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Interaction of self-organized quasiparticles in a two-dimensional reaction-diffusion system:
The formation of molecules
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In two-dimensional reaction-diffusion systems localized, solitary structures, that we call self-organized
guasiparticles or spots, can be found as stable and stationary solutions. Combinations of two or more spots can
lead to rather complex patterns, that can be understood by treating them as particles. These particles can
interact with the boundaries of the system as well as with each other in different ways, that depend essentially
on the parameters of the system. The interaction can be described by an approximation based on the exponen-
tial decay of the spots apart from their centers. The calculations reduce the dynamics of the system to some
equations for the velocities of the spots. In particular, there is a parameter range where the interaction of two
spots oscillates with their distance, which gives rise to infinitely many bounded states, resembling molecules.
Investigating more than two spots molecules of numerous shapes have been obtained.
[S1063-651%98)08806-0

PACS numbg(s): 82.20.Mj, 82.20.Wt

I. INTRODUCTION apart if they are not confined by the boundaries or by suitable
inhomogeneities of the control parameters. There is an inter-
fhediate parameter region, though, which provides a different
X , X : X i Qype of spot-spot interaction oscillating with their mutual dis-
their nonlinearity a great variety of biologicé.g.,[1,2]),  {ance that gives rise to infinitely many bounded states and, if
chemical (e.g., [3,4]), and physical(e.g., [5-7]) systtms e than two spots are invoived, to many complex stable
show very interesting phenomena of pattern formation. Anglecules. Some one-dimensional examples can be found in
typical example is the spontanous self-organization from §13 23. The notion of “molecules” reflects the analytical
Steady homogenous sState to spatial or Spatiotemporal paé-pproach to investigate these structures.
terns. Turing [8] proposed a two-component activator-  In Sec. Il the model equations are described and the ex-
inhibitor model that is able to describe the transition from aistence and stability of localized stationary solutions is nu-
homogenous state to striped or hexagonal patterns on oneerically proven. In Sec. Ill these are considered as funda-
and two-dimensional domains. Mathematically these systemmental particles similar to an atom in chemistry. Analytical
can be written as reaction-diffusion equations. investigations are restricted to the interaction of such par-
Small-amplitude structures occurring in these systems articles. This leads to a dynamical system with one phase space
well described by means of Ginzburg-Landau—type ampndimension per particle and spatial dimension, i.e., a two-spot
tude equations and its extensidiesg.,[9—17)). The descrip- ensemble is described in a four-dimensional phase space in
tion of large amplitude patterns can be performed by thdhe framework of this article. The dynamical equations are
analysis of solutions that are localized at least with respect t§2sed on certain coefficients that have to be determined nu-
one spatial dimension such as stripes, sjja8j, spheres, merically from the shape of the spots. This is sufficient to

cylinders, etc. To obtain analytical results concerning exisPredict the shape and stability of many of the molecules

tence and stability of these patterns the authors mostly Corgbserved in numerical simulations. Section IV summarizes

sider certain asymptotical conditions of the parameters inSome of these numerical results.
volved. Usually, characteristic time and/or length scales

corresponding to the respective components have to be well

separated to this erf{d4-18. The investigated system is a two-component reaction-

There are certain structures, though, that are systemafgiffusion system on an infinite two-dimensional domain,
cally excluded by these approaches. One such class, whigkhich can be written as

will be the topic of the present article, contains ensembles of

Il. MODEL EQUATIONS AND BASIC SOLUTIONS

spots, i.e., patterns localized in each direction that form v=D,Av+f(v)—W+«k, (1a)
bounded clusters resembling chemical molecules. Such ob-
jects have been observed experimentédlyy.,[19-22) and SWw=D,AW+v—W. (1b)

numerically[20]. These patterns are ignored by the asymp-

totical approach referred to above as the second one. This is In these equation®, and D,, are the diffusion coeffi-
due to the interaction of neighboring spots, which, in thecients of the activatoo =v(r)=v(x,y) and the inhibitorw
separated scales limit, is either repulsive, for large distances; w(r) =w(x,y) and A = d,,+ d,, denotes the Laplacian in
or attractive if they are close to each other. Hence, stationarfwo dimensions. In the following the vectoo ) will be
multispot patterns are unstable, and either merge or drifabbreviated as. The functionf(v) is a nonlinear, cubiclike
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FIG. 1. Distribution of the components(p) and w(p) of a Mode n

localized, stable particlelike solution given the parameters g 2 Results of the numerical stability analysis for a station-

