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Stochastic hysteresis and resonance in a kinetic Ising system
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We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an
oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on small systems
and weak field amplitudes at a temperature belowTc . For these restricted parameters, the magnetization
switches through random nucleation of asingledroplet of spins aligned with the applied field. We analyze the
stochastic hysteresis observed in this parameter regime, using time-dependent nucleation theory and the theory
of variable-rate Markov processes. The theory enables us to accurately predict the results of extensive Monte
Carlo simulations, without the use of any adjustable parameters. The stochastic response is qualitatively
different from what is observed, either in mean-field models or in simulations of larger spatially extended
systems. We consider the frequency dependence of the probability density for the hysteresis-loop area and
show that its average slowly crosses over to a logarithmic decay with frequency and amplitude for asymptoti-
cally low frequencies. Both the average loop area and the residence-time distributions for the magnetization
show evidence of stochastic resonance. We also demonstrate a connection between the residence-time distri-
butions and the power spectral densities of the magnetization time series. In addition to their significance for
the interpretation of recent experiments in condensed-matter physics, including studies of switching in ferro-
magnetic and ferroelectric nanoparticles and ultrathin films, our results are relevant to the general theory of
periodically driven arrays of coupled, bistable systems with stochastic noise.@S1063-651X~98!11306-5#

PACS number~s!: 05.40.1j, 75.60.2d, 77.80.Dj, 64.60.Qb
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I. INTRODUCTION

Hysteretic response to an oscillating control paramete
‘‘force’’ is a nonlinear nonequilibrium phenomenon com
monly observed in both natural and man-made systems.
example most familiar in physics and electrical engineer
is probably the hysteresis loop produced when a ferroma
at a temperature below its critical temperatureTc is placed in
an oscillating magnetic field@1–3#. Similar behavior is seen
in ferroelectrics@4–7#. Some other examples are electr
chemical adsorbate layers that are driven through a ph
transition by an oscillating electrode potential in a cyc
voltammetry experiment@8,9#, systems driven through
phase transition between different liquid-crystalline pha
by pressure oscillations@10#, and systems driven through
solid-liquid phase transition by temperature oscillatio
Hysteresis is often modeled by systems of differential eq
tions that display discontinuous bifurcations@11–13#.

Systems that exhibit hysteresis have in common a non
ear, irreversible response, which causes the phase of th
sponse to lag behind the force. The physical mechanism
causes the hysteretic behavior can, however, be quite di
ent in different systems and even in different parameter
gimes for the same system. The details of this mechan
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must be considered in order to accurately predict such
pects of the hysteretic response as its dependence on
frequency and amplitude of the oscillating force. Here
present a study of hysteresis in a particular model sys
which incorporates both spatial degrees of freedom and t
mal fluctuations—a kinetic Ising ferromagnet—in a para
eter regime where the model has a first-order phase trans
in equilibrium and the system response isstochastic. The
model and its behavior in this regime are relevant to at le
two different research areas that are rarely discussed
gether: experimental studies of switching dynamics in na
scale ferromagnetic and ferroelectric particles and ultrat
films, and theoretical and experimental studies of stocha
resonance in spatially extended systems. We hope
present study may contribute to some intellectual cro
fertilization.

In recent years new experimental techniques, such
magnetic force microscopy~MFM! @14–18#, have been de-
veloped that permit measurements of the magnetization s
and switching behavior of particles as small as a few nano
eters. Ferromagnetic particles in this size range consist
single domain in equilibrium, and together with ultrath
films they are of interest as potential materials for ultrah
density recording media. The dynamics of magnetization
versal in such systems has been modeled with kinetic Is
systems subject to sudden field reversal@19–23#. These nu-
merical and analytical studies have given results in qual
tive agreement with the experiments mentioned above.
cent experiments on ultrathin ferromagnetic Fe/Au~001!
films @24# have considered the frequency dependence
hysteresis-loop areas, which were interpreted in terms of
fective exponents consistent with those found for a conti
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57 6513STOCHASTIC HYSTERESIS AND RESONANCE IN A . . .
ous spin model@7,25–27#. Similar experiments on ultrathin
Co films on Cu~001! have found exponents consistent with
mean-field treatment of the Ising model@28#. These studies
of nanoparticles and ultrathin films suggest that experime
can now be performed on systems sufficiently small t
atomic-scale simulations become feasible, and that kin
Ising systems are useful models for switching in such na
scopic systems.

Since its introduction as a possible model for the tim
dependence of the Earth’s ice ages@29#, the concept of sto-
chastic resonance has been applied to a variety of phen
ena in physical and biological science and engineering
which response to a periodic force is enhanced by noise@30#.
Most early treatments considered a single bistable elem
similar to a mean-field model of a ferromagnet@31–33#, with
added noise. However, more recently experimental stu
have been conducted with chains of coupled diode resona
@34#, and numerical and theoretical studies have conside
locally coupled one-dimensional time-dependent Ginzbu
Landau or Frenkel-Kontorova models@35–38#, Ising models
in one @39#, two @40#, and three@41# dimensions, chains o
coupled nonlinear maps@42#, and systems of globally
coupled bistable elements@43#.

Here we consider hysteresis in a two-dimensional sp
1/2, nearest-neighbor, kinetic Ising ferromagnet in an os
lating field with periodic boundary conditions. For conv
nience, and because of the many experimental measurem
of hysteresis that address magnetic systems, we use the
tomary magnetic language, in which the order paramete
the magnetization per site,m(t)P@21,11#, and the force is
the magnetic fieldH(t). However, we expect our results als
to apply to stochastic hysteresis phenomena in other are
science. For example, in dielectricsm(t) and H(t) can be
reinterpreted as polarization and electric field, in adsorpt
problems as coverageu(t)5@2m(t)21# and~electro!chemi-
cal potential or~osmotic! pressure, etc.

Below Tc and in zero field this Ising model has two d
generate magnetized phases corresponding to a majori
the spins in the positive or the negative direction. A we
applied field breaks the degeneracy, and the phase with
spins aligned~antialigned! with the field is stable~meta-
stable!. If the field varies periodically in time, the system
driven back and forth across a first-order phase transit
and the two phases alternate between being moment
stable and metastable. As a result,m(t) lags behindH(t),
and hysteresis occurs. In the regime of small system s
weak applied field, and temperature well belowTc consid-
ered here, the system switches abruptly and stochastic
between the two magnetized phases. A difference betw
two-dimensional, locally coupled bistable systems, such
this Ising model, and the one-dimensional arrays studie
most of the stochastic-resonance studies cited above@34–
39,42#, is that locally coupled one-dimensional systems ha
no ordered phase at nonzero temperature or noise inten
The apparent long-range order in those studies is therefo
finite-size effect. However, the average equilibrium dom
size grows exponentially with decreasing temperat
@39,44#. For chains much shorter than this size, the abse
of true long-range order should not be qualitatively sign
cant for the hysteretic behavior.

The metastable phase in Ising models exposed to astatic
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field H decays by different mechanisms, depending on
magnitude ofH, the system sizeL, and the temperatureT
@45#. Two distinct regimes are separated by a crossover fi
called the dynamic spinodal,HDSP(T,L). These two decay
regimes can be distinguished by the statistical propertie
the lifetime of the metastable phase. The lifetime is defin
as t5t(m50), the first-passage time to a magnetization
zero, following an instantaneous field reversal fromH to
2H. For uHu@HDSP, the mean of the lifetime,̂t&, is much
greater than its standard deviation,st . Therefore this field
region is termed the ‘‘deterministic regime.’’ ForuHu
!HDSP, ^t&'st and this field region is therefore termed th
‘‘stochastic regime.’’ Both the deterministic and stochas
regimes are further subdivided according to the modes
which the metastable phase decays. The deterministic reg
is split into the multidroplet~MD! and strong-field~SF! re-
gions for the low and high fields in this regime, respective
For a given system size the stochastic regime is also divi
into the coexistence~CE! and single-droplet~SD! region for
the low and high fields in this regime, respectively. Detail
discussions of these different decay modes are found in R
@45–47#. At sufficiently low T that the single-phase correla
tion lengths are microscopic, the different decay regimes
be distinguished by the interplay among four length sca
the lattice spacinga, the system sizeL, the radius of a criti-
cal dropletRc , and the average distance between superc
cal dropletsR0. The latter two lengths increase with decrea
ing field strength:Rc}1/uHu and R0}exp@const/uHud21#,
whered is the spatial dimensionality. Here we consider sp
cifically decay in the SD region, which is characterized b

a!Rc!L!R0 . ~1.1!

In this regime, the decay of the metastable phase proceed
random homogeneous nucleation of asingle critical droplet
of the stable phase, which then quickly grows to take o
the system. We have previously proposed@19–21,46# that
this decay mechanism may apply to, e.g., barium ferrite p
ticles in the 50–70 nm diameter range@15#. The crossover to
the MD region corresponds toR0;L. As a result, the dy-
namic spinodal depends asymptotically onL as HDSP(T,L)
;(ln L)21/(d21). In the SD region the critical droplet is muc
smaller than the system itself, and the crossover to the
region is marked byRc;L. The corresponding crossove
field, called the thermodynamic spinodal, therefore depe
on L as HTHSP(T,L);L21. In recent exploratory studie
@48–50# we have shown that the response of a kinetic Is
model to an oscillating field is qualitatively different for th
MD and SD regions. We plan to describe the details of
response in the MD region in the future@51#.

Theoretical studies of hysteresis have been performed
several models, using a variety of methods. These incl
various studies of models with a single degree of freedo
equivalent to mean-field treatments of the Ising model@31–
33#, Monte Carlo ~MC! simulations of the spin-1/2 Ising
model@26,27,52–60#, and severalO(N) type models@7,25–
27,61#. These studies were performed with variations in t
details of the simulations and in the model parameters. M
of them indicate that the average hysteresis-loop area,^A&
52^rm(H)dH&, appears to display power-law depe
dences on the frequency and amplitude ofH(t). However,
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6514 57S. W. SIDES, P. A. RIKVOLD, AND M. A. NOVOTNY
there is no universal agreement on the values of the ex
nents, either experimentally or theoretically. For the Is
model, nucleation effects that would lead to a logarithm
frequency dependence have been proposed@6,26,62#. A
mean-field model exhibits a dynamic phase transition
which the mean period-averaged magnetization,^Q&
5(v/2p)^rm(t)dt&, changes from̂Q&Þ0 to ^Q&50 @32#.
Such a dynamic phase transition has been suggested
MC simulations of a kinetic Ising model as well@51,52–
57,59,60,63#.

