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Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation
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We present an analytical investigation of the bifurcation from stationary to traveling localized solutions in a
three-component reaction-diffusion system of arbitrary dimension with one activator and two inhibitors. We
show that increasing one of the inhibitors’ time constants leads to such a bifurcation. For a limit case, which
comprises the full range of stationary two-component patterns, the bifurcation is supercritical and no other
bifurcation precedes it. Bifurcation points and velocities close to the branching point are predicted from the
shape of the stationary solution. Existence and stability of the traveling solution are checked by means of
multiple scales perturbation theory. Numerical simulations agree with the analytical results.
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I. INTRODUCTION

Stable traveling spots on two-dimensional domains h
recently been established as solutions of three-compo
reaction-diffusion~RD! systems@1,2#. These solutions were
obtained by integrating numerically the following set
equations@2#:

ut5Du~uxx1uyy!1 f ~u!2v2k3w1k1 , ~1a!

tv t5Dv~vxx1vyy!1u2v, ~1b!

uwt5Dw~wxx1wyy!1u2w, ~1c!

with a cubiclike nonlinear functionf (u) and positive param-
eters t, u, k3 on a square-shaped domain with period
boundary conditions. These equations consist of an activa
u, and two inhibiting components,v and w. The inhibitors
differ in their time and diffusion length scales; their role
stabilizing a traveling localized solution can be understo
as follows: In two-component excitable RD systems@3#, as,
e.g., in the caseu, Dw , Dv→0, pulses traveling on one
dimensional domains can be stabilized by the slowly p
duced and slowly decaying inhibitorv, as this inhibitor
couples the dynamics of the leading front to the followi
back front@4,5#. For an investigation of the stability and th
transition from stationary patterns see, for instance,@6# and
for the case of traveling stripes in two-dimensional syste
see@7#. On higher-dimensional domains, however, the dir
tions perpendicular to the motion of the localized patte
cause difficulties. In these directions, the concept of a b
front does not hold and the above mentioned stabiliz
mechanism does not apply. As a consequence, the prop
ing spot usually spreads or shrinks in these directions@2#. To
avoid such a decay of the pattern, the second inhibitor,w,
was chosen to be fast and strongly diffusing, i.e.,u was
chosen to be small andDw to be large. This provides a
smooth, fast reacting distribution ofw, which is fast enough
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†URL: http://www.uni-muenster.de/Physik/AP/Purwins
571063-651X/98/57~6!/6432~6!/$15.00
e
nt

r,

d

-

s
-
n
k

g
at-

to stabilize the shape of the wall of the activatoru, see Fig.
1. In contrast to solitons, velocity and shape of the sp
approach well defined equilibria which depend on the para
eters.

In this article we present an analytical investigation of t
bifurcation from stationary to traveling localized solution
and derive an expression for their velocity relating it to t
shape of the stationary pattern. Existence and stability
traveling spots are checked by means of multiple scales
turbation theory. Albeit we will focus on highly symmetri
patterns@circles in two dimensions~2D!, spheres in 3D#, our
results are more general. In the discussion we will refer to
extension to localized patterns with reduced symmetry an
periodic structures.

II. TRAVELING BIFURCATION

We choose the time scalet as the bifurcation paramete
and start regarding a spot on an infinite domain travel
with the velocityc in the x1 direction:

~ ũ,ṽ,w̃!~x12ct,x2 , . . . ,xN!5~ ũ,ṽ,w̃!~z,x2 , . . . ,xN!,

wherez:5x12ct is introduced to describe the spot in a c
moving frame. In the framework of Eqs.~1a!–~1c!, extended
to N>1 spatial dimensions, this ansatz leads to

2cuz5DuD̃u1 f ~u!2v2k3w1k1 , ~2a!

2ctvz5DvD̃v1u2v, ~2b!

2cuwz5DwD̃w1u2w, ~2c!

whereD̃5]z
21( i 52

N ]xi

2 is the Laplacian in the moving frame

Projection onto (ũz ,2 ṽz ,2k3w̃z) leads, after several inte
grations by parts, to

05c~t^ṽz
2&1k3u^w̃z

2&2^ũz
2&!5:cS. ~3!