D,=0.0028,D,,=0.025,xk=—-0.1,A=0.7, andd=1. The inter- 5y quasiparticle solution for the parameteid,=0.0025,

section ofv(p) with 0 is indicated by the markers. D,=0.025,k=—0.32,A=2, and6=1. We show the six largest

real parts of the eigenvalues,, n=1, ... ,6 of thelinear stability

function ofv. The local dynamics is governed by the param-analysis of the spot compared to those of the homogenous state. The

eter x and the functiorf (v). For numerical simulations we Zzero eigenvalue fon=1 corresponds to the Goldstone mode of the

choosef(v)=Av—v® and Neumann boundary conditions. quasiparticle.

Parameters are always chosen such that the homogenous

steady statei;=(v¢,w;) is stable. This decomposition of possible perturbations reduces the
In this paper we want to investigate the behavior of statwo-dimensional stability problem to a number of one-

tionary localized structures with rotational symmetry re-dimensional problems of the form

ferred to as “spots” or “quasiparticles.” Using polar coor-

dinates p,) the solution describing a unique spot can be _ 1 n2 .
written as vh=|D, app+;ap——2 +f'(v) |lvg—w,, (53
p
u(p)=@(p)w(p)) with limu(p)=u;. (2 ,
psos _ 1 n
WnZE Dy, dppt ;(9[,—?)—1 w,+ Svn' (5b)

An example for the componentsp) andw(p) of such an

object is given in Fig. 1. Although it is not possible to predict Imposing continuity ap=0 leads to the boundary condition
the existence, shape and stability of these structures analy“— (0)=0 forn>0. Forn=0 we require smoothness and get
cally, the numerical effort to obtain both the shape, and thea“ .

AP ) ; ! ,Un(0)=0. To ensure the stability of the stationary solu-
stability information for a given set of parameters is rather * " — .
low. Inserting (2) into Egs. (1) yields the set of ordinary tionsu(p) the real parts of the eigenvalues of the operator on

differential equations the right-hanq side have to be negative forraIITy'picaII'y
solving the eigenvalue problem for=0,1, ... ,10 issuffi-

cient to ensure the stability of the structure. In Fig. 2 we

O=DU( &ppv—Jr Eﬁpv_ + f(v_)—v_v+ K, (39) present the results of a stability analysis for the parameters

D,=0.0025, D,=0.025, A=2, =1, «=-0.32.
1\ (6)
0=Dy| d,,W+ ;5pw +u—w. (3b)
Since we are able to prove the stability of the homogenous

Since we demand a localized and smooth solution, thgtate analytically, it is useful to compare those results with a

o — — } numerical stability analysis of the homogenous state. Figure
boundary conditions aré,u(0)=0 and u(=)=us. Obvi- 5 ghows that only a few discrete eigenmodes are influenced

ouslyu(p) = u; is a trivial solution. For some parameters it is by the shape of the spot and that for-5 the results are
possible to obtain nontrivial solutions similar to those de-nearly identical with the eigenvalues of the homogenous
picted in Fig. 1. Typically we get two solutions: In this case state. This suggests that modes with even highaiill not
the one with lower amplitude is unstable and plays the rolée unstable. Fon=1 the stability analysis of the localized
of a separatrix between the stationary statand the second solution shows a zero eigenvalue that corresponds to the
solution, which can be either stable or unstable. The stabilit - m
of these structures can be investi ideri 3(3_oldstone modes_ of th(_e st and . i

gated considering perturba- Apart from their maximum the shape of the spots is gov-

tions of the type erned by the linearization of Eq1). For increasing distance
from the center it decays nearly exponentially towards the
du,(p,e,t)=sin(ne+ ¢, )u,(p,t), n=0,12.... (4 homogenous state. If the relation
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D, D D, D, each of them. Therefore, a reasonable approach for the de-
——2\/=—<f'(vp)<——=—+2\/=— (7)  scription of the dynamics in this system is
D, D Dy Dy
N
is satisfied, the Iinea_lrization yields solutio_ns that decay ex- u(m_)zz U(r_ri(T))+83(r,T)=2 UiJrS_ (12)
ponentially, but oscillate around the stationary state. This i=1 i

type of decay can be seen in Fig. 1. . . ) )
In this equation the dynamics of the spots is assumed to