The work presented in this paper differs from most p
theoretical and numerical studies of hysteresis in two imp
tant ways. First, mean-field models do not take into acco
thermal noise and spatial variations in the order parame
thus ignoring fluctuations which may be important in re
materials. Second, most previous investigations of hyster
in Ising models have considered the frequency and amplit
dependence of quantities such asQ and A, without consid-
ering the manner in which the metastable phase decays

Considering the nucleation-based single-droplet de
mechanism, we find that the average hysteresis-loop area
hibits an extremely slow crossover to a logarithmic dec
with frequency and amplitude in the asymptotic low
frequency limit. This crossover is sufficiently slow that th
behavior can easily be misinterpreted as a power law o
several orders of magnitude in frequency. We also show
the average loop area and the residence-time distribution
the system magnetization exhibit evidence of stochastic r
nance, and we provide a connection between the chara
istic decay time of the residence-time distributions and
power spectral densities of the magnetization time series.
find no evidence of a dynamic phase transition in the
region.

The rest of this paper is organized as follows. Section
supplies background information on the simulation of t
kinetic Ising model. In Sec. III some general properties of
time-series data are discussed. In Sec. IV the probability
the system magnetization doesnot switch sign during a pe-
riod of the field,Pnot(v), is derived. This derivation is cen
tral to theoretical calculations throughout this paper. Sec
V presents theoretical calculations and MC simulation d
for the residence-time distributions~RTDs!. Also, we define
and calculate the characteristic time of the RTDs and sh
its relevance to the low-frequency behavior of the pow
spectral densities~PSDs! of the time series, which are ana
lyzed in Sec. VI. Section VII discusses the hysteresis-lo
area, the correlation between the magnetization and the fi
and the period-averaged magnetization. Finally, Sec. V
contains a summary and conclusions.

II. MODEL

The model used in this study is a kinetic, nearest-neigh
Ising ferromagnet on a hypercubic lattice with period
boundary conditions. The Hamiltonian is given by

H52J(̂
i j &

sisj2H~ t !(
i

si , ~2.1!

wheresi is the state of thei th spin and can have the value
si561, (^ i j & runs over all nearest-neighbor pairs, and( i
o-
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runs over allN5Ld lattice sites. The order parameter is th
time-dependent magnetization per site,

m~ t !5
1

Ld (
i 51

N

si~ t !. ~2.2!

The dynamic used is the Glauber@44# single-spin-flip
Monte Carlo algorithm with updates at randomly chos
sites. The time unit is one Monte Carlo step per sp
~MCSS!. The system is put in contact with a heat bath
temperatureT, and each attempted spin flip fromsi to 2si is
accepted with probability@64#

W~si→2si !5
exp~2bDEi !

11exp~2bDEi !
. ~2.3!

Here DEi is the change in the energy of the system th
would result if the spin flip were accepted, andb51/kBT
wherekB is Boltzmann’s constant. It has been shown in t
weak-coupling limit that the stochastic Glauber dynamic c
be derived from a quantum-mechanical Hamiltonian in co
tact with a thermal heat bath modeled as a collection
quasi-free Fermi fields in thermal equilibrium@65#.

In this paper all numerical calculations are performed
d52, L564, andT50.8Tc . This value ofT is sufficiently
far away from the critical temperature so that the therm
correlation length is small compared to the critical drop
radius and the size of the system. The system is subjec
either an oscillating field,H(t)52H0 sin(vt), or to a con-
stant field of magnitudeH0.

As discussed in Sec. I, the decay of the metastable ph
in the presence of an external fieldH proceeds by nucleation
of droplets of the stable phase@45#. Figure 1 shows the meta
stable and stable phases as local minima in the free ene

F~m,H,T!5F~m,0,T!2mL2H, ~2.4!

FIG. 1. The free energyF(m,H,T) shown vs magnetizationm
for the nearest-neighbor Ising ferromagnet on a 64364 square lat-
tice atT50.8Tc . Data are shown forH50.0J and 0.1J. The data
were obtained from a study in which a multicanonical MC alg
rithm was used to findF(m,0,T) @66#. The inset shows an expande
view of the portion of the free-energy curve near the metasta
state forH50.1J. The barrier height is on the order of 1kBT.
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TABLE I. Parameters and constants used in this work. The values of the parametersH0, L, andT have
been selected such that switching occurs via the single-droplet mechanism, while the maximum nuc
rate is not too low to obtain reasonable simulation statistics. The constantsJ0(T) andK are calculated from
droplet theory@68–71# for two-dimensional Ising systems. The constants^t& and r are measured from
field-reversal MC simulations with the Glauber dynamic~using the parameters listed above!. The constantsV
@71# andn @72# have been measured in other work~for clarity, we do not explicitly show the temperatur
dependence of these quantities in the table or elsewhere in the paper!. The value forHDSP is taken from Fig.
11 of Ref.@66#.

Parameters Constants~theory! Constants~simulation!

H0 0.1J J0(T) 0.506192J V 3.15255

L 64 K 3 ~exact! n (0.46560.014)J21 (MCSS)21

T 0.8Tc ^t& 2058 MCSS

HDSP (0.1160.005)J

r 0.672
i-

m
v
o

he
to

th
ld

ca

t
th
s

d
In
os
ni
hi
e

ce

is

is

g.

as
up

ted
e
ons
ith

-

ga-
f an
MC

en
tate

e

that
î†of a nearest-neighbor Ising model on a 64364 lattice at
T50.8Tc @66,67#. For H50 there are two degenerate equ
librium phases of magnetization6meq(T), separated by a
free-energy barrier of height proportional toLd21. For H
5H050.1J the value ofm near11, whereF has its global
minimum, is the stable magnetization. The local minimu
near m521 represents the metastable phase. The con
parts of the barrier represent a single spherical droplet of
phase embedded in the other. The droplet is acollective ex-
citation @43# through which the switching proceeds, and t
critical droplet is the droplet configuration corresponding
the local maximum ofF at a given value ofH @66#. For H
,0 the stable and metastable phases are reversed.

The average number of droplets of the stable phase
are formed per unit time and volume is given by the fie
and temperature-dependent nucleation rate,

I „H~ t !,T…'B~T!uH~ t !uKexpF2
J0~T!

uH~ t !ud21G . ~2.5!

The notation follows that of Ref.@19#, whereB(T) is a non-
universal temperature-dependent prefactor, andK and
J0(T) are known from field theory@68–70# and simulations
@45# and are listed in Table I. The quantityJ0(T) is the
field-independent part of the free-energy cost of a criti
droplet, divided bykBT. The external field,H(t), is the only
quantity through whichI „H(t),T… depends on time in this
adiabatic approximation.

Several quantities, whose values do not depend on
frequency of the applied field, are required as input for
theoretical calculations in the following sections. The
quantities, which include the average lifetimêt(H0)&
'@LdI (H0 ,T)#21, are listed in Table I. They are determine
through what we refer to as ‘‘field-reversal simulations.’’
these simulations the system initially has all spins up or p
tive. It is then subjected to a static external field of mag
tudeH0 with a sign opposite the system magnetization. T
instantaneous field quench prepares the system in a m
stable state, and the decay of the metastable phase pro
by the mechanisms outlined in the Introduction.
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III. TIME-SERIES DATA

In the simulations presented here, a sinusoidal field
applied to the system. Its amplitude,H050.1J,HDSP, is
chosen such that in field-reversal simulations the system
clearly in the SD region for a field of magnitudeH0. The
dynamic spinodal field is approximated byHDSP'H1/2,
whereH1/2 is the value ofH ~for given L andT) for which
the relative standard deviation of the lifetime,r 5st /^t&, is
1/2 @45#. This value ofHDSP is given in Table I. It approxi-
mately equals the field for which the local minimum in Fi
1 disappears@66#.

To obtain the raw time-series data, an Ising system w
initially prepared with either a random arrangement of
and down spins withm(t50)'0, or with a uniform arrange-
ment with all spins up. Then the sinusoidal field,H(t)
52H0 sin(vt), was applied and changed every attemp
spin flip, allowing for a smooth variation of the field. Th
time series did not appear to depend on the initial conditi
after a few periods. The simulations were performed w
several values of the driving frequencyv. For each fre-
quency, we recorded the time-dependent magnetizationm(t)
for approximately 16.93106 MCSS. Each of these raw time
series data files store the values oft, H(t), and m(t) in
increments of 1 MCSS. Each file takes up about 800 me
bytes and took about 9 days to run, using a single node o
IBM sp2 computer. These are among the most extensive
simulations of hysteresis in Ising systems to date.

It is useful to think of hysteresis as a competition betwe
two time scales: the average lifetime of the metastable s
following an instantaneous field reversal fromH0 to 2H0,
^t(H0)&, and the period of the external forcing field, 2p/v.
Therefore we specify the ratioR of the period to the averag
lifetime,

R5
~2p/v!

^t~H0!&
. ~3.1!

One may think ofR (1/R) as a scaled period~scaled fre-
quency!.

We note that̂ t(H0)& is the ‘‘shortest of the long time
scales’’ in the present system. From Fig. 1 we observe
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whereas the free-energy barrier represented by the cri
droplet for uHu5H0 is on the order ofkBT, the barrier be-
tween the degenerate phases atH50 is on the order of
50kBT. For this temperature and system size, the time s
for spontaneous fluctuations between the phases in the
sence of an applied field,^t(0)&, is therefore essentially in
finite. Conversely, the nucleation of the critical droplet ne
essary to leave the metastable phase is entirely driven by
thermal fluctuations, even when the field has its maxim
strengthH0. Switching in this system therefore truly depen
on the joint action of the random thermal noise and the
terministic oscillating field.

Figure 2 shows short initial segments of the magnetiza
time series in the SD region for three different values ofR.
In all three cases,m(t) fluctuates near one of the two dege
erate values of the spontaneous zero-field magnetiza
punctuated by rapid transitions between these two val
that are completed during asinglehalf-period of the applied
field. The rapid switching ofm(t) is evidence of the nucle
ation of a single critical droplet that reverses the sign of
magnetization. The magnetization ‘‘plateaus’’ are due to
failure of any critical droplet of the stable phase to nuclea
The fluctuations inm(t) on these plateaus indicate appe
ance and disappearance of subcritical droplets. For low d
ing frequencies the magnetization switches twice during
most every field cycle, whereas for high frequenc
switching occurs only occasionally. The ‘‘spikes’’ inm(t)
seen forR52.5 occur when a single droplet nucleates, b
does not have time to grow and switch the system magn
zation before the field becomes unfavorable and the dro
rapidly collapses. The number of field cycles shown in Fig
is small compared to the total number of cycles in an en
time series.
al

le
b-

-
he

-

n

n,
s,

e
e
.

