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Anomalous scaling of fracture surfaces
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We argue that fracture surfaces may exhibitanomalousdynamic scaling properties akin to what occurs in
some models of kinetic roughening. We determine the complete scaling behavior of the local fluctuations of a
brittle fracture in a granite block from experimental data. We obtain a global roughness exponentx51.2 which
differs from the local one,x loc50.79. Implications on fracture physics are discussed.
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he study of the morphology of fracture surfaces is now
days a very active field of research. From the early work
Ref. @1#, much effort has been put into the statistical char
terization of the resulting fractal surfaces in fracture p
cesses. Scale invariance has been found in many experim
@1–9#, and it is now well established that, in general, cra
surfaces exhibit self-affine scaling properties in a large ra
of length scales~see Ref.@10# for a more detailed account o
experiments!.

A self-affine surfaceh(x) is invariant under an aniso
tropic scale transformation, in the sense thath(x) has the
same statistical properties asl2xh(lx), where x is the
roughness exponent. Initially, the hope in studying the sur
face morphology was to relate geometry to mechanical pr
erties~toughness, plasticity, etc.! in order to obtain a materia
characterization by means of the roughness exponent. H
ever, experimental results in very different types of mater
~from ductile aluminum alloys to brittle materials like rock!
seem to support the idea of auniversalroughness exponen
which is very independent of the material properties. F
three-dimensional ~3D! fractures, an exponentx(3D)
.0.8– 0.9@1–5# has been measured, whereas in dimens
two x(2D).0.6– 0.7@6–9#. It seems reasonable to expe
that material properties should affect the fracture surf
roughness. In particular, toughness and anisotropy shoul
relevant for the fracture crack morphology. However, t
above mentioned experimental results seem to lead to
surprising conclusion that there is no correlation ofx with
mechanical properties.

The treatment of the fracture crack as a self-affine rou
surface leads in a natural way to the close field of kine
roughening~see Ref.@11# for recent reviews in the subject!.
A direct mapping of the crack at the stationary state into
Kardar-Parisi-Zhang equation@12# was proposed in Ref
@13#. The crack surface has also been considered as the
of the crack front whose propagation is modeled by ot
types of nonlinear Langevin equations@14#.

In this paper, we will show that crack surfaces have v
much in common with those obtained in growth proces
exhibiting what is called ananomalousdynamic scaling. We
argue that the scaling of the fluctuations of crack surface

*Electronic address: j.lopez@ic.ac.uk
571063-651X/98/57~6!/6405~4!/$15.00
-
f
-
-
nts

k
e

p-

w-
ls

r

n

e
be

he

h
c

e

ce
r

y
s

is,

in the sense of kinetic roughening,intrinsically anomalous
rather than a simple Family-Vicsek one. The analysis of
roughness data of a crack experiment demonstrates the
lidity of our argument. Physical consequences of this sca
for fracture will be discussed.

FAMILY VICSEK SCALING

In practice, the self-affine character of a surface in dim
sion d11 is shown by studying the scaling of the fluctu
tions of the surface height over the whole system of total s
L. The invariance property under the scale transformat
implies that theglobal width at time t, W(L,t)5^@h(x,t)
2h̄(t)#2&x

1/2, wherex is the position, has to scale as@15#

W~L,t !5Lx f ~L/t1/z!, ~1!

wherez is the dynamical exponent andf (u) is the scaling
function

f ~u!;H const if u!1

u2x if u@1.
~2!

x is the roughness exponent, and gives the scaling of
surface in saturation,W(L,t@Lz);Lx. These two exponents
characterize the universality class of the particular grow
model. Equivalently, the scaling behavior of the surfa
might be obtained by looking at thelocal width over a win-
dow of sizel !L:

w~ l ,t !;H tx/z if t! l z

l x if t@ l z.
~3!

This is the method actually used in real experiments, wh
the size of the systemL remains constant and the fluctuatio
are calculated over scalesl !L. Note that the local width
saturates at timel z as w( l ,t@ l z); l x independently of the
system size.

A complementary technique to determine the critical e
ponents of a growing surface is to study the Fourier tra
form of the interface height in a system of linear sizeL,
ĥ(k,t)5L2d/2(x@h(x,t)2h̄(t)#exp(ik•x), where the spatial
average of the height has been subtracted. In this repre
tation, the properties of the surface can be investigated
6405 © 1998 The American Physical Society
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calculating the power spectrumS(k,t)5^ĥ(k,t)ĥ(2k,t)&,
which contains the same information on the system as
local width. In most growth models, the power spectru
scales as

S~k,t !5k2~2x1d!s~kt1/z!, ~4!

wheres is the simple scaling function

s~u!;H const if u@1

u2x1d if u!1.
~5!

This form for the power spectrum can be easily inverted
obtain the scaling behavior of both local and global wid
described above.