Here, the brackets denote full spatial integration, andS
5S(c) is the abbreviation for the shape- and thus veloci
dependent coefficient. Note that fort5u50 c must be zero
6432 © 1998 The American Physical Society



-

th

tly

the
s

is
d
be

ac-

riti-
ore
,

is
s-
a
a

sed
if-

-

do-

ne-

r-

ed
we
and
ur

the
tion
t

The
the
us-
e

th
r

ion
id
,
m

57 6433SPOT BIFURCATIONS IN THREE-COMPONENT . . .
and the solution will not travel. Note also that Eq.~3! allows
for stationary solutions (ū,v̄,w̄), wherec50 andS is arbi-
trary, as well as for traveling ones withS50 and an up to
now unspecified velocityc. Thus the bifurcation from sta
tionary to traveling patterns is characterized byc5S(c50)
50. The critical value of the time constantt follows then
immediately from Eq.~3!. It is uniquely determined by the
shape of the stationary spot, and lies on a straight line in
t-u plane:

tcrit5
^ūx

2&2k3u^w̄x
2&

^v̄x
2&

. ~4!

FIG. 1. ~a! Traveling spot in two dimensions. The activatoru is
indicated by the iso-lineu50. The inhibitorsv andw are shown as
gray-scale plots, with dark gray representing high values. Note
shift between theu and thev distribution, which is responsible fo
the propagation; see also the central cross section~b! in the travel-
ing direction for a more detailed presentation of this shift.~c! Cross
section perpendicular to the direction of motion. In this direct
the shape of the spot is stabilized by the relatively broad and rap
reacting second inhibitor fieldw. Note that, according to theory
this lateral stabilization works in higher dimensions as well. Para
eters:u51, Du54.6731023, Dv51.2531023, Dw50.064,k15
26.92,k358.5, andf (u)52u2u3.
e

This expression is positive, though, only for a sufficien
fast second inhibitor, i.e., for a small enough value ofu.

Motivated by the stabilizing mechanism discussed in
Introduction, the limitu, Dv→0 is of special interest, as thi
limit provides the fast second inhibitor,w, whereas diffusion
of the first one,v, which is not essential, is removed. In th
limit, the bifurcation point can be computed explicitly an
analytical results concerning the bifurcating branch can
obtained. Making use of Eq.~2b!, the shape coefficientS,
Eq. ~3!, can be simplified:

S5~t21!^ṽz
2&2c2t2^ṽzz

2 &.

By inspecting this expression, we find that fort,1 the only
way to getS50 is to consider a pattern withṽz[0, which,
obviously, does not describe a traveling process. Hence,
cording to Eq.~3!, localized patterns do not travel fort,1.
Consequently, the traveling bifurcation has to be superc
cal in the limit case we are considering. To make this m
explicit, we expandS50 around the point of bifurcation
tcrit51, c50, in terms ofc and t21. In lowest order this
leads to

c25~t21!
^v̄x

2&

^v̄xx
2 &

, ~5!

which resembles a pitchfork. This is why, sometimes, it
called a drift pitchfork, especially in one-dimensional sy
tems @6#, although linearization of the dynamics around
stationary spot at the bifurcation point yields
2N-dimensional null space, and is thus~much! higher degen-
erate than the generic pitchfork scenario, as will be discus
below. Similar bifurcations have been observed in many d
ferent systems@4,6–16#. Note that in the limit case we dis
cuss here, the stationary distributionsū and v̄ are identical,
and can therefore be exchanged in Eq.~5!.

To check the validity of Eqs.~4! and ~5! for traveling
spots, we integrated Eqs.~1a!–~1c! with a Crank-Nicholson
finite difference scheme on one- and two-dimensional
mains, @0,1# and @0,1#3@0,1#, applying periodic boundary
conditions. To keep CPU time limited we choseu50.01.
This yields a reasonable agreement with the limit caseu50,
see Fig. 2. Moreover, a deeper investigation in the o
dimensional case showed that extrapolation tou50 and an
infinitely fine spatial grid results in both the predicted bifu
cation point and the predicted slope ofc2(t).

So far we described the bifurcation to traveling localiz
solutions on the level of necessary properties, only. But
did not make any general statement about the existence
the stability of the stationary and the traveling branches. O
numerical results suggest that the traveling bifurcation is
one that destabilizes the previously stable stationary solu
when t is increased. The following section will show tha
this is indeed the case in the above mentioned limit case.
existence of a stationary spot branch can be mapped to
two-component problem, see the second point of the disc
sion in Sec. VI. Properties of the traveling branch will b
treated in Sec. V.
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III. ORDER OF BIFURCATIONS

To find out which one of the possible bifurcations of t
steady state comes first, we consider the dynamics linear
around the stationary solution (ū,v̄,w̄) and compare it with
the dynamics in the special caset→0. For the limit t, u,
Dv→0 it can be shown that all the eigenvaluesl are real.
For an eigenfunction (z,h,j) we obtain the eigenvalue prob
lem:

lz5DuDz1 f 8~ ū!z2h2k3j,

05z2h,

05DwDj1z2j.