-
v-
l-
s

t
ti-
et
2
e

IV. PROBABILITY OF NOT SWITCHING
DURING A PERIOD

The probability that the system does not switch during
full period of the field,Pnot(v), is central to the theoretica
understanding of hysteresis in the SD region. It occurs m
directly in the calculation of the residence-time distributio
in Sec. V. In addition, elements in the derivation ofPnot(v)
are fundamental for describing most of the observed qua
ties in this study.

As mentioned in Sec. III, the system exhibits abru
switches during which the average magnetization chan
between values near6meq. As seen in Fig. 2, these even
occur quickly compared to the period of the external fie
and to a first approximation the time it takes the droplet
grow to fill the system~the growth time! is negligible. A
more realistic treatment takes the finite growth time into
count as a lag time between the nucleation of a critical dr
let and the time at which the system switches.

The first part of the derivation is presented without t
effects of the growth time. This is done for simplicity, a
well as to emphasize the role of the growth time as acorrec-
tion to the basic picture of a variable-rate Poisson proce
First we derive the expression for the cumulative probabi
that a switching event has occurred by timet, F(t), in terms
of the time-dependent rate of aninstantaneousdecay pro-
cess,r(t). @This cumulative probability should not be con
fused with the free energyF(m,H,T) of Eq. ~2.4!.# It is
convenient to introduceF̄(t)512F(t), the probability that
a switching eventhas not occurred by timet. Standard
theory of variable-rate Markov processes@73# leads to a dif-
ference equation forF̄(t),
e
volume.
ich is
istic

o early
F̄~ t1Dt !5F̄~ t !3~probability an event has not occurred in the interval@ t,t1Dt# !5F̄~ t !@12r~ t !Dt#, ~4.1!

which in the limit Dt→0 gives

dF̄~ t !/dt52r~ t !F̄~ t !. ~4.2!

The growth timetg(t) is introduced into the derivation at the level of Eq.~4.1!. It is defined as the time between th
nucleation of a critical droplet and the time when the volume of this droplet becomes approximately half the system
The dependence of the growth time ont is a consequence of the time dependence of the interface growth velocity, wh
approximately proportional toH(t). For suitably long time scales, the growth of a supercritical droplet is a determin
process. Another quantity in this derivation is the time at which a droplet nucleates,tn(t). If a switching event occurs at time
t, thentn(t)5t2tg(t). Where clarity is not sacrificed, we do not show the explicitt dependence oftg or tn . For a switching
event to occur in any particular period of the external field, a critical droplet must not only nucleate, but must do s
enough so there is sufficient time for it to grow to the volume of the system. Therefore the difference equation forF̄(t) is
modified to read

F̄~ t1Dt !5F̄~ t !3~probability a switch has not occurred within@ t,t1Dt# !

5F̄~ t !3~probability a droplet has not nucleated within@ tn ,tn1Dtn# !

5F̄~ t !@12r~ tn!Dtn#

5F̄~ t !F12r~ tn!
dtn
dt

Dt G . ~4.3!
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FIG. 2. Short initial segments
of the magnetization time serie
m(t) ~solid line! and the external
field H(t) ~dashed line! vs time t
in the SD region, forT50.8Tc ,
d52, L564, andH050.1J. The
total length of the time series is
approximately 16.93106 MCSS.
For these parameter values the a
erage lifetime in static field is
^t(H0)&'2058 MCSS. The time
series are shown for the scale
field periods~a! R510, ~b! R55,
and ~c! R52.5.
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We can express this result in terms of the growth timetg and
its derivative, using

dtn
dt

512
dtg
dt

. ~4.4!

Substituting into Eq.~4.3! and lettingDt→0 gives

dF̄~ t !

dt
52r~ t2tg!F12

dtg
dt G F̄~ t !. ~4.5!

Integrating Eq.~4.5! gives the cumulative distribution,

F~ t !512expF2E
0

t

r@ t82tg~ t8!#S 12
dtg~ t8!

dt8
D dt8G .

~4.6!

Differentiation gives the probability density function~PDF!
for switching events at timet,

P~ t !5
dF

dt
5r@ t2tg~ t !#F12

dtg~ t !

dt G
3expF2E

0

t

r@ t82tg~ t8!#S 12
dtg~ t8!

dt8
D dt8G .

~4.7!

For tg50, Eq. ~4.7! is equivalent to Eq.~9! of @74#. The
growth timetg is obtained from the expression for the tim
dependent volume of a supercritical droplet

V~ t,tn!5VF E
tn

t

v~ t8!dt8Gd

, ~4.8!

wheret.tn . Herev(t) is the droplet interface velocity an
V is defined such that the volume of an equilibrium drop
of radiusR is VRd @71#. Using the Lifshitz-Allen-Cahn ap-
proximation @75–78#, the interface velocity is v(t)
n

ai
ly
w
in
t

'nuH(t)u. The proportionality constantn depends on the de
tails of the dynamics. Here we use values for the Glau
dynamics, obtained from field-reversal simulations by R
moset al. @72#. The values of the constants used in our c
culations are listed in Table I. Ford52, Eq. ~4.8! for the
growth time becomes

V~ t,t2tg!5
L2

2
5VF E

t2tg

t

nH0sin vt8dt8G2

5
Vn2H0

2

v2
$cos@v~ t2tg!#2cosvt%2. ~4.9!

For a static field of strengthH0, the growth time is

t̃ g5
1

A2V
S L

nH0
D . ~4.10!

Substituting this expression into Eq.~4.9! gives

cos@v~ t2tg!#5 t̃ gv1cosvt. ~4.11!

Solving for tg such thattg,t gives

tg~ t !5H t2S 1

v
cos21@cosvt1 t̃ gv# D , t0,t,p/v

0 otherwise,
~4.12!

where

t05
1

v
cos21@12 t̃ gv#. ~4.13!

The time t0 is the first time during a period for which th
probability of switching is non-zero. IfH(t50)50 and
m(t50)'21, then the probability densityP(t) that a
switching event takes place at timet is
P~ t !55
0, 0,t,t0

r@ t2tg~ t !#F12
dtg~ t !

dt GexpS 2E
0

t

r@ t82tg~ t8!#F12
dtg~ t8!

dt8
Gdt8D , t0,t,p/v

0, p/v,t,2p/v

~4.14!
ient
by

al
the
s

where the ranges fort ensureP(t) is nonzero only whent
.tg and the signs ofm(t) andH(t) are not equal. Higher-
order corrections, including the probability that a seco
droplet nucleates duringtg , were found to be numerically
insignificant. The main approximation used here to obt
tg(t) lies in ignoring the slower growth of droplets on
slightly larger than the critical radius. This has been sho
to be permissible for adiabatically slow-forcing models
which large droplets grow exponentially in time@79#. In the
d

n

n

present case, however, we simply consider it a conven
approximation, whose accuracy is ultimately confirmed
our numerical simulations.

In the SD region, the average lifetime in a field-revers
simulation should be dominated by nucleation. Therefore
total nucleation rate in a static fieldH0 can be expressed a

r05@^t&2 t̃ g#21 ~4.15a!
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FIG. 3. The switching prob-
ability density P(t)/v vs vt for
five values of the period of the ex
ternal field, R51.5, R52.5, R
55, R510, and R5100. The
plots are obtained from a numer
cal evaluation of Eq.~4.14!. The
inset shows the decay rate,r(t) vs
vt. The timet0 is the earliest time
during a period, for whichP(t) is
nonzero. Even though the deca
rate always has a maximum whe
the phase equalsp/2, the value of
the phase for whichP(t)/v is
maximum depends on the fre
quency.
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5LdI ~H0 ,T!. ~4.15b!

The nucleation rate in a static field of strengthH0 should be
equal to the nucleation rate in a sinusoidal field of amplitu
H0 at the maximum of the field,r05r(t5p/2v). The ratio
of these two decay rates is then

r~ t !

r0
5

I „H~ t !,T…

I ~H0 ,T!
. ~4.16!

Substituting the form of the nucleation rate, Eq.~2.5!, into
the expression above allowsr(t) to be recast in a form
which does not explicitly contain the nonuniversal prefac
B(T):

r~ t !5r0usin~vt !uKexpF2
J0~T!

uH0ud21S 1

usin~vt !ud21
21D G .

~4.17!

This expression holds whenm(t) and H(t) have opposite
signs, whiler(t)50 when they have the same sign. Usi
Eq. ~4.15a! for the maximum decay rate givesr05(6.62
60.07)31024 (MCSS)21, using quantities listed in Table I
Figure 3 showsP(t)/v vs vt for five different frequencies
of the external field. The inset in Fig. 3 showsr(t) vs vt.
The nucleation rate achieves its maximum value,r0, at a
phase ofvt5p/2, independent ofv. However, the location
and width of the maximum forP(t) depend strongly onv.
This behavior results from the combined field dependenc
the nucleation rate and the interface growth velocity. FoR
*100, P(t) narrows and the location of its maximum shif
to lower phase values as the switching begins to occur be
the maximum inr(t). As R is decreased below 1.5,vt0
→p, and the area under the curve forP(t)/v goes to zero.
Therefore the conditionvmaxt05p gives the maximum fre-
quency for which single-droplet switching is possible. Usi
Eq. ~4.13! and converting the result to a bound on 1/R gives
(1/R)max51.1960.03. For higher frequencies, switchin
events are very rare, and if they occur at all, they do
through a multidroplet mechanism. The probability of n
switching during an entire period is obtained by integrat
the probability densityP(t),
e

r

of

re

o
t

Pnot~v!512E
0

p/v

P~ t8!dt85F̄S p

v D . ~4.18!

The frequency dependence ofPnot(v) is the aspect of this
quantity most important for comparisons with our MC da
However,Pnot(v) also depends on other parameters throu
the nucleation rate.

V. RESIDENCE-TIME ANALYSIS

As mentioned in Sec. III, the magnetization exhib
abrupt switches between values near6meq. In contrast, the
times between the magnetization reversals are comparab
or greater than, the period of the applied field. As a fi
approximation, one may therefore consider these switch
events as occurring in a discrete two-state system. Fo
Ising system undergoing a field-reversal experiment@45#, the
lifetime in the SD region is stochastic and is well describ
by droplet theory. For an oscillating field, the analogo
quantity is the time between reversals of the magnetizat
called the residence time. The probability density for the
residence times is called the residence-time distribut
~RTD! @80,81#. In Sec. V A we construct analytical expre
sions for the RTDs and compare these with the RTDs
tained from our simulated time series. In Sec. V B we cal
late the area of the peaks in the RTDs, or the RTD pe
strengths, and compare our theoretical results for the p
strengths with MC data. Finally, we show that our data
the RTD peak strengths provide evidence of stochastic re
nance in the model.

