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Quantum-mechanical and quasiclassical dynamics of coupled quasiparticle-boson systems
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Statistical and dynamical properties of a quasiparticle coupled to polarization vibrations in a dimer model are
investigated using a full guantum-mechanical approach. The propagation of the system is described in terms of
spin-boson coherent states and compared to various quasiclassical descriptions of the system. The spectrum of
the energy eigenvalues and the level spacing distributions of the system are calculated and turn out to be almost
regular, especially in the strong coupling limit. It is demonstrated that the usual quasiclassical approach to this
problem is not quite satisfactory. This is because the quantum fluctuations in the spin variable give rise to
entangled states and correlations which hence should be included in a quasiclassical description. We show that
a limited but satisfactory quasiclassical approximation may be given using a suitable integrable reference
Hamiltonian.[S1063-651X98)11406-X]

PACS numbe(s): 82.20.Rp, 05.45:b, 03.65.Sq

I. INTRODUCTION usual quasiclassical treatment of the spin-boson model may
be more suitable for the spin-1/2 case. In Sec. Il we present
The problem of the transfer of a quasiparti¢te a par- the Hamiltonian describing the system under consideration.
ticle) coupled to vibrational modes has been under strondhe Hamiltonian can be split into a trivial and a nontrivial
discussion in recent years. The Davydov mddet3] leads ~ part, where the nontrivial part contains the coupling between
to a coupled set of Schdinger equations for the occupation the two subsystem@uasiparticle and vibrational degrees of
amplitudes of the quasiparticle. The influence of vibronicfreedom. The non-trivial part describes a harmonic oscilla-
bath variables on the excitation transfer was studied in th&or coupled to a two-level system and is of a general type
framework of generalized Master equatiej and stochastic describing various phys!cal situations in quantum optics
Liouville equation approachds]. Eilbeck et al. [6] intro- ~ [30—33. Furthermore, this system represents a model for
duced thediscrete self-trapping equatiofDST) and studied ~€nergy transfer in molecular aggregates, in doped molecular
the properties of stationary solutions. For the case of a synffystals and for the tunneling of particles in two-state sys-
metric dimer, Kenkre and Campbdl¥] derived a closed tems[4,5]. In Sec. lll A we investigate the dynamics of the
nonlinear equation for the site-occupation probability differ-System following the usual quasiclassical description. For
ence in terms of Jacobian elliptic functions. They demon-Strong coupling we find a pronounced chaotic behavior. The
strated the existence of a transition from a free to a self¢igenvalues of the Hamiltonian and the level spacing distri-
trapped state. Later on this model was extended to includButions are presented in Sec. Ill B. Apparently, the eigenval-
dissipation effect§8—10], asymmetry{11-15, and several Ues behave quite regularly, especially in the strong coupling
other aspectil6—22. Recently the role of nonadiabatic cou- I|m|t._Thu_s we are qu to searqh for the. integrable part of the
plings and the role of the Born-Oppenheimer approximatiortiamiltonian responsible for this behavi@ec. Il , which
in a stepwise quantization were studi@8,24). rgsults in approximate expressions for the eigenvalues and
However, it is still an open question whether sudisgin-  €igenvectorgSec. lll D). With the results of Sec. Ill C we
1/2) system can be described in a quasiclassical manner at &f€ able to derive new quasiclassical equations, which are not
[25,26. Furthermore, since the quasiclassical equationgquwalent to the previous ones. Furthermo.re, these equations
show pronounced chaos for strong coupling, it is interestinghow that the system behaves regularly in the strong cou-
to ask what happens in the quantum system itself. This halling limit (Sec. Il B. In Sec. IV we introduce quasiprob-
been answered partially for highej> 1/2) spin representa- abll!ty distributions and _coherent states. The dynar_nlcal be-
tions[27,28. In Ref.[28] it was shown that in those systems havior of the system is illustrated by means(@ffunctions.
the level spacing distribution tends to the universal one, exYarious expectation values of interest are calculated and
pected in quantum systems where the classical dynamid‘sompared to the results of a pure classical description.
shows chaos. However, for a two-level systejs (/2), the
guantum dynamics is different although similar structures in
classical and quantum Poincasections may be identified
for intermediate coupling29]. We consider the dynamics of a quasipartigdea patrticle,
Here, we will show that a complementary approach to thee.g., exciton or electrgrin a molecular dimer. The quasipar-

Il. MODEL AND BASIC EQUATIONS
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ticle is moving between the two sites of the dimer due to B,=b, sin ¢+b, cos¢e (6b)
dipole-dipole interaction. The motion of the quasiparticle is o . _
coupled to local vibrational modes at the two sites. The totafor the vibrational modes are introduced by a Bogoliubov

Hamiltonian is specified by transformation (tarp=g4/g,). It should be noticed that in
the case of the symmetric dimeg4=g,), we have sinp
Hiot=Hexct Hyip+ Hint, (1) =cose=1/2 and therefore the vibrational mote,b} cor-

whereHg,., Hyp, andH;, represent the quasiparticle, the r_esponqti o _theB diﬁBeJrr(a/ncTe of the original coordinatgs

vibrational modes, and the interaction between the two sub- 92 [W', q.“_( nt Br)/V2wy]. ,

systems, respectively: Substnytlng Eqs(3)—(6) andw;=w,=:w in Eq. (1) the
total Hamiltonian splits into two parts:

He=e1AIA T 8,ANA+ T(AIA+AJAY),  (29) Hoe Hyt Hy,

Hyp= wlBIBlJr sz;BzﬂL E(wﬁ ®5), (2b) yvhereHl represents a displacedTharmonic ospillator depend-
2 ing only on the operators; andb; . The nontrivial partH,