IIl. DERIVATION OF AN INTERACTION LAW appear on a slow time scate= ¢t, because the interaction of
different quasiparticles is 00(g). s(r,7) denotes the re-

In the following we will derive an interaction law for the maining error of this approach. Relaxation of the remaining
stable spots described above. The perturbation procedure agegrees of freedom associated with the shape of the spots
plied is a two-dimensional extension of the technique uti-which happens on a faster time scale is considered to be
lized by Elphick, Meron, and Spiegel to treat the interactionfinsished and is thus ignored. To get a unique decomposition
of traveling pulses in one-dimensional systqi25]. We also  (12) we have to add B further conditions. We choose
found explicit representations of the relevant projectors in . .
terms of the stationary solution such that we are able to de-  (u; y|s)=0 and (u;,/s)=0 for i=1...N, (13
rive the interaction in a quantitative manner. We start by
shifting the offset of the components in order to mapto where(f) denotes integration over the domain aﬂd an addi-
(0,0) by means of the transformatiane,~Uqq—Us. We  tional index,x represents the partial derivativédsx. u; , and
will use u, v andw in this new meaning omitting the index, |, , are the Goldstone modes of a single spot and represent
though. The system in Eq1) can be rewritten by splitting the two translational degrees of freedom: Adding the Gold-
the right-hand side into linear and nonlinear terms. Thisstone mode to such a spot corresponds to a small spatial

yields the equation shift. Thus, we demand tha(r,r) does not contribute to
. this shift.
u=Lu+N(u), 8 The approach12) satisfies Eq(8) to orderO(1). The

whereL is the linear operator terms ofO(¢) yield the following equation:

D,A+f(vf) -1 —L—VN(Z Ui) s=§ N(E ui | =2 N(W)
L= 1 1o ) | | |
5 5(DwA—1)

+> vur; ;. (14)

andN denotes the nonlinear operator The first term on the right-hand side is ©f1), which can

f(o+ve)—f (v))v—"F(vy) be proved by writing\(v,w) as a power series.
N(u)= 0 ) (10) To calculate the velocitg;=r; , of a given spou;, it is
necessary to eliminate the left-hand side of Bd). For this

_ N ) fpurpose the equation is projected on the vectors
Now consider a superposition of an arbitrary number o

spotsu;=u(r—r;) at different positions;. If all the dis- _ - —
tances between these quasiparticles are large enough, their Pi (_ Evi'X’WJ'X
superposition is a good approximation to the exact solution

of Eq. (8) due to their localized shape. The error of thisWhich are, to orders, zero eigenvectors of the operator
approximation scales with the distance between the spots. [~ L—VN(Z;u;)]", whereH denotes the adjoint of a given
all distances are increased simultaneously, the size of thisperatorH. Projection onp; leads to an equation for the
error scales, according to the decay of the linearization of Eqvelocity x;; of spotj in direction of thex axis. For the
(1), like & ~exp(—udmin/vdmin,» Wheredp,i, represents the evaluation of the resulting equation it is useful to restrict the
smallest distance to be found between two members of domain of integration to the diskr—r;|<zmin(r—r;[),
given ensemble. The coefficiept corresponds to the abso- thus neglecting some terms ©f \/s). Returning to the origi-
lute value of the real part of the eigenvalugwhich can be nal time scald, this procedure leads to the result

obtained from the linearization of Eql) as

1
and qj:<_5vj*y’wj*y>’ (15

, 1 ( \/ , D, <pj|Uj,x>OXj,t:_i%j <pj|VN(Uj)Ui>o+o(83/2),
N :2DU or\|o +4D—W[f (vi)—1]], (11 (16
with o=(D, /D) —f'(vy). where(. . .)o denotes the integration over the disk-shaped

