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Speed of fronts of generalized reaction-diffusion equations
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Recent work on generalized diffusion equations has given analytical and numerical evidence that, as in the
standard reaction-diffusion equation, most initial conditions evolve into a traveling wave which corresponds to
a minimum speed front joining a stable to an unstable state. We show that this minimal speed derives from a
variational principle; from this we recover linear constraints on the sgipedinear marginal stability valge
and provide upper and lower bounds on the speed. This enables us to characterize the functions for which
linear marginal stability holds and also to provide a tool to calculate the speed when the marginal value does
not predict its correct valu¢S1063-651X%98)09906-1

PACS numbe(s): 03.40.Kf, 47.10+g, 02.30.Hq

Different problems may be described in terms of thethe front of minimal speed which, for these reaction terms, is
reaction-diffusion equation,=u,,+ f(u), wheref is a non-  the so called marginal stability value obtained from linear
linear term with at least two equilibrium points. It has beenconsiderations at the equilibrium points. As it occurs in the
established rigorously1] that sufficiently localized initial usual reaction-diffusion equation, the selected speed is not
conditions evolve asymptotically into a traveling monotonicalways the linear marginal valugl2]; for other reaction
wave frontu(x— ct) joining two equilibrium states. For sim- terms it is greater than the linear value and no analytic pro-
plicity we will consider reaction term&>0 which vanish at cedure to calculate the speed has been given for these gen-
u=0 and atu=1. There is a wide class of reaction terms eralized reaction-diffusion equations. In this work we pro-
f(u) for which this asymptotic speed is given g] the vide such a method and obtain upper bounds which enable us
Kolmogorv-Petrovskii-Piskunov (KPP)  value cgkpp 1O characterize the reaction terms for which marginal stabil-
=2./f'(0). This is the minimal value of the speed that fol- ity holds. While for concreteness we present results for Eq.
lows from a linear analysis at the equilibrium points. The(1), the method can be extended to many other types of gen-
extension of this behavior to pattern-forming systems iseralized reaction-diffusion equations. We assume then, based
called the[3] marginal stability hypothesis. For other reac- on the evidence presented|ibl], that, for general reaction
tion terms this linear ocypp value represents a lower bound termsf(¢), many initial conditions for Eq(1) evolve into
to the speed. There exist loddl] and globa[5,6] variational ~ the traveling front¢(x—ct) of minimal speed. We will
principles that enable one to determine the speed for arbshow that the minimal speed is given by
trary reaction termg(u), as well as methods based on ap- N
proximate solutions of the differential equation itsgTt8]. 2] Jio[mg/(1—¢)—g']dé
While all the above results have been established rigorously, 0
other problems are described by other types of reaction- 1
diffusion equations in which nonlinearities may appear on ¢ f g(¢)de
derivative terms. Generalized diffusion equations of the form 0
u;=u,,+F(uy,u) and the stability of its traveling fronts
have been studief®,10]. While the stability of its traveling
waves has been established, the problem of determinin
which of the possible traveling waves will be the asymptotic

C=max 2

for a certain class of trial functiorng. (Rigorously, the speed
is the maximum wher>c, defined below. It is the supre-
Fhum whenc=c, .) From here it will follow that

state has not been clarified in general. In recent War mf(¢)
one such type of generalized reaction diffusion equation, c scs<2 \/8ul<f'(¢)+ 1= ¢ ) 3
namely, b
mo, wherec, is the marginal stability valugl1],
&= byxt T b+ 1), D
RS cL=max(2,(0),2[F (1)[(m—1)).

with f(¢)=¢(1—¢), has been considered. This equationFrom the variational expressid8) one may obtain the value
has traveling wave frontg(x—ct) joining the stable state of the speed with any desired accuracy, and the inequ@lity
¢=1 to $=0. Exact analytical solutions to the partial dif- enables us to characterize the functions for which the speed
ferential equatio(PDE) have been found11] for the case is the linear marginal stability value. We now show the cal-
m=2, which show explicitly that in the time evolution the culations.

front of minimal speed is selected. Numerical integrations The front is a solution of

for other values ofm and for reaction terms of the form
f(¢)=(1—¢)[1—(1— ¢)P)] support this conclusion. For
these reaction terms it is found that the system evolves into

m

2 —
g4t (9)=0,

¢ZZ+ C¢Z+
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where z=x—ct with boundary conditions lirh, ,_,.=1 straints on the allowed value of the speed. Their generalized
and limg¢,_..=0 and ¢,<0 in (0,1). ¢, vanishes wherz =~ marginal stability hypothesis is then that the value of the
— =+ oo, Following the usual procedure, for monotonic fronts speed is the greater of the constraints. For the d@g9

it is convenient to work in phase space. Definipgo) = =¢(1—¢) the linear value of the speed i,
— ¢, we have that monotonic fronts are solutions of =max(2,2/m—1); for a different reaction term, namely,

f(¢)=(1—p)[1—(1— ¢)”], they obtain ¢,
=max(2/B,2/m—1). We wish to show that the variational
expressior(6) for c yields as a lower bound the linear mar-
_ ginal values and at the same tirfit2] provides a criterion
with for its validity. We will show that the marginal stability
_ _ . valuec, for the speed follows directly from the variational
p(0)=p(1)=0, p>0 in (0,1). expression(6). And we shall also show that the variational
principle enables one to obtain an upper bound on the speed,
namely, analogous to Aronson and Weinberger's result
2+/supf(u)/u), which permits the characterization of func-
tions for which the linear marginal stability value holds. To
obtain the constraint imposed by the behavior of the front at

m

P90, @

p
PGg ~CPF

Since we are assuminff ¢)>0, the simplest method is as
given in[12,5] with appropriate modifications. Lej(¢) be
an arbitrary positive function; multiplying E¢4) by g/p and
integrating we obtain, after integration by parts,