" : . " contains the second boson mode and the coupling between
Hin=01(B1+B1)A1A1 +02(Ba+B2)AA2. (200 the quasiparticle and second vibrational mote,b}). The

two parts of the Hamiltoniatd,,H, are completely decou-

He, describes the excitation of the quasiparticle and itspled. Therefore we consider only the nontrivial pats.
transfer between the two sitesl A, (n=1,2) are creation Dropping the index “2” we finally obtain

and annihilation operators for the quasiparticle obeying
Fermi commutation relations:,, is the site energy of the 1
quasiparticle at site and T is the transfer matrix element H=—70,(b"+b)+Toy+w|b'b+ 5| Teost 7(b"+h),
(dipole-dipole interaction Throughout this paper we uge )
=—0.5 in all numerical calculations. The vibrational modes
are described byl,;,, wherew, are the frequencies of the with the new parameters
intramolecular vibrations at site. B! ,B, are the corre-
sponding boson amplitude operators. The coupling between
guasiparticle and vibrational degrees of freedom is specified
by the interaction ternid;,,, with coupling constantsg,, .

In order to simplify our Hamiltoniam,.;, we assume that 7=~01+02, (8b)
there is exactlyone quasiparticle excited on the dimer:

1
8=§(82—81), (8a)

1 95—
AlA +AJA,=1. 3) = o —e——. (8¢
2 \oi+9;
Because of Eq3), the quasiparticle subsystem has the prop- i ) ) N
erties of a spin-1/2 system. Therefore we introduce three spih"€ Heisenberg equations for this Hamiltonian read

operators .
p ox=—2(e—\2wnQ)oy, (99)
o =AlA+AJA, (49 :
oy=2(e—\2wnQ)oy—2To,, (9b)
oy=—i(AIA,—AJA)), (4b) :

0,=2Toy, (90

o, =AlA—AlA, (40) .
Q=P, (9d)

instead of the four Fermi operators. The expectation value
(o,) corresponds to the occupation difference between the P=— 020+ 20 _ %e
two sites of the dimer. Using E¢3), we can show that 0 Q (705~ 7). %9

o4+ o+ ai=const (5) 1. MIXED QUANTUM-CLASSICAL DYNAMICS
AND SPECTRAL STATISTICS
is an integral of motion and therefore the motionvirspace
(subspace of the quasiparticis restricted to the sphex®g),
the so-called Bloch sphere. It is more convenient to use polar A first step towards an understanding of the dynamical
coordinates 6, 6) in the figures instead of expectation val- properties of a quantum system is the investigation of its
ues of the spin operators. The spin operators satisfy the conglassical counterpart. We will proceed in this direction by

A. First approach to a mixed quantum-classical description

mutation relation j,k,/” cyclic) replacing the operators,b’ by the Hermitian position and
. momentum operator®,P of the harmonic oscillator with
[oj,00]-=2i0,. frequencyw,

Furthermore, new boson operators

1 w
BE N ORI
B,=b; cosep—b, sin ¢, (6a) Q zw( +h) : 2( ) (10
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Rewritten in terms of these operators, the Hamiltonian as well as from the corresponding classical Hamiltoh&5].
reads This treatment of the model is often denoted as a mixed
guantum-classical description. However, we want to stress
that this description neglects the correlations present in the
combined motion(cf. Sec. Il F and Appendix A1 for a de-
(11) tailed discussion
A detailed investigation of the syste(h5) can be found

1
H=eo,+Toy+J2wQ(7— no,) + E( P2+ wZQz).

In this form,H can be thought of describing a spig, o, in Ref. [35]. Here we give only a brief summary of the rel-
o, coupled to an harmonic oscillat@, P via the interaction  evant results. The dynamics of the system in this approach is
term V2w Q(7— nao,). found to be both regular and chaotic. The transition from

One way of assigning a classical interpretation to theregular to chaotic behavior depends on the coupling strength
guantum motion is to investigate the time dependence of the and the total energy
mean values, thus neglecting all fluctuations and correlations
present in the quantum motion. In order to get the best cor-
respondence between the classical and the quantum motion,
the initial state should be an almost classical state, i.e., a state

1
E=es,+ TS+ V2wQ(7— 7s,) + E(p2+ w?p?) (16)

which has minimal fluctuations. of the system. The behavior can be analyzed by Poincare
As the main assumption in our calculation, we use thesections in both subsystems, quasiparticle and oscillator.
initial spin-boson coherent state We used a fourth order Runge-Kutta metH86] in con-
nection with a method proposed by it [37] allowing us
|#(0))=]0d0,Po)®|S0), (120  to find the intersections of a trajectory with the surface of

section accurately. Despite the long integration rangé (

where|q,p) represents a coherent state of the boson part ane 10%), the relative errors in the two known integrals of mo-
|s) a state of the two-level system tion, namely, the energyl6) and the radius of the Bloch
) . spherg(5), turned out to be less than1Q In Fig. 1 we show

|s)=|¢,6)=sin (6/2)]|)+e~'% cos(6/2)[1). (13  some typical Poincarsections of the Bloch variables corre-

L . . sponding to the left turning point of the oscillatoiP (
The most reasonable approximation for the time propagatlon:0 p=0)

is the ansatz . .
For small values of the coupling and low energies, the
t))=e*®(q(t).p(t))®|s(t)). 14 system shows regular behavior. If the energy exceeds some
[9(V) la(®),p()®s(t) a4 critical value, a stochastic layer in the vicinity of the sym-

