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Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation
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We present an analytical investigation of the bifurcation from stationary to traveling localized solutions in a
three-component reaction-diffusion system of arbitrary dimension with one activator and two inhibitors. We
show that increasing one of the inhibitors’ time constants leads to such a bifurcation. For a limit case, which
comprises the full range of stationary two-component patterns, the bifurcation is supercritical and no other
bifurcation precedes it. Bifurcation points and velocities close to the branching point are predicted from the
shape of the stationary solution. Existence and stability of the traveling solution are checked by means of
multiple scales perturbation theory. Numerical simulations agree with the analytical results.
[S1063-651%98)06206-0

PACS numbg(s): 82.20.Mj, 47.54+r, 02.30—f

[. INTRODUCTION to stabilize the shape of the wall of the activatprsee Fig.
1. In contrast to solitons, velocity and shape of the spots
Stable traveling spots on two-dimensional domains have@pproach well defined equilibria which depend on the param-
recently been established as solutions of three-componesters.

reaction-diffusion(RD) systemq1,2]. These solutions were In this article we present an analytical investigation of the
obtained by integrating numerically the following set of bifurcation from stationary to traveling localized solutions
equationg 2]: and derive an expression for their velocity relating it to the
shape of the stationary pattern. Existence and stability of
U= Dy(Uyxt Uyy) +F(U) —v — kaW+ k1, (1a  traveling spots are checked by means of multiple scales per-
turbation theory. Albeit we will focus on highly symmetric
=D, (vyxtvyy)+u—v, (1b) patterngcircles in two dimension&D), spheres in 3[) our
results are more general. In the discussion we will refer to an
OW; =D (Wyy+ Wyy) +U—W, (1o  extension to localized patterns with reduced symmetry and to

periodic structures.
with a cubiclike nonlinear functiof(u) and positive param-
eters 7, 6, k3 on a square-shaped domain with periodic Il. TRAVELING BIFURCATION

boundary conditions. These equations consist of an activator, i , )
u, and two inhibiting components, andw. The inhibitors We choose the time scaleas the bifurcation parameter

differ in their time and diffusion length scales; their role in @1d Start regarding a spot on an infinite domain traveling
stabilizing a traveling localized solution can be understoodVith the velocityc in the x, direction:

as follows: In two-component excitable RD systef8§ as,
e.g., in the cas®, D,,, D,—0, pulses traveling on one-
dimensional domains can be stabilized by the slowly pro
duced and slowly decaying inhibitar, as this inhibitor
couples the dynamics of the leading front to the following
back front[4,5]. For an investigation of the stability and the
transition from stationary patterns see, for instanéé,and
for the case of traveling stripes in two-dimensional systems
seg[7]. On higher-dimensional domains, however, the direc-
tions perpendicular to the motion of the localized pattern
cause difficulties. In these directions, the concept of a back ~
front does not hold and the above mentioned stabilizing —cow,=D,Aw+u—w, (20)
mechanism does not apply. As a consequence, the propagat- ., o )

ing spot usually spreads or shrinks in these directf@iisTo ~ WhereA=d;+XiZ,d; is the Laplacian in the moving frame.
avoid such a decay of the pattern, the second inhib#or, projection onto ,,—v,,— xsW,) leads, after several inte-
was chosen to be fast and strongly diffusing, i@.was  grations by parts, to

chosen to be small anb,, to be large. This provides a

smooth, fast reacting distribution @f, which is fast enough o:c(7<;§>+ K30<VV§>_<TJ§>): ¢S, (3)

(U, 0,W)(X;—Ct, Xz, . .. Xn)=(U,0,W)(Z,Xz, . . . XN),

‘wherez: =x,—ct is introduced to describe the spot in a co-
moving frame. In the framework of Eq&la—(1c), extended
to N=1 spatial dimensions, this ansatz leads to

—cu,=D Au+f(U)—v—KkgW+ K, (2a

_CTUZZDUZU'FU_U, (2b)

