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Self-organized criticality in deterministic systems with disorder
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Using the Bak-Sneppen model of biological evolution as our paradigm, we investigate in which cases noise
can be substituted with a deterministic signal without destroying self-organized criti@O). If the deter-
ministic signal is chaotic the universality class is preserved; some nonuniversal features, such as the threshold,
depend on the time correlation of the signal. We also show that, if the signal introduced is periodic, SOC is
preserved but in a different universality class, as long as the spectrum of frequencies is broad enough.
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I. INTRODUCTION of some of these results can be also found3m]). Similar
conclusions have been drawn in the context of standard
Due to nature’s inherent complexity, a lot of effort has fluctuation-dissipation processes by Bianuetal. [32-34.
gone into developing mathematical models to describe it, ifThe paper is organized as follows. In Sec. Il we review the
only qualitatively[1—16]. Among all natural processes, evo- Main features of the model as they are presented in the lit-
lution has attracted a lot of attention because of its globag€rature. After introducing the maps in Sec. Ill, we show in
consequences for lifel7,18. Within the realm of evolution, Sec. IV the results obtained for different deterministic updat-
one of the most fervidly argued topics is that of the explanaing rules. Our conclusions together with a brief description
tion of mass extinctiong19]. Indeed, from a gradualistic Of some open problems can be found in Sec. V.
point of view, mass extinctions are rare events, due mainly to
external abiotic factors such as earthquakes, meteorites, etC.  ||. GENERAL DESCRIPTION OF THE MODEL
[20]. From the point of view ofounctuated equilibriumon
the other hand, mass extinctions are bursts of activity be- The Bak-Sneppen model describes an ecosystem as a col-
tween periods of stasfj1—-25. The fossil record shows that lection of N species on a@-dimensional lattice, each one of
the distribution of mass extinctions follows a power law Which can have7 traits associated with [t35]. To each one
[26]. Among the many models proposed to describe evoluof these traits corresponds a fitness described by a nufmber
tion, those exhibiting self-organized criticaliggOC) [27,28  between 0 and 136]. Here, for simplicity, we consider the
are of particular interest. In layman terms, a system is callegase with one traitd=1, and periodic boundary conditions.
self-organized critical when it evolves towards a steady statd©0 fix notation, we consider a one-dimensional lattice of
in which certain physical quantities show fluctuations on anylengthN. The initial state of the system is defined by assign-

space and time scalghey follow power law distribution ing to each sitg a random fitnesf;{, chosen from a uniform
In particular, we will concentrate on a model for macro- distribution. The dynamics proceeds in three basic steps:
evolution proposed by Bak and Snepp@ft) [25]. In it, (1) Find the site with the absolute minimum fitness on the

extinctions are associated with avalanches of activity withoutattice (this site will be called the active sjteand its two

an inherent time or length scale. In the original version of thenearest neighbors.

model, no influence of the environment was taken into ac- (2) Change, at the same time, the values of their fithesses

count if not implicitly in the fithesses of the species. Later,by assigning to them new random numbers from a uniform

Newman and co-workef®0] introduced a modified version distribution.

of the BS model in which an environmental stress is intro- (3) Go to step 1.

duced. All these versions of the model show self-organized After an initial transient that will be of no interest to us, a

criticality and the randomness in the microscopic rule seemsontrivial critical state is reached. This critical state, charac-

to play a relevant role. terized by its statistical properties, can be understood as the

In this paper we show that, if one substitutes the randoniluctuating balancebetween two competing “forces.” In-

updating of the dynamic variable with a chaotic or a periodicdeed, while the random assignation of the values, together

map, SOC is not destroyé¢@9]. Some nonuniversal features with the coupling, acts as an entropic disorder, the choice of

will, however, depend on the time correlation of the signal.the minimum acts as an ordering force. As a result of this

Moreover, if the signal introduced is periodic, SOC is pre-competition, at the stationary state the majority of thbave

served but in a different universality class, as long as thealues above a certain threshdld. Only a few will be be-

spectrum of frequencies is broad enoughbrief discussion low f., namely, those belonging to the running avalanche
(see[ 25,39 for a detailed discussionSince the avalanches
are the basic and fundamental mechanism of the model it is