A. Residence-time distributions

We define the residence timeD as the time between con
secutive magnetization reversals, and denote its probab
density asP(D). The details of our theoretical deviation o
P(D) are given in the Appendix. The results of the theor
ical calculation for the residence-time distributions, whi
containno adjustable parameters, are shown as solid cur
in Figs. 4~a!–4~c! for different values ofR.

Next, we give a description of the MC analysis for th
RTDs.@The results of this analysis are shown as solid dots
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Figs. 4~a!–4~c! for different values ofR.# When measuring a
RTD one must ignore ‘‘false crossing events.’’ In the
events, the magnetization crosses zero and recrosses
again within a short time without having reached a va
near the stable magnetization. There appear to be two
sons for these recrossing events. First, whenm(t)'0 the
magnetization can recross zero many times due to the
fluctuations. Second, during some of the periods there wil
a ‘‘spike’’ in the magnetization when a supercritical drop
nucleates but does not have time to completely take over
system before the applied field changes sign. For this rea
a cutoff is employed, and a switching event is recorded o
when m(t) reaches some cutoff value6mcut. To quantify
the meaning of the cutoff, definet i

1 and t i
2 as the times at

FIG. 4. Residence-time distributions~RTDs!. The time axis is
scaled by the period 2p/v of the external field for each value ofR,
so that the peaks are centered around odd half-integer multi
The RTDs are shown for~a! R510 ~150 bins, 1239 events!, ~b!
R55 ~250 bins, 1439 events!, and ~c! R52.5 ~500 bins, 1089
events!. The filled circles are obtained from the MC simulation
The solid curves represent the theoretical calculation presente
the Appendix.
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which m(t i
1)51mcut andm(t i

2)52mcut, respectively. The
residence timeD i is given by

D i5H t i 11
1 2t i

2 when m~ t !'21 for t i
2,t,t i 11

1

t i 11
2 2t i

1 when m~ t !'11 for t i
1,t,t i 11

2 .

~5.1!

We usedmcut50.25. For each frequency, the residence tim
are measured over an entire time series. The size of the
in a RTD is set by dividing the maximum observed residen
time by the number of bins. Both the maximum residen
time for a given time series and the number of bins are
ferent for different frequencies. Hence, the size of the bin
different for each of the graphs in Fig. 4. Scaling the re
dence times by the period of the external field centers
peaks in the RTD about every odd half-integer. In the lo
frequency limit, the system spends enough time in an un
vorable field during every half-period to allow the magne
zation to switch. In this limit, the RTD would contain
single peak centered around 1/2. As the frequency of
field is increased, there should be more periods during wh
the magnetization does not switch at all, indicated in
RTDs by an increase of the size of the peaks centered on
5/2, etc. The RTD data from MC simulations are shown
Fig. 4 as solid points together with the theoretical curves

The smoothest MC results,and the best agreement be
tween theory and simulation, occur forR*10. The agree-
ment is quite good, considering that the theoretical calcu
tion containsno free parameters. All of the constants in th
formulas for the nucleation rate and the interface growth
locity come from theoretical considerations or from fiel
reversal simulations. The agreement is poor only for
highest frequencies, corresponding toR&2.5. For these val-
ues ofR the MC data are suspect. First, for these high f
quencies of the external field, the sizes of the peaks for la
residence times are significant. For all of the frequenc
shown, the data sets have approximately the same total n
ber of switching events. Therefore a smaller number
events is contained in each bin of the RTDs for the hig
frequencies. Second, in spite of the cutoff there are t
peaks in the RTDs forR52 through 5 in the interval 0
,vD/2p,1. Of these two peaks, the peak at the shor
residence time comes from ‘‘spikes’’ in the magnetizati
which are large enough to extend past the cutoff value,
still do not switch the system completely within a field p
riod. These ‘‘spikes’’ in the time series redistribute weig
from the higher-order peaks of the RTD into the spurio
peak at short residence times. This affects the measurem
of the peak strengths from the MC data as well, as discus
in the next section.

B. RTD peak strengths

The frequency dependence of the strengths of the peak
the RTD is another quantity which describes the nature
the magnetization reversal. The strength of thej th peak in a
RTD is given by

Sj~v!5E
~ j 21!2p/v

j 2p/v

P~D!dD. ~5.2!
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The peak strengths obtained from the MC time series
shown as solid dots in Fig. 5. The statistical errors are e
mated by error-propagation analysis asASj (12Sj )/N, where
N is the total number of switching events in a simulation ru
For almost all of the data points the error bars are sma
than the symbol size. The solid lines in Fig. 5 are theoret
results. The strength of the first peak,S1(v), is simply the
probability thatm(t) switches signwithin the first period
after the last field reversal,

S1~v!512Pnot~v!. ~5.3!

Therefore the strength of thej th peak is

Sj~v!5Pnot~v! j 21@12Pnot~v!#. ~5.4!

The values forPnot(v) used in this calculation were obtaine
by numerically integrating Eq.~4.18! for several values ofv.
This parameter-free numerical evaluation of the theoret
peak strengths is in good agreement with the MC data
Fig. 5 one can see this agreement, especially for the stre
in the first peak,S1(v), for all but the highest-frequency dat
point at 1/R50.5. However, the MC data slightly overest
mate S1(v) even for low frequencies. This is due to th
redistribution of strength from the higher-order peaks in
the first peak due to ‘‘spikes’’ in the time series which e
tend past the cutoff, as mentioned in Sec. V A. Hence,
peak strengths for the higher-order peaks are systemati
underestimated by the MC data, particularly forS2(v). The
agreement between the theoretical curve and the data is
quite as good forS2(v), S3(v), and S4(v) at higher fre-
quencies. However, this is expected, due to the poorer st
tics for these higher-order peaks.

Analysis of the RTDs for two-state systems has been u
to detect stochastic resonance~SR! @30,80#. Gammaitoni
et al. studied the switching behavior and residence times
an analog circuit, which served as a model of a bista
system driven by random noise and a sinusoidal exte
forcing @81#. They found for their model that SR is manife
in the fact that each of the peak strengths in the RTDs h
maximum for a given frequency of the field. If the frequen
v j corresponds to the location of the maximum inSj , then

FIG. 5. Peak strengths in the RTDs vs scaled frequency 1R.
The different curves, from top to bottom, correspond toS1, S2, S3,
and S4. The statistical errors are everywhere on the order of
symbol size or less. The solid curves, obtained from Eq.~5.4!, result
from the same parameter-free calculation as the RTDs.
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v1,v2,v3,•••. ~5.5!

This approach gives an alternative definition for SR, diffe
ent from the original definition as the noise intensity f
which the signal-to-noise ratio~SNR! exhibits a maximum
@30#. Since the SNR does not exhibit a maximum with r
spect to the frequency of the forcing, the definition sugges
by Gammaitoniet al. facilitates the understanding of SR a
the tuning of one time scale~inverse frequency! to another
~average lifetime of the metastable phase!, more analogous
to a ‘‘bona fide’’ resonance.

The case studied in Ref.@81# was one of a very weak
oscillating field, such that the noise-driven switching rate
zero field was of the same order of magnitude as the esc
rate from the metastable state in maximum field. As a res
there was onlyone long time scale, and for sufficiently low
frequencies most of the escapes were completely therm
driven. This would redistribute the number of escapes w
residence times less thanp/v into a peak at much shorte
times, corresponding to the thermal escape rate of the
forced bistable system and giving a nonzero value ofv1.

For the system studied here the thermal switching rate
zero field is virtually zero, as pointed out in the discussi
following Eq. ~3.1!. As a result,S1 increases monotonically
towards unity as the driving frequency is lowered. ForS1 to
display a maximum, the weight in the RTD’s must shift t
wards times much shorter than the period ofH(t). These
residence times would correspond to events in which a sin
thermal fluctuation switches the system. One can increase
thermal switching rate in zero field@or decrease the therma
relaxation time in zero field̂t(0)&# by increasingT. ~Recent
measurements of telegraph noise in nanoscale ferromag
particles are able to show this quite clearly@82#.! But in-
creasing the temperature can move the system into an
tirely different decay regime~either the MD or SF regime
depending on the value ofT) where the stochastic nature o
the response disappears. However, even thoughS1 does not
display a maximum, the higher-order peak strengths do h
maxima atv2,v3,•••. From Eq.~5.4! the theoretical po-
sitions of these maxima are seen to be given by the condi
Pnot(v j )5( j 21)/ j , which yieldsv150. ThroughPnot(v)
they are determined by the competition between the pe
of the deterministic forcing and a stochastic time sca
which is theminimummetastable lifetimêt(H0)&.

If we were to reduceL to push the simulations into th
coexistence~CE! region, then̂ t(0)&, which depends expo
nentially on Ld21 through the barrier in the free energ
F(m,0,T), would approach the escape time^t(H0)&, which
by Eq.~4.15b! is inversely proportional toLd. As a result,S1
should be observed to decrease at very low frequencies
sufficiently small systems. In this regime, the critical drop
volume would be on the order of half the system volum
This effect was recently observed by Lindneret al. in simu-
lations of a one-dimensional chain of bistable eleme
driven at a constant frequency and subject to noise of v
able intensity@36,37#.

Our results lead us to make the observation that amaxi-
mumin S1 is not necessary for the response of the system
the oscillating field to be characterized as ‘‘resonan
Rather,m(t) is essentially synchronized withH(t) in the
whole frequency range whereS1 is close to unity. The uppe
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limit of this range is proportional tov2 and therefore deter
mined by^t(H0)&, whereas the lower limit would be dete
mined by the~in our case unobservably long! ^t(0)&. This
theme will be discussed further in Sec. VII A.

C. Characteristic time of the RTDs

For each of the RTDs shown in Fig. 4, the size of t
peaks decreases for large residence times. The rate of
decrease can be quantified by measuring how the p
strengths decrease with increasing peak number. We de
the characteristic timeh(v) for the RTDs~in units of the
field period, 2p/v) as

h~v!5
1

ln Sj~v!2 ln Sj 11~v!
. ~5.6!