ANOMALOUS SCALING AND IMPLICATIONS

In very recent studies of several growth models@16,17#, it
has been found that the surface fluctuations may exhibi
anomalousscaling, in the sense that, although the glo
width behaves as in Eqs.~1! and ~2!, local surface fluctua-
tions do not satisfy Eq.~3!, but scale as

w~ l ,t !;H tx/z if t! l z

tb
* l x loc if t@ l z,

~6!

where the exponentb* 5(x2x loc)/z is an anomalous time
exponent andx loc the local roughness exponent. Thus in t
case of anomalous scaling, two exponentsx loc and x enter
the scaling, and must be taken into account to give a c
plete description of the scaling behavior of the surface.
outstanding consequence is that the local width does
saturate at timesl z but when the whole system does, i.e.,
times Lz, giving an unconventional dependence of the s
tionary local width on the system size as

w~ l ,t@Lz!; l x locLx2x loc, ~7!

in such a way that the magnitude of the roughness over
gions of the same sizel at saturation is not just a function o
the window size but also of the system size, which is d
tinctly different from what happens in the Family-Vicse
case.

Owing to several experimental limitations, anomalo
scaling is difficult to observe~see Ref.@18# for kinetic rough-
ening experiments in which anomalous scaling was foun!.
Since the system sizeL of experiments can hardly b
changed over a broad range, the dependence of the g
width on the system size cannot actually be determin
Only local fluctuations over a windowl can be measured
Moreover, very often the time evolution of a crack cannot
monitored, and in most experiments only the final crack s
face is analyzed, i.e., Eq.~7! for a fixed system sizeL. This
immediately leads to the conclusion that, whether anoma
scaling exists, onlyx loc is actually within the reach of the
methods currently used in experiments.

In terms of the power spectrum, the existence of a lo
exponentx locÞx comes from a nonstandard form of th
scaling functions(u) in Eq. ~4!. It has recently been show
@19# that the anomalous scaling~6! is associated with eithe
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super-roughening@20# or a power spectrum that satisfies th
dynamic scaling behavior stated in Eq.~4!, but with a dis-
tinct scaling function

s~u!;H u2~x2x loc! if u@1

u2x1d if u!1.
~8!

So, in the stationary regime~at timest@Lz), the power spec-
trum scales asS(k,t);k2(2x loc1d)L2(x2x loc), and not simply
as k2(2x1d), as corresponds to a standard scaling. T
means that experimental determinations of the roughness
ponent of fracture crack surfaces from the decay of
power spectrum withk also give a measure ofx loc and notx.

Most of the experimental studies are unable to follow t
crack in time, and much important information about t
complete scaling is lost. In the majority of the experimen
one has to deal with a static fracture surface, and fluctuat
of its height are evaluated over windows of different sizesl .
So, neither scaling form~3! nor ~6! is actually tested in
fracture experiments.

EXPERIMENT

In the following we present an analysis of data describ
growth of the crack roughness. In this experiment a fract
was initiated from a straight notch in a granite sample~25
325312 cm3) @5#. It is a mode I unstable crack. The crac
roughness increases from two hundredths of a millimete
several millimeters. Topographies of two areas of 534 cm2

were recorded with a first mechanical profiler along a regu
grid ~100 parallel profiles!. Thex direction, which is parallel
to the initial notch, was sampled with 1050 points (Dx
550 mm!. The grid step along the perpendicular directi
~i.e., the crack propagation direction! was Dy5350 mm. A
third map~535 cm2) was obtained from a second and ind
pendent mechanical profiler with a higher resolution. Tw
hundred parallel profiles were recorded with 2050 points
profile ~in which Dx532.5mm andDy5250 mm!. We as-

FIG. 1. Inset shows the local width vs time for the higher res
lution data of the crack experiment calculated over windows
sizesl 5100 ~solid line!, 300 ~dotted line!, 500 ~dashed line!, 700
~long-dashed line!, and 900~dot-dashed line! ~all in units of the grid
step Dx). Data are collapsed forx51.2 andz51.2 in the main
panel for windows sizes ranging froml 510 to 1200. The noncon-
stant behavior at small values of the argument~main panel! reflects
the anomalous character of the scaling, which agrees with Eq.~9!.
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57 6407ANOMALOUS SCALING OF FRACTURE SURFACES
sumed that the crack speed was constant, which trans
into a linear relationship between positiony and timet. As a
consequence, we consider the one-dimensional profile
descriptions of the advancing crackh(x,t). The complete
spatiotemporal behavior of the surface can thus be obtai

In Ref. @5#, the scaling form~3! was checked for the two
first data sets. However, a careful inspection of the data
lapse reported, Fig. 1 in Ref.@5#, reveals that the scaling
function goes like a power law for large abscissa valu
rather than be a constant. Also, the slope for small value
the argument does not match well with the correct value.
we will see, much better and more accurate results are
tained if, instead of assuming a Family-Vicsek behavior,
analyze the data on the basis of an anomalous scaling. In
case, from Eq.~6! it is easy to see that the correspondi
scaling function would be

gA~u!;H u2~x2x loc! if u!1

u2x if u@1.
~9!

FIG. 2. Height difference correlation function for the expe
mental data displayed in Fig. 1. The straight line is a fit of the da
and its slope 0.79 gives a determination of the local roughn
exponent.

