In Fig. 8, we have illustrated the time evolution of such

state, namely,

uc&5uq05qtr
1 ,p05ptr

1& ^
1

A2
~ u↑&1u↓&).

The quantum motion is thus the superposition coming fr
the nearly independent motion of the two spin-boson coh
ent states as discussed in the previous sections. At firs
have the trapped stateuc0

1& ~see Sec. IV C! which is almost
motionless. On the other hand, we have the state discuss
Sec. IV E.

In Fig. 8 both parts can be identified clearly. The valu
of Q3 show that the moving peak is correlated with the sp
stateu↓& whereas the trapped peak is correlated with the s
stateu↑&.

Thus we have strong correlations realized by the t
peaks moving in the phase space of the oscillator where~in
contrast to the initial state! each peak is now correlated wit
a different spin orientation. The time evolution of the corr
sponding state shows an extremely nonclassical beha
which cannot be described by a product ansatz

uc~ t !&Þuq~ t !, p~ t !& ^ us~ t !&.

Here the quasiclassical and quantum trajectories drift aw
from each other very early. A quasiclassical description
not possible for such a state.

However, since the overlap between both ‘‘partial state
is negligible, it is possible to interpret the respective tim
evolution with the help of two coherently superposed sta
if one includes the additional phase coming from the TDV
~see Appendix A 1!.

G. Time evolution of the occupation difference

In Fig. 9 the quantum mean valuessz for the different
initial states described above are plotted:

~a! uc0&5uq05qtr
1 , p05ptr

1& ^ u↑&5uc tr
1&,

~b! uc0&5uq05qtr
1 , p05ptr

1& ^ u↓&,

~c! uc0&5uq05qtr
1 , p05ptr

1& ^ ~ u↑&1u↓&)/A2.

e
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FIG. 7. The same as Fig. 5 for a differen
initial state:uq05qtr

1 ,p05ptr
1& ^ u↓&.
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First, in Fig. 9~a! we have the trapped state where the spin
nearly constant as it is expected from the quasiclassical
scription.

The strange time dependence ofsz in Figs. 9~b! and 9~c!
cannot be described by the simple product ansatz~14!, but
may be captured by an improved description including
tangled states in the quasiclassical treatment using
TDVP.

V. CONCLUSIONS

We have investigated the properties of a system descr
by a harmonic oscillator coupled to a two-level system. T
model describes various interesting physical situations, e
a quasiparticle coupled to polarization vibrations in a dim
model. Such dimers may be realized as molecular dimer
as dimer traps in, e.g., an organic solid. Dimers are a
frequently used model systems for the investigation of
electronic energy transport in solids. Thus a more thoro
understanding of the energy transport in dimers also con
utes to a better understanding of the energy transport in s

We used an approach complementary to the usual qu
classical treatment. Identifying an integrable Hamiltonian
the strong coupling case, we found that, especially in
strong coupling limit, the system is nearly integrable in co
s
e-

-
he

ed
s
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r
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o
e
h

b-
id.
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e
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trast to the pronounced chaotic behavior of the usual qu
classical description. Although both Hamiltonians cons
ered are equivalent~related by a unitary transformationU),
the resulting quasiclassical equations are not.

Furthermore, the two sets of quasiclassical equations
to a qualitatively different behavior. The reason for the
discrepancies is that the unitary transformationU will turn a
product state into an entangled state and vice versa. Thu
transition from the quantum description to the quasiclass
approximation depends on the selection of a suitable re
ence Hamiltonian.

If the entire time evolution given by the Schro¨dinger
equation of an initial product state of coherent states can
expressed as a product state

uq~ t !,p~ t !& ^ us~ t !&5exp ~2 iH̃ t !uq~0!,p~0!& ^ us~0!&

in the course of time, the corresponding quasiclassical eq
tions derived fromH̃ are expected to give reasonable resu
Therefore the quasiclassical description can only be adeq
for certain initial conditions of the system. In a spin-1/2 sy
tem, however, the quantum fluctuations in the spin variab

A^s2&2^s&2
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FIG. 8. The same as in Fig. 5 for a differen
initial state: uq05qtr

1 , p05ptr
1& ^ 1/A2 (u↑&

1u↓&).
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are very large~of order^s&). This leads to highly entangle
states which are very common in this model. Thus a reas
able description of such systems with inherent large quan
fluctuations and thus extremely nonclassical states shoul
described by tools, which include both fluctuations and
tanglement of the two subsystems, in a straightforward m
ner. This will lead to more degrees of freedom in the TDV

The main purpose of the paper was the investigation
the connection between the full quantum-mechanical s
tion and various classical approximations in the strong c
pling case. An experimental test of the results should
possible on systems mentioned in the Introduction and ab
using short-time, pump-probe, coherent, or Raman spec
copy.
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APPENDIX A: QUASICLASSICAL EQUATIONS

1. The time-dependent variational principle

There are various qualitatively different ways to constru
mixed equations of motion where one component of the s
tem is treated classically and the other purely quantum
chanically. The most reasonable approach is to write do
the equation of motion for the classical part and the Sch¨-
dinger equation for the quantum part. The coupling betwe
these two components is approximated by a coupling tak
into account only the expectation values of the quantum s
tem. This may be considered as a self-consistent or me
field approximation to the combined dynamics. Howev
one should keep in mind that following this procedure c
tainly neglects the fluctuations present in the nearly class
system. Even more restrictive, also certain correlatio
which will show up as time goes on are not included her