This is reasonable only ifiy(t)) remains factorized and no Metric ground state of the quasiparticle appdé&ig. 1(a)].

entanglement will show up, i.e., the initial spin-boson coher-INcreasing the energy further, chaos spreads over large parts
ent state shouldot develop as of the Bloch sphere, leaving islands of regular behavior in

the region of the energetically higher antisymmetric state of

| (1)) =cq]q1,p1)®|1)+Col02,P2) @] 1), the quasiparticle. For stronger coupling, the chaotic behavior
already appears at the lowest allowed energigg. 1(b)].
whereq, #d,, P17 P». For fixed energy, the chaotic region grows when the cou-

Inserting this ansatz into théme-dependent variational pling is increased or when the oscillator frequency is de-
principle [34] (TDVP), and performing the variation with creased.
respect to the coordinategt), p(t), and the spin pais(t)),
we finally arrive at a classical set of differential equations for B. Spectral statistics
the behavior of the expectation values in this approximation

(see Appendix A2 for a detailed derivation In the following, we restrict ourselves to the case of a

symmetric dimer[e=7=0, cf. Egs.(8a) and (8c)]. The
Hamiltonian of the symmetric dimer,

S=—2(e—\2wnq)s,, (159
1
) - _ t Tha =
§,=2(e— ’_anq)sx—ZTsz, (15b) H=Toy,— no,(b'+b)+w| b'b+ Ak (17)
5= 2Ts, (150 is equivalent to the Jaynes-Cummings md@&—32, which
z ’ is a basic model in quantum optics. The symmetric dimer is
- invariant under an exchange of the two sites, i.e., the parity
a=p. (15d operator
p=—w?q+\2w(7s,— 7). (15¢ P=0, expimb'b) (18

These equations can also be obtained by simply replacing tle@mmutes withH. The eigenvalues oP arep==*1 (even

operators byc-numbers in the Heisenberg equatiqg@s ac-  {+} and odd{—} parity).
cording to In order to calculate the eigenvalues of the Hamiltonian

(17) we expand the wave functidw) into the simultaneous
Q—q, P—p, oyw—>sy, eigenvectors ob™b and o, :
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FIG. 2. Difference between the staircase functd(E) and its
dominant(linean partN;, as a function ofi (number of the eigen-
valug. As one can easily see, the deviation is oscillating regularly.
This nonstatistical contribution has to be considered in the smooth

partﬁof the staircase function and not in the fluctuation péyt
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D
e

ating partNg. For our system the dominant behavior of the
smooth part is a linear function of the energy

1
Nin(E)= P E+ const.

|
3
|
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o |
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3

This is quite reasonable because the terbdb is the domi-
@ nant part of the Hamiltonia(l7), i.e., the mean level density
’ — averaged over manyx10) levels — does not depend on
FIG. 1. Poincaresections for weak =1, y=25/w) and E. A more detailed investigation of the spectral staircase

strong coupling ¢=4). In the former caséa) the formation of a  fynction N(E) shows that the deviation
stochastic layer in the vicinity of the separatrix can be seen if the

energy exceeds a critical valug+€ 3.0). In the latter caséb) the N(E,) =Ny (Ep)
whole Bloch sphere shows chaotic behavior at this energy. Chaos

sprgads over Iarge. parts of the Bloch sphere already for Iovyer from the linear behavior is oscillating quite regularly, as
ergiesje.g., E=0.3 in (b)]. In the upper part ofb) we see remain- g6\ in Fig. 2. The frequency of the oscillations depends
ing regular elliptic islands. The region neap,) =(>m m/2) is  oq £ \when studying statistical properties of the spectrum
not accessible because the energy-0.3) of the system is too low one should take this apparently nonstatistical contribution

[cf. Eq.(16)]. . )
into account in the smooth pakt. Thus we have

‘ . =N + +
|l//>:n§_:0 CI1|naT>+n§_:0 Cr11|n1l>- (19 N(E)=Njin(E)+ Nyl E) + Ng(E) (213
=N(E)+Ng(E). (21b
In the numerical calculations we have to truncate the sums in o
Eq. (19 at a finite number of terms, say. Because the |f the smooth parN of the staircase function is known, the
eigenvalues with even and odd parity are independent, thgsua| approach is to pass from the set of eigenvdﬁg}; to

calculation of the eigenvalues reduces to the diagonalizatiO{'he unfolded spectrurfE!} using the smooth paitl of the
of two tridiagonal realNXN matrices, one for each parity staircase function: "

{=}. Plotting the energy spectrum the curves with different
parity {+} intersect, whereas the curves with same parity E'=N(E,) 22)
show avoided level crossingkevel repulsion. n n’

For a statistical analysis of the spectrum, we calculate the , .
spectral staircase functigthe integrated level density The unfolded spectrurfE,} has a mean of unitthe quan-
tities E;, are dimensionless

In order to understand this apparently regular behavior of
the energy eigenvalues we consider the strong coupling limit
analytically. This is done in the following section. The re-
which counts the number of energy levels below the energyuilts of both exact numerical calculation and approximate
E. N(E) can be divided into a smooth padt and a fluctu- analytical treatment are presented in Sec. Il E.