The value ofh(v) for any frequency of the field is measure
from the MC data by plotting lnSj vs j . The slope of a
best-fit line through this data gives21/h(v). The inverse
characteristic times calculated from the MC data by
weighted least-squares fit are shown in Fig. 6. The statis
uncertainty in the estimates for the characteristic time
comes large for the lowest and highest frequencies. For
very lowest frequency shown, 1/R50.05, few switching
events contribute to any of the peaks in the RTD, other t
the first peak. Hence there are poor statistics in the lnSj data
for j .1, resulting in a large uncertainty in the fitted slop
For high frequencies the RTDs contain many peaks. Si
the total number of switching events in each time serie

FIG. 6. The inverse characteristic time of the RTD
@2pRh^t&#21, vs the scaled frequency 1/R. The inverse character
istic time is given in units of 1025 (MCSS)21. The solid dots are
calculated from MC data for the peak strengths of the RTDs. T
inset shows examples of lnSj vs the peak numberj , along with their
linear least-squares fit lines. The three frequencies shown in
inset are 1/R50.4, 0.2, and 0.1, in order of increasing slope. T
error bars on the data are calculated from the standard deviatio
the slopes of the fitted lines. The solid curve is obtained from
full numerical calculation of Eq.~5.7!. The horizontal long-dashed
line results from a low-frequency approximation obtained by sett
tg50. This horizontal line is located at a value of@2pRh^t&#21

51.431025 (MCSS)21 obtained by numerical integration of Eq
~5.11!. The short-dashed line represents the frequency^t&/R, which
has been scaled to have the units of (MCSS)21. The open oval
around the point for 1/R50.5 is a reminder of the poor statistic
and large systematic error in the RTD for this frequency.
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approximately equal, the statistics for each peak is poor
addition to this purely statistical error, there is also a syste
atic effect due to the cutoff used to measure the reside
times. Namely, the RTDs displaytwo peaks for the interval
0,vD/2p,1. This extra weight inS1(v) introduces addi-
tional systematic error which tends to raise the estimate
u1/h(v)u for higher frequencies.

The theoretical calculation of the characteristic time sta
by substituting Eq.~5.4! for Sj (v) into Eq. ~5.6!, which
gives

h~v!5
21

ln Pnot~v!
. ~5.7!

The calculation ofh(v) is now trivial becausePnot(v) has
already been evaluated numerically in Sec. V B. The so
curve in Fig. 6 shows the theoretical results from the f
numerical calculation ofPnot(v). The theoretical result di-
verges at a value of 1/R'1.19, the maximum value of the
frequency for which single-droplet switching is possible.
this value of 1/R, Pnot51, and the characteristic time d
verges. For frequency values 1/R.1.19 mechanisms othe
than single-droplet decay might be possible, such as sev
droplets nucleating simultaneously. Given the length of o
simulations, it is unlikely such behavior would be observe
Indeed, the statistical and systematic errors discussed a
preclude accurate measurement of the characteristic
from the MC data for 1/R*0.4.

For low frequencies, both the theoretical and the MC
sults for the characteristic time appear constant. This m
vates the search for an approximate, analytic expression.
start by casting Eq.~5.7! in terms of the cumulative probabil
ity distribution,

h~v!52
1

ln F̄~p/v!
. ~5.8!

Using the low-frequency approximationtg50 gives

h~v!5
1

2E
0

p/2v

r~ t8!dt8

, ~5.9!

where the upper limit in the integral is rewritten because
nucleation rater(t) is symmetric aboutt5p/2v. Substitut-
ing u5sin(vt) into Eq. ~4.17! for r(t) allows one to write
the integral above as

h~v!5F2r0

1

vE0

1 u3

A12u2
expF2

J0~T!

H0
S 1

u
21D GduG21

.

~5.10!

The final result for the characteristic time is given in units
^t& by multiplying both sides of the equation above byR and
simplifying,

Rh5Fr0^t&
p E

0

1 u3

A12u2
expF2

J0~T!

H0
S 1

u
21D GduG21

,

~5.11!
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where all the quantities are known except for the integ
which can be calculated numerically. This theoretical res
is shown in Fig. 6 as a horizontal dashed line. The definit
of h(v) in Eq. ~5.6! admits to an interpretation of the cha
acteristic time as an exponential decay constant forSj (v) as
a function ofj . Thereforeh(v) is a convenient average me
sure of a RTD, with long characteristic times correspond
to large peaks at long residence times. The exponential
ture of the decay of the RTD with time should give rise to
Lorentzian component in the power spectral density w
half-width f 1/2'@2pRh^t&#21'1.431025 (MCSS)21, ob-
tained from a numerical evaluation of Eq.~5.11!. This low-
frequency component should be visible in the spectrum w
f 1/2,v/2p.

The result in Eq.~5.11! was obtained in a low-frequenc
approximation by settingtg50. Further approximation can
be made in the evaluation of Eq.~5.11!. The main contribu-
tion to the integral in the denominator occurs foru'1. Ex-
panding each factor in the integrand ine512u for small e
and substitutingx25J0(T)e/H0 gives the Gaussian ap
proximation,

Rh5Fr0^t&
p
A 2H0

J0~T!
E

0

AJ0~T!/H0

e2x2
dxG21

5Fr0^t&
p
A pH0

2J0~T!
erfAJ0~T!

H0
G21

,

~5.12!

which gives @2pRh^t&#2151.931025 (MCSS)21, and
was obtained by inserting quantities from Table I. The agr
ment between this value and the data is not as good as
obtained directly from the numerical evaluation of E
~5.11!. However, the expansion in smalle improves for large
J0(T)/H0. So this analytic formula forh(v) would be ap-
propriate for low frequencies and small amplitudes of
external field, i.e., field amplitudes which place the syst
even deeper into the SD region.

VI. POWER SPECTRAL DENSITIES

A standard method used to characterize a time series
calculate its power spectral density~PSD!. Figure 7 shows
the PSDs of the raw data, short segments of which are sh
in Fig. 2. These PSDs are calculated with a standard
Fourier transform~FFT! algorithm implemented using
Welch window @83#. To reduce the variance in the PSD
each time series is split into several segments. The data
then overlapped in such a way as to obtain an ‘‘averag
over all the segments for each frequency bin. The detail
this method, which we refer to as ‘‘smoothing,’’ are given
Ref. @83#. Depending on the number of segments into wh
the original time series is split, there is a trade-off betwe
frequency resolution and variance reduction. If the time
ries is split into many segments, the variance per bin is
creased at the expense of lower-frequency resolution. C
versely, by partitioning the data into fewer long segme
one obtains higher-frequency resolution and a smaller l
frequency cutoff, at the expense of a larger variance per

The PSDs for different driving frequencies are shown
Fig. 7. The spectra in the main part of the plot have be
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shifted in the vertical direction by arbitrary offsets. The spe
tra in the inset of Fig. 7 are plotted with no offset. Differe
amounts of smoothing have been used for the low- and h
frequency regimes. In the low-frequency regime, le
smoothing is used. This increases the frequency resolu
enabling one to see sharper peaks in the spectra and sa
more of the low-frequency response. In the high-frequen
regime, more smoothing is used. Since there is less powe
the PSDs for the higher frequencies, a reduction in the v
ance is a higher priority than frequency resolution. T
fourth spectrum shown in Fig. 7, labeled ‘‘background
corresponds to thermal fluctuations in a single-phase sys
To obtain this spectrum, a simulation was performed o
system with the same size, temperature, and for the s
number of MCSS as the other spectra, in astatic field of
H0 /A2. The magnetization quickly relaxes to equilibrium
The equilibrium fluctuations are purely thermal, and th
time correlations are exponential with a short correlat
time of only a few MCSS. The PSD should then have t
functional form of a Lorentzian. When plotted on a log-lo
scale a Lorentzian appears flat at low frequencies, t
crosses over into a linear curve with a slope of22. The tail
on the observed noise background does not appear to
slope522. However, this is most likely due to aliasing e
fects near the Nyquist frequency,VN5p @83#, which is only
about one order of magnitude larger than the inverse co
lation time.

To describe the PSD for each frequency, we identify fo
distinct regions:~1! the thermal noise region,~2! the peaks,
~3! the low-frequency region, and~4! the intermediate re-
gion. The inset in Fig. 7 shows how the PSDs collapse o
the background spectrum in the thermal noise region

FIG. 7. Power spectral densities~PSDs!. Spectra are shown fo
three different frequencies of the external field, and are plotted w
an arbitrary offset for clarity. The inset shows the same spe
without the offset to illustrate how all three PSDs fall onto t
thermal noise background at high frequencies. In addition to
change in the amount of smoothing, the right-hand section of e
spectrum contains only one data point out of every 25 to facilit
plotting. The magnetization is sampled every 1.0 MCSS, so
Nyquist frequency is 0.5 (MCSS!21. The lowest frequency that ca
be resolved is 2.3831027 (MCSS)21. The dashed line with slope
22 is a guide to the eye. The arrow indicates a frequency of
31025 (MCSS)21 in the PSD. This frequency value is the hal
width of the spectrum predicted in Sec. V C for low frequencies
the external field.
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large frequencies. The time scale of the thermal fluctuati
is much shorter than the shortest period of the external fi

The most prominent features of the PSDs are the sh
peaks. For each driving frequency, the first peak in the sp
trum is located atv, the frequency of the external field. Th
second peak is located at 3v, the third peak is located at 5v,
and so on. These odd harmonic peaks arise because the
of the time series strongly resembles a square wave~refer to
Fig. 2!. The powerpn contained in thenth component of the
Fourier series for a pure square wave ispn
516@sin(np/2)#4/(np)2, which is nonzero only for oddn
and decays asn22. The zeros inpn for evenn survive as
zeros in the PSD for a switching process in which the swit
ing probability densityP(t) reduces to a delta function@84#.
The finite width ofP(t) for the present system smoothes o
such singularities in the PSD. However, a clear dip in
PSD at twice the driving frequency can be seen forR510.
This effect was also noticed by Zhou and Moss in the we
noise regime for analog simulations of a bistable circuit@85#.

