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We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an
oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on small systems
and weak field amplitudes at a temperature belbw For these restricted parameters, the magnetization
switches through random nucleation o$iagledroplet of spins aligned with the applied field. We analyze the
stochastic hysteresis observed in this parameter regime, using time-dependent nucleation theory and the theory
of variable-rate Markov processes. The theory enables us to accurately predict the results of extensive Monte
Carlo simulations, without the use of any adjustable parameters. The stochastic response is qualitatively
different from what is observed, either in mean-field models or in simulations of larger spatially extended
systems. We consider the frequency dependence of the probability density for the hysteresis-loop area and
show that its average slowly crosses over to a logarithmic decay with frequency and amplitude for asymptoti-
cally low frequencies. Both the average loop area and the residence-time distributions for the magnetization
show evidence of stochastic resonance. We also demonstrate a connection between the residence-time distri-
butions and the power spectral densities of the magnetization time series. In addition to their significance for
the interpretation of recent experiments in condensed-matter physics, including studies of switching in ferro-
magnetic and ferroelectric nanoparticles and ultrathin films, our results are relevant to the general theory of
periodically driven arrays of coupled, bistable systems with stochastic n&i$663-651X98)11306-3

PACS numbe(s): 05.40+j, 75.60—d, 77.80.Dj, 64.60.Qb

I. INTRODUCTION must be considered in order to accurately predict such as-
pects of the hysteretic response as its dependence on the
Hysteretic response to an oscillating control parameter ofrequency and amplitude of the oscillating force. Here we
“force” is a nonlinear nonequilibrium phenomenon com- present a study of hysteresis in a particular model system
monly observed in both natural and man-made systems. Theghich incorporates both spatial degrees of freedom and ther-
example most familiar in physics and electrical engineeringmal fluctuations—a kinetic Ising ferromagnet—in a param-
is probably the hysteresis loop produced when a ferromagnetter regime where the model has a first-order phase transition
at a temperature below its critical temperatiiggis placed in  in equilibrium and the system responsesi®chastic The
an oscillating magnetic fielfil—3]. Similar behavior is seen model and its behavior in this regime are relevant to at least
in ferroelectrics[4—7]. Some other examples are electro-two different research areas that are rarely discussed to-
chemical adsorbate layers that are driven through a phaggether: experimental studies of switching dynamics in nano-
transition by an oscillating electrode potential in a cyclic scale ferromagnetic and ferroelectric particles and ultrathin
voltammetry experimen{8,9], systems driven through a films, and theoretical and experimental studies of stochastic
phase transition between different liquid-crystalline phasesesonance in spatially extended systems. We hope the
by pressure oscillationgl0], and systems driven through a present study may contribute to some intellectual cross-
solid-liquid phase transition by temperature oscillations fertilization.
Hysteresis is often modeled by systems of differential equa- In recent years new experimental techniques, such as
tions that display discontinuous bifurcatiofisl—13. magnetic force microscop§MFM) [14—1§, have been de-
Systems that exhibit hysteresis have in common a nonlinveloped that permit measurements of the magnetization state
ear, irreversible response, which causes the phase of the read switching behavior of particles as small as a few nanom-
sponse to lag behind the force. The physical mechanism thatters. Ferromagnetic particles in this size range consist of a
causes the hysteretic behavior can, however, be quite diffesingle domain in equilibrium, and together with ultrathin
ent in different systems and even in different parameter refiims they are of interest as potential materials for ultrahigh
gimes for the same system. The details of this mechanisrdensity recording media. The dynamics of magnetization re-
versal in such systems has been modeled with kinetic Ising
systems subject to sudden field revefd#l—23. These nu-
*Present address: Florida State University, Tallahassee, Fmerical and analytical studies have given results in qualita-
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ous spin mode[7,25-27. Similar experiments on ultrathin field H decays by different mechanisms, depending on the
Co films on Cy001) have found exponents consistent with a magnitude ofH, the system sizé&, and the temperaturé
mean-field treatment of the Ising mod@8]. These studies [45]. Two distinct regimes are separated by a crossover field
of nanoparticles and ultrathin films suggest that experimentsalled the dynamic spinodaHps(T,L). These two decay
can now be performed on systems sufficiently small tharegimes can be distinguished by the statistical properties of
atomic-scale simulations become feasible, and that kinetithe lifetime of the metastable phase. The lifetime is defined
Ising systems are useful models for switching in such nanoas 7=t(m=0), the first-passage time to a magnetization of
scopic systems. zero, following an instantaneous field reversal fréto
Since its introduction as a possible model for the time—H. For[H[>Hpgp, the mean of the lifetimg(7), is much
dependence of the Earth’s ice ade$], the concept of sto- greater than its standard deviatian,. Therefore this field
chastic resonance has been applied to a variety of phenorfégion is termed the “deterministic regime.” FoiH|
ena in physical and biological science and engineering, ir<Hpsp, (7)~ 0 and this field region is therefore termed the
which response to a periodic force is enhanced by i@ge  “stochastic regime.” Both the deterministic and stochastic
Most early treatments considered a single bistable elemefiegimes are further subdivided according to the modes by
similar to a mean-field model of a ferromagh@1—33, with ~ Which the metastable phase decays. The deterministic regime
added noise. However, more recently experimental studiei§ split into the multidrople{MD) and strong-field SF) re-
have been conducted with chains of coupled diode resonatogions for the low and high fields in this regime, respectively.
[34], and numerical and theoretical studies have considereor a given system size the stochastic regime is also divided
locally coupled one-dimensional time-dependent Ginzburginto the coexistenc€CE) and single-dropletSD) region for
Landau or Frenkel-Kontorova modd85—3§, Ising models the low and high fields in this regime, respectively. Detailed
in one[39], two [40], and thred 41] dimensions, chains of discussions of these different decay modes are found in Refs.
coupled nonlinear map$42], and systems of globally [45-47. At sufficiently low T that the single-phase correla-
coupled bistable elemenfg3]. tion lengths are microscopic, the different decay regimes can
Here we consider hysteresis in a two-dimensional spinbe distinguished by the interplay among four length scales:
1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscilthe lattice spacing, the system size, the radius of a criti-
lating field with periodic boundary conditions. For conve- cal dropletR;, and the average distance between supercriti-
nience, and because of the many experimental measureme®g dropletsR,. The latter two lengths increase with decreas-
of hysteresis that address magnetic systems, we use the cig field strength:R.<1/H| and Roexgdconst/H|"],
tomary magnetic language, in which the order parameter iwhered is the spatial dimensionality. Here we consider spe-
the magnetization per sitey(t) e[ — 1,4+ 1], and the force is  cifically decay in the SD region, which is characterized by
the magnetic fieldH(t). However, we expect our results also
to apply to stochastic hysteresis phenomena in other areas of a<R.<L<R,. (1.1
science. For example, in dielectrios(t) and H(t) can be
reinterpreted as polarization and electric field, in adsorptiorin this regime, the decay of the metastable phase proceeds by
problems as coveragit) =[2m(t) — 1] and(electrogchemi- ~ random homogeneous nucleation osiagle critical droplet
cal potential orfosmotig pressure, etc. of the stable phase, which then quickly grows to take over
Below T, and in zero field this Ising model has two de- the system. We have previously propodd®-21,46 that
generate magnetized phases corresponding to a majority #fis decay mechanism may apply to, e.g., barium ferrite par-
the spins in the positive or the negative direction. A weakticles in the 50—-70 nm diameter rangib]. The crossover to
applied field breaks the degeneracy, and the phase with tiibe MD region corresponds ®B,~L. As a result, the dy-
spins aligned(antialigned with the field is stable(meta- namic spinodal depends asymptotically bras Hpge(T,L)
stable. If the field varies periodically in time, the system is ~(In L)~ Y@~1), In the SD region the critical droplet is much
driven back and forth across a first-order phase transitiorsmaller than the system itself, and the crossover to the CE
and the two phases alternate between being momentarilggion is marked byR.~L. The corresponding crossover
stable and metastable. As a result(t) lags behindH(t), field, called the thermodynamic spinodal, therefore depends
and hysteresis occurs. In the regime of small system siz&n L as Hrysg(T,L)~L 1. In recent exploratory studies
weak applied field, and temperature well beldw consid- [48-50 we have shown that the response of a kinetic Ising
ered here, the system switches abruptly and stochasticallyiodel to an oscillating field is qualitatively different for the
between the two magnetized phases. A difference betweddD and SD regions. We plan to describe the details of the
two-dimensional, locally coupled bistable systems, such agesponse in the MD region in the futufgl].
this Ising model, and the one-dimensional arrays studied in Theoretical studies of hysteresis have been performed for
most of the stochastic-resonance studies cited alp8ge  several models, using a variety of methods. These include
39,47, is that locally coupled one-dimensional systems havevarious studies of models with a single degree of freedom,
no ordered phase at nonzero temperature or noise intensitgquivalent to mean-field treatments of the Ising md@a-
The apparent long-range order in those studies is therefore38], Monte Carlo(MC) simulations of the spin-1/2 Ising
finite-size effect. However, the average equilibrium domainmodel[26,27,52—60) and severaD(N) type modeld7,25—
size grows exponentially with decreasing temperature27,61. These studies were performed with variations in the
[39,44). For chains much shorter than this size, the absencdetails of the simulations and in the model parameters. Most
of true long-range order should not be qualitatively signifi-of them indicate that the average hysteresis-loop kg,
cant for the hysteretic behavior. =—(ém(H)dH), appears to display power-law depen-
The metastable phase in Ising models exposeddtatic  dences on the frequency and amplitudeHdft). However,
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there is no universal agreement on the values of the expo 40
nents, either experimentally or theoretically. For the Ising
model, nucleation effects that would lead to a logarithmic

204

292

frequency dependence have been propog®@6,63. A 2007 290
mean-field model exhibits a dynamic phase transition in 288
which the mean period-averaged magnetizatiaiQ) e — -