N(E)=N{n|E,<E}, (20)
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C. The strong coupling limit troduce the operatoi® andP (10) of the harmonic oscilla-

In this section we want to investigate the behavior of the!®" and reexpress the Hamiltonid@6) in terms of these
system for strong coupling, the range where the quasiclas- OPerators:
sical equation$15) show dominant regions of chaos in phase 2
space. We will show that in the strong coupling limit the H—_(P2+w2Q )— — L +COS(,),'P)O.X_Sin(,y'P)O.y
system is in fact nearly integrable, in the sense that we can
give analytical expressions for eigenvalues and eigenvectors (27)
to this Hamiltonian to a reasonable accurdsge also the
derivations in Ref[38]). This will be done by a suitable
transformation to a new Hamiltonid@7), which extracts the
integrable part of the original Hamiltoniafl7). Further-
more, the quasiclassical equatiof®3) coming from this

transformed Hamiltoniami show a pronounced regular be-
havior and the strange level spacing distribution can be re-
produced analytically. As already mentioned above, the transformatibdiago-

For strong couplingy, the dynamics of the system is es- nalizes the parH,;, i,; explicitly. The calculation presented
sentially governed by the combined vibronic and two-levelbelow is a kind of perturbative treatment of the remaining
normal mode oscillations originating from the diagonaliza-part H,,.=To,, i.e., the approximation is valid for the
tion of the part strong coupling—high energy case.

Calculating the eigenvalues of the transformed Hamil-
(23) tonian (26), we neglect the contribution of nondiagonal bo-
son matrix elements

For simplicity of notation, we introduced the abbreviations
y=2nlw and y’ = y\2lw. This Hamiltonian will be the
starting point of a second approach to a mixed quantum-
classical descriptiofisee Sec. Il k.

D. Approximate calculation of the eigenvalues

1
Thy —
bb+2

Hyipint= — n0(bT+b) +

of the HamiltonianH. Using the unitary transformation (n|H|m), n#m.

(24 The diagonal boson matrix elements are

U=exp (%az(bf— b)
NI AN kL
the partH,;, i,y can be put into diagonal form. The transfor- @n 2 w (n| 1) I

mationl( n/ ) results in a replacement of the operators ac- (n|ﬁ|n)= o 7
cording to T(n|D ——)|n> on+ — — —
2 o
b—u b U=b+ 20'2, and the matrix elements @b(y) are
w
A2
. (nID(y)Im)=e 2L (|51,
b'—u 0" U=b"+ =0, (25) : : ,
0] whereL,, are the Laguerre polynomidld0]. In this approxi-
mation the eigenvalues and eigenvectors for even and
2 2 odd (—) parity are explicitly given b
UXHU_10XU=D(——77 c"+D —7’)0—, (=) parity piciy 9 Y
w w 5 5
=+ w YU — (272 w? 477
whereo™ represent the spin flip operators En=on+ 2 ;t(—l)“Te 2 )Ln(?)'
. (01 (0 O 28)
T 7lo o' 7 7\1 o0 The corresponding eigenvectors can be written as a superpo-
sition
andD(y) is the displacement operat[39]
L1
D(y)=e? ~7*b. |‘/fﬁ>:ﬁ[|”>®|T>i(_1)n|”>®|l>]a (29)
Applying the transfgrmations to the Hamiltonidh we get where|T) and||) are eigenstates af, and|n) are eigen-
the transformed onkl =4/~ *Hi/ as states ob'b. Thus the eigenvectofs, ) have the following
) parity:
~ 0 7 27 279\ _
=wb'b+ =—— —+ ——e” — + +
H=obbt o= TD( Y i w)" Plum)==*lum). (30

(26)
The results of the approximate analytical calculation of
The parity operatof18) remains invariant under the trans- the eigenvalue§28) and the exact numerical results are pre-
formation (24), 4 ~YP U=P. Instead ofb,b", we again in- sented in the following section.
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FIG. 3. Eigenvalues from an intermediate energy rafigeels FIG. 4. Comparison of the level spacing distribution between

100-120. The solid lines show the exact numerical calculations,the exact numerical calculatidsolid lineg and the approximation
whereas the dashed lines were calculated using the approximatiatescribed in the textdashed lines Although the approximation is
described in the texta) presents an overview over a large range of valid only for large coupling strengths and high energies, the ap-
the coupling ¢y=27/w). Evidently the approximation does not proximation leads to good results for the level statistics, even in the
hold for small couplings. For higher values of the coupling the case of weak couplingg). For higher couplingb) the agreement is
approximation is in good agreement with the exact numerical caleven better.

culations.(b) is a magnification of the lower right corner @&). The
number of Fock states =800 and the corresponding eigenfunc-

tions have odd parity. ences. Even for small coupliigy=1, Fig. 4a)], where the

approximation is not too good for the levels, there are only
nonsignificant differences in the distribution of the spacings.
That is, the level spacing distribution can be explained using

In order to avoid nonuniformities at the lower end of the the approximate energie®8) coming from the diagonal
spectrum and truncation effects in the highest levels we usegbntribution of the transformed Hamiltoni®6). In particu-
only levels from an intermediate energy range for the statistar, the absence of small spacings, that have previously been
tics. Furthermore it is necessary to check how many levelinterpreted as an evidence for quantum ch@ss41] can be
are reliable. attributed to the integrable part

In Fig. 3 we compare the eigenvalugs [Eq. (28), strong
coupling—high energy approximatipto those obtained by
the exact numerical diagonalization of the Hamilton{ai).
Evidently the approximation holds for large coupling con-
stantsy. The energy range in Fig. 3 starts with eigenvalue
number 100. For higher energies the agreement is better than
for smaller energies.

Because only the linear part of the staircase function if the systenjcf. Eq. (28)].

