PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Coefficient of normal restitution of viscous particles and cooling rate of granular gases
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We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity-
dependent coefficients of restitution the material cools down slower than with constant restitution. This be-
havior might have a large influence to clustering and structure formation proces$663-651X%97)00112-9

PACS numbgs): 83.70.Fn, 62.46:i, 81.40.Lm, 05.40t]

The behavior of granular gases has been of large scientifig js the Young modulusy the Poisson ratio, and
interest in recent time. Goldhirsch and Zangtfj and Mc-
Namara and Yound2] have shown that a homogeneous m;m,

granular gas is unstable. After some time one observes dense Mert = m;+m,’ (43
regions(clusters and voids. To evaluate the loss of mechani-
cal energy due to collisions one introduces the coefficient of R:R, (ab)
o Ry=—" % 4
(norma) restitution T R+R,
9'=eq, 1) are the effective radius and mass of the grains, respectively.

A is a material constant depending on the Young modulus,
normal velocitva’ of a pair of colliding particles after the the viscous constants and the Poisson ratio of the material.
Y9 P gp Equation (2) was derived under the precondition that the

collision with respect to the impact veIomg/._ . colliding spheres have impact velocity much less than the
It can be shown that even for three particles for a certain . . : .
. . - SR speed of sound in the particle material. For details [§3e
region of the coefficient of restitution there exist initial con-

ditions that lead to a behavior called “inelastic collapse.” The initial conditions for solving Eq2) are

whereg=|g| andg’=|g’|, describing the loss of relative

This means that the particles accomplish an infinite number £(0)=0, (59)
of collisions in finite time[2]. The conditions under which
one can observe inelastic collapse have been studied in one- '§(0)=g. (5b)

dimensional systems] as well as in higher dimensiof4].
Recently it was shown numerically that the probability for aThe coefficient of restitutione of at time t=0 colliding
collapse rises significantly when the particles have rotationapherical grains can be found from this equation relating the

degree of freedorfb]. In this case the collapse is possible for relative normal velocitieg= £(0) at time of impact and at

much Iarger coefficients of restitution than for nonrotatingtimetc, when the partic'es Separate after the C0||isi0n, nce’
particles. Other interesting related results concern bouncing; the collision time:

ball experiments on vibrating tables where complicated dy- . .
namical behavior is observe@.g.,[6]). Recently, compli- e=—£(t,)/€(0). (6)
cated and under certain circumstances irregular motion of a
bouncing cantilever of an atomic force microscope when exThe (numerica) integration of Eq.(6) yields the coefficient
cited by a transducer was investigafé&d. of restitution as a function of the impact velocisee Fig. 1

In the investigation§1—7] the approximation of the con- in [8]), which is in good agreement with experimental data
stant coefficient of restitution was assumed. Solving vis{10]. A constant coefficient of restitution, however, doex
coelastic equations for spheres, it was shown that the coeffagree with experimental experienfel]. Other theoretical
cient of normal restitutiore is not a constant but a function work on this topic can be found, e.g., ih2,13].

of the impact velocitye(g) itself [8,9]. For the “compres- Consider a gas of granular particle_s at a given initial
sion” é=R;+R,—|F;—T,| of particles with radiR, andR,  granular temperatur&,. Then the question arises how the
at positions; andi’, one finds temperature decreases with time due to inelastic collisions.

This problem has been investigated earig4,15 for the

. s, 3 . case of constant coefficient of restitution and the result is
Et+pl +§A\E§ =0, 2 (see alsd16])
_ -2
ZY\/W ; T(t)=To(1l+t/7)"~ (7
P~ 3me (1—v%)" ©) The time scaler is a material constant. The temperature de-
cay (7) is the origin of the cluster instabilities that have been
investigated recentlj1,2].
*Electronic address: schwager@itp02.physik.hu-berlin.de The aim of the present paper is to derive an explicit ana-
Electronic address: thorsten@itp02.physik.hu-berlin.de lytic expression for the coefficient of normal restitutiefg)
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as a function of the impact velocity. A direct consequence
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651

x(@)=v"0(1+ 7(0)), 17

of this result will be a refined expression for the temperature

decay of a granular gas.
The duration of collisiontg for the undamped problem
(A=0) is given by[17]

0
o 9
le=—2m 15"

Py ®

We want to point out here th&? is a constant pure number,
not depending on any material properties. Heri¢alepends
only on the material constaptand on the initial velocityg.
We use Eq(8) to define a rescaled dimensionless tifde

0= p2/591/5t. (9)
Using the abbreviations
v=p7g, (103
a=3A (10b)
and a new set of variables
®=p2’5g”5t=u1’5t, (113
X(@)=p&(t), (11b)
we rewrite Eq.(2) in the form
X+ av Y5 \x+ v~ 2x32=0 (12
with x=(d/d®)x. We see that
O 0= F=v=v 0. (3