Since the system is homogenous there is no preferred pgegion. Projecting om; instead ofp; yields the velocity in
sition for a single stationary spot. Instead, there are twadlirection of they-axis.
translational modeg¢Goldstone modgsand small perturba- Equation(16) provides a simple way to predict the move-
tions can lead to a slow propagation. The overlap of twoment of the spoj in the presence of the other quasiparticles.
different spots can be interpreted as such a perturbation forhus, the reaction-diffusion system has been reduced to a
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system of N ordinary differential equations, whehlis the 10°
number of spots in the system. Since the velocity of a $pot
depends only on its distance to the other spots in the system,
the interaction of three or more of them can be constructed < 10*
by a simple vector superposition, if their mutual interaction 2
is known. %
To obtain the interaction law for two spots, H46) can >
be written in simpler terms by means of the assumption, that
both of them are located on the axis at (1 2),Y(1,2) = 10°
(£d/2,0). In order to calculate the velocity of spot 1, the coa b P by by
domain of integration can be extended to the right half-plane 0.8 1.0 1.2 1.4
without losing accuracy. Afterwards it can be restricted to ~ Distance d o
they axis by means of Green’s formula. Thus, the following —o— Numerical Simulation  — — - Approximation

equation for the speed, of the right spot as a function of the k|G, 3. Velocityc, of spot 1 as a function of the distandeto
distanced to its neighbor is valid up t®(&%?): spot 2 for the paramete®,=0.0025,D,,=0.025, k= —0.32, A
. =2, andé=1. The interaction is repulsive and decays exponen-
X1(d)=C(d) tially with increasing distance.

=N

~

/
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B 1 * D (oo o influence of the boundaries can be interpreted in a simple
N Du(0102x = v1002) way: They act as mirrors for the distributian=(v,w). To
Wfo (owy,+ui )rdr include this effect the interaction of the spots with their “re-
flections” at the boundaries of the system has to be taken
_DW(WleZX_V_lexWZ)]de:O- 17) care of. In order to calculate the interaction between two
S ’ spots, one spot can be placed near a boundary. Thus the size
To evaluate Eq(17) for arbitrary distancesl, only the of the rectangular domain can be reduced by a factor of 2. If
shape of a single sp&= (U_,W) is needed. This shape can be M° spot is closer thafid,,,, to the domain boundary, assum-
computed with a very low numerical effort since we are

ing thatd,,,, equals the largest distance between two inter-
studying objects with rotational symmetry and E€®. can acting spots, the influences of the boundary are smaller than
be reduced to a spatially one-dimensional system.

the error estimate and can be neglected.
After the functionx,(d)=C(d) has been calculated, the

The exact form of the interaction depends directly on the
dynamics ofN spots can be reduced to a system of equationS"aPe of the stationary spaig¢p) = (v(p),w(p)). For large
of the form

values ofp these distributions only depend on the lineariza-
tion of Eq. (8). This linear equation has two basic types of
_ N Pt solutions: one that decays monotonously and another one
r=> C(r—rh—=+0(*?, i=1,...N. that decays and oscillates in space with some wavelength
=1 |ri_ri| The first type leads to repulsion in the relevant situations,
(18)  while the second type exhibits domains of attraction and re-
pulsion, depending on the distance between the spots.

For all situations with more than two spots it has to be
checked carefully, whether the absolute value of the sum
exceeds the error estimate. If it does not, no prediction for
the movement can be made. This prob'em will be addressed The first results pertain to the interaction of two SpOtS. For

later, when we discuss some numerical results concerninge numerical simulations the above mentioned set of param-
the interaction of three and more spots. eters(6) has been used. In this case simple repulsion is ex-

pected. As an initial condition two spots were located at
y1,=0 andx, ,= *d/2, respectively.