E. Results for the spectral statistics

2

2

- 0w 7 2, 2 47
Ho=wb'b+ = — —+Te 2779 1| — | &
0 2 w b'b (,)2 X

known, the spectra were unfolded using this linear part As already mentioned above, one should take the regular
oscillations N into account in the smooth paN of the
E!=Njn(Ep). (31)  spectral staircase function. If we consider the eigenvalues

coming from the approximate calculati¢®8) as the regular

The distributions of the level spacings=E;,. ,— E, of the part of~the spectrum, the distribution of the differen&gs
exact and the approximate calculations are compared in Fige E,— E,, is Poissonian, which is typical for the level spac-
4. Obviously the distributions show no significant differ- ing distributions of integrable systems.
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F. Second approach to a mixed quantum-classical description In the small coupling casen<w) the Hamiltonian is
In the same way as for the Hamiltoniéf), we can derive almost integrable as well because in this case the two sub-
quasiclassical equations of motion for the transformed sysSyStéms are nearly decoupled. Thus in both limiting cases,
temH: the classical system &f shows regular behavior. Comparing
the above equation83) to the Heisenberg equations for the
-1 7? _ operatorso,
H=§(P2+w2QZ)—Z-i—cos(y’P)ax—Sln(y’P)ay. .
oy=—2T sin(v'P)o,, (353
Like Eq. (7) this Hamiltonian describes a harmonic oscillator
coupled to a spin.. However, the cogplling bet\/\{een the §pin &y= —2T cos(y'P)a,, (35b)
and the oscillator is now a parametriclike coupling in which
the frequency of the spin motion depends on the oscillator
through higher powers of the momentum operd&oiVe use
the same ansatz as in Sec. Il A, i.e.,

[4(t)=[q(t),p(t))®[s(1)),

where[q(t),p(t)) is a Bose coherent state afsft)) a pure _
guantum state of the spin subsystem. Performing the varia- P=-w?Q, (35e

tion with respect to the coordinategt), p(t), and the spin

part |§(t)>, we get the following mixed set of equatiofsee
Appendix A3 for detailed derivations

0,=2T{sin (y'P)ay+cos(y' P)oy}, (350
and the operator® andP,

Q=P—y'T{sin (y'P)oy+cos(y'P)ay}, (350

we recognize the same structure. The transfer matrix element
T, however, is effectively reduced to

o — — _ 2
G=P— ' Te" 207 sin (y/B)5,+ cos (v B3, =T exp(=[A%2),
(329 which is caused by the fluctuations

coupled to the Schrbnger equation for the spin subsystem in the boson mode.

i0,[s)=Te 2 [cos (y'P)ay—sin (v'P)ay][35).

(320 IV. QUANTUM-MECHANICAL DYNAMICS
Passing to the time dependence of the mean values, we get A. Time evolution and initial states
the system In this section we investigate the time evolution of the
B , s state vectory(t)) for various initial conditions. The time
s,=—2Te 1R sin(y'p)s,, (333  propagation has been calculated in the basis of the simulta-

neous eigenvectors &f'b and o, as in Eq.(19):
s,= —2Te W21 cos(y'p)s,, (33b) . .
. ) . . [p(0)=2 Cyvin,h)+ > Civin,l). (36
s,=2Te 2% sin (y'p)s,+ cos(y'p)s,}, (330 n=0 n=0
6=5— y’Te*(l’z)W'Z{sin (7’5)§X+cos(7’5)§y}, In this representation the Schiinger equation
(339 () =H| (D)

7q. (339 for the Hamiltonian(7) is equivalent to the set of first order

differential equations for the coefficien®,(t) and C}\(t):

B0

If the factore~ (V211*=g=27"0* hecomes smaliintermedi-

ate and strong couplingg~w and n>w), the system is

nearly integrable. In this case we get io.Clt)=2 HlL.cho+2 HILCL,
m m

5~0, 5,~0, 5,~0, (349
ia.CLt)= 11 o1 I ol
i.e., the spin will hardly show any motion. For the oscillator 19:Ca(t) % Hn'mCm(t)+% HimCm(Y),
we have
. with the matrix elements
a~p, p=-o74. (34b)

HIT =(n,1|H|m,1)=(n+1/2) 05, m— n(/nd
Thus oscillator and spin are almost decoupled and the system = ) o e
is nearly integrable. +VN+16,m-1),
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Hibh=(n, L HIM, )= (n+1/2) 08y m+ 7(\VN8y mi1 +5sin (60/2)[o+ ' 12,0y [ )], (39
+n+168, m-1), wherey’ = (27/w)\2lw as before.
Considering the dynamics of the transformed syst2w,
Hl=( T HIm, [ =T8, m, it is found from the classical equatiori83) that — in the
strong coupling limit — the spin part shows only a minor
H#Tmz<n,L|H|m,T>=T5n,m. time dependence, whereas the boson mode performs a simple

rotation in its phase space, thg,p) plane.
The time evolution has been calculated for certain initial

spin-boson coherent states C. Trapped states

|4(0))=[do.,Po)®[S0), So=(¢b0,60) (37) Starting with a spin-boson coherent state polarized in
positive o, direction,
i.e., coherent states for both subsystems. The coefficients are

given by [0)=190,P0)®|1), (40
no one has to consider the time dependence of the @a,t)e
Ch(0)= e(””'gf"zf—nile"’So cos(6o/2), where
P [¥0)=a0—7'12po)®|1). (41)
L(0)=e (12182 L9 ; -~
Cal0)=e Jn! Sin (6o/2), This is obviously a spin-boson coherent state Vgl g,

. — %12, Po=Po. In the transformed system the classical mo-
with tion shows only a simple time dependeice Eq.(34)]. The
spin remains almost constant,

® i ® [
= — _ * — —) - —— ~
A \[2‘“ 2a" P \[2‘4 2a" 5, ~const,

In order to get a valuable image of the inherent correlationgvhereas the boson part performs a simple rotation in the
and fluctuations of the quantum motion, we illustrate theoscillator phase space:

dynamical behavior by means of the foQr functionsQ;, - - ~ _
j=0,...,3 d(t)=gp cos(wt) +(po/w) sin (wt),

Qi(B.1)=Tr{aj| B){Blp(1)}. (39 P(t)=Ppo cos(wt) — w(g Sin (wt).