Here, the brackets denote full spatial integration, &hd
*Electronic address: orguil@mpipks-dresden.mpg.de =$(c) is the abbreviation for the shape- and thus velocity-
TURL: http://www.uni-muenster.de/Physik/AP/Purwins dependent coefficient. Note that fe= 6=0 ¢ must be zero
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This expression is positive, though, only for a sufficiently
fast second inhibitor, i.e., for a small enough valuedof
m— Motivated by the stabilizing mechanism discussed in the
| - || ) i Introduction, the limitd, D,— 0 is of special interest, as this
y {¢ y '.‘, limit provides the fast second inhibitor, whereas diffusion

i . 1T =/ 1 of the first onep, which is not essential, is removed. In this
limit, the bifurcation point can be computed explicitly and
analytical results concerning the bifurcating branch can be
, obtained. Making use of Ed2b), the shape coefficiers,
Eq. (3), can be simplified:

v(X,y)

b) 1.00 - T ~1-0.70

S=(7=1)(v;) = c?(v3y).

| By inspecting this expression, we find that fox 1 the only
-0.75 way to getS=0 is to consider a pattern with,=0, which,
] obviously, does not describe a traveling process. Hence, ac-
cording to Eq.(3), localized patterns do not travel fer 1.
Consequently, the traveling bifurcation has to be supercriti-
150 . 1 o.80 cal in the limit case we are considering. To make this more

0.0 0.5 1.0 explicit, we expandS=0 around the point of bifurcation,

X Tait=1, =0, in terms ofc and 7—1. In lowest order this

leads to

-0.25

c) 100[ i o —0.70

] 2
r c2=<r—1>%, 5)

-0.25 -0.75

which resembles a pitchfork. This is why, sometimes, it is
called a drift pitchfork, especially in one-dimensional sys-
] tems[6], although linearization of the dynamics around a
—isol e -o.80 stationary spot at the bifurcation point vyields a

' ' ‘ 2N-dimensional null space, and is thimuch higher degen-
erate than the generic pitchfork scenario, as will be discussed
below. Similar bifurcations have been observed in many dif-

. = . ferent system$4,6—14. Note that in the limit case we dis-
indicated by the iso-line=0. The inhibitorsy andw are shown as

gray-scale plots, with dark gray representing high values. Note th&USS here, the stationary d|str|but_|(1msandv are identical,
shift between ther and they distribution, which is responsible for @nd can therefore be exchanged in E). _
the propagation; see also the central cross se¢tipim the travel- To check the validity of Eqs(4) and (5) for traveling
ing direction for a more detailed presentation of this sldt.Cross ~ SPOts, we integrated Eqéla—(1c) with a Crank-Nicholson
section perpendicular to the direction of motion. In this directionfinite difference scheme on one- and two-dimensional do-
the shape of the spot is stabilized by the relatively broad and rapidiynains,[0,1] and[0,1]X[0,1], applying periodic boundary
reacting second inhibitor fielsv. Note that, according to theory, conditions. To keep CPU time limited we choge=0.01.
this lateral stabilization works in higher dimensions as well. Param-This yields a reasonable agreement with the limit césé,
eters:¢=1, D,=4.67x107%, D,=1.25x10" %, D,,=0.064, x;= see Fig. 2. Moreover, a deeper investigation in the one-
—6.92,k3=8.5, andf(u)=2u—ud. dimensional case showed that extrapolatiordte0 and an
infinitely fine spatial grid results in both the predicted bifur-
and the solution will not travel. Note also that Eg) allows  cation point and the predicted slope & 7).
for stationary solutionsu,v,w), wherec=0 andS is arbi- So far we described the bifurcation to traveling localized
trary, as well as for traveling ones wiB=0 and an up to solutions on the level of necessary properties, only. But we
now unspecified velocitg. Thus the bifurcation from sta- did not make any general statement about the existence and
tionary to traveling patterns is characterizeddsy S(c=0) the stability of the stationary and the traveling branches. Our
=0. The critical value of the time constantfollows then  humerical results suggest that the traveling bifurcation is the
immediately from Eq.(3). It is uniquely determined by the oOne that destabilizes the previously stable stationary solution
shape of the stationary spot, and lies on a straight line in th&hen 7 is increased. The following section will show that

FIG. 1. (a) Traveling spot in two dimensions. The activators

-6 plane: this is indeed the case in the above mentioned limit case. The
existence of a stationary spot branch can be mapped to the
<U>2<>_ K30<V_V>2<> two-component problem, see the second point of the discus-

(4) sion in Sec. VI. Properties of the traveling branch will be

Terit— — :
(vy) treated in Sec. V.
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The operators on the right-hand sides of these equations are
the same as in Eq#6a) and(6b). Hence, the eigenfunctions,
i.e., the components and¢, are also the same. Comparison
of the eigenvalues leads to

™
1+7u’

A=u—

This yields for the sought values @f and their dependence

on7and\
Ve
—+
.