= (w/2m)($m(t)dt), changes frol{Q)+#0 to (Q)=0 [32].
Such a dynamic phase transition has been suggested fro
MC simulations of a kinetic Ising model as wédb1,52—
57,59,60,63 200}
The work presented in this paper differs from most past
theoretical and numerical studies of hysteresis in two impor-
tant ways. First, mean-field models do not take into account [
thermal noise and spatial variations in the order parameter
thus ignoring fluctuations which may be important in real
materials. Second, most previous investigations of hysteresis
in Ising models have considered the frequency and amplitude FIG. 1. The free energ#(m,H,T) shown vs magnetizatiom
dependence of quantities such@sand A, without consid-  for the nearest-neighbor Ising ferromagnet on & 64 square lat-
ering the manner in which the metastable phase decays. tice atT=0.8T.. Data are shown foH=0.0J and 0.D. The data
Considering the nucleation-based single-droplet decayere obtained from a study in which a multicanonical MC algo-
mechanism, we find that the average hysteresis-loop area efithm was used to finé(m,0,T) [66]. The inset shows an expanded
hibits an extremely slow crossover to a logarithmic deca))’ieW of the portion of the_ free-_ener_gy curve near the metastable
with frequency and amplitude in the asymptotic low- state forH=0.1]. The barrier height is on the order okdT.
frequency limit. This crossover is sufficiently slow that the
behavior can easily be misinterpreted as a power law oveiuns over allN=L¢ lattice sites. The order parameter is the
several orders of magnitude in frequency. We also show thdtme-dependent magnetization per site,
the average loop area and the residence-time distributions for
the system magnetization exhibit evidence of stochastic reso-
nance, and we provide a connection between the character- m(t)=— Z si(t). (2.2)
istic decay time of the residence-time distributions and the Loi=1
power spectral densities of the magnetization time series. We , ) ) o
find no evidence of a dynamic phase transition in the SD 1he dynamic used is the Glaubg44] single-spin-flip
region. Monte Carlo algorithm with updates at randomly chosen

The rest of this paper is organized as follows. Section IS/t€S: The time unit is one Monte Carlo step per spin
supplies background information on the simulation of the(MCSS- The system is put in contact with a heat bath at
kinetic Ising model. In Sec. Il some general properties of thd®Mperaturd’, and each attempted spin flip frosnto —s; is
time-series data are discussed. In Sec. IV the probability thftccepted with probability64]
the system magnetization doret switch sign during a pe-
riod of the field,P (), is derived. This derivation is cen- W(s > —5)= exp(— BAE;) 23
tral to theoretical calculations throughout this paper. Section ! " 1+exp— BAE) '

V presents theoretical calculations and MC simulation data

for the residence-time distributiodRTDs). Also, we define Here AEI is the Change in the energy of the system that
and calculate the characteristic time of the RTDs and showyould result if the spin flip were accepted, apd=1/kgT

its relevance to the low-frequency behavior of the powefyherekg is Boltzmann’s constant. It has been shown in the
spectral densitie$PSD3 of the time series, which are ana- weak-coupling limit that the stochastic Glauber dynamic can
lyzed in Sec. VI. Section VII discusses the hysteresis-loome derived from a quantum-mechanical Hamiltonian in con-
area, the correlation between the magnetization and the fielghct with a thermal heat bath modeled as a collection of
and the period-averaged magnetization. Finally, Sec. Vlllquasi-free Fermi fields in thermal equilibriufés].

/

N

contains a summary and conclusions. In this paper all numerical calculations are performed for
d=2,L=64, andT=0.8T.. This value ofT is sufficiently
Il. MODEL far away from the critical temperature so that the thermal

o ) o ] correlation length is small compared to the critical droplet
The model used in this study is a kinetic, nearest-neighbof,ius and the size of the system. The system is subject to

Ising ferromag'n.et on a hype.rcub'ic I_attiqe with periodiC gjther an oscillating fieldH (t) = —H, sin(wt), or to a con-
boundary conditions. The Hamiltonian is given by stant field of magnitudél .
As discussed in Sec. |, the decay of the metastable phase
__ e , in the presence of an external figttiproceeds by nucleation
" J(% 5i%) H(t)Ei Siv @ of droplets of the stable phap45]. Figure 1 shows the meta-
stable and stable phases as local minima in the free energy,
wheres; is the state of théth spin and can have the values
s;==1, 2, runs over all nearest-neighbor pairs, and F(m,H,T)=F(m,0,T)—mL2H, (2.9
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TABLE |. Parameters and constants used in this work. The values of the parakigtérsandT have
been selected such that switching occurs via the single-droplet mechanism, while the maximum nucleation
rate is not too low to obtain reasonable simulation statistics. The con&a(1§ andK are calculated from
droplet theory[68—71 for two-dimensional Ising systems. The constati$ andr are measured from
field-reversal MC simulations with the Glauber dynartusing the parameters listed ab@vEhe constant§)
[71] and v [72] have been measured in other wdf&r clarity, we do not explicitly show the temperature
dependence of these quantities in the table or elsewhere in the.pBipevalue foH ygpis taken from Fig.

11 of Ref.[66].

Parameters Constantheory) Constantqsimulation
Ho 0.1 Eo(T) 0.506192 Q 3.15255
L 64 K 3 (exac) v (0.465+-0.0140 1 (MCSS) ™!
T 0.8T, (7) 2058 MCSS
Hpsp (0.110.005)

0.672

itof a nearest-neighbor Ising model on a>@¥4 lattice at
T=0.8T. [66,67]. For H=0 there are two degenerate equi-
librium phases of magnetizatioft m.(T), separated by a
free-energy barrier of height proportional t8'~*. For H
=H=0.1J the value ofm near+1, whereF has its global
minimum, is the stable magnetization. The local minimum

nearm=—1 represents the metastable phase. The conve(;(y
parts of the barrier represent a single spherical droplet of ong.

phase embedded in the other. The droplet tolective ex-
citation [43] through which the switching proceeds, and the

critical droplet is the droplet configuration corresponding to

the local maximum of at a given value o [66]. For H
<0 the stable and metastable phases are reversed.

The average number of droplets of the stable phase th
are formed per unit time and volume is given by the field-
and temperature-dependent nucleation rate,

Eo(T)

- IH(t)I‘H]' (29

I(H(t), T)~ B(T)lH(t)IKex;{

The notation follows that of Ref19], whereB(T) is a non-
universal temperature-dependent prefactor, afd and
Eo(T) are known from field theor}68—70 and simulations
[45] and are listed in Table I. The quantify(T) is the

at

lll. TIME-SERIES DATA

In the simulations presented here, a sinusoidal field is
applied to the system. Its amplitudely=0.1J<Hpgp, iS
chosen such that in field-reversal simulations the system is
clearly in the SD region for a field of magnitudé,. The
namic spinodal field is approximated Wy psp~H1,
hereH, is the value ofH (for givenL andT) for which
e relative standard deviation of the lifetimes o./(7), is
1/2 [45]. This value ofHpgp is given in Table I. It approxi-
mately equals the field for which the local minimum in Fig.
1 disappear§66].

To obtain the raw time-series data, an Ising system was
initially prepared with either a random arrangement of up

W

and down spins witm(t=0)~0, or with a uniform arrange-
ment with all spins up. Then the sinusoidal field(t)
=—Hj sin(wt), was applied and changed every attempted
spin flip, allowing for a smooth variation of the field. The
time series did not appear to depend on the initial conditions
after a few periods. The simulations were performed with
several values of the driving frequeney. For each fre-
quency, we recorded the time-dependent magnetizatiah

for approximately 16.8 10° MCSS. Each of these raw time-
series data files store the values tofH(t), and m(t) in
increments of 1 MCSS. Each file takes up about 800 mega-
bytes and took about 9 days to run, using a single node of an

field-independent part of the free-energy cost of a criticalBM sp2 computer. These are among the most extensive MC

droplet, divided bykgT. The external fieldH(t), is the only
quantity through which (H(t),T) depends on time in this
adiabatic approximation.

simulations of hysteresis in Ising systems to date.
It is useful to think of hysteresis as a competition between
two time scales: the average lifetime of the metastable state

Several quantities, whose values do not depend on th®llowing an instantaneous field reversal frdry to —H,,
frequency of the applied field, are required as input for the/7(H)), and the period of the external forcing fieldz2w.
theoretical calculations in the following sections. TheseTherefore we specify the ratiR of the period to the average

quantities, which include the average lifetime(Hg))
~[LY(Hy,T)] %, are listed in Table I. They are determined
through what we refer to as “field-reversal simulations.” In

these simulations the system initially has all spins up or posi-

lifetime,

3 27l w)

(7(Ho))"

(3.9

tive. It is then subjected to a static external field of magni-

tudeH, with a sign opposite the system magnetization. ThisOne may think ofR (1/R) as a scaled perio¢scaled fre-
instantaneous field quench prepares the system in a metguency.

stable state, and the decay of the metastable phase proceeddNe note that{7(H,)) is the “shortest of the long time

by the mechanisms outlined in the Introduction.

scales” in the present system. From Fig. 1 we observe that
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whereas the free-energy barrier represented by the critical IV. PROBABILITY OF NOT SWITCHING
droplet for|H|=H, is on the order okgT, the barrier be- DURING A PERIOD
tween the degenerate phasesHat0 is on the order of o . .
50kgT. For this temperature and system size, the time scal The'probablllty .that the syst'em does not switch d“f‘”g a
for spontaneous fluctuations between the phases in the afjill Period of the field,Pn(w), is central to the theoretical
sence of an applied field(0)), is therefore essentially in- understanding of hysteresis in the SD region. It occurs most
finite. Conversely, the nucleation of the critical droplet nec-diréctly in the calculation of the residence-time distributions
essary to leave the metastable phase is entirely driven by tH@ Sec. V. In addition, elements in the derivationRy( )
thermal fluctuations, even when the field has its maximunfre fundamental for describing most of the observed quanti-
strengthH 5. Switching in this system therefore truly dependsties in this study.
on the joint action of the random thermal noise and the de- As mentioned in Sec. lll, the system exhibits abrupt
terministic oscillating field. switches during which the average magnetization changes
Figure 2 shows short initial segments of the magnetizatiorbetween values near mgq. As seen in Fig. 2, these events
time series in the SD region for three different valuedRof occur quickly compared to the period of the external field,
In all three casesn(t) fluctuates near one of the two degen- and to a first approximation the time it takes the droplet to
erate values of the spontaneous zero-field magnetizatiogrow to fill the system(the growth time is negligible. A
punctuated by rapid transitions between these two valuesnore realistic treatment takes the finite growth time into ac-
that are completed duringsangle half-period of the applied count as a lag time between the nucleation of a critical drop-
field. The rapid SWitChing Ofn(t) is evidence of the nucle- let and the time at which the System switches.
ation of a single critical droplet that reverses the sign of the The first part of the derivation is presented without the
magnetization. The magnetization “plateaus™ are due to thesffects of the growth time. This is done for simplicity, as
failure of any crltl_cal droplet of the stable phas_e to nucleate,q|| as to emphasize the role of the growth time aoeaec-
The fluctuations irm(t) on these plateaus indicate appear-ion 1o the basic picture of a variable-rate Poisson process.