After removingh this reads

lz5DuDz1 f 8~ ū!z2z2k3j, ~6a!

05DwDj1z2j. ~6b!

On the other hand, fort.0, the eigenvaluesm may be com-
plex and we get

mz5DuDz1 f 8~ ū!z2h2k3j,

tmh5z2h, ~7!

05DwDj1z2j.

Again, by removingh and rearranging the equation, th
simplifies:

S m2
tm

11tm D z5DuDz1 f 8~ ū!z2z2k3j,

05DwDj1z2j. ~8!

FIG. 2. Onset of propagation. Analytical predictions of the sp
velocities ~solid lines!, see Eq.~5!, and numerical results~dashed
lines! for ~a! the one-dimensional and~b! the two-dimensional case
Parameters:u50, Du54.6731023, Dv50, Dw5131022, k3

53.33, f (u)55.67u2u3, and ~a! k1520.617, ~b! k1521.126.
Numerical simulations were performed, though, foru50.01 with a
spatial grid of ~a! 100, ~b! 50350 sites and a step size~a! Dt
5131023, ~b! Dt5631024. As predicted by the theory, see E
~4!, our choice ofu results in a slight shift of the bifurcation.~a! Fit:
tcrit50.9973; theory:tcrit50.9969; ~b! fit: tcrit50.9975; theory:
tcrit50.9979.
ed

The operators on the right-hand sides of these equations
the same as in Eqs.~6a! and~6b!. Hence, the eigenfunctions
i.e., the componentsz andj, are also the same. Compariso
of the eigenvalues leads to

l5m2
tm

11tm
.

This yields for the sought values ofm and their dependenc
on t andl

m1,25
lt211t

2t
6Al

t
1S lt211t

2t D 2

. ~9!

In addition, the componentsh1,2 of the eigenfunctions read

h1,25
1

11m1,2t
z. ~10!

The conclusions we are looking for can now be drawn fro
Eq. ~9! and from the fact that thel ’s are real.

~1! For the traveling bifurcation sought the eigenvaluem
has to be zero. This demandsl50, which is understandable
since t is a time constant and thus does not influence
dynamics of a zero eigenfunction.

~2! Bifurcations associated with a givenl,0 are oscilla-
tory and similar to Hopf bifurcations, though of a high
degeneracy if the rotational symmetry is broken by t
eigenfunctions. The respective point of bifurcation is

tbif5
1

11l
. ~11!

~3! Equation~11! implies that the bifurcations observe
when t is increased are sorted with respect to the value
the correspondingl. Hence, if a spot is stable fort→0, i.e.,
if all its l ’s are negative besides theN-fold zero eigenvalue
corresponding to the translation~Goldstone! modes, this spot
will definitely remain stable whent is increased up tot
51, where it starts traveling. Any other modes, includi
breathing perturbations, which as a rule cause the lead
destabilization in two-component RD systems@17,18#, do
not interfere here.

IV. MULTIPLE DEGENERACY

The traveling bifurcation associated withl50, though
resembling a pitchfork, is of higher degeneracy. The line
ization L,

S 1 0 0

0 tcrit 0

0 0 0
D S z t

h t

j t

D 5TS z t

h t

j t

D 5LS z

h

j
D ,

is essentially nondiagonal. To understand this situation
will first discuss the one-dimensional case. Consider the
eigenvaluesm150 andm25121/t related to the destabili-
zation, Eq.~9!. At the point of bifurcation,tcrit51, we have
m15m250. But the corresponding eigenfunctions becom
equal, too, so there is only one eigenfunction left: the Go
stone modeg5(ūx ,v̄x ,w̄x)

t. To span the center space w

t
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need, and have, a generalized eigenfunction:e5(0,2 v̄x,0)t,
which is determined only up to arbitrary additional contrib
tions in the direction ofg. Due to the linearized dynamic
this mode, which describes a shift of the ‘‘slow’’ inhibitorv
with respect to the other components, generates the G
stone mode, i.e., it generates propagation. Hence, at the
of bifurcation, we haveLg50 and Le5Tg. Note thatT
cannot be inverted in the limit case we are interested in.
relevant part of the linear operatorL, acting in the (g,e)
subspace, reads, after proper normalization,

Lcenter5
1

^ūx
2&

T~g,e!S 0 1

0 0D S e†

g†DT.