*Electronic address: delos@mpipks-dresden.mpg.de therefore worth describing them in more general terms.
"Electronic address: angelo@mpipks-dresden.mpg.de Let us suppose that the system is already at stationarity
*Electronic address: jose@mpipks-dresden.mpg.de and let us find the minimum fitness, sy<f.. We update
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6452 DE LOS RIOS, VALLERIANI, AND VEGA 57
it together with its two nearest neighbdtke actual value of TABLE I. The first four exponent values are quoted froAd]
the minimum does not really matjefThis updating creates Wwhile the last two are froni25,39.

disorder in a small region in space, where most probably
there are some lattice sites with<f_. Then, the new mini- Quantity Value Error
mum will most probably be among the last three sites

changed. The active site most probably will be one of the ch 0'168;22 2

two nearest neighbors, thus affecting another site to the left - 0'343 4

or to the right. In the following time steps new sites will be X

touched by the avalanche of mutations. Here one sees clearly Y 2.70 2

the two aforementioned forces at work: Disordevery new :f (1)‘22 2
all .

value is chosen at randgrmand order(we decide to mutate
always the smallestSince the equilibrium drives the thresh-
old to the valuef ;> f, this means that thi, avalanchgan

avalanche during which all the selected minima are belo In Tablg ! we have 'Iisted the vglues of thesg exponents as
£y will eventuall me to an end. in a finite ting = V\fhey are given in th_e literature. It is WC.)r'th noticing that these
o) eventually come fo an end, in a € lin%s,=So. exponents are not independent quantities. Indeed, the scaling
During this process th#, avalanche will also cover a certain rejations derived if25,39 show that at most two of them
number of lattice SiteS, i.e., it will also have a Spatial Sizecan be independent. However, using the master equation
”ngz ng. This feature gives the possibility to analyze and
find the critical values even without considering the system
or lattice as a whole but simply analyzing the statisticg pf
avalancheg40]. Moreover, the avalanche dynamics shows
that, as long a$ is close tof ;. the average sizéoth in time
and spacgof the related avalanches has to grow consider- +51§=:1 Pa(S1,T0)No($1)Pa(s= 51, o)
ably. Both averages will eventually become infinite fas
—f., but this does not mean that all the avalanches are (6)
infinite (or of the maximal space or time lengths allowed by
the simulations Thesef, avalanches can be described by
means of a distribution functiof25,39

IPa(s,fo)

(1= fo) 5= = Pa(s,fo)ng(s)

s—1

derived in [41] and the fact thatng(s)~s™' and
o=1+7,—17[25,39, one proves that the only independent
exponent of the model is,, of Eq. (5) [42]. From Eq.(6)

P.(s.fo)=s "F(s(f.—f)1). 1 one can also derive an infinite hierarchy of equations for the
a(s:fo) (s(fe=T0)™) @ moments of the distribution. The first equation in this hier-
In Eq. (1) s is the time size of the avalanche aRds some  &'chy
yet unknown scaling function that behaves like - =
dlnsy  ng @)
P foin=] - 25 57° @ o e
S(Tc—To 7)= > — _ —1lo
0 as s>pe=(fc—fo) ™. relates the exponentd) to the average number of covered
Th durati f lanche is ai b sites; hereng is the nonuniversal average number of sites
e average duration of aiy avalanche is given by covered by thef, avalanches. Putting E¢3) into Eq. (7)
_ . gives the so called-equation[25,39,
So=(fe—=fo) ™7, ()
L . . Ng
where the exponeny is given in terms of the previously y=——(f.—fo). (8)
defined exponents and o by 1-fo
2, For models belonging to the same universality class, i.e.,

(4)  with the samey this equation relates the nonuniversal quan-
tities ng and the thresholdl; . In particular, as we shall see in

Numerical calculations provide good estimates for the valueSec. IV A, to a biggerf, must correspond a smallep for
of the threshold as well as the two exponentndo [25,39  fixed fo. _ _ N .
(see Table)l It is also useful to define other exponents that An interesting consequence of Hg) is that it is possible
can be easily obtained from numerical simulations. First we© changef; while remaining in the same universality class.
consider thdirst return timedistribution P;(n), namely, the  This can be obtained by modifying the entropic tendency.
distribution of the times between two consecutive updatingsndeed substituting the random updating with a correlated
of the same sitéwhen it is the minimum Another distribu- chaotic system one introduces a correlation that leads to an
tion function is theall return time distribution P, (n), increase towar(_js 1_ of the thre_shold. On the other hand, a
namely, the probability that a given site, active at titme greater correlation in the updating map means that the sys-
=0, is active again at timée In both cases, one defines the t8m spends more time in the same site, thus covering fewer
corresponding exponents by sites in the same number of time steps in comparison with a
less correlated map. From E) it is clear that asng de-
P:(n)~n~"f" and Py(n)~n~Tal, (5) creasesf. increases.