ance and disappearance of subcritical droplets. For low driviiot \we derive the expression for the cumulative probability
ng frequenme; the magnetization SW'tCheS. twice du”ng.alfhat a switching event has occurred by timé& (t), in terms
most every field cycle, whereas for high frequencies ' '

switching occurs only occasionally. The “spikes” m(t) of the time-dependent rate of anstantaneouslecay pro-

seen forR=2.5 occur when a single droplet nucleates, butcess,p(t). [This cumulative probability should not be con-

does not have time to grow and switch the system magnet{-used W'th th? free energf(m.H,T) of Eq. (2'4)_'1 It is

zation before the field becomes unfavorable and the droplétonvenient to introduc&(t)=1—F(t), the probability that
rapidly collapses. The number of field cycles shown in Fig. 22 Switching eventhas notoccurred by timet. Standard
is small compared to the total number of cycles in an entirdheory of variable-rate Markov proces4@s] leads to a dif-

time series. ference equation foF(t),

F(t+At)=F(t) X (probability an event has not occurred in the interyaft+ At])=F(t)[1—p(t)At], (4.1

which in the limitAt—0 gives

dF(t)/dt=—p()F(1). 4.2)

The growth timety(t) is introduced into the derivation at the level of Eg.1). It is defined as the time between the
nucleation of a critical droplet and the time when the volume of this droplet becomes approximately half the system volume.
The dependence of the growth time bis a consequence of the time dependence of the interface growth velocity, which is
approximately proportional tdi(t). For suitably long time scales, the growth of a supercritical droplet is a deterministic
process. Another quantity in this derivation is the time at which a droplet nucleégfBs,If a switching event occurs at time
t, thent,(t) =t—ty(t). Where clarity is not sacrificed, we do not show the expliciependence df; ort,. For a switching
event to occur in any particular period of the external field, a critical droplet must not only nucleate, but must do so early

enough so there is sufficient time for it to grow to the volume of the system. Therefore the difference equafi¢t) ier
modified to read

F(t+At)=F(t) X (probability a switch has not occurred withiit,t + At])

E(t) X (probability a droplet has not nucleated withjn,, ,t,+ At,])

=F(t)[1- p(t,)At,]

_ dt,
=Fa41—paga?A%. 4.9
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FIG. 2. Short initial segments
of the magnetization time series
m(t) (solid line) and the external
field H(t) (dashed lingvs timet
in the SD region, forT=0.8T,
d=2, L=64, andH,=0.1]. The
total length of the time series is
approximately 16.810° MCSS.
For these parameter values the av-
erage lifetime in static field is
(7(Hg))~2058 MCSS. The time
series are shown for the scaled
field periods(a) R=10, (b) R=5,
and(c) R=2.5.
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We can express this result in terms of the growth ttgnand
its derivative, using

dt, dtg
FTERrTE (4.9
Substituting into Eq(4.3) and lettingAt—0 gives
dF(t) L tl= A
gt - Pty 1= (). (4.9

Integrating Eq.(4.5 gives the cumulative distribution,

F(t)zl‘ex% - jotp[t’—tg(t’)]( 1- —dts(tf ))dt’

(4.6

Differentiation gives the probability density functigkDPF)
for switching events at timé,

P

dtg(t)}

{22

t
xex;{ - fop[t’—tg(t’)]( 1-
(4.7)

For t4=0, Eq. (4.7) is equivalent to Eq(9) of [74]. The
growth timet, is obtained from the expression for the time-
dependent volume of a supercritical droplet

Jtv(t’)dt’

n

dF
<t>=a=p[t—tg<t>][1—

dty(t')

d

V(t,t,) =0 , (4.9

wheret>t, . Herev(t) is the droplet interface velocity and
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~1[H(t)|. The proportionality constant depends on the de-
tails of the dynamics. Here we use values for the Glauber
dynamics, obtained from field-reversal simulations by Ra-
moset al.[72]. The values of the constants used in our cal-
culations are listed in Table |. Fat=2, Eq. (4.8 for the
growth time becomes

ft

t

,tg

LZ

2
V(t,t—tg)I?ZQ vHgsin wt'dt'}

2

1/2H0

s—{cog w(t—tg)]—coswt}®. (4.9
w

For a static field of strengthl,, the growth time is

~ 1 L
t=—| —|. 4.1
9 \/ZQ( VHO) (419
Substituting this expression into E@L.9) gives
COS{w(t—tg)]=Tgw+COSwt. (4.11
Solving forty such thatt <t gives
1 ~
t—| —cos [coswt+tyw]|, to<t<mlw
tg(t): w
0 otherwise,
(4.12
where
~Los 11 4.1
to—zcos [1-tyo]. (4.13

The timet, is the first time during a period for which the

Q) is defined such that the volume of an equilibrium dropletprobability of switching is non-zero. IH(t=0)=0 and

of radiusR is QRY [71]. Using the Lifshitz-Allen-Cahn ap-

proximation [75-78, the interface velocity isuv(t)
|
01
B 1 dtg(t)
P(D)=1 plt—to(1)] 1~ —3—ex

01

where the ranges fdr ensureP(t) is nonzero only when
>ty and the signs om(t) andH(t) are not equal. Higher-

t
fop[t ~ty(t")]

m(t=0)~—1, then the probability density(t) that a
switching event takes place at times

0<t<t,

dtg(t’
{1— dg( )]dt'), to<t<mlw (4.14
t!

mTlo<t<2wlw

present case, however, we simply consider it a convenient
approximation, whose accuracy is ultimately confirmed by

order corrections, including the probability that a secondour numerical simulations.

droplet nucleates during,, were found to be numerically

In the SD region, the average lifetime in a field-reversal

insigniﬁcant_ The main approximation used here to Obtairﬁimulation should be dominated by nucleation. Therefore the

ty(t) lies in ignoring the slower growth of droplets only

total nucleation rate in a static field, can be expressed as

slightly larger than the critical radius. This has been shown

to be permissible for adiabatically slow-forcing models in

which large droplets grow exponentially in tinié9]. In the

po=[(T)—14]7? (4.153
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FIG. 3. The switching prob-
ability density P(t)/w vs wt for
five values of the period of the ex-
ternal field, R=1.5, R=2.5, R
=5, R=10, and R=100. The
plots are obtained from a numeri-
cal evaluation of Eq(4.14. The
inset shows the decay rajg(t) vs
wt. The timet, is the earliest time
during a period, for whichP(t) is
nonzero. Even though the decay
rate always has a maximum when
the phase equals/2, the value of
the phase for whichP(t)/w is
maximum depends on the fre-

quency.

=L%(H,,T).

(4.15h

(4.18

The nucleation rate in a static field of strendith should be

mlw rs
Pnot(w)zl_f P(t’)dt’zf(— .
0 w
equal to the nucleation rate in a sinusoidal field of amplitude . .
H, at the maximum of the fieldgy=p(t=m/2w). The ratio | N frequency dependence Bfo(w) is the aspect of this
of these two decay rates is then quantity most important for comparisons with our MC data.

However,P,.(w) also depends on other parameters through
p(t)  1(H(1),T) the nucleation rate.
b0 I(HpT)

(4.16
V. RESIDENCE-TIME ANALYSIS

p(t)=polsiﬂ(wt)|KeXr{ -

Substituting the form of the nucleation rate, £g.5), into . . o -
the expression above allows(t) to be recast in a form As me_ntloned in Sec. lll, the magnetization exhibits
which does not explicitly contain the nonuniversal prefactoraerpt switches between \_/alu_es neameg. In contrast, the
B(T): times between the magngtlzatlon reversa_ls are comparab_le to,
or greater than, the period of the applied field. As a first
- approximation, one may therefore consider these switching
Eo(T) | 1 H e m . )
—1]1. events as occurring in a discrete two-state system. For an
|Ho|d71\ |sin(wt)|@? Ising system undergoing a field-reversal experinjdbt, the
(4.17 lifetime in the SD region is stochastic and is well described
. ) . by droplet theory. For an oscillating field, the analogous
This expression holds whem(t) and H(t) have opposite o ,aniity is the time between reversals of the magnetization,
signs, whilep(t)=0 when they have the same sign. Using c5|jeq theresidence timeThe probability density for the
EQ. (4.158 for the maximum decay rate gives=(6.62  rggidence times is called the residence-time distribution
+0.07)x 10 * (MCSS)*, using quantities listed in Table I. (RTD) [80,81]. In Sec. V A we construct analytical expres-
Figure 3 showsP(t)/w vs wt for five different frequencies  gjons for the RTDs and compare these with the RTDs ob-
of the external field. The inset in Fig. 3 showt) vs wt.  tained from our simulated time series. In Sec. V B we calcu-
The nucleation rate achieves its maximum valyg, at @ |ate the area of the peaks in the RTDs, or the RTD peak
phase ofwt=/2, independent oé. However, the location  srengths, and compare our theoretical results for the peak
and width of the maximum foP(t) depend strongly om.  strengths with MC data. Finally, we show that our data for
This behavior results from the combined field dependence ofe RTD peak strengths provide evidence of stochastic reso-
the nucleation rate and the interface growth velocity. Ror ngnce in the model.
=100, P(t) narrows and the location of its maximum shifts
to lower phase values as the switching begins to occur before A Residence-time distributions
the maximum inp(t). As R is decreased below 1.5t, :
—ar, and the area under the curve f8(t)/» goes to zero. We define the residence tinde as the time between con-
Therefore the conditiom,,,to= 7 gives the maximum fre- secutive magnetization reversals, and denote its probability
guency for which single-droplet switching is possible. Usingdensity aslI(A). The details of our theoretical deviation of
Eq. (4.13 and converting the result to a bound oRRXives  II(A) are given in the Appendix. The results of the theoret-
(1/R) max=1.19+-0.03. For higher frequencies, switching ical calculation for the residence-time distributions, which
events are very rare, and if they occur at all, they do sa@ontainno adjustable parameters, are shown as solid curves
through a multidroplet mechanism. The probability of notin Figs. 4a)—4(c) for different values oR.
switching during an entire period is obtained by integrating Next, we give a description of the MC analysis for the
the probability densityP(t), RTDs.[The results of this analysis are shown as solid dots in
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0.00035

whichm(t;") = + mg, andm(t;") = — mg,, respectively. The

00003 residence time\; is given by
(@) R=10

0.00025 +

t,—t7 whenm(t)y~—1 for t <t<t',
oo [ Ylth, -ttt whenm(t)=+1 for t <t<t],.
0.00015 (5. 1)

probability density

0.0001

We usedn,,~=0.25. For each frequency, the residence times
f\ are measured over an entire time series. The size of the bins
03 ; T 5 s in a RTD is set by dividing the maximum observed residence
« time by the number of bins. Both the maximum residence
time for a given time series and the number of bins are dif-
ferent for different frequencies. Hence, the size of the bins is
00003 different for each of the graphs in Fig. 4. Scaling the resi-
O f=3 dence times by the period of the external field centers the
peaks in the RTD about every odd half-integer. In the low-
0.0002 frequency limit, the system spends enough time in an unfa-
vorable field during every half-period to allow the magneti-
zation to switch. In this limit, the RTD would contain a

