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Speed of fronts of generalized reaction-diffusion equations

R. D. Benguria and M. C. Depassier
Facultad de Fı´sica, Pontificia Universidad Cato´lica de Chile, Casilla 306, Santiago 22, Chile

~Received 9 January 1998!

Recent work on generalized diffusion equations has given analytical and numerical evidence that, as in the
standard reaction-diffusion equation, most initial conditions evolve into a traveling wave which corresponds to
a minimum speed front joining a stable to an unstable state. We show that this minimal speed derives from a
variational principle; from this we recover linear constraints on the speed~the linear marginal stability value!
and provide upper and lower bounds on the speed. This enables us to characterize the functions for which
linear marginal stability holds and also to provide a tool to calculate the speed when the marginal value does
not predict its correct value.@S1063-651X~98!09906-1#

PACS number~s!: 03.40.Kf, 47.10.1g, 02.30.Hq
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Different problems may be described in terms of t
reaction-diffusion equationut5uxx1 f (u), wheref is a non-
linear term with at least two equilibrium points. It has be
established rigorously@1# that sufficiently localized initial
conditions evolve asymptotically into a traveling monoton
wave frontu(x2ct) joining two equilibrium states. For sim
plicity we will consider reaction termsf .0 which vanish at
u50 and atu51. There is a wide class of reaction term
f (u) for which this asymptotic speed is given by@2# the
Kolmogorv-Petrovskii-Piskunov ~KPP! value cKPP

52Af 8(0). This is the minimal value of the speed that fo
lows from a linear analysis at the equilibrium points. T
extension of this behavior to pattern-forming systems
called the@3# marginal stability hypothesis. For other rea
tion terms this linear orcKPP value represents a lower boun
to the speed. There exist local@4# and global@5,6# variational
principles that enable one to determine the speed for a
trary reaction termsf (u), as well as methods based on a
proximate solutions of the differential equation itself@7,8#.
While all the above results have been established rigorou
other problems are described by other types of react
diffusion equations in which nonlinearities may appear
derivative terms. Generalized diffusion equations of the fo
ut5uxx1F(ux ,u) and the stability of its traveling fronts
have been studied@9,10#. While the stability of its traveling
waves has been established, the problem of determi
which of the possible traveling waves will be the asympto
state has not been clarified in general. In recent work@11#
one such type of generalized reaction diffusion equati
namely,

f t5fxx1
m

12f
fx

21 f ~f!, ~1!

with f (f)5f(12f), has been considered. This equati
has traveling wave frontsf(x2ct) joining the stable state
f51 to f50. Exact analytical solutions to the partial di
ferential equation~PDE! have been found@11# for the case
m52, which show explicitly that in the time evolution th
front of minimal speed is selected. Numerical integratio
for other values ofm and for reaction terms of the form
f (f)5(12f)@12(12f)b)] support this conclusion. Fo
these reaction terms it is found that the system evolves
571063-651X/98/57~6!/6493~4!/$15.00
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the front of minimal speed which, for these reaction terms
the so called marginal stability value obtained from line
considerations at the equilibrium points. As it occurs in t
usual reaction-diffusion equation, the selected speed is
always the linear marginal value@12#; for other reaction
terms it is greater than the linear value and no analytic p
cedure to calculate the speed has been given for these
eralized reaction-diffusion equations. In this work we pr
vide such a method and obtain upper bounds which enabl
to characterize the reaction terms for which marginal sta
ity holds. While for concreteness we present results for
~1!, the method can be extended to many other types of g
eralized reaction-diffusion equations. We assume then, ba
on the evidence presented in@11#, that, for general reaction
terms f (f), many initial conditions for Eq.~1! evolve into
the traveling frontf(x2ct) of minimal speed. We will
show that the minimal speed is given by

c5max
g

2E
0

1
Af g@mg/~12f!2g8#df

E
0

1

g~f!df

~2!

for a certain class of trial functionsg. ~Rigorously, the speed
is the maximum whenc.cL defined below. It is the supre
mum whenc5cL .) From here it will follow that

cL<c<2Asup
f

S f 8~f!1
m f~f!