The representation in terms Qf functions proves to be most a time dependence Ep(t)) can now be approximated by
suitable, because they are built upon coherent states and t

. X . . expression
reflect most of the classical dynamics hidden in the quantum
motion|39,42-43. [#0) =€V [0 Po)®|1).
B. Time propagation in the transformed system The additional phase(t) accounts for the time dependence

of the quantum phase, see Appendix A. In the original sys-
tem (applying the transformatio#f to the corresponding op-
erators g(t) andp(t) are explicitly given by

The time dependence of a state vedipft)) governed by
the original HamiltonianH (7) may equivalently be de-

scribed by a state vectb}{)(t)} governed by the Hamiltonian

H (26): q(t)=7y'12+(qo—y'/2) cos(wt)+(py/w) sin (wt),
[d(t))=exp (—iHD)|4(0)). p(t)=po cos(wt) — w(go—7'/2) sin (wt).
The relation between corresponding states Hencel 4(t)) will perform an elliptic motion around the cen-
ter g=1vy'/2, p=0 where the two major axes are given by
o=t Zeo ey e e or e e

_ and thus will appear to be trapped at this point. Obviously
and operatorX=UXi{ "1 is given via the unitary transfor- the same arguments will hold for a state polarized in nega-
mationlU( n/ ). For an initially coherent state tive o, direction:

|th0)=1d0,P0)®|S0) =0, P0) ® | (0, b0)) |0)=1d0.Po) @1 ).

we get In this case|y(t)) will perform an elliptic motion around
_ _ the centeq= — v'/2, p=0 with the two major axes given by
[1ho) =€~ "%9[cos(0y/2)|do— ¥ 12,p0)®]T) Ag=(qo+v'/2 and Ap=p,. For the initial stateqy=
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FIG. 5. Time evolution of quantum vs quasi-
classical description in the oscillator phase space
for the initial state|qo=3q, .po=py)®|1) (¥
=4). In the left-hand side of the figure, the solid
line represents the quantum trajectory up to the
indicated time (t=0.8,4,7.2). The final point of
the trajectory is marked by a square. For the qua-
siclassical description we used a dashed line for
the trajectory and a cross for the final point. Ad-
ditionally the contour lines of th& function
Qs(t) are plotted. The right-hand side shows the
Q function Q3(t), where the spin orientation can
be seen. For detailed explanations see the text.

wt=T7.2

—+v'12 andpy=0 the state vector will appear to be trapped as
well. Thus the state vectors | o) =

3
Go=7 0 » po=ptT>®|T>,

+\ +_ + _
|9 ) =ty =712, Py =0) 1), starting in the “vicinity” of the trapped one is plotted. The

Q function performs the expected rotation in the phase space
[ ) =10y =—7"12,py =0)®]]) of the oscillator. The circle corresponding to the rotation is
plotted as a dash-dotted line in the figure. At least the oscil-
will remain almost constant in time. This fits perfectly to the lator variables can be described by the classical treatment
exact quantum treatment calculated numerically using thésee Fig. 6)].
expansion(36) for the state vector. The infinite sums were The spin variables show very small oscillations but the
truncated at an appropriate number of stieJ his number behavior of the mean value of the spin operator varies
is determined by the dynamical behavior of the system. Onemoothly as compared to the fast oscillations of its quasiclas-
has to make sure that the contribution of the states with sical counterpartfFigs. §b) and &c)].
>N is negligible by checking the distributions €/ (t)|?
and |C/(t)|> which must decrease sufficiently fast far E. Switching the spin orientation

—N. s . .
The next initial state we want to discuss is

D. States starting in the “vicinity” of a trapped state [do=0y , Po=Pg)®|1),

For states starting in the “vicinity” of a trapped state we
expect that the spin state remains nearly constant, whereas., the boson part fits to the trapped statg ), but the state
the oscillator will perform a rotation in the phase spaceof the spin system is switched froffh) to || ). For this state
around the centertg, ,p,;), the location of the trapped state. we can — as a simple approximation — assume that it be-
In Fig. 5 such a state haves like a state starting near the trapped St#fe and
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(a) 20 - - - [ o) =100, Po)® (| T)+]1))/2.

The transformed state can be expressed as a superposition of
two states

q(t) 10

9= (%) + [ )12,

o

10 20 30 40 where the two parts are given by
wt

() 1.0 |Zbg>:|%_ Y'12,p0)®[1),

|5 ) =100+ 7' 12,p0)®| | ).

s.(t . ~ .
@) Obviously| ;) does not represent a simple product state as
in Sec. IV C, however, it may be interpreted as the superpo-
0.975 sition of the two orthogonal spin-boson coherent st&t%s}
and|~¢5) which are nearly dynamically independent.
In Fig. 8, we have illustrated the time evolution of such a
© 1.0 state, namely,
19)=190=05 Po=P)& (1) +11))
sz(t) 0 tr MO tr \/E .
The quantum motion is thus the superposition coming from
0.975 the nearly independent motion of the two spin-boson coher-

ent states as discussed in the previous sections. At first we
have the trapped statey; ) (see Sec. IV Cwhich is almost
motionless. On the other hand, we have the state discussed in