0.00005

0.00035

0.00025

0.00015

probability density

0.0001 . single peak centered around 1/2. As the frequency of the
000005 field is increased, there should be more periods during which
. j \ f‘\\ e the magnetization does not switch at all, indicated in the
s ! 5 22 3 25 4 RTDs by an increase of the size of the peaks centered on 3/2,
= 5/2, etc. The RTD data from MC simulations are shown in

Fig. 4 as solid points together with the theoretical curves.
The smoothest MC resultgnd the best agreement be-

000035

00003 /\ © Ros tween theory and simulation, occur f&=10. The agree-
000025 ment is quite good, considering that the theoretical calcula-
& . tion containsno free parameters. All of the constants in the
3 oo . formulas for the nucleation rate and the interface growth ve-
Eﬁamw locity come from theoretical considerations or from field-
S e fe p . reversal simulations. The agreement is poor only for the
poot] T ) . highest frequencies, correspondingRes 2.5. For these val-
ooooos ol L, ) . /& ues ofR the MC data are suspect. First, for these high fre-
S e \ S X\'.. LT qguencies of the external field, the sizes of the peaks for large
o5 4 a5 20253 35 4 residence times are significant. For all of the frequencies
B shown, the data sets have approximately the same total num-

ber of switching events. Therefore a smaller number of
scaled by the period2/ w of the external field for each value Bf events is contained In each bin of the RTDs for the higher

so that the peaks are centered around odd half-integer multipleg.equem'es' Second, in spite of the cutoff there are two

The RTDs are shown fofa) R=10 (150 bins, 1239 events(b) peaks in the RTDs foR=2 through 5 in the interval 0
R=5 (250 bins, 1439 eventsand (c) R=2.5 (500 bins, 1089 <wA/27<1. Of these two peaks, the peak at the shorter

eventy. The filled circles are obtained from the MC simulations. r€Sidence time comes from “spikes” in the magnetization
The solid curves represent the theoretical calculation presented ¥hich are large enough to extend past the cutoff value, but
the Appendix. still do not switch the system completely within a field pe-
riod. These “spikes” in the time series redistribute weight
Figs. 4a)—4(c) for different values oR.] When measuring a from the higher-order peaks of the RTD into the spurious
RTD one must ignore “false crossing events.” In thesepeak at short residence times. This affects the measurement
events, the magnetization crosses zero and recrosses zéthe peak strengths from the MC data as well, as discussed
again within a short time without having reached a valueln the next section.
near the stable magnetization. There appear to be two rea-
sons for these recrossing events. First, wheft)~0 the
magnetization can recross zero many times due to thermal
fluctuations. Second, during some of the periods there will be The frequency dependence of the strengths of the peaks in
a “spike” in the magnetization when a supercritical droplet the RTD is another quantity which describes the nature of
nucleates but does not have time to completely take over thédae magnetization reversal. The strength of jttrepeak in a
system before the applied field changes sign. For this reasoRTD is given by
a cutoff is employed, and a switching event is recorded only (20l
when m(t)_ reaches some cutqff value Meyt To ql_Jantn‘y Sj(w)=f II(A)dA. (5.2
the meaning of the cutoff, defing andt;” as the times at (i-D2mlw

FIG. 4. Residence-time distributiof®TDs). The time axis is

B. RTD peak strengths
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w1<w2<w3<- . (55)

This approach gives an alternative definition for SR, differ-
ent from the original definition as the noise intensity for
which the signal-to-noise rati(SNR) exhibits a maximum
[30]. Since the SNR does not exhibit a maximum with re-
spect to the frequency of the forcing, the definition suggested
by Gammaitoniet al. facilitates the understanding of SR as
the tuning of one time scal@nverse frequengyto another
(average lifetime of the metastable phasaore analogous
to a “bona fide” resonance.
~ - The case studied in Ref81] was one of a very weak
0 0.1 02 03 04 05 oscillating field, such that the noise-driven switching rate in
Jrequency = 1IR zero field was of the same order of magnitude as the escape
FIG. 5. Peak strengths in the RTDs vs scaled frequengy 1/ 'ate from the metastable state in maximum field. As a resullt,
The different curves, from top to bottom, correspondsipS,, S;,  there was onlyonelong time scale, and for sufficiently low
and S,. The statistical errors are everywhere on the order of thdrequencies most of the escapes were completely thermally
symbol size or less. The solid curves, obtained from(Bd, result ~ driven. This would redistribute the number of escapes with
from the same parameter-free calculation as the RTDs. residence times less thar w into a peak at much shorter
times, corresponding to the thermal escape rate of the un-
The peak strengths obtained from the MC time series aréorced bistable system and giving a nonzero valua of
shown as solid dots in Fig. 5. The statistical errors are esti- For the system studied here the thermal switching rate in
mated by error-propagation analysis\ﬁ(l—sj)/N, where  zero field is virtually zero, as pointed out in the discussion
N is the total number of switching events in a simulation run.following Eq. (3.1). As a result,S; increases monotonically
For almost all of the data points the error bars are smalletowards unity as the driving frequency is lowered. Bgrto
than the symbol size. The solid lines in Fig. 5 are theoreticaflisplay a maximum, the weight in the RTD’s must shift to-
results. The strength of the first ped,(w), is simply the wards times much shorter than the periodHbft). These
probability thatm(t) switches signwithin the first period residence times would correspond to events in which a single

08

0.6

04+

02

after the last field reversal, thermal fluctuation switches the system. One can increase the
thermal switching rate in zero fieldr decrease the thermal
Si(@w)=1—Ppow). (5.3 relaxation time in zero fieldr(0))] by increasingr. (Recent

measurements of telegraph noise in nanoscale ferromagnetic
particles are able to show this quite cleafB2].) But in-
Sj(w):Pnot(w)j_l[l_Pnot(w)]- (5.4) qreasin_g the temperature can move the system into_ an en-
tirely different decay regiméeither the MD or SF regime,
The values folP () used in this calculation were obtained depending on the value df) where the stochastic nature of
by numerically integrating Eq4.18) for several values ab.  the response disappears. However, even thdjgioes not
This parameter-free numerical evaluation of the theoreticalisplay a maximum, the higher-order peak strengths do have
peak strengths is in good agreement with the MC data. Ifmaxima atw,<w3<---. From Eq.(5.4) the theoretical po-
Fig. 5 one can see this agreement, especially for the strenggitions of these maxima are seen to be given by the condition
in the first peakS, (), for all but the highest-frequency data Pnof @) =(j —1)/j, which yields w;=0. ThroughP ()
point at 1R=0.5. However, the MC data slightly overesti- they are determined by the competition between the period
mate S;(w) even for low frequencies. This is due to the of the deterministic forcing and a stochastic time scale,
redistribution of strength from the higher-order peaks intowhich is theminimummetastable lifetimé r(H,)).
the first peak due to “spikes” in the time series which ex- If we were to reduce. to push the simulations into the
tend past the cutoff, as mentioned in Sec. V A. Hence, theoexistencgCE) region, then(7(0)), which depends expo-
peak strengths for the higher-order peaks are systematicallyentially on L9"! through the barrier in the free energy
underestimated by the MC data, particularly 8(w). The  F(m,0,T), would approach the escape tifie(Hg)), which
agreement between the theoretical curve and the data is nby Eq.(4.150 is inversely proportional th 9. As a resultS,;
quite as good foiS,(w), S;(w), and S,(w) at higher fre- should be observed to decrease at very low frequencies for
guencies. However, this is expected, due to the poorer statisufficiently small systems. In this regime, the critical droplet
tics for these higher-order peaks. volume would be on the order of half the system volume.
Analysis of the RTDs for two-state systems has been usedhis effect was recently observed by Lindredral. in simu-
to detect stochastic resonan¢8R) [30,80. Gammaitoni lations of a one-dimensional chain of bistable elements
et al. studied the switching behavior and residence times oflriven at a constant frequency and subject to noise of vari-
an analog circuit, which served as a model of a bistabl@ble intensity{36,37.
system driven by random noise and a sinusoidal external Our results lead us to make the observation thetai-
forcing [81]. They found for their model that SR is manifest mumin S, is not necessary for the response of the system to
in the fact that each of the peak strengths in the RTDs has the oscillating field to be characterized as “resonant.”
maximum for a given frequency of the field. If the frequency Rather,m(t) is essentially synchronized with (t) in the
wj corresponds to the location of the maximumSn then  whole frequency range whef is close to unity. The upper

Therefore the strength of theh peak is
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3 T ‘ ‘ ‘ ‘ approximately equal, the statistics for each peak is poor. In
: addition to this purely statistical error, there is also a system-
atic effect due to the cutoff used to measure the residence
times. Namely, the RTDs displayo peaks for the interval
] 0<wA/27<1. This extra weight ir5;(w) introduces addi-
RSN tional systematic error which tends to raise the estimates of
|1/7(w)| for higher frequencies.