In Fig. 3 the results of the numerical simulations are plot-

To confirm Eqgs(17), (18), several numerical simulations ted together with the approximation derived from E#j7).
have been carried out. For distancesd<<0.9 the velocities were obtained from a

The numerical effort for calculating the interaction law continous motion: The initial distance was=0.65 and the
from the approximation formula is negligible. On the otherspots travelled rather fast. For larger distandes0.9, their
hand, the simulation of the full two-dimensional reaction- movement becomes very slow, because the velocity depends
diffusion system needs considerable computational poweexponentially on the distance. Thus it was necessary to de-
Since the velocity of the spots decreases almost exponetermine the speed for some discrete spacidg3he com-
tially with their distance dynamics almost vanishes as thegparison shows that the theoretical approximation is in rather
distance grows. Furthermore the influence of the boundariegood agreement with the numerical results. Of course, the
of the two-dimensional system on the spots must be takeapproximation is only capable of capturing effects that lead
into account. In these calculations Neumann boundary corto a movement of the spots. For geometries with0.6 the
ditions of the formn(x,y) - Vu(x,y) =0 with (x,y) e G have distinct spots lose their stability due to the strong overlap of
been used, whera(x,y) denotes the normal vector of the the two distributions and a description in terms of a particle
boundaryG of the system. For a rectangular domain, themodel is not possible. For this particular case the numerical

j#i

A. Numerical results for two quasiparticles

IV. NUMERICAL RESULTS
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0 FIG. 5. Some stationary geometries for three or four spots for
T I ? L I A the parameter®,=0.0035,D,,=0.025, xk=—0.16,A=1, and &
0.8 1.0 12 12 14 16 =1. The distance between two neighboring spotd;is 0.95. So-
Distance d lutions (a), (c), (d), (e) and (f) are stable; only configuratiofb) is
O Numerical Simulation —— Approximation unstable. The stability of the other solutions was proved by means

of the analytical approximation or by numerical methods.
FIG. 4. Velocity of spot 1 as a function of the distarttéo spot o . ] .
2 for the parameter®,=0.0035,D,,=0.025, x=—0.16, =1, IS equal tod,;=0.95 which is the first stationary, stable dis-
ands=1. (a) refers tod<1.25 and(b) to d>1.25. In this region of tance for two spots.
parameter space several discrete, stable distancks The configuration in Fig. @) is stable, because the dis-
=(0.95,1.86,2.77...) between two quasiparticles are possible.  tances between all three particles are the same, and the size
of ¢ is uniquely determined.

results indicated that both spots disappear. If there are alarge 4
number of spots in a finite system, the mutual repulsion will
lead to the formation of hexagonal patterns.

The case of oscillatory interaction was investigated for the
parameterd ,=0.0035,D,,=0.025, xk=—0.16,A=1, and
6=1. Using the same geometry as in the previous case, we
have obtained the results summarized in Fig. 4. The accor-
dance between simulation and approximation is rather good.
The most important feature of the system for this set of pa-
rameters is the existence of some discrete distances, for
which two spots are bounded in a stationary, stable state. For
the given parameters these distances am L 8|0 Lo 9|0 Lo
=(0.95,1.86,2.77...). This is due to the shape of the spots, Angle B (degree)
which are surrounded by rings of alternating high and low
activator concentrations. A detailed analysis of ELy) re-
veals, that stationary, stable configurations correspond to the
situation when the neighboring spots are located exactly on
the rings with high activator concentration.

There is a difficulty that can arise in the case of oscilla-
tory interaction. If the amplitude of the oscillatory rings is
rather high, a superposition of two rings can lead to the ig-
nition of new spots. This is due to the vicinity of the param-
eters to the Turing bifurcation. Of course, such an ignition of
spots is not covered by E¢l2).

T
-
1

—— Approximation
® Numerical Simulation

'
o]

8|III|III|I!

g
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B. Interaction of three or more quasiparticles

If there are more than two spots present in the system, it 100 120 A 1?0 g 160 180
has to be checked, to what extent the two-particle approxi- ngle B (degree)
mation holds. The problem is that the sizes0 determined FIG. 6. Dynamics of the angular configuration of three spots

by the minimal dlstance between two spots. Since the UNfrom Fig. 4c) as function of the angl@. The results as estimated
known addends(r,7) in Eq.(12) scales withe, its effecton  py the theoretical approximation are compared with the numerical
more distant spots could become dominant. results for the parametefd,=0.0035,D,,=0.025, k= —0.16,

In Fig. 5 some possible combinations of three or more=1, ands=1.(a) For small values of the approximation is rather
spots for the case of oscillatory interaction are sketched. Thgood.(b) For largeg the results are qualitatively correct but suffer
parameters are the same as in Fig. 4 and the smallest distarfe@m the neglect of higher-order contributions.
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In Fig. 5(b) a linear chain of three spots is sketched. The
approximation fails in this case, because the effect of the
outer spots onto each other is weaker than the effect of the
unknown addend(r,7) from approach{12). The spot in the
middle shields the mutual interaction of the outer particles.
Due to the symmetry this configuration will be stationary but
simulations showed that it is unstable.