FIG. 6. Quantum expectation valueslid lineg vs quasiclassi-

cal descriptioridashed lines, respectively dotted linegtin| for the Sec. IV E. . .
oscillator coordinatey(t) and the occupation differencg(t) for In Fig. 8 both parts can be identified clearly. The values

the same initial state as in Fig. 5. There is no significant differenc@f Qs Show that the moving peak is correlated with the spin
between quantum and quasiclassical calculation concerning the oState||) whereas the trapped peak is correlated with the spin
cillator variables, whereas the quantum mean val(® of the spin ~ State|T).
operator varies smoothly as compared to its quasiclassical counter- Thus we have strong correlations realized by the two
part. peaks moving in the phase space of the oscillator wkiare
contrast to the initial stajeeach peak is now correlated with
thus performs a rotation around the centgf (p,;). Butwe 3 different spin orientation. The time evolution of the corre-
have to stress that it is starting at a considerable distanagponding state shows an extremely nonclassical behavior,

from the point Q; ,py)- which cannot be described by a product ansatz
In Fig. 7 we have plotted the time evolution of tigg
function Qg for this state. We recognize the largest peak lg(1)#[q(t), p(t)@]s(1)).

rotating around the centeqf ,p; ) (dash-dotted circle The
negative values of); show that this rotating peak is corre-
lated with the spin statg] ).

Here the quasiclassical and quantum trajectories drift away
from each other very early. A quasiclassical description is

" . not possible for such a state.
The additional small structures, which become more and . I "
. However, since the overlap between both “partial states
more enhanced as time goes on, can be addressed to small, .. o . ; A
. o : : : -~ IS’'negligible, it is possible to interpret the respective time
but still existing correlations. Regarding the time evolution

of this state it is obvious that the state splits into three Co_evolutlon with the help of two coherently superposed states,

h ; if one includes the additional phase coming from the TDVP
erently superposed packets, which are themselves Corr?s'ee Appendix AL
lated with different spin states.

We also perceive that up ®t=4 the quasiclassical and
guantum trajectories lie close together. Later in time they
drift more and more away from each other. This is due to the In Fig. 9 the gquantum mean valuss for the different
contribution of the additional structures. The classical trajecinitial states described above are plotted:
tory apparently follows the peak moving outside the dash-
dotted circle. (@  |¥o)=100=0y , Po=Py)®|T)=4),

G. Time evolution of the occupation difference

F. Superposition of states (b)  |¢o)=|do=dy , Po=Py)®|l),

Now we consider as an initial condition a spin-boson co- N N
herent state polarized in the positivg direction: (©  |go)=Ido=0y . Po=py)@(IT)+[1))/V2.



6544 STEIB, SCHOENDORFF, KORSCH, AND REINEKER 57

15
wt=0.8

¢ | =

1 -15

-15 0 15
54

15
1o 2
V2w

FIG. 7. The same as Fig. 5 for a different
initial state:|qo=0y ,Po=pPg @]l ).

o

-15 15

0
X

First, in Fig. 9a) we have the trapped state where the spin idrast to the pronounced chaotic behavior of the usual quasi-
nearly constant as it is expected from the quasiclassical delassical description. Although both Hamiltonians consid-

scription. ered are equivalerfrelated by a unitary transformatid),
The strange time dependencespfin Figs. 9b) and 9¢c)  the resulting quasiclassical equations are not.
cannot be described by the simple product angidy, but Furthermore, the two sets of quasiclassical equations lead

may be captured by an improved description including ento a qualitatively different behavior. The reason for these
tangled states in the quasiclassical treatment using th@iscrepancies is that the unitary transformatiowill turn a
TDVP. product state into an entangled state and vice versa. Thus the
transition from the quantum description to the quasiclassical
V. CONCLUSIONS approximation depends on the selection of a suitable refer-

. . . _ence Hamiltonian.
We have investigated the properties of a system described | the entire time evolution given by the Scliager

by a harmon'ic oscilla}tor cpupled 'to a two-'levellsyst'em- ThiSequation of an initial product state of coherent states can be
model describes various interesting physical situations, e.gexpressed as a product state

a quasiparticle coupled to polarization vibrations in a dimer
model. Such dimers may be realized as molecular dimers or
as dimer traps in, e.g., an organic solid. Dimers are also
frequently used model systems for the investigation of the . . . .
electronic energy transport in solids. Thus a more thorougl’{' the course of t'Te' the corresponding quasiclassical equa-
understanding of the energy transport in dimers also contribtions derived fronH are expected to give reasonable results.
utes to a better understanding of the energy transport in solid.herefore the quasiclassical description can only be adequate
We used an approach complementary to the usual quadior certain initial conditions of the system. In a spin-1/2 sys-
classical treatment. Identifying an integrable Hamiltonian intem, however, the quantum fluctuations in the spin variables
the strong coupling case, we found that, especially in the
strong coupling limit, the system is nearly integrable in con- Wo?)—{(a)?

la(t),p(t)@|s(t))=exp (—iHt)|q(0),p(0))®|s(0))
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are very largeof order(co)). This leads to highly entangled APPENDIX A: QUASICLASSICAL EQUATIONS

states which are very common in this model. Thus a reason-
able description of such systems with inherent large quantum
fluctuations and thus extremely nonclassical states should be There are various qualitatively different ways to construct
described by tools, which include both fluctuations and enMixed equations of motion where one component of the sys-
tanglement of the two subsystems, in a straightforward mant€m is treated classically and the other purely quantum me-
ner. This will lead to more degrees of freedom in the TDVP.chanically. The most reasonable approach is to write down
The main purpose of the paper was the investigation othe equation of motion for the classical part and the Schro
the connection between the full quantum-mechanical soludinger equation for the quantum part. The coupling between
tion and various classical approximations in the strong couth€se two components is approximated by a coupling taking
pling case. An experimental test of the results should bdto accountonly the expectation values of the quantum sys-
possible on systems mentioned in the Introduction and abovi™M: This may be considered as a self-consistent or mean-

using short-time, pump-probe, coherent, or Raman spectrog—eld approximation to the comblneql dyn_am|cs. However,
copy. one should keep in mind that following this procedure cer-

tainly neglects the fluctuations present in the nearly classical
system. Even more restrictive, also certain correlations
which will show up as time goes on are not included here.