1 1 [gof mg the stable fixed pointp)=1 consider the sequence of trial
Cfo 9(¢p)dop= fo doé F+ p m—g' : functionsg;,,= (1— ¢)** in the limit «— 0. Evaluating the
bound withg,, we obtain
Choosingg such that
1
mg C>2a\/m+a—1J V(@) (1—¢)* ¥d .
—g'>0, (5 0

(1-¢)

we have that, sincé, g, andp are positive, In the limit «— 0 the integrand is divergent gt=1, and as

a result of the overall factor af, only the singular point will

gf ( mg ) ( mg ) contribute in the limit. The surviving term is then
F(p)=—+p|—=—9'|=2\/fg|=——¢'
(P) b P 1-6 g g 1- g

1
and therefore c=2a\m+a-— 1'[1,6\/]((‘15)(1_ ¢)*dg.
1
ZJ Viglmg/(1—¢)—g']d¢ We may now expand(¢) in a Taylor series near 1. Here
c 0 (6) only the leading term in the expansion will contribute as the
1 d ’ others will be regular whea— 0. We obtain then that the
,9(P)dé only contribution in the limit is

1

c>2a\/|f’(1)|(m+a—l)fli (1-¢)* *do

where the equal sign holds fgrzfg such that

g p ¢ 2m
Tz———+—1_ . €“
g P P ¢ =20\ (D(m+a=1)—,
This can be solved fag in terms ofp and¢. The solution is
given by which in the limita—0 is
=P ex;n(—f¢5d¢'). c=2\[F(D)](m-1).
(1-¢)" #oP

A ful vsiswhich d I f the si Notice that there is no inconsistency with the classical case
careful analysiswhich we do not spell outof the singu- 1, g since the trial function is only admissitfiee., satisfies

larities at =0 and at¢=1 shows that the integral df  Eq.(5)] for m>1. Thus, the above result cannot be evaluated
exists whenevet>c, which proves our main result, E(R). atm=0.

The above expressiof) can be used to calculate the  To obtain the bound that follows from the behavior of the
asymptotic speed of the front for arbitrary reaction tefms front at the unstable poing=0 consider the sequence of
provided that the hypothesis that a minimal speed front igria| functionsg,,= ¢*~* in the limit «— 0. Evaluating the

selected remains true. bound withg.,, we obtain
At this point it is convenient to recall explicitly the ex-
tended marginal stability result obtained [ih1] for some L
reaction terms. In contrast with the usual case, they observe szaf ¢a—3/2\/f(¢)(m_¢_(a_l)) do.
that the analysis of both equilibrium points imposes con- 0 1-¢
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Now, in the limit «@— 0 the integrand is divergent ai=0 Now observe that
and, again, as a result of the overall factorafonly the

singular point will contribute in the limit. The only surviving 1 1 mg )
term is fofhdd): fof(m_g )dd)
€ . md; 1 d
c=2a s 3’2\/f<¢>(m‘<“‘1>) de- [ ta-omra- o da,

Expanding the term under the root in a Taylor series we ﬁndand intearating by parts we have that
that only the leading term gives a singular contribution, that 9 gbyp

is, 1 L q
6 B [t o= [ a-oimggrra- 6 ao
CZZm/f’(O)(l—a)fo ¢ dgp=2a\1"(0)(1-a)—, 0 0
1 f
which in the limita—0 is fo g f'+ 1—¢} dé
=>2./f’ 1
c=2VF'(0). ssu;{f%ﬁ} gde;
To sum up, the speed is bounded below by &g whereg ¢ 0
is a positive trial function that satisfies conditi¢s). With ]
two properly chosen trial functions we have obtained twoS© We finally have
lower bounds; obviously the greater of them is the best
bound. The trial functions have been chosen to extract the 1\/—
behavior at the edges of the front and correspond to the so- Jo fgh d¢
called linear marginal stability value. We now proceed to c=max2— <2 max
obtain an upper bound for the speed. We shall need the in- g 1 d g
equality[13] Og ¢

1
X)u(x)d X , mf
Jpaoomnax o <2 S“F{f +—1_¢}’
l 2 1 1 ¢
f u(x)d x 0 f u(x)d x
0 0 which was the desired result.

L ) As an example letf(¢)=¢(1—¢). We obtain f’
where u(x)>0 and a(x)=0. (This is a particular case of +mf/(1— #)=1+(m—2)é and its maximum occurs ab

Jensen's inequality. Call h=2mg/(1-¢)—g" which is  _q 55451 whem<2 whereas whem>2 the maximum
positive by construction. We have then, using the inequality ., < ath=1 and ism—1; that is, we obtain that the upper

above(with a=fh/g and u=g), that and lower bounds in Eq3) coincide and the speed can be
predicted without uncertainty. The speed may, for some re-

1 1
f \/fg_h do f V(fh/g) g d¢ action terms, be larger and can be calculated from(E&q.
c=max2 0 — max2 0 Although we have presented results for the generalized
g 1 q g 1 q reaction-diffusion equatiofil), the method is not peculiar to

0 g do 0 g d¢ this problem; a similar approach will be useful for other gen-

eralized reaction-diffusion equations which select a minimal
1 1 speed front. Here we have relied on numerical and analytical

fo (fh/g) g d¢ jo fh d evidence that such a front is selected; a full proof remains to

<2 max —————=2max —5——  begiven.
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