The low-frequency region comprises the portion of ea
spectrum between the first peak and the lowest resolved
quency. The PSD in this region exhibits a strong depende
on the frequency of the external field. ForR5100, the aver-
age intensity in the low-frequency region is approximat
constant and is weaker than the fundamental peak inten
by about three orders of magnitude. ForR52.5, the slope of
the PSD in the low-frequency region is close to22 over
almost two orders of magnitude and contains compone
comparable in intensity to that of the fundamental peak. T
significant amount of power at low frequencies is a con
quence of the long residence times, i.e., those reside
times longer than the period of the field. The Lorentzi
half-width predicted from the RTDs in Sec. V C,f 1/2'1.4
31025 (MCSS)21, is in good agreement with the PSD fo
R52.5. One can see from Fig. 7 that if the first peak fo
PSD is located at a frequency smaller~larger! than approxi-
mately 1.431025 (MCSS)21, there are small~large! low-
frequency components. In an analogous fashion, the l
frequency behavior of the PSDs can be deduced
comparing the inverse characteristic time,@2pRh^t&#21, in
Fig. 6 with the frequency,̂t&/R @in units of (MCSS)21#,
which is shown as a short-dashed line in the same figure.
low driving frequencies,̂ t&/R,@2pRh^t&#21. Therefore
most of the residence times are less than a period of
external field, which corresponds to small low-frequen
components in the PSDs. For high driving frequenci
^t&/R.@2pRh^t&#21, and large low-frequency componen
appear in the PSDs.

The intermediate region is the portion of each spectr
between the highest-order visible peak and the thermal-n
region. This region is discussed last because it is best un
stood as a crossover from the peaks to the thermal-n
region. The structure of the odd-harmonic peaks is easie
discern forR5100, where the first five peaks are clear
visible. The higher-frequency harmonics cannot be seen
two reasons: the peak positions become very closely sp
on a logarithmic scale, and the intensity of the peaks
comes too small to be seen above the fluctuations in
PSD. So the intermediate region may be thought of as
envelope of the high-frequency, odd-harmonic peaks. A l
log plot of pn vs oddn yields a line with a slope of22.
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However, the portion of the PSD just to the left of th
thermal-noise region is decreasing with a slope steeper
22. This sharp falloff is a consequence of the finite grow
time of a critical droplet. A finite growth time effectively
‘‘smoothes out’’ the sharp corners of the square-wave
sponse of the magnetization, which introduces a cutoff
the highest-frequency components ofpn in the intermediate
region.

VII. HYSTERESIS LOOPS, CORRELATION, AND
PERIOD-AVERAGED MAGNETIZATION

To characterize the behavior of an entire time series
calculate the following integrals of the magnetization:

A52 R m~H !dH, ~7.1!

B5
v

2p R m~ t !H~ t !dt, ~7.2!

Q5
v

2p R m~ t !dt, ~7.3!

whereA is the hysteresis-loop area,B is the correlation be-
tween the external field and the system magnetization, anQ
is the period-averaged magnetization. These quantities
calculated over each period in the entire time series. Fr
the resulting ‘‘filtered’’ time series we construct histogram
to obtain the probability densities ofA, B, andQ for each
separate frequency of the external field.

In Sec. VII A we compare our MC data and theoretic
calculations ofA and B. In particular, we comment on th
low-frequency power-law scaling forA which has been pu
forth in numerous studies. At the end of this section we sh
our results forB and identifyA and B as components of a
nonlinear response function. In Sec. VII B we discussQ and
the absence of a dynamic phase transition in the SD reg
for this system.

A. Hysteresis loops and correlation

The hysteresis-loop areaA represents the energy diss
pated during a single period of the applied field. It is the
fore one of the most important physical quantities charac
izing hysteretic systems, and it is frequently measured
experiments. Under the conditions of stochastic magnet
tion reversal,A andB are random variables with nontrivia
statistical properties. Figure 8 shows the probability densi
of A. For all values ofR&10, there is a sharp peak near ze
This peak is denoted asA0 and corresponds to the fiel
cycles during whichm(t) does not switch sign, but merel
fluctuates near6meq. The second peak,A1, is located near
A/(4H0)50.5. It represents field cycles during whichm(t)
switches signonce. The third peak,A2, located near a loop
area ofA/(4H0)51.0, represents cases whenm(t) switches
sign twice within the same period. When the period of t
field increases, the weight in the peaks moves from low
high values ofA. For H(t) with longer periods, the magne
tization has a higher probability of switching once or twi
during a single period, thus transferring more weight to
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peaksA1 andA2. For very low frequencies, the magnetiz
tion almost always switches twice in each period, givi
loops of typeA2. At the same time, switching occurs earli
in each half-period. This reduces the average loop area,
ing rise to the type of PDF shown forR5100 in Fig. 8.
Figure 9 shows typical hysteresis loops with values ofA
corresponding to the three peaks,A0, A1, andA2.

The fraction of events contained in each of these peaks
denote asf 0, f 1, and f 2. These are the probabilities that th
magnetization switches zero, one, or two times in a full
riod of the field. They depend on the probability that the s
of m(t) is opposite that ofH(t) immediately afterH(t) has
switched sign at the beginning of the period. We call t
phase probabilityp2 . In terms ofp2 andPnot(v) we have

f 05Pnot~v!, ~7.4a!

f 15p2Pnot~v!@12Pnot~v!#1~12p2!@12Pnot~v!#,

~7.4b!

f 25p2@12Pnot~v!#2. ~7.4c!

FIG. 8. Probability densities for the hysteresis-loop area,A5
2rm(H)dH. The values ofR shown here areR52, 2.5, 3, 4, 5, 6,
10, 20, and 100.
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e
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The phase whose probability is given byp2 changes in a
two-state Markov process described by a transition ma
fully determined byPnot(v). It is easy to show that the sta
tionary value ofp251/@11Pnot(v)# @86#. After the phase
distribution has reached its stationary state, we therefore

f 05Pnot~v!, ~7.5a!

f 15
2Pnot~v!@12Pnot~v!#

@11Pnot~v!#
, ~7.5b!

f 25
@12Pnot~v!#2

@11Pnot~v!#
. ~7.5c!

These expressions satisfy the normalization conditionf 0
1 f 11 f 251. The f i are directly related to the RTD pea
strengths,Sj , through their common dependence onPnot. In
particular, f 05Pnot512S1.

It is less clear how to separate the peaks when measu
the fractions from the MC data. For example, with cutoffs
0.333 and 0.666 an event is considered part of peakA0 if
0,A/4H0,0.333, part of peakA1 if 0.333,A/4H0,0.666,
and part of peakA2 if 0.666,A/4H0,1.0. Different cutoffs
were tried and judged by how well they fit the theoretic
results. No particular choice produced a fit that was qual
tively better than others. Comparisons of thef i calculated
from theory and simulation are shown in Fig. 10. The d
points are measured from the loop-area distributions, us
cutoffs at 0.333 and 0.666. The solid curves are calcula
from Eqs. ~7.5a!–~7.5c!, using the theoretical values fo
Pnot(v). Considering that no free parameters are used in
theory, it agrees well with the simulation data.

The average loop area for a specific frequency is a qu
tity often displayed in experimental and numerical studies
hysteresis. It can also be obtained in the present case, an
do so below. However, for stochastic hysteresis this is no
very useful quantity at higher frequencies, where the dis
butions are trimodal. The means of the distributions in Fig
are shown in Fig. 11. Note that the vertical bars arenot error
bars, but rather give the standard deviations of the distri
-
-
s

.

lf

e

FIG. 9. Representative hyster
esis loops corresponding to differ
ent numbers of switching event
during one period of the applied
field. Each loop in~a!–~c! consists
of data from asingle period in a
time series withR54. ForA0, no
magnetization reversal occurs
This example shows a ‘‘spike’’ in
the magnetization during one-ha
of the period. ForA1, one magne-
tization reversal occurs during th
period. ForA2 in ~c! and ~d!, two
magnetization reversals occur.~d!
shows a hysteresis loop of typeA2

from a very low-frequency time
series withR5100. Note: the ar-
row tails with filled dots indicate
the start of the field cycle.
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FIG. 10. Frequency dependence of the fraction of events contained in the peaks~a! A0, ~b! A1, and~c! A2. The solid dots are measure
directly from the data in the loop-area distributions, and the dashed lines are guides to the eye. The solid curve in each plot is c
using Eqs.~7.5a!–~7.5c! with Pnot(v) obtained from a numerical evaluation of Eq.~4.18!. ~d! The loop-area distribution forR56 is shown
to illustrate the peak sizes in the trimodal distribution.
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tions. The dotted curve is obtained by assuming that the fl
tuations of the loop areas are small in each of the th
peaks. An approximate value for the scaled loop area ca
assigned to each of the three peaks,^A0&/4H0'0.00,
^A1&/4H0'meq/2, and^A2&/4H0'meq. With these choices
we assume that the magnetization switches when the a
lute value of the external field is close to a maximum. T
average loop area is calculated by weighting these value
the fraction of events in each peak,

^A&HF

4H0
5 f 0~v!S ^A0&

4H0
D1 f 1~v!S ^A1&

4H0
D1 f 2~v!S ^A2&

4H0
D ,

~7.6!

where ‘‘HF’’ stands for ‘‘high-frequency.’’ This expressio
breaks down in the low-frequency limit, asf 2→1 and^A2&
becomes strongly frequency dependent. Next we discuss
effect.

For any finite time series there is a sufficiently low fr
quency such that the magnetization always switches du
every half-period of the field. For very low frequencies t
magnetization switches, on average,beforethe field reaches
its extreme value during every half-period. Therefore
loop-area distribution becomes unimodal, and the mean l
area decreases with decreasing frequency. Since the p
ability density of switching times,P(t), is narrow and uni-
c-
e
be

o-
e
by

his

g

e
p

ob-

modal for low frequencies~refer to Fig. 3!, we can choose
the typical time when the magnetization switches dur
each half period,ts , to be either its mean, mode, or media
We use the latter because it is analytically more tractable
has an analytic asymptotic approximation. To determine
median ofP(t) we must solveF(ts)51/2, where the cumu-
lative probability distributionF(t) is given by Eq.~4.6!. To
simplify the form of this equation we note that for low fre
quencies the hysteresis loops are square@refer to Fig. 9~d!#,
which means that the growth time becomes small compa
to ts and can be ignored. Thus the equation forts becomes

F~ ts!512expF2E
0

ts
r~ t8!dt8G5

1

2
. ~7.7!

After rearranging and substitutingx5J0 /@H0sin(vt)#d21,
we obtain

ln 25E
0

ts
r~ t8!dt8 ~7.8!

5r0

eJ0~T!/H0
d21

H0
K E

0

ts
@H0sin~vt8!#K

3e2J0~T!/[H0sin~vt8!] d21
dt8 ~7.9!
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5r0

eJ0~T!/H0
d21

J0
~K11!/~d21!

H0
K11~d21!v

3E
J0 /Hs

d21

` x2~K1d!/~d21!e2x

A12@~1/H0!~J0 /x!1/~d21!#2
dx.

~7.10!