Ar—1+7)?

ANT—1+7
+
27

27 ©)

M12=

FIG. 2. Onset of propagation. Analytical predictions of the spot

velocities (solid lineg, see Eq.(5), and numerical result&dashed
lines) for (a) the one-dimensional an@) the two-dimensional case.
Parameters:=0, D,=4.67x10 3, D,=0, D,=1X1072, &5
=3.33, f(u)=5.6u—u?, and (@) x;=—0.617,(b) «x;=—1.126.
Numerical simulations were performed, though, for 0.01 with a
spatial grid of(a) 100, (b) 50X50 sites and a step siZ@) At
=1x10"3, (b) At=6x10"*. As predicted by the theory, see Eq.
(4), our choice off results in a slight shift of the bifurcatiofa) Fit:
Teir=0.9973; theory:7;=0.9969; (b) fit: 7.;=0.9975; theory:
Tei=0.9979.

Ill. ORDER OF BIFURCATIONS

In addition, the components, , of the eigenfunctions read

1

ﬂ1,2=m§ : (10
The conclusions we are looking for can now be drawn from
Eqg. (9) and from the fact that the's are real.

(1) For the traveling bifurcation sought the eigenvajue
has to be zero. This demantls- 0, which is understandable
since 7 is a time constant and thus does not influence the
dynamics of a zero eigenfunction.

(2) Bifurcations associated with a given<0 are oscilla-

To find out which one of the possible bifurcations of thetory and similar to Hopf bifurcations, though of a higher
steady state comes first, we consider the dynamics linearizetgeneracy if the rotational symmetry is broken by the

around the stationary solution (v,w) and compare it with
the dynamics in the special case-0. For the limitr, 6,
D,—0 it can be shown that all the eigenvaluesare real.
For an eigenfunction{, »,£) we obtain the eigenvalue prob-
lem:

N{=D AL+ (W)~ 7= Kat,
0={=17,
0=D, Aé+{—&.
After removing » this reads
N{=DAL+ " (U)f— ¢~ K,

0=D A&+ {—¢.

(6a)
(6b)

On the other hand, for>0, the eigenvalueg may be com-
plex and we get

=D AL+ (U) L~ n—Ksé,
Tun={—7, (7)
0=D, Aé+(—¢&.

Again, by removingn and rearranging the equation, this
simplifies:
T
1+7u

=
0=D,Aé+({—¢.

{=D AL+ (U~ {~k3é,

)

eigenfunctions. The respective point of bifurcation is

1
Toit = T - (12)

(3) Equation(11) implies that the bifurcations observed
when 7 is increased are sorted with respect to the value of
the corresponding . Hence, if a spot is stable for—0, i.e.,
if all its \'s are negative besides tiNfold zero eigenvalue
corresponding to the translatigGoldstong modes, this spot
will definitely remain stable wherr is increased up tar
=1, where it starts traveling. Any other modes, including
breathing perturbations, which as a rule cause the leading
destabilization in two-component RD systerfis7,18, do
not interfere here.

IV. MULTIPLE DEGENERACY

The traveling bifurcation associated with=0, though
resembling a pitchfork, is of higher degeneracy. The linear-
izationL,

1 0 0\/¢& e 4
0 7git O | =T n|=L{ 7],
0 0 0/\¢g & 3

is essentially nondiagonal. To understand this situation we
will first discuss the one-dimensional case. Consider the two
eigenvaluesu;=0 andu,=1-—1/7 related to the destabili-
zation, Eq.(9). At the point of bifurcationr.;=1, we have
m1=u,=0. But the corresponding eigenfunctions become
equal, too, so there is only one eigenfunction left; the Gold-

stone modeg=(Uy,vy,W,)!. To span the center space we
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need, and have, a generalized eigenfuncten(0,—v,,0)!, Extending the perturbation procedure from Rf6] to
which is determined only up to arbitrary additional contribu-the three-component case in a multidimensional situation
tions in the direction ofg. Due to the linearized dynamics With D,, 6—0, yields the following third order result:

this mode, which describes a shift of the “slow” inhibitor

with respect to the other components, generates the Gold- Pe=a, (133
stone mode, i.e., it generates propagation. Hence, at the point _ 2

of bifurcation, we haveLg=0 and Le=Tg. Note thatT a=(r-1)a=Qlal*a. (13D

cannot be inverted in the limit case we are interested in. Thg,q coefficienQ is a positive number to be computed from
relevant part of the linear operatdr, acting in the §,e) the shape of the stationary spot solution:
subspace, reads, after proper normalization,