12f D , ~3!

wherecL is the marginal stability value@11#,

cL5max„2Af 8~0!,2Au f 8~1!u~m21!….

From the variational expression~2! one may obtain the value
of the speed with any desired accuracy, and the inequality~3!
enables us to characterize the functions for which the sp
is the linear marginal stability value. We now show the c
culations.

The front is a solution of

fzz1cfz1
m

12f
fz

21 f ~f!50,
6493 © 1998 The American Physical Society
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where z5x2ct with boundary conditions limfz→2`51
and limfz→`50 andfz,0 in (0,1). fz vanishes whenz
→6`. Following the usual procedure, for monotonic fron
it is convenient to work in phase space. Definingp(f)5
2fz we have that monotonic fronts are solutions of

p
dp

df
2cp1

m

12f
p21 f ~f!50, ~4!

with

p~0!5p~1!50, p.0 in ~0,1!.

Since we are assumingf (f).0, the simplest method is a
given in @12,5# with appropriate modifications. Letg(f) be
an arbitrary positive function; multiplying Eq.~4! by g/p and
integrating we obtain, after integration by parts,

cE
0

1

g~f!df5E
0

1

dfFg f

p
1pS mg

12f
2g8D G .

Choosingg such that

mg

~12f!
2g8.0, ~5!

we have that, sincef , g, andp are positive,

F~p![
g f

p
1pS mg

12f
2g8D>2Af gS mg

12f
2g8D

and therefore

c>

2E
0

1
Af g@mg/~12f!2g8#df

E
0

1

g~f!df

, ~6!

where the equal sign holds forg5ĝ such that

ĝ8

ĝ
5

p8

p
2

c

p
1

2m

12f
.

This can be solved forĝ in terms ofp andf. The solution is
given by

ĝ5
p

~12f!2m
expS 2E

f0

f c

p
df8D .

A careful analysis~which we do not spell out! of the singu-
larities at f50 and atf51 shows that the integral ofĝ
exists wheneverc.cL which proves our main result, Eq.~2!.
The above expression~6! can be used to calculate th
asymptotic speed of the front for arbitrary reaction termsf ,
provided that the hypothesis that a minimal speed fron
selected remains true.

At this point it is convenient to recall explicitly the ex
tended marginal stability result obtained in@11# for some
reaction terms. In contrast with the usual case, they obs
that the analysis of both equilibrium points imposes co
is

ve
-

straints on the allowed value of the speed. Their generali
marginal stability hypothesis is then that the value of t
speed is the greater of the constraints. For the casef (f)
5f(12f) the linear value of the speed iscL

5max(2,2Am21); for a different reaction term, namely
f (f)5(12f)@12(12f)b#, they obtain cL

5max(2Ab,2Am21). We wish to show that the variationa
expression~6! for c yields as a lower bound the linear ma
ginal values and at the same time@12# provides a criterion
for its validity. We will show that the marginal stability
value cL for the speed follows directly from the variationa
expression~6!. And we shall also show that the variation
principle enables one to obtain an upper bound on the sp
namely, analogous to Aronson and Weinberger’s res
2Asup„f (u)/u…, which permits the characterization of func
tions for which the linear marginal stability value holds. T
obtain the constraint imposed by the behavior of the fron
the stable fixed pointf51 consider the sequence of tria
functionsg1a5(12f)a21 in the limit a→0. Evaluating the
bound withg1a we obtain

c>2aAm1a21E
0

1
Af ~f!~12f!a23/2df.

In the limit a→0 the integrand is divergent atf51, and as
a result of the overall factor ofa, only the singular point will
contribute in the limit. The surviving term is then

c>2aAm1a21E
12e

1
Af ~f!~12f!a23/2df.

We may now expandf (f) in a Taylor series near 1. Her
only the leading term in the expansion will contribute as t
others will be regular whena→0. We obtain then that the
only contribution in the limit is

c>2aAu f 8~1!u~m1a21!E
12e

1

~12f!a21df

52aAu f 8~1!u~m1a21!
ea

a
,

which in the limit a→0 is

c>2Au f 8~1!u~m21!.