Y= g
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1. MAPS o 1 N
T il i

As we have seen before, the source of mutations in the —Nl|mw N Eo F(fo). (14

Bak-Sneppen model is the presence of random noise in the

system. Since a chaotic map may exhibit statistical propertieshe functionC(m) is a measure of how the deviations from
similar to those of random noise, a similar competition bethe average at time are related to the deviations from the
tween order and disorder could be established when one sullyeragem steps aparf44]. In particular, chaotic maps are
stitutes random updating with chaotic updating. To underexpected to show exponentially decaying autocorrelation
stand the similarities as well as the differences between thgnctions, i.e.,

two kinds of updating, in this section we discuss some gen-

eral properties of maps. C(m)y~e M7, (15)
A deterministic map is a rule in which the new value of
the variable is given by where 7 is the correlation time
. . We will now proceed to summarize the properties of the
fher=F(f) (9)  different maps we will be using in the Bak-Sneppen model.

_ I . ; _ _ Before continuing, it is worth mentioning that, in principle,
with F a deterministic function anfthe lattice site. In what e case of random noise can be considered as a particular

follows, we will only consider maps of the unit interval onto oce of Eq(9) in which F(f,)=(n) with (n) a random
itself (usually calledunimodular maps Disregarding peri- ,ariable with a uniform probability densifi3].
odic trajectories, one can define several statistical quantities

that are generally used to describe the properties of a generic
sequencdf.}.

The first quantity of interest to us is thevariant mea- Let us start by considering the Bernoulli mgg4],
sure w(f). Formally, the invariant measure for a unimodular namely,
map is defined by

A. Bernoulli maps

fl =G (f)=[rfl], (16)

N
1 )
pe ()= lim = > o[ f—F'(fo)]. (100  where[f] stands for the value of modulus 1 and e N,r
N—ow 'Y 1=0 >1 is a constant. It has been shoysee[44] and references

- . therein that this map has a uniform invariant measure
If ws,(f) does not depend on the initial valtig, the map is n P

called ergodidand one refers to the measuread)]. If a wBW(f)=1, (17
system is ergodic, time averages are equivalent to phase
space averages, and then the time average of any functiowhere the function,(f) has been defined in E¢L0). More-

g(f) can be computed as a phase space average via over this map is chaotic and is characterized by a Lyapunov
\ exponent given by
1
@)=l 3, gf)= [ uhohdr.  ap NG 19
N—ow 1=

. . S . . For this map one can easily compute the time autocorrelation
To describe the behavior of individual trajectories one needg,ction namely

more detailed information provided by ths/apunov expo-

nentA. The Lyapunov exponent measures the average rate 1 1

of separation irf space of two given trajectories per unit of CEM(m)= =g Mr (19
time. It can be computed as am 12

1N gF whereC®"(m) has been defined in E¢L3) and the corre-
A=lim & > In F(fi)’. (12)  lation time is given by
N —s o0 =0
) 1
If a map has a Lyapunov exponeAt>0, this means that =T (20

two trajectories will diverge from each other exponentially.
In this case the map is callezhaotic This property has a
very important consequence: A very small perturbation i
the initial condition will produce a completely different out-
come. Moreover, successive outcomes of a chaotic map wi
behave like a stochastic varialgatistically speaking

Finally, we will make use of thautocorrelation function
C(m), defined as

One sees that the correlation time decreases iasreases.
“This means that given two maps with different values of
H1e one with the bigger value of will be closer to true
random noise and then will decorrelate faster. As we shall
see in the following section, this last property is of crucial
importance in order to understand the differences between
BS models with different Bernoulli maps.

