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Anomalous scaling of fracture surfaces
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We argue that fracture surfaces may exhi@ibmalousdynamic scaling properties akin to what occurs in
some models of kinetic roughening. We determine the complete scaling behavior of the local fluctuations of a
brittle fracture in a granite block from experimental data. We obtain a global roughness experik2twhich
differs from the local oney,,.=0.79. Implications on fracture physics are discussed.
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he study of the morphology of fracture surfaces is nowain the sense of kinetic rougheningptrinsically anomalous
days a very active field of research. From the early work ofrather than a simple Family-Vicsek one. The analysis of the
Ref.[1], much effort has been put into the statistical charactoughness data of a crack experiment demonstrates the va-
terization of the resulting fractal surfaces in fracture pro-lidity of our argument. Physical consequences of this scaling
cesses. Scale invariance has been found in many experimeffies fracture will be discussed.
[1-9], and it is now well established that, in general, crack

surfaces exhibit self-affine scaling properties in a large range EAMILY VICSEK SCALING
of length scaleg¢see Ref[10] for a more detailed account of ] ] o
experiments In practice, the self-affine character of a surface in dimen-

A self-affine surfacen(x) is invariant under an aniso- Siond+1 is shown by studying the scaling of the fluctua-
tropic scale transformation, in the sense thax) has the tions of t'he sgrface height over the whole system of total size
same statistical properties as Xh(\x), where y is the L T_he invariance prope;rty undgzr the scale transformation
roughness exponenhnitially, the hope in studying the sur- implies that theglobal width at timet, W(L,t)=([h(xt)
face morphology was to relate geometry to mechanical prop= h(t)1?)¥2, wherex is the position, has to scale Bk5)
erties(toughness, plasticity, edan order to obtain a material
characterization by means of the roughness exponent. How- W(L,t)=LXf(L/t"), ()
ever, experimental results in very different types of materials . . . .
(from ductile aluminum alloys to brittle materials like rock whergz is the dynamical exponent arfqu) is the scaling
seem to support the idea ofumiversalroughness exponent function
which is very independent of the material properties. For
three-dimensional (3D) fractures, an exponenty(3D) f(u)~ _
=0.8—0.9[1-5] has been measured, whereas in dimension u™x if u>1.
two x(2D)=0.6-0.7[6-9]. It seems reasonable to expect ) .
that material properties should affect the fracture surfac& IS the roughness exponenzt, and gives the scaling of the
roughness. In particular, toughness and anisotropy should RIrface in saturatio®V(L,t>L%)~LX. These two exponents
relevant for the fracture crack morphology. However, theCharacterize the universality class of the particular growth

above mentioned experimental results seem to lead to tH&0del. Equivalently, the scaling behavior of the surface
surprising conclusion that there is no correlationyofvith ~ Might be obtained by looking at thecal width over a win-

const ifu<l

@

mechanical properties. dow of sizel <L:

The treatment of the fracture crack as a self-affine rough iz if t|?
surface leads in a natural way to the close field of kinetic w(l,t)~ &)
roughening(see Ref[11] for recent reviews in the subject ' X if t>1%

A direct mapping of the crack at the stationary state into the _ _

Kardar-Parisi-Zhang equatiofl2] was proposed in Ref. This is the method actually used in real experiments, where

[13]. The crack surface has also been considered as the tralite size of the systein remains constant and the fluctuations

of the crack front whose propagation is modeled by othe@re calculated over scalés<L. Note that the local width

types of nonlinear Langevin equatiofs4]. saturates at timé&* as w(l,t>1%)~1X independently of the

In this paper, we will show that crack surfaces have verysystem size.

much in common with those obtained in growth processes A complementary technique to determine the critical ex-

exhibiting what is called aanomalousdynamic scaling. We ponents of a growing surface is to study the Fourier trans-

argue that the scaling of the fluctuations of crack surfaces igorm of the interface height in a system of linear size
h(k,t)=L~%23 [h(x,t) —h(t)]exp(k- x), where the spatial
average of the height has been subtracted. In this represen-

*Electronic address: j.lopez@ic.ac.uk tation, the properties of the surface can be investigated by
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calculating the power spectrui(k,t)=(h(k,t)h(—k,t)), 20
which contains the same information on the system as the -25 |
local width. In most growth models, the power spectrum
scales as —_ 30
=
S(k,t) =k~ 2 Dkt @ =0
2 aol=
wheres is the simple scaling function = i3
] 8 45| &
const ifu>1 2
s(u)~ . 5 B0t . .
() usxtd if y<1. ® 50 %00 1.0 2.0
55 . Iogw.t ) .
This form for the power spectrum can be easily inverted to -20 -1.0 1.0 20

0.0 1/z
obtain the scaling behavior of both local and global widths log,o( ™)

described above. FIG. 1. Inset shows the local width vs time for the higher reso-

lution data of the crack experiment calculated over windows of
ANOMALOUS SCALING AND IMPLICATIONS sizesl =100 (solid line), 300 (dotted ling, 500 (dashed ling 700