1 0 1\/ef Q= §X>. (14)
Lcenter:@-r(gve)(o 0 (gT)T' <vx>

Y . The first thing to observe is that there is, indeed, a steadily
Here, @.€) and ¢',g’)" are matrices used to transform the \,,\ing solution to Eq(13a), and our general result concern-
representation, withy"= (u,,—v,,— ksw,) ande’=(u,,0, ing its equilibrium velocity,a*, Eq. (5), is confirmed:

— k3W,). These vectors obey similar equations asgdand

e: LTg"=0 andL'e’=TTg", where the operatoF' acts like 2 |a* |2_(T—1) (15
the matrix T'=T, though from the right. In the Q
N-dimensional case there aké such blocks, corresponding ) . - ) )
to N Goldstone modes aril generators. To further investigate the stability of the traveling spot it
is useful to decompose the generator amplitadénto its
V. NORMAL FORM absolute valugp and the normalized vectar:
To analyze the traveling spot solution branching off from a=pa.

the stationary bough at=1 in the limit caseD,, 6—0, we
start from a given stationary sptompare the second point  Since thep dynamics is irrelevant with respect to stability
of the discussion in Sec. Yand derive a reduced dynamical in the present situation, we restrict ourselves to the equations

system valid forr~1. Since the velocity of the spot is small for  assuming thata|=p#0. Projection ona yields
close to the bhifurcation point, this can be done by means of a

multiple time scale perturbation approach as described in the pi=(7—1)p—Qp°, (168
framework of front bifurcations in two-component systems
[16]. a,=0. (16b)

As discussed in Sec. 1V, the relevant degrees of freedom
correspond to the Goldstone modes and their generatords a result, we find the absolute valgeof the velocity
Hence, we apply the following ansatz to obtain an approxivector to be asymptotically stable with an eigenvatiel

mation globally valid in space: —3Qc?=-2(7—1) whereas its direction provides addi-
_ tional neutral degrees of freedom reflecting the isotropy of
u(r,t)y=u(r—p)+R,, (129 the original problem. Note that in the case of an
- - N-dimensional domain there alke—1 new neutral modes of
v(r,)=v(r—p)+a-Vo(r—p)+R,, (12 this type.
w(r,t)=w(r—p)+R,, (120 VI. DISCUSSION
where we used =(x;,X,, . ..), the gradient operatoi¥ Up to now, we discussed a three-component extension of

= (0 dyr ) and  time-dependent  vectors p a Fif[zHugh—Nagumo-type reaction-diffusion system which

_ &1) 2(X2) ) () , p_rowde_s stable trgvehng spots at I_eas.t on one- aqd two-
(p¥,p%?, ...) anda=(a™V,a?, .. .) denoting the  4imensional domains, see Fig. 2. This view can be widened.

position of the spot and the amplitudes of the generator First, note that there is no need to resthitto {1,2}. Al

modes, respectively. Apart from a slow time scale, it is they,e results apply for higher dimensions as well.

generator coefficient that is introduced in the first order of  gacond, ther, D, —0 system can be identified with the

the perturbation hierarchy. Note the shift of the first inhibi- following two-comrgonent RD system:

tor, v, with respect to thas und w distributions, which is

caused by its influence, see Fig. 1. This shift breaks the cen- Ug=D Au+f(u)—u—kaW+ xq, (173
tral symmetry of the stationary spot and enables the motion.
Changes of the shape of the spot exceeding the generator 0=D,Aw+u—w. (17b

part, as they arise from the bifurcation, are captured by the

“rest” terms R, , . These enter the perturbation scheme onThis class of equations is known to provide stable stationary
the second order level. As slaved degrees of freedom thelpcalized solutions for suitable values of the parameters. In
contribute to the nonlinear terms of the final third order dy-particular,D,, has to be sufficiently large. Usually, the ratio
namics. D,/D,, is considered asymptotically small to prove this re-
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sult, see, for instandel 7,18, for the existence of stable sta- Finally, we want to mention that it was for the sake of
tionary spots in two and three dimensioacles, sphergs  simplicity and to make the presentation as explicit as pos-
This is, however, not a completely satisfying limit since sible that we used FitzHugh-Nagumo-typgeHN) reaction
many interesting patterns are systematically excluded. Fderms throughout the paper. Indeed, the stability analysis can
D,,>D,, a spot solution is surrounded by a far field decay-also be performed for the more general system

ing (almos) exponentially to the basic homogeneous state.