C<m>=n§O (frem— ) (fa—1), (13) B. Logistic map

Let us now consider the logistic mgpometimes called
where Feigenbaum map namely,
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fl o =nfla—1fl). (21) 1.0

The reasons for studying this map are manifold. On the one

hand, this map has already been considered in the context of F(f)

biological evolution models and population dynamjd&—

47,50 and can thus provide a possible deterministic interpre-

tation of the evolution inside every ecological niche. More-

over, it has been shown that it describes the behavior of a

wide variety of systems in natufd8]. On the other hand, it

has a regime in which it is chaotic as well as one in which it

is not, depending on whethér is bigger or less than the

critical value \,,~3.56994[44] (for A\>X\,, there are win-

dows in which the map is periodic; in this paper we will take

\ outside these windows 0.0
If we consider the particular cage=4, the invariant den- 0.0 305 223 1.0

sity for this map is given by

FIG. 1. Shifted tent map corresponding#e- 1/3. In particular,
1 for =0 one obtains the usual tent map, E2p).

M (f)= —on 22
w0 (F) D) (22) .
2fl+ 7, ez 1
the Lyapunov exponent is ™7 O<fn< 2
AM=In2 (23 _ 1— 1
2fl+5—1, T<fJn<§
and the correlation function is given by j
(LM) fria” 1 1+ 29
CH"(m)=6mpo- (29 p+1-2f §<f£1< 277
The fact that this map is chaotic does not mean that the
trajectory cannot be written explicitly. Indeed, it is easy to . +n
see that n+2-2f}, ——<fi<l.

f,=sir’(2"c), 25 —
n=Sim(27c) @9 As an example, in Fig. 1 we can see the plot of &9) for
1
with the initial conditionf,=sir?(c), is a trajectory of the the casen=s.
logistic map in the case of=4.
D. Periodic map

C. Tent map So far we have only considered chaotic systems. How-
To better illustrate the effects of time correlations in the€Ver, there are maps that are not chaotic but are ergodic. Let
updating, we will also need the so-called “tent” map  US consider a simple example of such a case in which the
“linear version” of the logistic map, defined as “signal” is provided by an integrable system, that is a se-
_ quence given by
o (efh fi<d
fhi1= ) . (26)
2(1-1)), fl>3.

n

fjnzf : (30
where thew;,¢;’s are the angular frequencies and initial
phases, respectively. This can be rewritten as a mafj, of
ontofl , as

This map is chaotic with Lyapunov exponent™=In2.
Contrary to the case of the logistic map, the invariant mea
sure for the tent map is uniform, i.e.,

w™(f)=1, 27 ;  sinarcsin2fl—1)+ o;]+1
n+1= 2 3 (31)
with an autocorrelation function given by
c™(m) =25 29) where the initial condition‘{, is given by
— Om,0:»
as in the case of purely random noise. For our applications £l :1+Sin¢1 _
(see next section we find it useful to define a modified 0 2
version of the tent maf26) (“shifted tent map”) in which
we cut they axis at 1- 5 and then shift the functiom up The invariant measure is not constant, it is symmetric

modulus one, as shown in the following equation: aroundf=1/2 and peaked close fo=0,1 namely,
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10

10
(32)

1
= ————.
el T

Since this “signal” is not chaotic, the Lyapunov exponent is
zero and the correlations will not decay exponentially. In
fact, the correlations are given by

P, P{t

C®(m)= Cog‘g—wm). (33

At this point it is worth emphasizing that these correlations
are correlations for a given sequence. If we consider two

sequences with different values of ¢ the correlation will o

be different. 1 10 100 1000 10000 100000
Time t

IV. MODELS FIG. 2. First and all return distribution®on-normalizeyi for a
Through the use of the different maps presented in th BS_ model with Bernoulli updating rgle Wlth_:2. For all the_5|mu-
i " hall show h that th q q ations shown here, we used a lattice df 2ites and X 10° itera-
previous section, we shall show here that the random upaag, , exploiting the tree-algorithm explained|[iB5].
ing is no longer a necessary requirement to have SOC. More-

over we will also show that as long as the map at hand is ) )
chaotic the system does not change the universality cIasEhe one found for the random case. On increasing the value

i.e., all the exponents are the same as in the case of randoh "~ the threshold moves towards the BS valsee Fig. 3
updating. For noninteger values of (r>1), SOC is still preserved

While the presence of critical behavior was somehow eva_ithi.n the BS universality class. However, in this case, the
pected, it is still surprising that the universality class does noflistribution of the generated numbers is not uniform and
change. This means that the system is able to self-organize g@nsquently it influences the distribution of the fithesses at
a higher level: It takes into account the temporal correlatiorfh€ Stationary state.