Hence the initial conditions in our new variablgsand ®
read

x(0)=0, (143

dx

et _3 _ .45
o) (0)=x(0)=0v™~. (14b
Both equations of motion(2) and (12), become special at
x=0 or ¢£=0, respectively, i.e., all derivatives of third order

and higher diverge. This will be shown for the casexof

d d
oo —1/5 —2/5,,3/2
) X d(av 5X\/;+v 5372)
=av M9 XX+ ——= —gvle‘r’i(\/;. (15
2Jx) 2
Hence
d3
lim WX:ioo' (16)

x—0

@O
and so are the higher derivatives. Because of this singularity X( 2 ) =0"%| -

we must not expang in powers of®. Because of the initial
conditionsx(®) has the form

7(0)=0, (18

which defines the functiom(®). Using transformatior{17)
we find

On+2n+ avl/5®3/257\/m+(avl/5\/6+ 032 (1+ )37
0. (19

In Eq. (19), terms®%5 and®1° occur, therefore we expand
7 in powers of /@:

=> a,0%2 (20)
k=0

The first coefficienay vanishes because of the initial condi-

tion for x. When we require

+agte (21)

to be finite at® =0 the second coefficiert; must vanish as
well. With Taylor expansion ofy1+ 7 and (1+ 5)%? for
small » we arrive at

4 4 3 1
—_ us@32_ T @52, S 1Bg4y — 2 20503
n 15 (¢ 35 + T (CASS 15X (¢
e (22
and therefore
4/5@ _ 4 av®5/2 04/57l2+ iaZU 6/54
15 35 15
3 38 1
_ _ 5" 3 T5@y 112, _— 450 6
+ 7Oav. S275% Y 0+ 175V O°+ -
(23)
Rearranging the full serieg23) one finds
4 1 4
A8 @ @72 @b ... -7,
X=v (@ 35 + 175@ + +av (C)
3 1
—@° 2, 6/5 44 ...
+ 70@ +- |+ ( 5@) + )+
=0"%0(0) + avx(0)+ a?v ¥, (@) + - - - (24)

v*¥5, is the solution of the undampédlastig collision (see

dashed line in Fig. 1 The full line in Fig. 1 shows the
damped motion according to ER3). The direct numerical
integration of Eq.(12) collapses with the full line.

For x(309), where®? is the duration of the undamped
collision, one finds using Eq24):

@0 0

+ o U6/5X2

@O
( o

+C¥UX1< 2

= v4/5BO+ avBi+a’v®B,+- (25)
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@3/2 & time ©
time © FIG. 2. Sketch of the calculation. Ifa) © (0,0, is calcu-

) L . lated directly. In(b) we define thenverse collisionwhere the par-
FIG. 1. The dynamics of the collision. The dashed line showsy;cjes start with velocityv’ and velocity approaches zero at
the (strictly symmetri¢ solution of the undamped collision. For the ©®=0,,. Both curves have to fit together smoothly.
case of the damped motioffull line) the maximum penetration "
depth is achieved earlier whereas the duration of the collision is

longer ©.>09). XMV(O)=(v")"%(O")— av'x1(0")+ a?(v')¥%,(0")

which we do not need now but will later on. +oee (27)

Note that the coefficient8, are constants; i.e., they do
not depend o nor on material constants.

Equations(2) and (12), respectively, hold for the entire Now we determine the collision tim@ . and the final veloc-
collision. The collision starts witly and ends withy’. For ity. One direct method to calculat®. would be to determine
practical purposes we now define the tenwerse collision  the solution ofx(®)=0 using Taylor expansion of in the
The inverse collision is a collision that starts at tilgwith  region close to®. It can be seen easily that this method
relative velocityv” and ends at time 0 with relative velocity fails since all derivatives of"/d®")x with n=3 diverge
v, i.e., time runs in an inverse direction during the inversego, ©=02. Therefore®, has to be calculated by an indirect
collision. The equation of motion fo™, i.e., for a collision  method.
in inverse time, follows from Eq(12). Since the inverse The problem will be subdivided into two partsee Fig.
collision starts withy" we have to replace by v'. Because ). (g) the motion of the particles from ®=0 to time ®,,
of the time reversal we have to change the sign of timgyhen x approaches its maximum and wherechanges its
derivatives of odd orders, i.ex——x". The equation of gjgn and(b) from ©,, t0 O, .
motion for the inverse collision reads In the case of undamped motion whete=0 we have

iy 15 iny i N 205, iV 3/2 ®m=®2/2. In part(b) we do not consider the collision itself
K™ ao!) IS (07) THCM) =0, (26 but the inverse problem in the interv@ =0, © ), with ©/,
A motion due to Eq(26) in normal time would be an accel- being the time wherg" approaches its maximum. The con-
erated one. However, we shall mention here that Etg.  tinuity of both parts means(® ) =x™(0).
and (26) describe strictly the same physical motion. The so- For finite dampinga#0 we write ©,=0¢/2+ 8 and
lution X™ of the inverse problem can be derived from the®/,=(®2)'/2+ &' and recall thaB2=(0?2)’. To get an ex-
solution of the direct problem replacing— — a« andv—uv’. pression foré we expand