Here, (g,e) and (e†,g†) t are matrices used to transform th
representation, withg†5(ūx ,2 v̄x ,2k3w̄x) and e†5(ūx,0,
2k3w̄x). These vectors obey similar equations as dog and
e: L†g†50 andL†e†5T†g†, where the operatorT† acts like
the matrix Tt5T, though from the right. In the
N-dimensional case there areN such blocks, correspondin
to N Goldstone modes andN generators.

V. NORMAL FORM

To analyze the traveling spot solution branching off fro
the stationary bough att51 in the limit caseDv , u→0, we
start from a given stationary spot~compare the second poin
of the discussion in Sec. VI! and derive a reduced dynamic
system valid fort'1. Since the velocity of the spot is sma
close to the bifurcation point, this can be done by means
multiple time scale perturbation approach as described in
framework of front bifurcations in two-component system
@16#.

As discussed in Sec. IV, the relevant degrees of freed
correspond to the Goldstone modes and their genera
Hence, we apply the following ansatz to obtain an appro
mation globally valid in space:

u~r ,t !5ū~r 2p!1Ru , ~12a!

v~r ,t !5 v̄~r 2p!1a•¹ v̄~r 2p!1Rv , ~12b!

w~r ,t !5w̄~r 2p!1Rw , ~12c!

where we usedr 5(x1 ,x2 , . . . ), the gradient operator¹
5(]x1

,]x2
, . . . ) and time-dependent vectors p

5(p(x1),p(x2), . . . ) anda5(a (x1),a (x2), . . . ) denoting the
position of the spot and the amplitudes of the genera
modes, respectively. Apart from a slow time scale, it is
generator coefficienta that is introduced in the first order o
the perturbation hierarchy. Note the shift of the first inhib
tor, v, with respect to theu und w distributions, which is
caused by its influence, see Fig. 1. This shift breaks the c
tral symmetry of the stationary spot and enables the mot
Changes of the shape of the spot exceeding the gene
part, as they arise from the bifurcation, are captured by
‘‘rest’’ terms Ru,v,w . These enter the perturbation scheme
the second order level. As slaved degrees of freedom
contribute to the nonlinear terms of the final third order d
namics.
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Extending the perturbation procedure from Ref.@16# to
the three-component case in a multidimensional situa
with Dv , u→0, yields the following third order result:

pt5a, ~13a!

a t5~t21!a2Quau2a. ~13b!

The coefficientQ is a positive number to be computed fro
the shape of the stationary spot solution:

Q5
^v̄xx

2 &

^v̄x
2&

. ~14!

The first thing to observe is that there is, indeed, a stea
moving solution to Eq.~13a!, and our general result concern
ing its equilibrium velocity,a* , Eq. ~5!, is confirmed:

c25ua* u25
~t21!

Q
. ~15!

To further investigate the stability of the traveling spot
is useful to decompose the generator amplitudea into its
absolute valuer and the normalized vectorâ:

a5râ.

Since thep dynamics is irrelevant with respect to stabili
in the present situation, we restrict ourselves to the equat
for a assuming thatuau5rÞ0. Projection onâ yields

r t5~t21!r2Qr3, ~16a!

â t50. ~16b!

As a result, we find the absolute valuer of the velocity
vector to be asymptotically stable with an eigenvaluet21
23Qc2522(t21) whereas its direction provides add
tional neutral degrees of freedom reflecting the isotropy
the original problem. Note that in the case of a
N-dimensional domain there areN21 new neutral modes o
this type.

VI. DISCUSSION

Up to now, we discussed a three-component extensio
a FitzHugh-Nagumo-type reaction-diffusion system whi
provides stable traveling spots at least on one- and t
dimensional domains, see Fig. 2. This view can be widen

First, note that there is no need to restrictN to $1,2%. All
the results apply for higher dimensions as well.

Second, thet, Dv→0 system can be identified with th
following two-component RD system:

ut5DuDu1 f ~u!2u2k3w1k1 , ~17a!

05DwDw1u2w. ~17b!