In order to deal with these aspects in a uniform way we
use thetime-dependent variational principl€34] to con-

We appreciate valuable discussions with A. Engelmannstruct self-consistent equations of motion for mixed
Financial support from the Deutsche Forschungsgemeinguantum-classical systems. This formalism takes the quan-
schaft(DFG) is gratefully acknowledged. One of the authorstum fluctuations, present in the nearly classical system, into
(P.R) acknowledges discussions with H. Morawitz and aaccount in a straightforward manner. Further this method is
NATO Collaborative Research Grant. — depending on the ansatz — capable of accounting for

1. The time-dependent variational principle
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(2) L0 e bt ] for inserting the phase(t) will become clear later. If we
plug this test function into the TDVP, we get the Lagrangian
El
s:(1)

e 1 . . 1 5 5, o
=t 5(qp=pa)+ 5 (p°F™q)+ 5

0.9 : : ; ,
0 10 20 30 40 +{pl{—id+Hz}|p)+(a,p|F1(Q,P)[a,p)(#|F2| #).
t
“ The variation of this Lagrangian with respectdét), p(t),
(k)  1r y - " g and ¢(t) leads to the equations of motion
i " N _
RN ] q=p. (A4a)
s:(0) o U WP\WJ
U ] p=—w?q— dqF 1(q,p)(B|F2l ¢), (Adb)
1 10 20 30 40 10 ) ={H,+F1(a,p)F 2} ), (Ado)
t — —
¢ with F1(d,p)=(,p|F1(Q,P)|q,p). Both symbolsF; and
{(¢) 1.0 . - ; F, do not coincide in general, unle$s(Q,P) is a linear

function of Q and P.

However, since the phaggt) enters into the Lagrangian
L only via a total time derivativeyp itself will not appear in
the equations of motion. Due to this gauge invariance of the
equation of motion with respect to the phasgit has to be
fixed in addition according to

s.(t)

0 10 20 30 40
wt

| awpoli-isemiluwy=o.  @s)

FIG. 9. Time evolution of the occupation differencg(t)
(quantum-mechanical treatmerfor the strong coupling casey(
=4). The initial state corresponding ta) is the trapped statel; ),
whereas the initial states f@b) and(c) are the same as in Fig. 7,
respectively, Fig. 8.

Therefore the phasg may be omitted in the construction of
the quasiclassical equations of motion for this combined sub-
system.

entangled states, which might occur in the course of time. 2. Equations from the Hamiltonian H

The TDVP is based on the simple fact that the stationary To derive the quasiclassical equations from the Hamil-
points y(t) of the action functional tonianH of the first approaclil1) we use the TDVP ansatz

Inserting this into the Lagrangiaf and performing the
((¢|¢)=1) are just the solutions of the Sckinger equa- Variation with respect to the coordinatgét), p(t), and the
tion [46]. As a brief example let us consider a harmonicspin part|s(t)) we finally arrive at a coupled set of differ-
oscillator, the subsystem 1, coupled to a sectmehantunm ential equations for the approximate behavior of the mean
system. The Hamiltonian of the combined system reads  values €=(s|o}]s)):

S=—2(e—2 , A7
H= 3P+ 0?Q)) +Hy + FiQ PP, (A2) S e V2umsy (A7
s,=2(e—\2w7q)s,—2Ts,, (A7b)

whereF; depends only on the operatd@s P of subsystem
1, H, is the Hamiltonian of the subsystem 2, ahgdepends ézz 2Ts, (A7c)
only on operators of subsystem 2.
Assuming that the combined quantum system behaveand the oscillator variables

nearly classically, i.e., the correlation between bosgyp) )
and spin ) degrees of freedom are negligible, we are led to a=p, (A7d)
the factorized ansatz

. p=—w’q+\20(7s,~ 7). (ATe)

() =e'*Clq(t),p(t)®| H(1)), (A3)
It is worthwhile to note that these equations take the same

where |q(t),p(t)) is a coherent state of the oscillator and form as if one calculates the Heisenberg equations and then
|4(t)) is a state of the second subsystem alone. The reasgrasses to a classical description by considering all operators
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asc-numbers. Both prescriptions coincide here but only be-
cause the various operators of the subsystems occur only in

linear combinations.

3. Equations from Hamiltonian H

To derive the quasiclassical equations for the Hamiltonian

of the second approad27), we use the same formalism as

in the preceding section and we get the following set of

differential equationsg=(s|o(s)):

S,=—2Te 21 sin (4'D)3,,

QUANTUM-MECHANICAL AND QUASICLASSICAL ...
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S,=—2Te 21 cos(y'p)s,,
s,=2Te” 121 (sin (y'p)5,+cos(y'P)s,},
q=p—y'Te" @21 sin (y'B)5,+cos(y'P)S,},
4.

Unlike in the preceding section, these equations are not lin-
ear inQ and P, which effectively leads to the modification
of the transfer matrix elemenit discussed in Sec. Il F.
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