O 0N 0% 5 d® [(0?
5((—°+5)=0=5<( °)+55'<<—°)+ ( <

o (29
@0
ol 5

(00 e°
ol )+ 5 5

2 2 2" 2 d03"\ 2

(02
:U4/5[X0(7C

0 & & (02
2 T2 d03% 2
2 dO37? 2

0
+ 6Xq

+va

0% & o
S |t 5 gg3Xo
2] 2de

oo | 4852

+ 6%,

RN

(29

and usingko(®2/2)=0 (v*%, is the solution of the undamped problem

- 1/55<1(®f§/2)

_ 2
5=—av ko(®§/2)+o(a ). (30
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The expressiori30) has to be inserted into the Taylor expansion((ﬂ-)glz+ 5):

00 o @0 ®° 2. (0?2 00 _ ®° 2. (0?2
0? 0%\ a2 x3(0%2) 0’
=¥ __ 2. 6/ _c 3
=0 ( +avxl( 2) > XO(®2/2)+01 v 5X2( 5 +0(a”). (32
Hence
0% 1x3(0%2
4 0 0 2. 6/ |- e
X(Op)=v 5X0(® 12) + avX,(O/2) + a‘v 5[X2< > ) ZW (33
Replacing again —v’ and a— — « yields
a0 o (34)
(@0/2) ’
. 0% 1022
V@Y — (g4 Ojy .1 0 2/ 116/ e B S e
XM(O1)=(v") ¥xe(O2) — av ' x,(O2) + a¥(v") SM 5 ) IXCIE] (35)
As explained above both solutio33) and (35) have to be equal. With
0%\ 1 x}(®22)
A ‘X2(7> T 2%(0%2) (39
we write
@C Cc @C @C
4IEXO( +avxl<7 + a2 58= (v’ )4/5X (%)—av’xl(T +a?(v")%5B. (37)
We expandv’ in «
v =v+av,+a’v,t--, (38
|
and find 5 Xl(@g/z)
Ci=5 a0 (419
o c 2 x0(07/2)
4/5X0< +avx1( 5 +a2v6/5,8
a5 @ c 15()(1(@2/2))2 (41b)
51) @0 51) @0 2= o @0/
4/5 1+7 XO(?)_QU 1+7 Xl(?) 4 X0(®C/2)
. v 65 Since®? depends on neither any material properties nor on
+a?o® 1+ —| B, (39 the impact velocityg or v, respectivelyC, andC, are
v , 1 2 pure

with 8v=av,+a?v,+-++ . Writing (1+ sv/v)™ in pow-
ers of a and comparing coefficients yields finally

5 x1(09/2)
+— 1/5
Itgav Xo(©%2)

0 2
4 Xo(09/2)

:v(l_avl/5cl+a202/5cz+...), (40)

v'=v

with

numerical constants. Evaluatirgy, andC, in Eq. (41) nu-
merically yieldsC;=1.15344 andC,=0.79826.
For coefficients of normal restitution one gets

’
v
e=—=1—av™C;+ a?v?°C,+
v

(429

=1—C,Ap?5gY5+ C,A2pH5g25+ - |
(42b

with g being the impact velocityFig. 3). For the duration of
the collision we find with Eqs(30), (35), and(40)
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FIG. 3. The coefficient of restitution over impact velocity due to
Eq. (42). As expected for small relative velocity the particles collide

almost elastically. The result of numerical integration of E§).
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To check the theoretical resUlEgs. (41)] we integrated
numerically Eq.(12) and received the curves(v) and
®.(v). Then we fittedC,; and C, to these data using Egs.
(42) and (44). For instance, fora=0.05 we found
C1"™=1.15356 andC5"™=0.80439 from the curve(v) [see
Eq. (42)]. The fit of C; to O.(v) [see Eg.(44)] gives
C1""=1.15342. For other values afwe found very similar
numbers. Hence, the numerical results agree with theory.

When we use the velocity-dependent coefficient of resti-
tution in the collision term of the Boltzmann equation

'T~ffdvldvzu—62>|v1—v2|3f<v1>f<v2> (45)

we get the cooling rate for dissipative gas:

T~To/(1+1t/7")%5, (46)

coincides with the curve. The two curves cannot be distinguished ifPur final result, Eq(42), shows that for viscoelastic collid-

the plot.

0?2 0?2
—+6
2

S48

t.= U71/5+ (01)71/5
C

1 x1(0%/2)
Z avlfs 1\ Ve

2
2% (0% o)

:®Sv— 1/5( 1—

— @0, —1/5 2
=0.v +0(a®)

1
1/5
1+ 10C16¥U

+0(a?). (43

1
_ @2p2/591/5( 1+ EclaPZISQUS

0.=v¥=0%1+ 4Crav ™ +0(a?). (49

ing smooth bodies the coefficient of normal restitution is a
decreasing function with rising impact velocity=le~g*>.

A direct consequence is the cooling rate of a granular gas
[Eq. (46)]: a granular gas consisting of viscoelastic particles
cools down significantlyslowerthan a gas of particles that
collide with constant coefficient of restitutidisee Eq.(7)].

Due to our understanding it is not self-evident whether the
clustering observed in granular gases of the latter type, and
the extreme case of this effect, the inelastic collapse, will
change their overall behavior or whether they exist at all.
These questions should be reconsidered in detail for
velocity-dependent restitution.
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