As the frequency is decreased the switching field,Hs

FIG. 11. ~a! Mean and standard deviation of the loop-area d
tributions shown vs the scaled frequency 1/R. The solid dots are the
means of the distributions shown in Fig. 8. The vertical bars arenot
error bars, but give the standard deviations of those distributi
The large standard deviations for 1/R*0.1 indicate the trimodal
distribution of the loop areas, typical of the SD region. For t
points at the two lowest frequencies the magnetization switc
nearly every half-period, giving a loop-area distribution which
close to unimodal. The solid and dotted curves come from
separate theoretical calculations. The solid curve results from
merical solution of an analytic expression for the switching fie
that assumes switching occurs during every half-period. The do
curve comes from a calculation which uses the same value
Pnot(v) used for the theoretical curve in Fig. 10.~b! Log-log plot
for the very lowest frequencies in~a!. The solid curve is the same a
the solid curve in~a!. The long-dashed line segments repres
linear least-squares fits to different portions of the numerical s
tion data, each covering almost four decades in frequency. The
that yield the effective exponentb150.077 are centered aroun
log10(1/R)523.35; those that yieldb250.033 are centered aroun
log10(1/R)5213.78. The solid dots are MC simulation data. T
short-dashed curve represents Eq.~7.16! with d52 andC50.101
J21 MCSS.
5H0 sin(vts), decreases. For very low frequenci
x@J0 /H0

d21 and the radical in Eq.~7.10! is of order one,
resulting in the expression

ln 25r0

eJ0~T!/H0
d21

J0
~K11!/~d21!

H0
K11~d21!v

3E
J0 /Hs

d21

`

x2~K1d!/~d21!e2xdx, ~7.11!

which may also be derived through a linear approximation
the sinusoidal field,H(t)'H0vt. After rearranging and sim-
plifying this becomes@50#

CH0v5GS 12
K1d

d21
,

J0

Hs
d21D , ~7.12!

whereG(a,x) is the incomplete gamma function@87#, and
we define

C5
ln2 H0

K~d21!e2J0~T!/H0
d21

J0
2~K11!/~d21!

r0
.

~7.13!

With d52, K53, and the values found in Table I,C
50.101 J21 MCSS. For smallv the hysteresis loops ar
practically square, so the scaled loop area in the lo
frequency~LF! limit can be expressed as

^A&LF

4H0
'meq

Hs~v!

H0
. ~7.14!

The switching fieldHs(v) is obtained from a numerical so
lution of Eq.~7.10!, and the result for̂A&LF/4H0 is shown as
the solid curve in Figs. 11~a! and 11~b!. Figure 11~b! shows
the good agreement between this parameter-free calcula
and the MC data for frequencies 1/R<0.05.

One can obtain an approximate analytic solution by tak
the first term in the asymptotic expansion@87#

G~a,x!;xa21e2xF11
a21

x
1••• G ~7.15!

for largex. By ignoring the factorxa21, one obtains a com-
pletely analytic solution forHs in the extreme LF limit, re-
sulting in the asymptotic, logarithmic frequency dependen
for the loop area

^A&LF'4J0
1/~d21!@2 ln~CH0v!#21/~d21!. ~7.16!

In Fig. 11 we show calculations of both this asympto
analytic result~short-dashed curve! for the loop area and the
loop area obtained from the numerical solution~solid curve!
of Eq. ~7.10!. The dashed lines in Fig. 11~b! are linear least-
squares fits to the full numerical solution over almost fo
decades in frequency. The slopes of these fit lines would g
an ‘‘effective’’ exponentb for the loop area,A}vb. For the
frequency regime shown, these effective power-law ex
nents for the loop area depend on frequency. These re
show no evidence of an overall power-law relationship b
tween the frequency and the loop area.

-

s.

s

o
u-

d
of

t
-
ta



fir
le

he
f
re

Eq
en
th
m

d
so
r
in
pe
e
ol
er
v
n
nt
nd
d
re
ri

v
pe
ur

he
a

l

nd
r,
s
e
ir
o
o
e
e

e
ti
ve
rr
i

e
t

lo

n
th
es
th
fin

for
is-
at a
ch
ce.’’

els

um
ize.

er-
no
or

a-

e-
o

the
iza-
the
se

of

f

and
the

6528 57S. W. SIDES, P. A. RIKVOLD, AND M. A. NOVOTNY
To the best of our knowledge, the present study is the
to give a complete solution ofA and emphasize its possib
significance for the low-frequency power-law behavior ofA
reported in the literature. This issue is discussed in furt
detail in a separate paper@50#. Theoretical considerations o
nucleation effects on hysteresis have been mentioned p
ously in the literature @6,26,62#, reporting the same
asymptotic frequency behavior for the loop area as in
~7.16!. However, we stress that the purely logarithmic dep
dence of the loop area on frequency and amplitude of
external field will approach the exact solution obtained fro
Eq. ~7.10! only for extremelylow frequencies, as illustrate
by the poor agreement between the short-dashed and
curves in Fig. 11~b!. The units of frequency used in ou
simulations may be converted roughly into hertz by equat
a phonon frequency with an inverse Monte Carlo step
spin,n̄51 (MCSS)21, with n̄5109–1012 Hz as a reasonabl
estimate. Then, the lowest frequency calculated for the s
curve in Fig. 11~b! corresponds to a field period on the ord
of thousands to millions of years. The full asymptotic beha
ior of the loop area is realized for frequencies lower still, a
is therefore well outside the range of feasible experime
However, the lowest-frequency MC data point correspo
to a field period on the order of microseconds to secon
suggesting the low-frequency SD behavior of the loop a
described by our full numerical calculation could be expe
mentally observable.

In extensive simulations, Acharyya and Chakrabarti ha
studied the hysteretic response of Ising systems with res
to changes in field amplitude and frequency, temperat
system size, and system dimension@52#. In particular, they
have presented power-law scaling relations forA. However,
their simulations ind52 are all done with very large field
amplitudes. For the temperatures used in their papers, t
field amplitudes place their system in a regime we refer to
the ‘‘strong-field ~SF! region,’’ where the size of a critica
droplet becomes comparable to the lattice constanta, and the
droplet picture of metastable decay breaks down@45#. The
investigation of hysteresis in kinetic Ising models by Lo a
Pelcovits@57# is not restricted to the SF region. In particula
the range of field amplitudes used places their simulation
the SD, MD, and SF regions as the amplitude is increas
The hysteretic response, including the loop area, requ
qualitatively different theoretical descriptions in each
these regions. This drastic change in the Ising model c
trasts with a coherent rotation model of magnetization rev
sal, for which increasing the field strength would merely d
crease the energy barrier that the system must overcom
the magnetization to be aligned with the field. For the kine
Ising model and other spatially extended systems, howe
increasing the field not only decreases the free-energy ba
for forming a single critical droplet of the stable phase,
also changes the reversal mode. Our results emphasiz
importance of a knowledge of the decay mode in order
obtain the correct frequency dependence of the average
area over a wide range of frequencies.

Mahato and collaborators@88,89# also considered a drive
bistable system in the presence of noise. From the RTDs
calculate what they describe as an ‘‘average hyster
loop,’’ and they propose a maximum in this quantity wi
respect to noise strength as a manifestation of SR. We
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their definition of a loop area rather unphysical, except
very low frequencies. However, the role of the hysteres
loop area as a measure of energy dissipation indicates th
maximum inA may be considered an aspect of SR, whi
we suggest could be termed ‘‘stochastic energy resonan

Relatively few studies have consideredB, the correlation
of the magnetization with the external field. For Ising mod
subject to oscillating fields, these studies@40,41# have found
a temperature at which the correlation attains a maxim
value for a given frequency, amplitude, and system s
However, as recently pointed out by Acharyya@90#, this fea-
ture is not a sign of SR. These simulations are mostly p
formed aboveTc in a regime where the metastable state
longer exists. Therefore comparison of our simulations
analytic results with these studies is not relevant.

Our theoretical derivations ofB are similar to those forA
and are also given as high- and low-frequency approxim
tions. Figure 12 shows our MC data forB along with the
theoretical result for the high-frequency regime~dotted
curve! and the low-frequency regime~solid curve!. We as-
sume thatHs'H0 for high frequencies, and that the magn
tization switching is stochastic with either zero, one, or tw
switches every period. The only nonzero contribution to
correlation comes from those periods when the magnet
tion switches only once. We use notation analogous to
high-frequency loop-area calculation for each of the
three contributions,^B0&/(2H0 /p)'0.0, ^B1&/(2H0 /p)
'2meq/2, and ^B2&/(2H0 /p)'0.0, with ^B&HF/(2H0 /p)
calculated as a weighted average similar to Eq.~7.6!,

^B&HF

2H0 /p
5 f 0~v!S ^B0&

2H0 /p D1 f 1~v!S ^B1&
2H0 /p D

1 f 2~v!S ^B2&
2H0 /p D . ~7.17!

Figure 12 shows that̂B&HF/(2H0 /p)→0 asv→0 and as
v→`, which is a direct consequence of the behavior
f 1(v) @see Fig. 10~b!#.

FIG. 12. Mean and standard deviation of the correlationB
shown vs the scaled frequency 1/R. The solid dots are the means o
the correlation distributions. The vertical bars arenot error bars, but
give the standard deviations of those distributions. The solid
dotted curves are obtained from similar calculations as those for
loop areas in Fig. 11.
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The low-frequency calculation forB is also similar to that
for A and assumes that the magnetization switches abru
at uHsu,H0 during each half-period. This assumption t
gether with the definition ofB, Eq. ~7.2!, yields

^B&LF

2H0 /p
5meqA12S Hs~v!

H0
D 2

. ~7.18!

As for A, the switching fieldHs(v) is obtained from a nu-
merical solution of Eq.~7.10!. There is good agreement wit
the MC data for the two lowest frequencies. As the f
quency increases the theoretical result approaches z
However, the assumption that the magnetization switc
during every half-period begins to break down around 1R
50.05, where the MC result forB passes through zero.

Although the system studied here is both stochastic
highly nonlinear, the physical significance of the integralsA
andB can be clarified by comparison with deterministic li
ear response theory. In that limit one easily finds t
A/(pH0

2) and 2B/H0
2 correspond to the dissipative and rea

tive parts of the complex linear response function, resp
tively. It is therefore natural to combineA and B into an
analogousnonlinear response function,

X~H0 ,T,v!5
1

H0
2F2B1

i

p
AG . ~7.19!