The theoretical calculation of the characteristic time starts
by substituting Eq.(5.4) for Sj(w) into Eq. (5.6), which
gives

I
n

S (w)

L]
L onbbth o

~
n

[27Ry <t >) [units of 107 MCSS ']
-

S
n

; -1
% 0.1 02 03 04 05 7(w)= m' (5.7

IR

FIG. 6. The inverse characteristic time of the RTDs, The calculation ofp(w) is now trivial becausé®,,(w) has
[27R7(7)] %, vs the scaled frequencyR/ The inverse character- already been evaluated numerically in Sec. V B. The solid
istic time is given in units of 10° (MCSS) L. The solid dots are curve in Fig. 6 shows the theoretical results from the full
calculated from MC data for the peak strengths of the RTDs. Thenumerical calculation oP,,{(w). The theoretical result di-
inset shows examples of B vs the peak numbgy, along with their ~ verges at a value of R~1.19, the maximum value of the
linear least-squares fit lines. The three frequencies shown in thﬁ'equency for which single-droplet switching is possible. At
inset are 1R=0.4, 0.2, and 0.1, in order of increasing slope. Thethjs value of 1R, Pro=1, and the characteristic time di-
error bars on the data are calculated from the standard deviation %rges. For frequency valuesRtt1.19 mechanisms other
the slopes of the fitted lines. The solid curve is obtained from thgpan single-droplet decay might be possible, such as several
full numerical calculation of Eq(5.7). The horizontal long-dashed - ets nucleating simultaneously. Given the length of our
line results from a low-frequency approximation obtained by settingg;mj|ations, it is unlikely such behavior would be observed.
ty=0. Th'_ss honzontalllhne is located at a value [@7R ()] Indeed, the statistical and systematic errors discussed above
=1.4x10> (MCSS) " obtained by numerical integration of Eq. e

. . preclude accurate measurement of the characteristic time
(5.12). The short-dashed line represents the frequémgdR, which f the MC data for R=0.4
has been scaled to have the units of (MCSS)The open oval rorlg Ie f ata qr [; h .h h ical and the MC
around the point for B=0.5 is a reminder of the poor statistics or low requenCIeS., ,OI_ the theoretical and the . re.-
and large systematic error in the RTD for this frequency. sults for the characteristic tlm(_e appear con_stant. Th|§ moti-
vates the search for an approximate, analytic expression. We
start by casting E(5.7) in terms of the cumulative probabil-

limit of this range is proportional tw, and therefore deter- e
ge IS prop 2 ity distribution,

mined by(7(H,)), whereas the lower limit would be deter-
mined by the(in our case unobservably longr(0)). This
theme will be discussed further in Sec. VII A. ) 1 (5.9

)= e

C. Characteristic time of the RTDs

For each of the RTDs shown in Fig. 4, the size of theUSIng the low-frequency approximatiag=0 gives

peaks decreases for large residence times. The rate of this 1
decrease can be quantified by measuring how the peak nw)= ——————
strengths decrease with increasing peak number. We define 2]”’” (t)dt’
the characteristic timey(w) for the RTDs(in units of the P

field period, 27/ w) as

, (5.9

-1

where the upper limit in the integral is rewritten because the
(5.6) nucleation ratep(t) is symmetric about= 7/2w. Substitut-
the integral above as
The value ofy(w) for any frequency of the field is measured
L . , ; 1t ud Eo(T)[1
best-fit line through this data gives1/5(w). The inverse n(w)= 2po; \/_zex T G_l
characteristic times calculated from the MC data by a 0Vl-u 0
uncertainty in the estimates for the characteristic time be=I'he final result for the characteristic time is given in units of
very lowest frequency shown, R£#0.05, few switching simuiifvin
events contribute to any of the peaks in the RTD, other than pityIng.
1 Ul -1
for j>1, resulting in a large uncertainty in the fitted slope. R, — p0<7>f 4 ex;{ _ Y
For high frequencies the RTDs contain many peaks. Since 7T Jo1—u? Ho \u

)= Sj(w)=In Sj;1(w)” ing u=sin(wt) into Eq. (4.1 for p(t) allows one to write
from the MC data by plotting I'§ vs j. The slope of a
weighted least-squares fit are shown in Fig. 6. The statistical (5.10
comes large for the lowest and highest frequencies. For th{37_> by multiplying both sides of the equation aboveRnd
the first peak. Hence there are poor statistics in tHg trata
the total number of switching events in each time series is (5.1)
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where all the quantities are known except for the integral, s
which can be calculated numerically. This theoretical result

is shown in Fig. 6 as a horizontal dashed line. The definition

of #(w) in Eg. (5.6) admits to an interpretation of the char- 10
acteristic time as an exponential decay constangftw) as

a function ofj. Thereforen(w) is a convenient average mea-
sure of a RTD, with long characteristic times corresponding
to large peaks at long residence times. The exponential na-
ture of the decay of the RTD with time should give risetoa o
Lorentzian component in the power spectral density with background
half-width f,,~[27R7(7)] 1~1.4x10"° (MCSS) %, ob-
tained from a numerical evaluation of E¢p.11). This low- . . .
frequency component should be visible in the spectrum when R - A 0
f1p<w/27. 0 g MO

The result in Eq(5.1) was obtained in a low-frequency i 7. power spectral densitié8SDS. Spectra are shown for
approximation by setting,=0. Further approximation can tnree different frequencies of the external field, and are plotted with
be made in the evaluation of E(.11). The main contribu-  an arbitrary offset for clarity. The inset shows the same spectra
tion to the integral in the denominator occurs tor1. EX-  without the offset to illustrate how all three PSDs fall onto the
panding each factor in the integranddr-1—u for smalle  thermal noise background at high frequencies. In addition to the
and substitutingx?=E,(T)e/H, gives the Gaussian ap- change in the amount of smoothing, the right-hand section of each
proximation, spectrum contains only one data point out of every 25 to facilitate

plotting. The magnetization is sampled every 1.0 MCSS, so the
Po\T 2HO [EoMHy 2
7<-r ) \Y} Eo(T) fo e dx be resolved is 2.3810° 7 (MCSS) 1. The dashed line with slope
—2 is a guide to the eye. The arrow indicates a frequency of 1.4
A width of the spectrum predicted in Sec. V C for low frequencies of
2E,(T)" the external field.

Nyquist frequency is 0.5 (MCSS?. The lowest frequency that can
_ 1 X 107% (MCSS) ! in the PSD. This frequency value is the half-
po(7) \/ mHo rf\/ﬂo(T)J
7T 1

1.4x10~° MCSS™ |

g
L 5
£ R =100

-1
Rn=

Ho
(5.12

which gives [27R7(7)] 1=1.9x10"° (MCSS) %, and shif_ted in 'Fhe verticgl direction by arbit_rary offsets. The spec-
was obtained by inserting quantities from Table I. The agreelr@ in the inset of Fig. 7 are plotted with no offset. Different
ment between this value and the data is not as good as th@fnounts of smoothing have been used for the low- and high-
obtained directly from the numerical evaluation of Eq.frequency regimes. In the low-frequency regime, less
(5.11). However, the expansion in smalimproves for large  Smoothing is used. This increases the frequency resolution,
Eo(T)/H,. So this analytic formula for(w) would be ap- €nabling one to see sharper peaks in the spectra and sample
propriate for low frequencies and small amplitudes of theMore of the low-frequency response. In the high-frequency
external field, i.e., field amplitudes which place the systenf€9ime, more smoothing is used. Since there s less power in
even deeper into the SD region. the PSDs for the higher frequencies, a reduction in the vari-
ance is a higher priority than frequency resolution. The
fourth spectrum shown in Fig. 7, labeled “background,”
corresponds to thermal fluctuations in a single-phase system.
A standard method used to characterize a time series is b0 obtain this spectrum, a simulation was performed on a
calculate its power spectral densitiSD. Figure 7 shows System with the same size, temperature, and for the same
the PSDs of the raw data, short segments of which are showiumber of MCSS as the other spectra, irstatic field of
in Fig. 2. These PSDs are calculated with a standard fadly/\2. The magnetization quickly relaxes to equilibrium.
Fourier transform(FFT) algorithm implemented using a The equilibrium fluctuations are purely thermal, and their
Welch window[83]. To reduce the variance in the PSDs, time correlations are exponential with a short correlation
each time series is split into several segments. The data aténe of only a few MCSS. The PSD should then have the
then overlapped in such a way as to obtain an “average’functional form of a Lorentzian. When plotted on a log-log
over all the segments for each frequency bin. The details ofcale a Lorentzian appears flat at low frequencies, then
this method, which we refer to as “smoothing,” are given in crosses over into a linear curve with a slope-a2. The tail
Ref.[83]. Depending on the number of segments into whichon the observed noise background does not appear to have
the original time series is split, there is a trade-off betweerslope= —2. However, this is most likely due to aliasing ef-
frequency resolution and variance reduction. If the time sefects near the Nyquist frequend@ = 7 [83], which is only
ries is split into many segments, the variance per bin is deabout one order of magnitude larger than the inverse corre-
creased at the expense of lower-frequency resolution. Cordation time.
versely, by partitioning the data into fewer long segments To describe the PSD for each frequency, we identify four
one obtains higher-frequency resolution and a smaller lowdistinct regionsi(1) the thermal noise regiori2) the peaks,
frequency cutoff, at the expense of a larger variance per bin(3) the low-frequency region, ant#) the intermediate re-
The PSDs for different driving frequencies are shown ingion. The inset in Fig. 7 shows how the PSDs collapse onto
Fig. 7. The spectra in the main part of the plot have beerthe background spectrum in the thermal noise region for

VI. POWER SPECTRAL DENSITIES
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large frequencies. The time scale of the thermal fluctuationslowever, the portion of the PSD just to the left of the

is much shorter than the shortest period of the external fieldhermal-noise region is decreasing with a slope steeper than
The most prominent features of the PSDs are the sharp 2. This sharp falloff is a consequence of the finite growth

peaks. For each driving frequency, the first peak in the spedime of a critical droplet. A finite growth time effectively

trum is located atv, the frequency of the external field. The “smoothes out” the sharp corners of the square-wave re-

second peak is located ab3the third peak is located at§ ~ sponse of the magnetization, which introduces a cutoff for

and so on. These odd harmonic peaks arise because the shéipe highest-frequency componentsmf in the intermediate

of the time series strongly resembles a square Weafer to  region.

Fig. 2). The powermp, contained in theath component of the

Fourier series for a pure square wave ip, VII. HYSTERESIS LOOPS, CORRELATION, AND

=16 sin(h#/2)]* (n7)?, which is nonzero only for oda PERIOD-AVERAGED MAGNETIZATION

and decays as 2. The zeros inp, for evenn survive as i i . i

zeros in the PSD for a switching process in which the switch- 10 characterize the behavior of an entire time series we

ing probability densityP(t) reduces to a delta functidi84]. calculate the following integrals of the magnetization:

The finite width ofP(t) for the present system smoothes out

such singularities in the PSD. However, a clear dip in the A= — § m(H)dH, (7.0

PSD at twice the driving frequency can be seenRer 10.