(or the average time spent in every itey increasing the Turning now to Elg. 4, we can see that the t_hresholds for
threshold, so as to have the same statistical properties. Whii€ Bernoulli updating approach the BS valuer ascreases.

is even more remarkable then is the fact that close enough t§ Fig. 4 we have also plotted the best fit we could find for
the threshold it is not possible to distinguish the randonthe curvef (r)—fgS. This fit, which corresponds to a power
updating case from the chaotic one from the microscopicalew r %8 still remains an open problem from the theoretical
point of view, because the statistical properties and all théoint of view.

variables are exactly the same. As a consequence, all the There is a qualitative explanation for this behavior of the
equations and relations shown in Sec. Il are still valid for allthresholds. As we briefly mentioned in Sec. Il, the change in
the cases with chaotic updating. threshold is an indication of the correlation in time of the

We will show this equivalence through an infinite se- map we are using. Indeed, by looking at £8). we can see
quence of models with Bernoulli updating, logistic and tentthat an increase ifi; corresponds to a lower value of for
map updating. In fact, the same kind of analysis performed
on the case with thémodified tent map can show that the 4.0 ;
time correlations are actually the ones responsible for the

shifts in the thresholds. A

However, the universality class is not always preserved. a0 | !“
In fact, if one chooses a nonchaotic updating rule the critical ' ,f‘
exponents may change. We will show that by considering i
quasiperiodic updating rulg81). . E;

T 201 Ei h
A. Bernoulli updating 5;

Let us consider a chaotic updating rule, whose statistical 10l i e |
properties resemble those of a stochastic function, namely, I e 13
the Bernoulli map, Eq(16). 1l oo

In Fig. 2 we show the power-law behavior of the first and A ’,' B
all return probability distributions in the case= 2. The criti- 005 06 07 08 09 10
cal exponents obtained coincide with those foun@2s,39 Fitness f
for the random updating. Moreover, for all valuesrothe FIG. 3. Distribution of the fitnesses for=2,3,7,10; the thresh-

system falls in the BS universality class, i.e., it always hasid forr=2 is quite different from the usual BS threshold while the
the same critical exponents. The stationary distribution of theéhreshold corresponding to=10 is very close to the BS value

fitnesses, on the other hand, follows a different pattern. In{given by the vertical ling For all the simulations shown here, we
deed, Fig. 3 shows that the threshold fer 2 is bigger than used a lattice of ¥ sites and 5 10° iterations.
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FIG. 4. Values of the thresholds for r=2, ... ,31after sub- FIG. 6. Distribution of the fitnesses for the logistic map. One
tracting the value 0.656 for the random updating. For all the simu

) - ] ‘can easily see the effect of the nonuniform invariant measure.
lations shown here, we used a lattice of 1000 sites ard.®
measurements.

ration with a threshold bigger than the one in the random
fixed f,. This fact means that the system spends more timgipdating. At this stage, it is natural to consider updating that,

per site and this reflects the fact that it needs more time t@ven if deterministic, is5 correlated. In particular, we con-
decorrelate. At this stage one can also ask if Byremains  sider updating rules given by the logistic and tent maps. Let
valid even with a correlated map and if it is not necessary tas start by taking as an updating rule for the fitnesses the
introduce nonuniversal factors. The answer is given by nologistic map, Eq(21). As Fig. 5 shows, for those values »f
ticing that for fixed distancé from the threshold the value for which the map is chaotic, the system not only exhibits
F‘Af is the same for all models, leading to SOC but also stays in the same universality class as the origi-

nal BS model. ForA<\,, we find that the system is not
. y critical any more. This is due to the fact that, fox .., the
Ny, = A (39 map goes to a periodic orbit, and consequently the updating
f

is not ergodic. This case is equivalent to a BS model with a
wherey is the universal exponent introduced in E8) [41]. finite number of states for the fitnesses. In terms of our pre-

This means that looking at the system from a distasge vious picture, the disorder force is too weak to ensure SOC.
from the threshold it is not possible to distinguish two sys- One characteristic of the logistic updating is that, since
tems which have the same critical exponents. the invariant measure is not uniform, the distribution of the
fitnesses above threshold is not unifofsee Fig. & This is
B. Logistic and tent updating not the case for the tent map, E@6) or the shifted version

] ] _of it, Eq. (29). For both of these cases the fitness distribution
In a previous subsection we showed that models With, the critical state is shown in Fig. 7. One observes that

time-correlated updating self-organize into a stable configuthere is a peak in the fitness distribution in the neighborhood