. . (long-dashed ling and 900(dot-dashed ling(all in units of the grid
In very recent studies of several growth model§, 17, it step Ax). Data are collapsed foy=1.2 andz=1.2 in the main

has been found that the surface fluctuations may exhibit @fanel for windows sizes ranging frohs=10 to 1200. The noncon-
anomalousscaling, in the sense that, although the globalsiant hehavior at small values of the argum@nain panel reflects
width behaves as in Eq¢l) and (2), local surface fluctua-  the anomalous character of the scaling, which agrees witHgg.
tions do not satisfy Eq(3), but scale as

super-roughenind20] or a power spectrum that satisfies the

v if t<I” dynamic scaling behavior stated in Ed), but with a dis-

w(l,t)~ thx|Xoc  if t>]2, 6) tinct scaling function
. : 2(x— i
where the exponens, =(x— xi,)/Z is an anomalous time s(u)~ Uz xiee) if u>1 ®
exponent and,.. the local roughness exponent. Thus in the y2x+d if u<1l.

case of anomalous scaling, two exponegts and y enter

the scaling, and must be taken into account to give a comSo, in the stationary regim@t timest>L?), the power spec-
plete description of the scaling behavior of the surface. Artrum scales a§(k,t) ~k ™ (Xioc* @ 2~ xi0d, and not simply
outstanding consequence is that the local width does nais k(™9 as corresponds to a standard scaling. This
saturate at timek* but when the whole system does, i.e., atmeans that experimental determinations of the roughness ex-
times L?, giving an unconventional dependence of the staponent of fracture crack surfaces from the decay of the

tionary local width on the system size as power spectrum witl also give a measure @f,. and noty.
Most of the experimental studies are unable to follow the
W(I,t>L?%)~]Xioc X~ Xioc, (7)  crack in time, and much important information about the

complete scaling is lost. In the majority of the experiments

in such a way that the magnitude of the roughness over reone has to deal with a static fracture surface, and fluctuations
gions of the same sizeat saturation is not just a function of of its height are evaluated over windows of different sizes
the window size but also of the system size, which is dis-So, neither scaling form(3) nor (6) is actually tested in
tinctly different from what happens in the Family-Vicsek fracture experiments
case.

Owing to several experimental limitations, anomalous EXPERIMENT
scaling is difficult to observésee Ref[18] for kinetic rough-
ening experiments in which anomalous scaling was found  In the following we present an analysis of data describing
Since the system sizé& of experiments can hardly be growth of the crack roughness. In this experiment a fracture
changed over a broad range, the dependence of the globa&hs initiated from a straight notch in a granite sam{ié
width on the system size cannot actually be determinedx25x12 cn?) [5]. It is @ mode | unstable crack. The crack
Only local fluctuations over a window can be measured. roughness increases from two hundredths of a millimeter to
Moreover, very often the time evolution of a crack cannot beseveral millimeters. Topographies of two areas afa5cn?
monitored, and in most experiments only the final crack surwere recorded with a first mechanical profiler along a regular
face is analyzed, i.e., Eq7) for a fixed system size. This  grid (100 parallel profiles Thex direction, which is parallel
immediately leads to the conclusion that, whether anomalouto the initial notch, was sampled with 1050 pointax(
scaling exists, onlyy,. is actually within the reach of the =50 um). The grid step along the perpendicular direction
methods currently used in experiments. (i.e., the crack propagation directiowas Ay=350 um. A

In terms of the power spectrum, the existence of a locathird map(5x5 cn?) was obtained from a second and inde-
exponenty# x comes from a nonstandard form of the pendent mechanical profiler with a higher resolution. Two
scaling functions(u) in Eq. (4). It has recently been shown hundred parallel profiles were recorded with 2050 points per
[19] that the anomalous scalir) is associated with either profile (in which Ax=32.5 um andAy=250 um). We as-
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roughness exponent but different global one. One interfackd)

FIG. 2. Height difference correlation function for the experi- hasy = Xioc= % and is a realization of the simp&ehzgf(h_kg equa-
mental data displayed in Fig. 1. The straight line is a fit of the datation, where¢ is a Gaussian white noise, and it is thus a true self-
and its slope 0.79 gives a determination of the local roughnesggfine interface. The other curvelashedl has y= 2 and yj..= 3,
exponent. and is a typical front of the random diffusion growth process

[17,19), which is well known to exhibit anomalous roughening.
sumed that the crack speed was constant, which translates
into a linear relationship between positigrand timet. As a  in such a way thaw(l,t)/1X=ga(1/t*?), where the labeA
consequence, we consider the one-dimensional profiles afenotes the anomalous scaling form.
descriptions of the advancing cratKx,t). The complete In Fig. 1, we present the data collapse wfl,t)/1* vs
spatiotemporal behavior of the surface can thus be obtainet/t' for the high resolution map of the crack surface ob-