FIG. 3. Power spectrum at timest550, 75, and 100 calculate
from the experimental data of higher resolution. The shift of
curves for different times is apparent and characteristic of anintrin-
sic anomalous scaling. The straight line has a slope22.58 and is in
agreement with a the power decayk2(2x loc11) with x loc50.79.
tes
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in such a way thatw( l ,t)/ l x5gA( l /t1/z), where the labelA
denotes the anomalous scaling form.

In Fig. 1, we present the data collapse ofw( l ,t)/ l x vs
l /t1/z for the high resolution map of the crack surface o
tained in the experiment. The best data collapse occurs f
global roughness exponentx51.260.1 andz51.260.15.
The same results were also found when the other two lo
resolution data sets were used. The nonconstant behavio
u!1 in Fig. 1 is the main fingerprint of the anomalous cha
acter of the scaling. Figure 1 is in excellent agreement wit
scaling function like Eq.~9!.

According to Eq.~9!, the power lawu20.41 for u!1 in
Fig. 1 corresponds to a local roughness exponentx loc
50.79. This value can be compared with the value obtai
from the long time behavior of the height difference corre
tion function, G( l ,t)5^@h(x1 l ,t)2h(x,t)#2&x

1/2, that we
plot in Fig. 2 for the long times limit,t@ l z, and the highest
resolution data. At long times,G( l ) displays a power law
behaviorl x loc that gives an independent determination of t
local roughness exponent. As shown in Fig. 2, data fit
x loc50.79, in agreement with the value obtained from t
slope20.41 in Fig. 1. This estimate ofx loc was confirmed
by several other independent techniques: variable bandw
return probability, and wavelet analysis@21,22#.

We have also calculated the power spectrum, and in Fi
we plotS(k,t) vs k in a log-log plot for timest550, 75, and
100 for the high resolution data. The curves are clea
shifted in time, as corresponds to a power spectrum sca
function like Eq.~8! and not the Family-Vicsek one in Eq
~4!. S(k,t) decays with a power lawk22.58 which is consis-
tent with k2(2x loc11) andx loc50.79. We were unable to ob
tain a collapse of good quality form these data.

CONCLUSIONS

In this study, we have shown that an anomalous dyna
scaling, Eq.~6! or ~7!, captures much better the features
the crack geometry than the standard Family-Vicsek one.
obtained for an unstable brittle fracture of a granite bloc

,
ss

FIG. 4. Example of two fractal curves with the same loc
roughness exponent but different global one. One interface~solid!
hasx5x loc5

1
2 and is a realization of the simple] th5]x

2h1j equa-
tion, wherej is a Gaussian white noise, and it is thus a true se
affine interface. The other curve~dashed! has x5

3
4 and x loc5

1
2 ,

and is a typical front of the random diffusion growth proce
@17,19#!, which is well known to exhibit anomalous roughening.
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6408 57JUAN M. LÓPEZ AND JEAN SCHMITTBUHL
global exponentx51.2, which is different from the loca
exponentx loc50.79. The very robust value of the local e
ponent has been demonstrated in the past.

The existence of two different and independent roughn
exponents that characterize the complete scaling of a sur
as it follows from Eq.~7!, has important implications in the
appearance~and geometry! of anomalously roughened su
faces. To illustrate this point, in Fig. 4 we plot two surfac
with exactly the same local exponent,x loc5

1
2 , but different

global exponents,x5 3
4 and 1

2 . The two interfaces plotted in
Fig. 4 are quite different to the naked eye, despite the
that they have the same local roughness exponent. From
4, it is clear thatx loc necessarily gives just a part of th
information about the scaling when anomalous roughen
exists, and indeed the global exponentx does give an ac-
count of the large peaks taken by the surface in the ano
lous case~i.e., whenxÞx loc). The similarity with what hap-
pens to the patterns found in experimental cracks~see for
instance Fig. 1. in Ref.@9#! suggests that they may exhib
the same type of double scaling. More precisely, Fig. 1
Ref. @9# shows that the resulting surfaces in wood for ta
gential and radial fractures display strongly different m
phologies with the same local exponentx loc.0.68. These
authors foundpuzzling the large peaks taken by tangent
fracture surfaces, in clear contrast to the quite flat look
radial fractures, very much as occurs in the example we
in Fig. 4. Also Zhanget al. @23#, in a numerical model of
fracture in anisotropic materials, found a local expon
ur
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roughly constantx loc.0.7, surprisingly independent of the
orientation of the fracture, although visible differences in t
surfaces were noted~see Fig. 2 in Ref.@23#!. Experiments in
Ref. @2# with materials showing different rupture modes ga
similar results. We believe that a determination of the glo
roughness exponent in all these experiments could allo
better characterization of the fracture surface morpholo
and its relationship with material properties.

A second physical consequence of the anomalous sca
is that the saturation roughness is not only a function
window size but also of the system size. Implications for t
crack process are important. Information about the sys
size exists along the crack front during the propagation e
at Rayleigh speed. This may illustrate the role of interactio
between elastic waves and front propagation for the ge
etry of the front. More studies should be initiated to che
whether or not the global roughness exponent is in gener
valid index to characterize fracture surfaces.
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