10 of the threshold for Eq.26). This can be understood as being
produced by the interplay between the dynamics of the up-
10" ¢
10° 0
————— 40
° _ . M
= L £ 3.0
< 40t - 20 3
“"103 - 1.0
- bt 0,0 1203
. 00 02 04 06 08 1.0 =
10 Fitness f
10’
L 11.0
100 1 1 1 1
1 10 100 1000 10000 100000
Time t
. . . . 0.0
FIG. 5. First and all return distribution®on-normalizey for a 0.0 02 °‘4Fimessf 08 08 1.0
BS model with the logistic map with =4 as updating rule. The

exponents are the same as for the BS moget1.58 and r, FIG. 7. The main body of the figure shows the distribution of
=0.42. In all the simulations shown in this figure, we used a latticethe fitnesses for the tent map updating E). The plot in the inset

of 213 sites and 1®iterations. shows the fitness distribution for the case of the shifted tent map.
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dating rule and the Bak-Sneppen dynamics. Indeed, the tent 10°

map has an unstable fixed pointf&t= 2= f CBS. Then if a site foa) 30.0 -

right below threshold is chosen as the minimum, the updated 0y N 200F b

value will be above threshold, but still close to it. The next 10° T i

update in the same site will put the value of the fitness again 3

below threshold, if a little bit further apaf#9]. Then, one 10° 06 0.8 1.0

needs to update this site several times to remove it from the Fitness {

=
neighborhood of the threshold. Consequently, the probability f

of finding a site with fithess in the neighborhood fof is 10° [

higher than in the random update. \
If, on the other hand, one introduces the shifted tent map, 0

Eq. (29), where the fixed point is not close f&°, the dis- w0 L

tribution of the fitnesses above threshold is uniform, resem-

bling exactly the random updating ca@ee Fig. 7. 10° ] 10 100 1030 o000
Comparing the different chaotic maps we can draw sev- Time t

eral conclusions. First, time correlations in the updating im- . o .

mediately reflect in a shift of the threshold in the sense that F!C- 8- (@ First and all return distributionion-normalizegifor
higher correlations correspond to higher thresholds. Seconfi‘,BS model with disordered periodic .quat".]g rules; th.e exponents
as shown by the shifted tent map, the other higher correl are 7¢=1.65(1) andr,=0.381). (b) Distribution of the fitnesses.
tions do not in principle produce a’ny measurable change ?rl]n all the simulations shown in this picture, we used a lattice '8f 2
the statistical properties of the system. sites and 510° iterations.

ordering pressure of the minimum rule. For a given lattice
C. Periodic updating and a given set of dynamical rules, the use of stochastic
Since time correlations in the updating rule do not inupdating is tantamount to the introduction of maximum dis-

principle, destroy SOC, it is worth considering systems inorder. On the other hand, chaotic maps produce series of

which the time correlation of the updating does not decay’umPers that resemblstatistically pure random numbers,
exponentially. As shown if81], the simplest example of this with the exception of the functional form of the invariant

class is given by a model in which the choice of the newdensity and the existence of decaying time correlations. The
fitness is done according to the periodic map, €4). results presented here show that the system, in its critical

As mentioned in Sec. Ill, choosing the initial phases isStte, feels the details of the underlying dynamics, even if
equivalent to choosing the initial condition of the system.Preserving the universality class.

Consequently, we take our phases at random (G< ¢, The time correlations in the updating produce a change in

</2). Our simulations indicate that if the frequencies arel® nonuniversal features. In particular we showed that, as

the same, that isw;=w, the strong synchronization of the these correlations increase, the critical state of the system

sites along the lattice destroys criticalifgven though the MOVeS toyvargjs a more ordered conf|gL_1rat|on, th"’?t T
fitnesses are organized above a threshdhtleed, the sys- threshold is higher. This correspondence is made evident, for

tem develops a typical scale that is observed in the way of glxarr:pltcei, in th? case of the Shifte‘é tent mhap. Therel, gscom-
cutoff in the distribution probabilities. If we now choose the 2 etely deterministic system reproduces the origina re-

: Its.
frequenciesw; such that u . .
q ! We would like to draw the attention of the reader to the