In Ref.[5], the scaling form(3) was checked for the two tained in the experiment. The best data collapse occurs for a
first data sets. However, a careful inspection of the data colglobal roughness exponent=1.2+0.1 andz=1.2+0.15.
lapse reported, Fig. 1 in Ref5], reveals that the scaling The same results were also found when the other two lower
function goes like a power law for large abscissa valuesesolution data sets were used. The nonconstant behavior for
rather than be a constant. Also, the slope for small values af<1 in Fig. 1 is the main fingerprint of the anomalous char-

the argument does not match well with the correct value. Asicter of the scaling. Figure 1 is in excellent agreement with a
we will see, much better and more accurate results are olgcaling function like Eq(9).
tained if, instead of assuming a Family-Vicsek behavior, we According to Eq.(9), the power lawu™%4! for u<1 in
analyze the data on the basis of an anomalous scaling. In thieig. 1 corresponds to a local roughness expongpgt
case, from Eq(6) it is easy to see that the corresponding =0.79. This value can be compared with the value obtained
scaling function would be from the long time behavior of the height difference correla-
tion function, G(I,t)=([h(x+1,t)—h(x,t)]%)¥?2, that we
u-xxod if u<i1 plot in Fig. 2 for the long times limitt>1?, and the highest
ga(u)~ u-X it us1 (9 resolution data. At long timesG(l) displays a power law
' behaviorl Xlec that gives an independent determination of the
100 . . local roughness exponent. As shown in Fig. 2, data fit to
Xioc=0.79, in agreement with the value obtained from the
slope—0.41 in Fig. 1. This estimate of,, was confirmed
by several other independent techniques: variable bandwidth,
return probability, and wavelet analy$1,22.

We have also calculated the power spectrum, and in Fig. 3
we plotS(k,t) vsk in a log-log plot for timeg =50, 75, and
100 for the high resolution data. The curves are clearly
shifted in time, as corresponds to a power spectrum scaling
function like Eqg.(8) and not the Family-Vicsek one in Eq.
(4). S(k,t) decays with a power law 28 which is consis-
tent with k™ (2Xiec™ ) and y,,.=0.79. We were unable to ob-
tain a collapse of good quality form these data.
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CONCLUSIONS
FIG. 3. Power spectrum at timés-50, 75, and 100 calculated
from the experimental data of higher resolution. The shift of the In this study, we have shown that an anomalous dynamic
curves for different times is apparent and characteristic oh@im-  scaling, Eq.(6) or (7), captures much better the features of
sic anomalous scaling. The straight line has a slef#58 and is in  the crack geometry than the standard Family-Vicsek one. We
agreement with a the power declyXoc™1) with y,,.=0.79. obtained for an unstable brittle fracture of a granite block a
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global exponenty=1.2, which is different from the local roughly constanty,.=0.7, surprisingly independent of the
exponenty,.=0.79. The very robust value of the local ex- orientation of the fracture, although visible differences in the
ponent has been demonstrated in the past. surfaces were note@ee Fig. 2 in Ref[23]). Experiments in
The existence of two different and independent roughnesRef.[2] with materials showing different rupture modes gave
exponents that characterize the complete scaling of a surfacsimilar results. We believe that a determination of the global
as it follows from Eq.(7), has important implications in the roughness exponent in all these experiments could allow a
appearancéand geometry of anomalously roughened sur- petter characterization of the fracture surface morphology
faces. To illustrate this point, in Fig. 4 we plot two surfacesand its relationship with material properties.
with exactly the same local exponem,,.= 3, but different A second physical consequence of the anomalous scaling
global exponentsy=3and 3. The two interfaces plotted in s that the saturation roughness is not only a function of
Fig. 4 are quite different to the naked eye, despite the faclvindow size but also of the system size. Implications for the
that they have the same local roughness exponent. From Figrack process are important. Information about the system
4, it is clear thaty,. necessarily gives just a part of the size exists along the crack front during the propagation even
information about the scaling when anomalous rougheningit Rayleigh speed. This may illustrate the role of interactions
exists, and indeed the global expongndoes give an ac- between elastic waves and front propagation for the geom-
count of the large peaks taken by the surface in the anomatry of the front. More studies should be initiated to check
lous casdi.e., wheny# xoc). The similarity with what hap- whether or not the global roughness exponent is in general a
pens to the patterns found in experimental cradee for valid index to characterize fracture surfaces.
instance Fig. 1. in Ref9]) suggests that they may exhibit
the same type of double scaling. More precisely, Fig. 1 in
Ref. [9] shows that the resulting surfaces in wood for tan-
gential and radial fractures display strongly different mor- J.M.L. wishes to thank J.V. Andersen for discussions and
phologies with the same local exponent.=~0.68. These encouragement, and R. Cuerno for a careful reading of the
authors foundpuzzlingthe large peaks taken by tangential manuscript. J.S. thanks K.J. Mg for very fruitful discus-
fracture surfaces, in clear contrast to the quite flat look ofsions. This work was supported by the MEC of the Spanish
radial fractures, very much as occurs in the example we ploGovernment, the European Commission, the Ecodev-CNRS
in Fig. 4. Also Zhanget al. [23], in a numerical model of program, and the GDR “Gmmecanique des Roches Pro-
fracture in anisotropic materials, found a local exponentfondes.”
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