This effect was also noticed by Zhou and Moss in the weak-

noise regime for analog si_mulations _of a bistable .cirﬁiﬁ‘]. B= o fﬁ m(t)H(t)dt, 7.2
The low-frequency region comprises the portion of each 2

spectrum between the first peak and the lowest resolved fre-

guency. The PSD in this region exhibits a strong dependence 1)

on the frequency of the external field. FRr= 100, the aver- Q=5- % m(t)dt, (7.3

age intensity in the low-frequency region is approximately

constant and is weaker than t_he fundamental peak intensityhereA is the hysteresis-loop areB, is the correlation be-

by about three orders of magnitude. o+ 2.5, the slope of  tween the external field and the system magnetization@nd
the PSD in the low-frequency region is close @ over s the period-averaged magnetization. These quantities are
almost two orders of magnitude and contains componentgajculated over each period in the entire time series. From
comparable in intensity to that of the fundamental peak. Thighe resulting “filtered” time series we construct histograms
significant amount of power at low frequencies is a consetq gptain the probability densities @, B, andQ for each
guence of the long residence times, i.e., those residenc%parate frequency of the external field.

times longer than the period of the field. The Lorentzian |n Sec. VII A we compare our MC data and theoretical
half-width predicted from the RTDs in Sec. V €,,~1.4  cajculations ofA andB. In particular, we comment on the
X10° (MCSS) *, is in good agreement with the PSD for |ow-frequency power-law scaling fok which has been put
R=2.5. One can see from Fig. 7 that if the first peak for aforth in numerous studies. At the end of this section we show
PSD is located at a frequency smallargen than approxi-  our results forB and identify A andB as components of a
mately 1.4<10°° (MCSS) *, there are smalilarge) low-  nonlinear response function. In Sec. Vil B we disc@and

frequency components. In an analogous fashion, the lowthe absence of a dynamic phase transition in the SD region
frequency behavior of the PSDs can be deduced byor this system.

comparing the inverse characteristic tifi2zR7(7)] "1, in
Fig. 6 with the frequency({7)/R [in units of (MCSS) 1],
which is shown as a short-dashed line in the same figure. For
low driving frequencies{ r)/R<[27R»(7)] . Therefore The hysteresis-loop are@ represents the energy dissi-
most of the residence times are less than a period of thpated during a single period of the applied field. It is there-
external field, which corresponds to small low-frequencyfore one of the most important physical quantities character-
components in the PSDs. For high driving frequenciesjzing hysteretic systems, and it is frequently measured in
(N IR>[27R7n(7)] "1, and large low-frequency components experiments. Under the conditions of stochastic magnetiza-
appear in the PSDs. tion reversal A andB are random variables with nontrivial
The intermediate region is the portion of each spectrunstatistical properties. Figure 8 shows the probability densities
between the highest-order visible peak and the thermal-noigef A. For all values oR=<10, there is a sharp peak near zero.
region. This region is discussed last because it is best undefhis peak is denoted a8, and corresponds to the field
stood as a crossover from the peaks to the thermal-noisgycles during whichm(t) does not switch sign, but merely
region. The structure of the odd-harmonic peaks is easiest ituctuates near-me,. The second peald,, is located near
discern forR=100, where the first five peaks are clearly A/(4Hy)=0.5. It represents field cycles during whiof(t)
visible. The higher-frequency harmonics cannot be seen foswitches sigronce The third peakA,, located near a loop
two reasons: the peak positions become very closely spacedea ofA/(4Hy) =1.0, represents cases wheift) switches
on a logarithmic scale, and the intensity of the peaks besign twice within the same period. When the period of the
comes too small to be seen above the fluctuations in théeld increases, the weight in the peaks moves from low to
PSD. So the intermediate region may be thought of as ahigh values ofA. For H(t) with longer periods, the magne-
envelope of the high-frequency, odd-harmonic peaks. A logtization has a higher probability of switching once or twice
log plot of p, vs oddn yields a line with a slope of~2.  during a single period, thus transferring more weight to the

A. Hysteresis loops and correlation



57 STOCHASTIC HYSTERESIS AND RESONANCE IN A ... 6525

T probabiliy The phase whose probability is given lpy changes in a
- T density two-state Markov process described by a transition matrix
fully determined byP,,( ). It is easy to show that the sta-
tionary value ofp_=1[1+P,(w)] [86]. After the phase
w0 distribution has reached its stationary state, we therefore get

20 fO: Pnot(w)u (7-53
1 _anot(w)[l_Pnot(w)]
T P0)] (750
[1_ F)not(w)]2
# L Prol@)] (7:59

These expressions satisfy the normalization conditign
FIG. 8. Probability densities for the hysteresis-loop awa,  +f,+f,=1. Thef; are directly related to the RTD peak
—¢$m(H)dH. The values oR shown here ar®=2,25,3,4,5,6, strengthsS;, through their common dependence®p;. In
10, 20, and 100. particular,fy=P,,=1—5;.

It is less clear how to separate the peaks when measuring
peaksA; andA,. For very low frequencies, the magnetiza- the fractions from the MC data. For example, with cutoffs at
tion almost always switches twice in each period, giving0.333 and 0.666 an event is considered part of pagkf
loops of typeA,. At the same time, switching occurs earlier 0< A/4H,<0.333, part of peal; if 0.333<A/4H,<0.666,
in each half-period. This reduces the average loop area, givand part of peald, if 0.666<A/4H,< 1.0. Different cutoffs
ing rise to the type of PDF shown f&®=100 in Fig. 8.  were tried and judged by how well they fit the theoretical
Figure 9 shows typical hysteresis loops with valuesfof results. No particular choice produced a fit that was qualita-
corresponding to the three peakg, A;, andA,. tively better than others. Comparisons of thecalculated

The fraction of events contained in each of these peaks Wgom theory and simulation are shown in Fig. 10. The data
denote ad, fq, andf,. These are the probabilities that the points are measured from the loop-area distributions, using
magnetization switches zero, one, or two times in a full pecutoffs at 0.333 and 0.666. The solid curves are calculated
riod of the field. They depend on the probability that the signfrom Eqgs. (7.58—(7.509, using the theoretical values for
of m(t) is opposite that oH(t) immediately afteH(t) has P, (). Considering that no free parameters are used in the
switched sign at the beginning of the period. We call thistheory, it agrees well with the simulation data.

phase probabilityp_ . In terms ofp_ and P, ,(®) we have The average loop area for a specific frequency is a quan-
tity often displayed in experimental and numerical studies of
fo=Pnof @), (7.49 hysteresis. It can also be obtained in the present case, and we
do so below. However, for stochastic hysteresis this is not a
f1=P-Phof @)[1=Ppof @) ]+ (1=p_)[1— Pyl @)], very useful quantity at higher frequencies, where the distri-

(7.4p  butions are trimodal. The means of the distributions in Fig. 8
are shown in Fig. 11. Note that the vertical bars @oeerror

fo=p_[1—Prol®)]? (7.40 bars, but rather give the standard deviations of the distribu-
1 ml LI eE— FIG. 9. Representative hyster-
05l % d 0.5 esis loops corresponding to differ-
ent numbers of switching events
B 0 g 0 during one period of the applied
~05 ~05 field. Each loop in@)—(c) consists
’ Ay (@) R=4 ’ A, ) R=4 of data from asingle period in a
-1 -1 o time series.witrR=4. ForAy, no
"y 505 0 005 01 ol 005 0 005 0 magnetization reversal occurs.

HIJ] H This example shows a “spike” in
the magnetization during one-half
of the period. FOA;, one magne-
tization reversal occurs during the
period. ForA, in (c) and(d), two

1
magnetization reversals occiyd)
Ji

[
1 -

J]
£ 0 l \ g 0 l 4
-0 A, ©) R=4 03 A, @ R=100
.y -1

- —_—

4
|
| shows a hysteresis loop of type

from a very low-frequency time
series withR=100. Note: the ar-

row tails with filled dots indicate
the start of the field cycle.

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.
HlJ] H{J]
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FIG. 10. Frequency dependence of the fraction of events contained in the(peaks (b) A;, and(c) A,. The solid dots are measured
directly from the data in the loop-area distributions, and the dashed lines are guides to the eye. The solid curve in each plot is calculated
using Eqgs(7.53—(7.50 with P,.(®) obtained from a numerical evaluation of E4.18). (d) The loop-area distribution fdR=6 is shown
to illustrate the peak sizes in the trimodal distribution.

tions. The dotted curve is obtained by assuming that the fluamodal for low frequenciegrefer to Fig. 3, we can choose
tuations of the loop areas are small in each of the thre¢he typical time when the magnetization switches during
peaks. An approximate value for the scaled loop area can beach half periodis, to be either its mean, mode, or median.
assigned to each of the three peaK#,)/4H,~0.00, We use the latter because it is analytically more tractable and
(A)/AH ~=m 2, and(A,)/4H,~m.,. With these choices has an analytic asymptotic approximation. To determine the
we assume that the magnetization switches when the absmedian ofP(t) we must solve-(t;) =1/2, where the cumu-
lute value of the external field is close to a maximum. Thelative probability distributionF(t) is given by Eq.(4.6). To
average loop area is calculated by weighting these values kgimplify the form of this equation we note that for low fre-

the fraction of events in each peak, guencies the hysteresis loops are squiester to Fig. 9d)],
which means that the growth time becomes small compared
(A)HF_f (Ag) . (Ay) ‘ (Ay) to tg and can be ignored. Thus the equationtipbecomes
IH, olw) am, " 1(w) am,) " 2(w) IR, )"

(7.6) F(ts)=1—ex;{—ftsp(t’)dt, :; (7.7)
0

where “HF” stands for “high-frequency.” This expression
breaks down in the low-frequency limit, 48— 1 and(A,)  After rearranging and substituting==q/[Hysin(wt)]% %,
becomes strongly frequency dependent. Next we discuss thigse obtain
effect.