0| # w; (35) cqmplement_arity of the results presented here and thpse ob-
tained by Bianucciet al. [32—34. They showed that if a
the situation changes dramatically. If we characterize the frevariablew (say a Brownian particleis weakly coupled to a
quency distribution by two numbers, namely, its centgr ~ system, provided this system is chaotic or ergodic, the result-
and its widthA w, the behavior will indeed depend on both. ing deterministic motion of the variable conforms to a
Even after long numerical investigation, the exact functionakstandard fluctuation-dissipation process. In fact, the irregu-
form of this dependence cannot be outlined in a satisfactorlarities of the deterministic statistics are washed out by the
way. Nevertheless, it is clear that over a whole range ofime scale separation between the system of intérepte-
values of the two parameters the system recovers a criticslented byw) and the chaotic subsystem. The chaotic system
behavior. An example can be seen in Fig. 8, where we choss referred to as a “booster[32—34. This is completely
wo=19.57 and Aw=19.57. As mentioned above, the uni- analogous to what happens in the BS model. Nédisermal
versality class changes with respect to the original BS modeRr otherwis¢ can be replaced by a deterministic system with-
with 7;=1.65(1) andr,=0.381), but the SOCehavior is  out significant changes in the stationary state. Stochasticity
preserved. We observed that this universality class depends the updating rule is sufficient but not necessary: SOC
on the values ofby, andA w. For the sake of clarity, we show persists, even in the absence of chaos(éogodig periodic
here only one example, out of many, that illustrates the pointupdating rules, if in a different universality class. Moreover,
the conditions required from a deterministic system to be an
V. CONCLUSIONS appropriate booster are very similar to those requifesm
the updating rulefor SOC to be preserved.
Self-organized criticality in the BS model comes from the In summary, the results presented here indicate that the
competition between the disorder in the updating and théeature ensuring SOC in systems with extremal dynamics is
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not the randomness of the updating but the fact that théehavior of the threshold with the parametdn the case of
choice of the site where the change is perfornieamely, Bernoulli updating needs to be explained. Second, and per-
the minimum rul¢ is random. Moreover, as long as there is haps more important from a theoretical point of view, what is
enough diversity among the species on the lattice, the longehe exact relation between correlation time and the position
the memory(or the internal correlationof each member, the of the threshold?

higher the threshold. Indeed, in the case of chaotic maps, the Finally, we believe that these results add strength to the
diversity is ensured by the random assignation of the initiarelevance of SOC in physics and biology, since they allow
values and as much as the level of chaos is increased we séiferent microscopic mechanisms to underlie its appearance
that the threshold decreases. In the case of the periodic m&s a collective behavior.

instead, the random initial conditions do not provide enough
diversity. Indeed, in order to have SOC, the internal time
scales, i.e., the periods, have to be distributed in a disordered
fashion. Briefly, one needs enough diversity for SOC to ap- We would like to thank R. Cafiero, P. Bak, S. Maslov,
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At this stage, several questions arise. On the one hand, thiens.

[1] 3.M. Carlson and J.S. Langer, Phys. Rev. Lé®2, 2632
(1989.

[26] R.V. Sole S.C. Manrubia, M. Benton, and P. Bak, Nature

(London 388 764 (1997).

[2] S.A. Kauffman,The Origins of Order, Self-Organization and [27] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L8¢. 381

Selection in EvolutionOxford University Press, New York,
1993.

[3] T.S. Ray, Artificial Life 189 411 (1992.

[4] S.I. Zaitsev, Physica A89 411 (1992.

[5] A. Petri, G. Paparo, A. Vespignani, A. Alippi, and M. Costan-
tini, Phys. Rev. Lett73, 3423(1994).

[6] P. Diodati, F. Marchesoni, and S. Piazza, Phys. Rev. B&it.
2239(199)).

[7] G. Caldarelli, F. di Tolla, and A. Petri, Phys. Rev. Léetf,
2503(1996.

[8] D. Wilkinson and J.F. Willemsen, J. Phys.1%, 3365(1983.

[9] M. Cieplak and M.O. Robbins, Phys. Rev. Le&0, 2042
(1988.

[10] K. Sneppen, Phys. Rev. Lefi9, 3539(1992.

[11] K. Sneppen, Phys. Rev. Leitl, 101(1993.

(1987.

[28] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev38, 364

(1988.