In order to deal with these aspects in a uniform way
use thetime-dependent variational principle@34# to con-
struct self-consistent equations of motion for mix
quantum-classical systems. This formalism takes the qu
tum fluctuations, present in the nearly classical system,
account in a straightforward manner. Further this method
— depending on the ansatz — capable of accounting
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entangled states, which might occur in the course of tim
The TDVP is based on the simple fact that the station

pointscc(t) of the action functional

S@c#5E dt^c~ t !u$2 i ] t1H%uc~ t !&5E dt L ~A1!

(^cuc&51) are just the solutions of the Schro¨dinger equa-
tion @46#. As a brief example let us consider a harmon
oscillator, the subsystem 1, coupled to a second~quantum!
system. The Hamiltonian of the combined system reads

H5
1

2
~P21v2Q2!1H21F1~Q,P!F2 , ~A2!

whereF1 depends only on the operatorsQ, P of subsystem
1, H2 is the Hamiltonian of the subsystem 2, andF2 depends
only on operators of subsystem 2.

Assuming that the combined quantum system beha
nearly classically, i.e., the correlation between boson (q,p)
and spin (f) degrees of freedom are negligible, we are led
the factorized ansatz

uc~ t !&5eiw~ t !uq~ t !,p~ t !& ^ uf~ t !&, ~A3!

where uq(t),p(t)& is a coherent state of the oscillator an
uf(t)& is a state of the second subsystem alone. The rea

FIG. 9. Time evolution of the occupation differencesz(t)
~quantum-mechanical treatment! for the strong coupling case (g
54). The initial state corresponding to~a! is the trapped stateuc tr

1&,
whereas the initial states for~b! and ~c! are the same as in Fig. 7
respectively, Fig. 8.
y

es

o

on

for inserting the phasew(t) will become clear later. If we
plug this test function into the TDVP, we get the Lagrangi
L,

L5ẇ1
1

2
~qṗ2pq̇!1

1

2
~p21v2q2!1

v

2

1^fu$2 i ] t1H2%uf&1^q,puF1~Q,P!uq,p&^fuF2uf&.

The variation of this Lagrangian with respect toq(t), p(t),
andf(t) leads to the equations of motion

q̇5p, ~A4a!

ṗ52v2q2]qF̄1~q,p!^fuF2uf&, ~A4b!

i ] tuf&5$H21F̄1~q,p!F2%uf&, ~A4c!

with F̄1(q,p)5^q,puF1(Q,P)uq,p&. Both symbolsF̄1 and
F1 do not coincide in general, unlessF1(Q,P) is a linear
function of Q andP.

However, since the phasew(t) enters into the Lagrangian
L only via a total time derivative,w itself will not appear in
the equations of motion. Due to this gauge invariance of
equation of motion with respect to the phasew, it has to be
fixed in addition according to

E dt^c~ t !u$2 i ] t1H%uc~ t !&50. ~A5!

Therefore the phasew may be omitted in the construction o
the quasiclassical equations of motion for this combined s
system.

2. Equations from the Hamiltonian H

To derive the quasiclassical equations from the Ham
tonianH of the first approach~11! we use the TDVP ansat

uc~ t !&5uq~ t !,p~ t !& ^ us~ t !&. ~A6!

Inserting this into the LagrangianL and performing the
variation with respect to the coordinatesq(t), p(t), and the
spin partus(t)& we finally arrive at a coupled set of differ
ential equations for the approximate behavior of the me
values (sk5^suskus&):

ṡx522~«2A2vhq!sy , ~A7a!

ṡy52~«2A2vhq!sx22Tsz , ~A7b!

ṡz52Tsy , ~A7c!

and the oscillator variables

q̇5p, ~A7d!

ṗ52v2q1A2v~hsz2t!. ~A7e!

It is worthwhile to note that these equations take the sa
form as if one calculates the Heisenberg equations and
passes to a classical description by considering all opera
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asc-numbers. Both prescriptions coincide here but only
cause the various operators of the subsystems occur on
linear combinations.

3. Equations from Hamiltonian H̃

To derive the quasiclassical equations for the Hamilton
of the second approach~27!, we use the same formalism a
in the preceding section and we get the following set
differential equations (s̃k5^s̃uskus̃&):

ṡ̃x522Te2~1/2!ugu2 sin ~g8p̃!s̃z ,
d

d

n,
-
in

n

f

ṡ̃y522Te2~1/2!ugu2 cos~g8p̃!s̃z ,

ṡ̃z52Te2~1/2!ugu2$sin ~g8p̃!s̃x1cos~g8p̃!s̃y%,

q̇̃5 p̃2g8Te2~1/2!ugu2$sin ~g8p̃!s̃x1cos~g8p̃!s̃y%,

ṗ̃52v2q̃.

Unlike in the preceding section, these equations are not
ear inQ and P, which effectively leads to the modificatio
of the transfer matrix elementT discussed in Sec. III F.
.
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