This class of equations is known to provide stable station
localized solutions for suitable values of the parameters
particular,Dw has to be sufficiently large. Usually, the rat
Du /Dw is considered asymptotically small to prove this r



-

ce
F
y
te
te
th

-s
u

nc
iv

fa
ve
e

e

g
p
l
y
fo

o
a
c

tu
ns

-
e
n

su

r
o

n
so
a
e-
n

io
is

of
os-

can

c-

t
lic-

on
the

be
of

on
is
an

l-

.
e.

typi-

v-
e

e

is-
see

um
nd

6436 57M. OR-GUIL, M. BODE, C. P. SCHENK, AND H.-G. PURWINS
sult, see, for instance@17,18#, for the existence of stable sta
tionary spots in two and three dimensions~circles, spheres!.
This is, however, not a completely satisfying limit sin
many interesting patterns are systematically excluded.
Dw@Du , a spot solution is surrounded by a far field deca
ing ~almost! exponentially to the basic homogeneous sta
Consider a two-spot state, now. The far fields cause an in
action of the spots. Due to the shape of their fields, and
inhibitory influence ofw, this interaction is repulsive in the
above case of separated scales. Hence, a stationary two
solution does not exist on this length scale. There is an
stable stationary solution, though, with a very small dista
between the spots due to the direct interaction of the act
tor walls. For comparable diffusion coefficients,Du andDw ,
the situation is completely different. The decay of the
field becomes oscillatory with an almost exponential en
lope. This implies an oscillation of the interaction with th
distance of the spots. The spatial changes from repulsiv
attractive interaction lead to~infinitely many! stationary
stable moleculelike combinations of the two spots. Throu
addition of further spots, clusters of almost arbitrary sha
can be formed, see@19–21# for one- and two-dimensiona
systems. Obviously, all these patterns, supplemented bv̄
5ū, are also solutions of the three-component system
Dv→0, and, therefore, obey Eq.~5! and the stability analy-
sis. There is, however, a remark to be made concerning n
symmetric localized patterns. As opposed to spots, they h
additional neutral modes associated with rotations. Hen
according to the linearization, we also expect such a struc
to start whirling, and it is up to nonlinear mode interactio
to select one of the many possible combinations.

Third, Eqs.~17a! and ~17b! are also known to allow pe
riodic stationary solutions such as stripes or hexagons. Th
patterns are covered as well by our results. Integratio
where needed, have to be performed over suitable finite
domains to ensure convergence.

Fourth, note that a traveling solution can never be inva
ant with respect to rotations, since otherwise the direction
propagation would be ambiguous. Therefore any rotatio
symmetry—either discrete or continuous—of a stationary
lution ~and reflection symmetry in the one-dimension
case!, if there is any, will necessarily be broken by the r
garded bifurcation. In this case, the onset of propagatio
associated with parity breaking@6,9,12,13#. Symmetry, how-
ever, is not a necessary condition for a pattern to be stat
ary, and, hence, parity breaking is not the actual mechan
causing the bifurcation.
ys
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Finally, we want to mention that it was for the sake
simplicity and to make the presentation as explicit as p
sible that we used FitzHugh-Nagumo-type~FHN! reaction
terms throughout the paper. Indeed, the stability analysis
also be performed for the more general system

ut5DuDu1 f ~u,w!2v, ~18a!

tv t5u2v, ~18b!

05DwDw1h~u,w!. ~18c!

As above, this yields Eqs.~9!–~11! and their implications.
There is no way, though, in general, to write down the ve
tors g†, e, e† explicitly.

In a general situation with reaction termsF(u,v,w),
G(u,v,w), H(u,v,w) and additional diffusion of componen
v, the generator modes of a given spot are not known exp
itly but can be computed numerically from the linearizati
around the stationary solution. The same is true for
center-space modes of the adjoint problem which have to
known to perform the projections on the different levels
the perturbation hierarchy.

What kind of reduced dynamical system can we expect
the third order level in such a ‘‘generic’’ situation, which
still homogeneous and time invariant, of course? Since
explicit dependence on the positionp is impossible, onlya
defines a distinguished direction, and all thea terms have to
be odd to ensure the symmetry (a,pt)→(2a,2pt), there
may be at most additional terms withuau2a and (t
2tbi f)a in the pt equation. However, such terms would a
ways be negligible as compared to the leadinga contribution
in the same equation. There may be differences, though

~1! The traveling bifurcation may not be the leading on
In many cases, e.g., a breathing mode comes first as in
cal two-component systems@17,18#.

~2! The coefficientQ may be negative such that the tra
eling bifurcation is subcritical, which is also typical in th
two-component case@6,7#.

~3! The bifurcation will in general be shifted to a valu
tbifÞ1, of course, see, e.g., Fig. 2. In particular, choosingu
large enough in the framework of the FHN-type model d
cussed in this article removes the bifurcation completely,
Eq. ~4!.
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