For any finite time series there is a sufficiently low fre- s o,
guency such that the magnetization always switches during In 2= fo p(t")dt (7.8
every half-period of the field. For very low frequencies the
magnetization switches, on averagpeforethe field reaches
its extreme value during every half-period. Therefore the
loop-area distribution becomes unimodal, and the mean loop
area decreases with decreasing frequency. Since the prob-
ability density of switching timesP(t), is narrow and uni- x e~ ZoM/Hosiwt )1 gy (7.9)

eEO(T)/Hg’

1 5 |
=Po fo [Hosin(wt')]"

g
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=Hpsin(wt), decreases. For very low frequencies
@ X>EOIH8_1 and the radical in Eq(7.10 is of order one,
resulting in the expression

Eo(TIHS L (K+1)/(d-1)
=0

06 P e
NE X H* {(d—1)w
04 o .
‘u\*x; Xf q Xi(Ker)/(dil)eide, (711)
. = i1
0'Ms

02 =

which may also be derived through a linear approximation to
0 o1 02 03 04 25 the sinusoidal fieldH (t) ~Hqwt. After rearranging and sim-
plifying this becomeg50]

I

CHow=T]{1 (7.12

K+d Ey
- d_l l Hgil I

whereI'(a,x) is the incomplete gamma functid87], and
we define

— d-1
In2 Hg(d— 1)e—:O(T)/HO EQ*(KJrl)/(dfl)

Po '
) (7.13
e With d=2, K=3, and the values found in Table C
0 T 10 s 0 =0.101 J! MCSS. For smallw the hysteresis loops are
logm% practically square, so the scaled loop area in the low-
frequency(LF) limit can be expressed as
FIG. 11. (a) Mean and standard deviation of the loop-area dis-

tributions shown vs the scaled frequenciR1The solid dots are the (A F H(w)

means of the distributions shown in Fig. 8. The vertical barsate 4H, ~Megq Ho (7.14

error bars, but give the standard deviations of those distributions.

The large standard deviations forRE£0.1 indicate the trimodal The switching fieldH(w) is obtained from a numerical so-
distribution of the loop areas, typical of the SD region. For the|ution of Eq.(7.10), and the result fofA), /4H is shown as
points at the two lowest frequencies the magnetization switcheghe solid curve in Figs. &) and 11b). Figure 11b) shows

nearly every half-period, giying a loop-area distribution which is e good agreement between this parameter-free calculation
close to unimodal. The solid and dotted curves come from two,\4 the MC data for frequenciesRi: 0.05.

separate theoretical calculations. The solid curve results from nu-
merical solution of an analytic expression for the switching field
that assumes switching occurs during every half-period. The dotte
curve comes from a calculation which uses the same values of

P.ofw) used for the theoretical curve in Fig. 1®) Log-log plot I'(a,x)~x3 le™X
for the very lowest frequencies {@). The solid curve is the same as
the solid curve in(a). The long-dashed line segments represent, . . _ .
linear least-squares fits to different portions of the numerical solu]cor largex. By_ '9”0”’?9 the faC.tOIXa ", one Obtams. a. com-
tion data, each covering almost four decades in frequency. The da&]et_ely gnalytlc SOIUUOU foH |r_1 thg extreme LF limit, re-
that yield the effective exponerit,=0.077 are centered around Sulting in the asymptotic, logarithmic frequency dependence
log,o( L/R) = — 3.35: those that yielth,=0.033 are centered around Or the loop area

log(1/R) = —13.78. The solid dots are MC simulation data. The 1 Card_

short-dashed curve represents Ef16 with d=2 andC=0.101 <A>LF”4:cl>/(d Y[ =In(CHpw)]~ M"Y (7.19

J !t MCss.

One can obtain an approximate analytic solution by taking
Hwe first term in the asymptotic expansisi]

a—1
1+T+--- (7.15

In Fig. 11 we show calculations of both this asymptotic
analytic resulishort-dashed curydor the loop area and the

= d-1
Eo(T)/H = (K+1)/(d-1 . . B .
eZo(N/Hg :E) (d-1) loop area obtained from the numerical solutisolid curve

~Po HS“(d—l)w of Eq. (7.10. The dashed lines in Fig. 1) are linear least-
squares fits to the full numerical solution over almost four
x x~ (K+d)/(d=1)g—x decades in frequency. The slopes of these fit lines would give
f_ 4ot = =1 2dX. an “effective” exponentb for the loop areaAx w”. For the
oM I-[(Ho) (Eo /)M Y]

frequency regime shown, these effective power-law expo-
(7.10 nents for the loop area depend on frequency. These results

show no evidence of an overall power-law relationship be-
As the frequency is decreased the switching fielt, tween the frequency and the loop area.
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To the best of our knowledge, the present study is the first 1
to give a complete solution A and emphasize its possible 08
significance for the low-frequency power-law behaviorof
reported in the literature. This issue is discussed in further
detail in a separate papgs0]. Theoretical considerations of 04
nucleation effects on hysteresis have been mentioned previ;
ously in the literature [6,26,64, reporting the same Y[a % ‘ | ‘ ‘ ‘
asymptotic frequency behavior for the loop area as in Eq. ool |
(7.16. However, we stress that the purely logarithmic depen- {“ _____ ‘ _________ T I ----------- {

0.6

(2Hy /7

dence of the loop area on frequency and amplitude of the ~%?
external field will approach the exact solution obtained from Y
Eq. (7.10 only for extremelylow frequencies, as illustrated
by the poor agreement between the short-dashed and soli
curves in Fig. 1(b). The units of frequency used in our
simulations may be converted roughly into hertz by equating FIG. 12. Mean and standard deviation of the correlatidn
a phonon frequency with an inverse Monte Carlo step peshown vs the scaled frequencyRi/The solid dots are the means of
spin,?z 1 (MCSS) 1, with »=10°-10 Hz as a reasonable the correlation distributions. The vertical bars acterror bars, but
estimate. Then, the lowest frequency calculated for the soli@ive the standard deviations of those distributions. The solid and
curve in Fig. 11b) corresponds to a field period on the order dotted curves are obtained from similar calculations as those for the
of thousands to millions of years. The full asymptotic behav-00p areas in Fig. 11.
ior of the loop area is realized for frequencies lower still, and
is therefore well outside the range of feasible experimentstheir definition of a loop area rather unphysical, except for
However, the lowest-frequency MC data point correspondgery low frequencies. However, the role of the hysteresis-
to a field period on the order of microseconds to seconddpop area as a measure of energy dissipation indicates that a
suggesting the low-frequency SD behavior of the loop areamaximum inA may be considered an aspect of SR, which
described by our full numerical calculation could be experi-we suggest could be termed “stochastic energy resonance.”
mentally observable. Relatively few studies have considerBdthe correlation

In extensive simulations, Acharyya and Chakrabarti haveof the magnetization with the external field. For Ising models
studied the hysteretic response of Ising systems with respestibject to oscillating fields, these studjd®,41] have found
to changes in field amplitude and frequency, temperatureg temperature at which the correlation attains a maximum
system size, and system dimensi&®]. In particular, they value for a given frequency, amplitude, and system size.
have presented power-law scaling relationsAoHowever, However, as recently pointed out by Achan@d], this fea-
their simulations ind=2 are all done with very large field ture is not a sign of SR. These simulations are mostly per-
amplitudes. For the temperatures used in their papers, thefgrmed aboveT . in a regime where the metastable state no
field amplitudes place their system in a regime we refer to atonger exists. Therefore comparison of our simulations or
the “strong-field (SP region,” where the size of a critical analytic results with these studies is not relevant.
droplet becomes comparable to the lattice constaand the Our theoretical derivations @& are similar to those foA
droplet picture of metastable decay breaks dgwh]. The and are also given as high- and low-frequency approxima-
investigation of hysteresis in kinetic Ising models by Lo andtions. Figure 12 shows our MC data f& along with the
Pelcovits[57] is not restricted to the SF region. In particular, theoretical result for the high-frequency regintdotted
the range of field amplitudes used places their simulations igurve) and the low-frequency regimgolid curvg. We as-
the SD, MD, and SF regions as the amplitude is increasediume thaH ~H, for high frequencies, and that the magne-
The hysteretic response, including the loop area, requireization switching is stochastic with either zero, one, or two
qualitatively different theoretical descriptions in each of switches every period. The only nonzero contribution to the
these regions. This drastic change in the Ising model concorrelation comes from those periods when the magnetiza-
trasts with a coherent rotation model of magnetization revertion switches only once. We use notation analogous to the
sal, for which increasing the field strength would merely de-high-frequency loop-area calculation for each of these
crease the energy barrier that the system must overcome fthtree contributions,(Bg)/(2Hq/7)~0.0, (B1)/(2Hq/ )
the magnetization to be aligned with the field. For the kinetic= —mq42, and(B,)/(2Hy/7)~0.0, with (B)ye/(2Hq/ )
Ising model and other spatially extended systems, howevecalculated as a weighted average similar to &),
increasing the field not only decreases the free-energy barrier

0.1 0.2 03 04 0.5

for forming a single critical droplet of the stable phase, it (B)ur (Bo) (B,)

also changes the reversal mode. Our results emphasize the =f0(w)< +fi(w) )
importance of a knowledge of the decay mode in order to 2Holm 2Holm 2Holm

obtain the correct frequency dependence of the average loop (B,)

area over a wide range of frequencies. +f2(w)<m . (7.17

Mahato and collaboratof88,89 also considered a driven
bistable system in the presence of noise. From the RTDs they
calculate what they describe as an “average hysteresiBigure 12 shows thatB)ye/(2Hy/7)—0 asw—0 and as
loop,” and they propose a maximum in this quantity with w—, which is a direct consequence of the behavior of
respect to noise strength as a manifestation of SR. We finél,(w) [see Fig. 1(b)].
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The low-frequency calculation fd is also similar to that - —

robability
for A and assumes that the magnetization switches abruptl //// \\ ” d;nm
at |[Hg<Hg, during each half-period. This assumption to- ///// \\\'
gether with the definition oB, Eq. (7.2), yields ~__ Py | > N
(B)Lr He(w))? - ] 110
2Ho/7r_meq 1= Ho |~ (719 - | “ e, |

- \ ‘\“ 4q // T J ]5

As for A, the switching fieldH(w) is obtained from a nu- - "\H\’\”\" - T

merical solution of Eq(7.10. There is good agreement with ‘H \ |‘

the MC data for the two lowest frequencies. As the fre- ‘

guency increases the theoretical result approaches zert ‘

However, the assumption that the magnetization switches 8 < 05 ©

during every half-period begins to break down aroung 1/ 2

=0.05, where the MC result fd passes through zero.
Although the system studied here is both stochastic and FIG. 13. Probability densities for the period-averaged magneti-

highly nonlinear, the physical significance of the integrals zationQ. The values oR shown areR=2, 2.5, 3, 4, 5, 6, 10, 20,

andB can be clarified by comparison with deterministic lin- and 100.

ear response theory. In that limit one easily finds that

A/(TrHﬁ) and ZS/HS correspond to the dissipative and reac-aroundQ= +0.5 occur for those periods in which the mag-

tive parts of the complex linear response function, respecnetization switches only once. Note that there is not a corre-

tively. It is therefore natural to combin& and B into an  sponding peak a@= —0.5. This is an effect of the way we

analogousonlinearresponse function, calculate the period-averaged magnetization, which consid-

ers the beginning of a period to start whiift)=0 andH

>0. We would have obtained a peak n&a+= —0.5 if we

had started wittH(t)=0 andH <O0.