Since the second stable distarte=1.86 is smaller than
2d;=1.90 it is likely that there exists an angular configura-
tion corresponding to that in Fig(&. There exists a strong
and therefore fast interaction between the inner and outer
spots. This leads to a fixed distancedaf=0.95. The influ-
ence of the two outer spots onto each other should lead to a
distance of aboutl,=1.86, corresponding to an angk of
about 160°. The numerical proof of this assumption takes
quiet a lot of computational time, since one has to make sure
that the interaction between the inner and outer particles has
completely vanished. After this process has ended the dy-
namics can be redl.JCEd t_o th'at of the anglspanned by the FIG. 7. Result of a numerical simulation for the geometry of
three spots as depicted in Figch _ _Fig. &(f). The gray-scale corresponds to values frem.65 to 0.75

The result; of the numerics that comprise all three PreVing 5 (x,y). The lines are given be(x,y)=v;. They show that the
ous cases, Fig.(8)—-5(c) are shown in Fig. 6. The approxi- sqtion decays in an oscillatory manner towards the homogenous
mation is valid only for small angleg@, but does give a gigte.
qualitatively correct picture of the dynamics: The linear
chain of spots is dynamically unstable and there exists atypes of localized patterns that can be constructed in
angular configuration of three spots with an anglef 125°.  reaction-diffusion systems. Elphick and co-workg?$,26]
From the approximation an angle gf=160° was estimated. derived the asymptotics of an interaction law for propagat-

In Figs. 5d)—5(f) there are some possible geometries withing, localized pulses in a one-dimensional system. Wave
four quasiparticles: The stability for pictufe) can be con- trains of pulses and repulsion between these objects have
cluded from the stability of the angular configurati¢c). been predicted theoretically. Experimentally these results
The stability of the two other configurations can only behave been verified using a chain of coupled nonlinear electric
guessed. However, numerical simulations show that both gesircuits [27]. Wave trains of up to four pulses have been
ometries are dynamically stable. Figure 7 shows the distribuebserved. Other structures that could be used are spots in
tion of v(x,y) resulting from the numerical simulation for one-dimensional systems or stripes and moving stripes in
the geometry of Fig. &). The contour lineg (Xx,y)=v; em-  two spatial dimensions.
phasize the oscillatory behavior of the exponential decay. Recent theoretical resulf28] obtained for a set of three-

component reaction-diffusion equations suggest that it is al-
V. CONCLUSIONS ways possible to find parameters that lead to the propagation
] ) ) ] of any stationary structure that can be found in the corre-

For parameter regions in which stationary spots argponding two-component system. This leads to a variety of
present, it was possible to determine their interaction angomplex moving patterns, which is of special interest since it
thus to calculate the resulting, stationary states. was possible to observe slowly moving clusters of filaments

_ A large variety of geometries can be constructed. ESpe an ac-driven gas-discharge experiment similar to that de-
cially for parameters that allow oscillatory interaction in geriped in[19].

space, a lot of stationary, stable states can be found. These
structures exhibit a strong resemblence to clusters of fila-
ments in an dc gas-discharge systg2d]. This system can

be described by a set of two reaction-diffusion equations, We thank the HohstleistungsrechenzentrufHLRZ) for
which are similar to the model equatio(ly. Clusters of two  providing CPU time on the Paragon XP/S 10 computer at
bounded filaments and the configurations of Figg) &nd  KFA, Juich, and the Deutsche Forschungsgemeinschaft
5(f) have been observed experimentally. (DFG) for financial support. We thank Yu. A. Astrov and |I.

The same mathematical approach can be used for maruller for many encouraging discussions.
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