The maximum inA and the sign change inB, which occur
close together in frequency, are characteristic behavior
the dissipative and reactive parts of a response function
resonance. It is reasonable to associate this behavior
SR. However, as we pointed out at the end of Sec. V B,m(t)
remains essentially synchronized withH(t) as the driving
frequency is lowered further below this narrow frequen
range. The system then switches reliably during every h
period of the field, while the switching occurs earlier a
earlier in the half-period as the frequency is lowered. In t
low-frequency regime, the norm ofX remains close to its
maximum value of 4meq/(H0p), and its phase gives
meaningful measure of the period-averaged phase lag.
latter increases monotonically from zero atv50 to p/2 at
the frequency whereB crosses zero. We believe the syste
should be considered as resonant in this whole range of
frequencies.

B. Period-averaged magnetization

The period-averaged magnetizationQ has been consid
ered as a ‘‘dynamic order parameter’’ for systems exhibit
hysteresis@32,52–57#. Those studies of the Ising model hav
suggested the existence of a dynamic phase transition
tween^Q&Þ0 and^Q&50. As for the hysteresis-loop area
the statistical properties of the period-averaged magne
tion in the SD region are not well characterized simply by
mean. Figure 13 shows the probability densities ofQ in the
SD region. For all but the very highest values ofR, the
distributions show two sharp peaks nearQ56meq due to
m(t) oscillating near the spontaneous magnetization du
most of the field cycles. The contributions to theQ distribu-
tions nearQ50 occur when the magnetization switch
twice in one period. The contributions to the peak cente
tly
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aroundQ510.5 occur for those periods in which the ma
netization switches only once. Note that there is not a co
sponding peak atQ520.5. This is an effect of the way we
calculate the period-averaged magnetization, which con
ers the beginning of a period to start whenH(t)50 andḢ
.0. We would have obtained a peak nearQ520.5 if we
had started withH(t)50 andḢ,0.

Even by inspecting the distributions forQ, no dynamic
phase transition can be seen. While the means of the di
butions for high~low! frequencies are nonzero~zero!, this
happens smoothly as weight shifts from the peaks neaQ
561 to the peak atQ50. As we plan to show in future, the
situation is quite different in the MD region, where we fin
strong evidence for a dynamic phase transition@51#.

VIII. DISCUSSION

The mechanism by which a metastable phase decays
pends sensitively on the system size, the temperature, an
strength of the applied field. For small systems and we
fields, the decay proceeds through the nucleation and gro
of a singledroplet of overturned spins. This regime has be
termed the single-droplet~SD! region. In this region the
magnetization response consists of rapid transitions betw
two states; one with the majority of the spins up, and o
with the majority of the spins down. The resulting time ser
is well described in terms of a Poisson process with a tim
dependent rate obtained from the nucleation rate and gro
velocity of droplets of the stable phase. The time depende
enters the nucleation rate by replacing the constant fieldH
by H(t)5H0 sin(vt). This central idea provides the analyt
framework for theoretical descriptions of the quantities m
sured from our MC simulations. These quantities inclu
residence-time distributions~RTDS!, power spectral densi
ties PSD!, hysteresis-loop areas, and the correlation betw
the magnetization and the oscillating field. The agreem
between all of our theoretical calculations and the MC dat
very good, especially considering that the theory contains
adjustable parameters. All of the constants used are e
known from droplet theory or are measured from MC sim
lations of field reversal in kinetic Ising models. To the be
of our knowledge, the present study is the first which exp

FIG. 13. Probability densities for the period-averaged magn
zationQ. The values ofR shown areR52, 2.5, 3, 4, 5, 6, 10, 20,
and 100.
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itly considers hysteresis for the Ising model in the SD
gime.

The frequency dependence of the RTD peak shapes
peak strengths are calculated by numerically evaluating a
lytic expressions obtained from a time-dependent exten
of classical nucleation theory. The good agreement betw
our theoretical calculations and MC data supports the mo
of magnetization switching as a Poisson process with a v
able rate, given by substituting a sinusoidal field depende
for the static field in the nucleation rate.

The frequency dependence of the RTD peak strengths
hysteresis-loop areas, and the correlation between the m
netization and the field all indicate the presence of stocha
resonance~SR! in the two-dimensional Ising model in thi
parameter regime. This observation is consistent with rec
studies of SR in other systems of coupled bistable eleme
some of which pointed out the importance of nucleation
kink-antikink pairs to what has been termed array enhan
stochastic resonance~AESR!. For any nucleation process
there should be crossovers between coexistence~CE!, single-
droplet ~SD!, and multidroplet~MD! types of behavior as a
consequence of the interplay between the sizes and se
tions of the critical fluctuation~s! and the size of the system
We believe these crossovers should be relevant to the de
dence of the amount of enhancement on the number of
ments observed in other systems exhibiting AESR as we

We also calculate the hysteresis-loop areaA in the low-
and high-frequency regimes. Because of its role as a mea
of the energy dissipation in the system, this is a quantity
particular experimental significance. For high frequencies
loop-area distributions are trimodal due to the stocha
switching behavior. In this regime we calculate^A& as a
weighted average of the loop areas obtained when the m
netization switches zero, one, or two time~s! during a period
of the field. For the low-frequency regime we obtain an a
lytic expression for̂ A&. Our theoretical calculation agree
well with our MC results and predicts anextremelyslow
crossover to a logarithmic dependence of the loop area
H0v. The switching dynamics is dominated by nucleati
and indicates no overall power-law dependence for the l
area on field amplitude and/or frequency, in contrast to w
has been claimed in other simulational and experime
studies. However, we emphasize that numerical analysi
data generated by our analytic solution, even over sev
frequency decades, could easily lead to the conclusion
the data were taken from a power law.

The period-averaged magnetizationQ has been propose
as an ‘‘order parameter’’ associated with a dynamic ph
transition in kinetic Ising models. However, in the parame
range studied here, the probability densities ofQ show no
sign of a sharp transition as the frequency of the exte
field is varied. Indeed, due to the multipeaked nature of
distributions for intermediate frequencies, the mean value
Q is not a useful quantity in the SD region. In the MD regio
the behavior ofQ is radically different, as we plan to discus
in future @51#.

We also computed the power spectral densities from
simulated magnetization time series. We qualitatively
plain the various features of the spectra in the full freque
range from the lowest observable frequencies to the ra
fluctuations due to thermal noise. Specifically, we mak
-
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connection between the RTDs and the low-frequency beh
ior in the PSDs through the characteristic time of the RTD
Inverse characteristic times that are smaller~larger! than the
frequency of the applied field correspond to large~small!
low-frequency components in the PSDs. Our theoretical d
vation of the characteristic time also agrees well with t
characteristic times obtained from the simulated RTDs,
cept at very high frequencies. The relatively poor agreem
between the MC data and the theory for high frequencies
the external forcing field is common to most of the quantit
measured and is most likely due to the poor quality of
MC data for high frequencies. However, it could also be
sign of breakdown in the adiabatic approximation underly
the assumption that the functional form of the nucleation r
and the calculation of the growth-time corrections do n
change for high frequencies@79#.

In summary, we have studied stochastic hysteresis in
kinetic Ising model, a spatially extended, bistable syst
with thermal fluctuations. We emphasize not only the d
tailed differences between hysteresis in mean-field mod
and Ising models, but also the qualitatively different r
sponse that the Ising model displays for particular regime
system size and field amplitude. Our theoretical and num
cal study considers the effects of these different decay
gimes on hysteresis, which may be relevant to the interp
tation of simulational and experimental results. Especia
for certain technological applications, an Ising system sho
be a good candidate to model the behavior of ferromagn
and ferroelectric materials in oscillating external fields. F
nally we note that the quantities that we have analyzed
merically could all be measured in experiments on hyster
in a variety of systems and analyzed by methods essent
identical to our analysis of the MC data.
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APPENDIX: DERIVATION OF THE RESIDENCE-TIME
DISTRIBUTIONS

The ath residence time is defined as

Da5t↑
a1ua, ~A1!

where the timest↑
a and ua are shown schematically in Fig

14. We definet↑ as the time when a switching event tak
place, as measured from the first time at whichH(t)50,
after the previous switching event. Without loss of gener
ity, this time can be set tot50. u is the time from a switch-
ing event to the next change in the sign of the external fie
This decomposition of the residence time facilitates the c
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culation of the probability density functions~PDFs! for both
t↑
a andua. Whent↑ falls during thej 51 period~see Fig. 14

for an explanation of the indexing scheme!, its probability
density is given by Eq.~4.14!, i.e.,p↑(t↑)5P(t↑). We easily
generalize to the case whent↑ falls during the j th period.
This is obtained by finding the probability that, given th
magnetization hasnot switched in the previousj 21 periods,
it switches at a timet↑ during thej th period,

p↑~ t↑!5@Pnot~v!# j 21PF t↑2~ j 21!
2p

v G . ~A2!

The PDF foru, pu(u), is calculated fromp↑(t↑) by using the
fact thatua andua11 should be independent and identica
distributed. Then the following substitution holds:

t↑
a1ua115S j 2

1

2D2p

v
, ~A3!

FIG. 14. Schematic diagrams for calculation of the RTDs.
s

m

which gives

pu~ua!5pu~ua11!5(
j 51

`

p↑F S j 2
1

2D2p

v
2ua11G

5(
j 51

`

@Pnot~v!# j 21PF S j 2
1

2D2p

v
2ua2~ j 21!

2p

v G
5PS p

v
2uaD (

j 51

`

Pnot~v! j 21. ~A4!

Thus

pu~u!5PS p

v
2u D @12Pnot~v!#21. ~A5!

The PDF of the total residence time,D5t↑1u, is given by
the convolution of the PDFs of each term:

P~D!5E
ua~D!

ub~D!

p↑~D2u!pu~u!du ~A6a!

5
@Pnot~v!# j 21

@12Pnot~v!#

3E
ua~D!

ub~D!

PFD2u2~ j 21!
2p

v G
3PS p

v
2u Ddu, ~A6b!

where j 5 dvD/(2p) e. The notation dxe is defined as the
smallest integer greater thanx. For j 51, the integration lim-
its are given by

ua~D!5maxF0, D2
p

v G , ~A7a!

ub~D!5maxF0, minS D2t0 ,
p

v
2t0D G , ~A7b!

which ensure that the integrand in the equation forP(D) is
positive. To implement the calculation of the RTDs,P(D) is
numerically integrated forj 51 at 50 equally spaced value
in the interval 0,D,2p/v, to generate the first peak in th
RTD. To obtain the second peak, the values of the distri
tion are shifted to the next interval 2p/v,D,4p/v, and
reduced by a factor ofPnot(v). This process can be repeate
to obtain all of the higher-order peaks in the RTD.
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