Consider a two-spot state, now. The far fields cause an inter- U=DuAutfuw) v, (183
action of the spots. Due to the shape of their fields, and the T=U—v, (18b
inhibitory influence ofw, this interaction is repulsive in the

above case of separated scales. Hence, a stationary two-spot 0=DyAw+h(u,w). (180

solution dqes not exist on this Iength scale. There IS an Unao opove. this yields Eq€9)—(11) and their implications.
stable stationary solution, though, with a very small distanc here is no way, though, in general, to write down the vec-
between the spots due to the direct interaction of the aCtivat'ors g, e e exp,licitly ’ '

tor walls. For comparable diffusion coefficienB, andD,,, In a general situation with reaction ternf&(u,v,w),

the situation is completely different. The decay of the fargy ;, w), H(u,v,w) and additional diffusion of component
field becomes oscillatory with an almost exponential enve;, ‘the generator modes of a given spot are not known explic-
lope. This implies an oscillation of the interaction with the ity byt can be computed numerically from the linearization
distance of the spots. The spatial changes from repulsive tground the stationary solution. The same is true for the
attractive interaction lead tdinfinitely many stationary center-space modes of the adjoint problem which have to be
stable moleculelike combinations of the two spots. Througtknown to perform the projections on the different levels of
addition of further spots, clusters of almost arbitrary shapehe perturbation hierarchy.

can be formed, sefl9-21] for one- and two-dimensional What kind of reduced dynamical system can we expect on

systems. Obvious|y' all these patterns, Supp|emented_by the third order level in such a “generiC” Situation, which is

: till homogeneous and time invariant, of course? Since an
=u, are also solutions of the three-component system fop 9

. _explicit dependence on the positignis impossible, onlya
D.U_’O’ anq, therefore, obey EF) and the stability aqaly defines a distinguished direction, and all théerms have to
sis. There is, however, a remark to be made concerning non-
odd to ensure the symmetrg,p,)— (—«a,—py), there

. . e

symmetric localized patterns. As opposed to spots, they hav% 7 1o

additional neutral modes associated with rotations. Henc Lay. )beina:hénosé Sgggaon::)\;g\r/r:rs svlzgme;:nsa\?v%ul(g al-
according to the linearization, we also expect such a structure Toif) & P: €9 : ’

to start whirling, and it is up to nonlinear mode interactions V&S be negligible as compared to the leadingontribution

to select one of the many possible combinations. in the same equ_ation_. Therg may be differences, though.
Third, Eqs.(178 and (17b) are also known to allow pe- (1) The traveling bifurcation may not be the leading one.

riodic stationary solutions such as stripes or hexagons. Thed8 In:any cases, e.g:., a ?rfg;q% mode comes first as in typi-
patterns are covered as well by our results. Integrations(?a Wo-component syste -

where needed, have to be performed over suitable finite sub-. (2) T_he cogfﬁc]entQ may be negative such tha}t th? trav-
domains to ensure convergence. eling bifurcation is subcritical, which is also typical in the

: . : . two-component cass, 7].
Fourth, note that a traveling solution can never be invari- ) cen il .
g (3) The bifurcation will in general be shifted to a value

ant with respect to rotations, since otherwise the direction of 21 of Fig 2.1 icul hoog!
propagation would be ambiguous. Therefore any rotationa]Tbif , OT course, See, €.9., Fig. 2. In particuiar, cnoosing

symmetry—either discrete or continuous—of a stationary soarge enough in the framework of the FHN-type model dis-

lution (and reflection symmetry in the one-dimensional cussed in this article removes the bifurcation completely, see
case, if there is any, will necessarily be broken by the re- Eq. (4).
garded bifurcation. In this case, the onset of propagation is
associated with parity breakin§,9,12,13. Symmetry, how-

ever, is not a necessary condition for a pattern to be station- The authors thank the HLRZ at the Forschungszentrum
ary, and, hence, parity breaking is not the actual mechanismiich for providing CPU time on the paragon XP/S 10 and
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