Notice that there is no inconsistency with the classical c
m50 since the trial function is only admissible@i.e., satisfies
Eq. ~5!# for m.1. Thus, the above result cannot be evalua
at m50.

To obtain the bound that follows from the behavior of t
front at the unstable pointf50 consider the sequence o
trial functionsg2a5fa21 in the limit a→0. Evaluating the
bound withg2a we obtain

c>2aE
0

1

fa23/2Af ~f!S mf

12f
2~a21! D df.
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Now, in the limit a→0 the integrand is divergent atf50
and, again, as a result of the overall factor ofa, only the
singular point will contribute in the limit. The only surviving
term is

c>2aE
0

e

fa23/2Af ~f!S mf

12f
2~a21! D df.

Expanding the term under the root in a Taylor series we fi
that only the leading term gives a singular contribution, t
is,

c>2aAf 8~0!~12a!E
0

e

fa21df52aAf 8~0!~12a!
ea

a
,

which in the limit a→0 is

c>2Af 8~0!.

To sum up, the speed is bounded below by Eq.~6!, whereg
is a positive trial function that satisfies condition~5!. With
two properly chosen trial functions we have obtained t
lower bounds; obviously the greater of them is the b
bound. The trial functions have been chosen to extract
behavior at the edges of the front and correspond to the
called linear marginal stability value. We now proceed
obtain an upper bound for the speed. We shall need the
equality @13#

AE
0

1

a~x!m~x!d x

E
0

1

m~x!d x

>E
0

1Aa~x!m~x!d x

E
0

1

m~x!d x

,

wherem(x).0 anda(x)>0. ~This is a particular case o
Jensen’s inequality.! Call h[2mg/(12f)2g8 which is
positive by construction. We have then, using the inequa
above~with a5 f h/g andm5g), that

c5max
g

2

E
0

1
Af gh df

E
0

1

g df

5max
g

2

E
0

1
A~ f h/g! g df

E
0

1

g df

<2 max
g
AE

0

1

~ f h/g! g df

E
0

1

g df

52 max
g
AE

0

1

f h df

E
0

1

g df

.

~7!
in
d
t

t
e
o-

n-

y

Now observe that

E
0

1

f hdf5E
0

1

f S mg

12f
2g8Ddf

52E
0

1

f ~12f!2m
d

df
@~12f!mg# df,

and integrating by parts we have that

E
0

1

f h df5E
0

1

~12f!mg
d

df
@ f ~12f!2m# df

5E
0

1

gF f 81
m f

12f G df

<sup
f

F f 81
m f

12f G E
0

1

gdf;

so we finally have

c5max
g

2

E
0

1
Af gh df

E
0

1

g df

<2 max
g !E

0

1

f h df

E
0

1

g df

<2Asup
f

F f 81
m f

12f
G ,

which was the desired result.
As an example let f (f)5f(12f). We obtain f 8

1m f/(12f)511(m22)f and its maximum occurs atf
50 and is 1 whenm,2 whereas whenm.2 the maximum
occurs atf51 and ism21; that is, we obtain that the uppe
and lower bounds in Eq.~3! coincide and the speed can b
predicted without uncertainty. The speed may, for some
action terms, be larger and can be calculated from Eq.~6!.

Although we have presented results for the generali
reaction-diffusion equation~1!, the method is not peculiar to
this problem; a similar approach will be useful for other ge
eralized reaction-diffusion equations which select a minim
speed front. Here we have relied on numerical and analyt
evidence that such a front is selected; a full proof remain
be given.
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