Even by inspecting the distributions f@, no dynamic
The maximum inA and the sign change iB, which occur  phase transition can be seen. While the means of the distri-
close together in frequency, are characteristic behaviors djutions for high(low) frequencies are nonzer@ero, this
the dissipative and reactive parts of a response function ne&dmppens smoothly as weight shifts from the peaks i@ar
resonance. It is reasonable to associate this behavior witk =1 to the peak a@=0. As we plan to show in future, the
SR. However, as we pointed out at the end of Sec. Yhg&) situation is quite different in the MD region, where we find
remains essentially synchronized with(t) as the driving strong evidence for a dynamic phase transifidh|.
frequency is lowered further below this narrow frequency
range. The system then switches reliably during every half- VIIl. DISCUSSION
period of the field, while the switching occurs earlier and ) )
earlier in the half-period as the frequency is lowered. In this The mechanism by which a metastable phase decays de-
low-frequency regime, the norm of remains close to its Pends sensitively on the system size, the temperature, and the
maximum value of #n/(Hom), and its phase gives a strength of the applied field. For small systems and weak
meaningful measure of the period-averaged phase lag. THE!dS, the decay proceeds through the nucleation and growth
latter increases monotonically from zero@t=0 to 7/2 at ~ Of asingledroplet of overturned spins. This regime has been
the frequency wher@ crosses zero. We believe the systemt€rmed the single-dropletSD) region. In this region the

should be considered as resonant in this whole range of loff*@gnetization response consists of rapid transitions between
frequencies. two states; one with the majority of the spins up, and one

with the majority of the spins down. The resulting time series
is well described in terms of a Poisson process with a time-
dependent rate obtained from the nucleation rate and growth
The period-averaged magnetizatigh has been consid- velocity of droplets of the stable phase. The time dependence
ered as a “dynamic order parameter” for systems exhibitingenters the nucleation rate by replacing the constant field
hysteresi§32,52—57. Those studies of the Ising model have by H(t) =H, sin(wt). This central idea provides the analytic
suggested the existence of a dynamic phase transition bé&amework for theoretical descriptions of the quantities mea-
tween(Q)#0 and(Q)=0. As for the hysteresis-loop areas, sured from our MC simulations. These quantities include
the statistical properties of the period-averaged magnetizaesidence-time distributionRTDS), power spectral densi-
tion in the SD region are not well characterized simply by itsties PSD, hysteresis-loop areas, and the correlation between
mean. Figure 13 shows the probability densitie®oin the  the magnetization and the oscillating field. The agreement
SD region. For all but the very highest values Rf the  between all of our theoretical calculations and the MC data is
distributions show two sharp peaks né@r +m,, due to  very good, especially considering that the theory contains no
m(t) oscillating near the spontaneous magnetization duringdjustable parameters. All of the constants used are either
most of the field cycles. The contributions to tQedistribu-  known from droplet theory or are measured from MC simu-
tions nearQ=0 occur when the magnetization switches lations of field reversal in kinetic Ising models. To the best
twice in one period. The contributions to the peak centereaf our knowledge, the present study is the first which explic-

AN

1 i
X(Ho,T,0)= 5 2B+ A

0

. (7.19

B. Period-averaged magnetization
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itly considers hysteresis for the Ising model in the SD re-connection between the RTDs and the low-frequency behav-
gime. ior in the PSDs through the characteristic time of the RTDs.
The frequency dependence of the RTD peak shapes artiverse characteristic times that are smallargey) than the
peak strengths are calculated by numerically evaluating andrequency of the applied field correspond to largenal)
lytic expressions obtained from a time-dependent extensiolpWw-frequency components in the PSDs. Our theoretical deri-
of classical nucleation theory. The good agreement betweeY@tion of the characteristic time also agrees well with the
our theoretical calculations and MC data supports the modéiharacteristic times obtained from the simulated RTDs, ex-
of magnetization switching as a Poisson process with a vari€Pt at very high frequencies. The relatively poor agreement
able rate, given by substituting a sinusoidal field dependenci€tween the MC data and the theory for high frequencies of
for the static field in the nucleation rate. the external forcing field is common to most of the quantities
The frequency dependence of the RTD peak strengths, tH@easured and_ is most I|ke_ly due to the poor quality of the
hysteresis-loop areas, and the correlation between the maljlC data for high frequencies. However, it could also be a
netization and the field all indicate the presence of stochastie/dn of breakdown in the adiabatic approximation underlying
resonancgSR) in the two-dimensional Ising model in this the assumption that the functional form of the nu.cleatlon rate
parameter regime. This observation is consistent with recer@d the calculation of the growth-time corrections do not
studies of SR in other systems of coupled bistable element§hange for high frequenci¢g9]. _ o
some of which pointed out the importance of nucleation of " Summary, we have studied stochastic hysteresis in the
kink-antikink pairs to what has been termed array enhancefin€tic Ising model, a spatially extended, bistable system
stochastic resonanc@ESR). For any nucleation process, With thermal fluctuations. We emphasize not only the de-
there should be crossovers between coexistéBER single- tailed c_ilfferences between hystere5|s_|n _mean-fleld models
droplet (SD), and multidropletMD) types of behavior as a and Ising models_, but also _the qualltat|ve_ly dlffere_nt re-
consequence of the interplay between the sizes and sepafROnse that the Ising model displays for particular regimes of
tions of the critical fluctuatiofs) and the size of the system. System size and field amplitude. Our theoretical and numeri-
We believe these crossovers should be relevant to the depef@! Study considers the effects of these different decay re-
dence of the amount of enhancement on the number of el@Mmes on hysteresis, which may be relevant to the interpre-
ments observed in other systems exhibiting AESR as well. tation of simulational and experimental results. Especially
We also calculate the hysteresis-loop afein the low- for certain techn_ologlcal applications, an I.smg system shoulq
and high-frequency regimes. Because of its role as a measup& @ good candidate to model the behavior of ferromagnetic
of the energy dissipation in the system, this is a quantity oftnd ferroelectric materials in .oscnlatlng external fields. Fi-
particular experimental significance. For high frequencies th@ally we note that the quantities that we have analyzed nu-
loop-area distributions are trimodal due to the stochastignerically could all be measured in experiments on hysteresis
switching behavior. In this regime we calculatd) as a N2 variety of systems and analyzed by methods essentially
weighted average of the loop areas obtained when the maffiéntical to our analysis of the MC data.
netization switches zero, one, or two tifgeduring a period
of the field. For the low-frequency regime we obtain an ana- ACKNOWLEDGMENTS
lytic expression foA). Our theoretical calculation agrees We would like to thank P.D. Beale. G. Brown. M. Grant
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The period-averaged magnetizati@nhas been proposed
as an “order parameter” associated with a dynamic phase
transition in kinetic Ising models. However, in the parameter
range studied here, the probability densitiesQoishow no
sign of a sharp transition as the frequency of the external The ath residence time is defined as
field is varied. Indeed, due to the multipeaked nature of the
distributions for intermediate frequencies, the mean value of A*=t{+ 07, (A1)

Q is not a useful quantity in the SD region. In the MD region
the behavior o is radically different, as we plan to discuss where the times{ and * are shown schematically in Fig.
in future[51]. 14. We definet; as the time when a switching event takes

We also computed the power spectral densities from thglace, as measured from the first time at whiglit) =0,
simulated magnetization time series. We qualitatively ex-after the previous switching event. Without loss of general-
plain the various features of the spectra in the full frequencyty, this time can be set tb=0. 6 is the time from a switch-
range from the lowest observable frequencies to the rapithg event to the next change in the sign of the external field.
fluctuations due to thermal noise. Specifically, we make arhis decomposition of the residence time facilitates the cal-

APPENDIX: DERIVATION OF THE RESIDENCE-TIME
DISTRIBUTIONS



57 STOCHASTIC HYSTERESIS AND RESONANCE IN A ... 6531

(2) which gives
- 1\27
m(t) ay) — a+1y_ T2 patl
P67 =Po(6°" =2, DTKJ 2) — =0
= ‘ 1\27 27
= -1 i— | ——p2—(i—1) —
t 2, [Prof@)] P[(J 2) ——6"=(j—1) w}
r ” .
=P<——0"‘)2 Prof @) 7. (A4)
w =1
Thus
m -1
Po(0)=P| ——0|[1=Pnolw)] . (AS5)
®) ) ) o
H() The PDF of the total residence tim&=t,+ 6, is given by
the convolution of the PDFs of each term:
H,
Op(A)
1(A)= L N Pi(A—0)py(6)do (A6a)
0 _ ¢
time T
_ [Pnot(w)]J
[l_ Pnot((’-’)]
-H,T S - ; Op(A) - o
, j=2 xf PlA-6—(j—1)—
[ e 05(A) w
j=1 i=3
aw
FIG. 14. Schematic diagrams for calculation of the RTDs. xP o 6|do, (A6b)

culation of the probability density functiod®DFs9 for both  where j=[wA/(27)]. The notation[x] is defined as the
t{ and 6. Whent; falls during thej =1 period(see Fig. 14 smallest integer greater thanFor j=1, the integration lim-
for an explanation of the indexing schenés probability its are given by

density is given by Eq4.14), i.e., p,(t;) =P(t;). We easily

generalize to the case when falls during thejth period. _ .

This is obtained by finding fhe probability that, given the ‘9a(A)_ma{o’ A } (A78)
magnetization hasot switched in the previoug— 1 periods,
it switches at a time; during thejth period,

9b(A)=ma{o, mir(A—to,g—to } (A7b)

t=0- Dj} (A2) " \which ensure that the integrand in the equationIidn\) is
positive. To implement the calculation of the RTIDE(A) is

The PDF for6, p,(6), is calculated fronp,(t;) by using the  numerically integrated foj=1 at 50 equally spaced values

fact that#® and #*** should be independent and identically in the interval 0<A <2/ w, to generate the first peak in the

pT(tT):[Pnot(w)]j_lp

distributed. Then the following substitution holds: RTD. To obtain the second peak, the values of the distribu-
tion are shifted to the next intervalid w<A<4#/w, and
tr4 6“+1=(j _ })2_77 (A3) reduceq by a factor q%’not(w). This process can be repeated
2/ w to obtain all of the higher-order peaks in the RTD.
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