[29] In computer simulations one uses a deterministic map, namely,

a pseudorandom number generator, to realize a random updat-
ing. Indeed, in any pseudorandom number generator, a good
deal of effort goes into designing the algorithm to ensure that
the statistical properties of the outcome pass all the tests for
randomness that any “true” random sequence would. So these
pseudorandom number generators are considered in practice,
even if strictly speaking deterministic, the best mimic for true
stochastic processes. For the purpose of this paper, the class of
maps that will preserve SOC is much broader than the small
set of good pseudorandom number generdta8ds

[30] B. JannsonRandom Number Generatof¥ictor Pettersons

Bokindustri Aktiebolag, Stockholm 1966

[12] A. Rinaldo, I. Rodriguez-lturbe, R. Rigon, E. ljjasz-Vasquez, [31] P. De Los Rios, A. Valleriani, and J.L. Vega, Phys. Re\ad:

and R.L. Bras, Phys. Rev. Leff0, 822 (1993.

4876 (1997).

[13] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J.R. [32] M. Bianucci, L. Bonci, G. Trefan, B. West, and P. Grigolini,

Banavar, Scienc272, 984(1996.

Phys. Lett. A174, 377(1993.

[14] G. Caldarelli, A. Giacometti, A. Maritan, . Rodriguez-Iturbe, [33] M. Bianucci, B. West, and P. Grigolini, Phys. Lett.180, 447

and A. Rinaldo(unpublished
[15] S. Maslov, M. Paczuski, and P. Bak, Phys. Rev. L£3.2162
(1994.

(1994.

[34] M. Bianucci, R. Mannella, X. Fang, P. Grigolini, and B. West,

Phys. Rev. E47, 1510(1993.

[16] M. Vendruscolo, P. De Los Rios, and L. Bonesi, Phys. Rev. E[35] S. Boettcher and M. Paczuski, Phys. Rev. Le®.348(1996.

54, 6053(1996.

[17] B.W. Roberts and M.E.J. Newman, J. Theor. Bib80, 39
(1996.

[18] S.C. Manrubia and M. Paczuski, e-print cond-mat/9607066.

[19] M.D. Raup, Extinction. Bad Genes or Bad LuckMorton,
New York, 199).

[20] M.E.J. Newman, e-print adap-org/9702003.

[21] M.D. Raup, Scienc@51, 1530(1986.

[22] S.J. Gould and N. Eldredge, Paleobiolagyl15(1977.

[23] N. Eldredge and S.J. Gould, Natuitsondon 332, 211(1988.

[24] N. Eldredge and S.J. Gould, Models in Paleobiologyedited

[36] Although this choice introduces some arbitrariness, we believe

that it is not possible to give an objective, generally valid
definition of fitness. This means that sometimes the less fit
species might be the one with less offsprings while in some
other circumstances the relevant parameter could also be
something els¢37]. What the BS model basically tells us is
that at any given time the less fit species is the one that is
forced to change, whatever the meaning of fithess might be at
that time[38].

[37] Pattern and Processes in the History of Litlited by D.M.

Raup and D. JablonskBpringer-Verlag, Berlin, 1986

by T. J. M. Schopf(Freeman Cooper and Co., San Francisco,[38] R. Lande, Proc. Natl. Acad. Sci. US22, 7641(1985.

1972.
[25] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993.

[39] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev5E 414

(1996.



57 SELF-ORGANIZED CRITICALITY IN DETERMINISTIC ... 6459

[40] P. Grassberger, Phys. Lett. 200, 277 (1995. [45] R.M. May, Sciencel86, 645(1974.

[41] S. Maslov, Phys. Rev. Letf7, 1182(1996. [46] R.M. May, Nature(London 261, 459 (1976.

[42] M. Marsili, P. De Los Rios, and S. Maslov, e-print [47] R.M. May and G.F. Oster, Am. Nal10, 573(1976.
cond-mat/9710152. [48] P. Collet and J-P. Eckmaniterated Maps on the Interval as

[43] There are other quantitigsuch as the Kolmogorov-Sinai en- Dynamical System@irkhauser, Boston, 1980

tropy) that are also useful in studying general properties of[49] Note that points close to the fixed point of the m@g), jump,
maps but we will not discuss here for lack of space. The reader o jteration, from below to abovi¢ and vice versa.

is kindly invited to look at Ref[44] and references therein for [50] G. Abramson, Phys. Rev. &5, 785 (1997.

a detailed description of several of them. o [51] A. Corral, C.J. Peez, and A. Daz-Guilera, Phys. Rev. Lett.
[44] H.G. SchusterDeterministic ChaogVCH Verlag, Weinheim, 78, 1492(1997

1989. ' '



