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Hamiltonian dynamics and the phase transition of theXY model
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A Hamiltonian dynamics is defined for th€Y model by adding a kinetic energy term. Thermodynamical
properties(total energy, magnetization, vorticjtglerived from microcanonical simulations of this model are
found to be in agreement with canonical Monte Carlo results in the explored temperature region. The behavior
of the magnetization and energy as functions of the temperature are thoroughly investigated, taking into
account finite size effects. By representing the spin field as a superposition of random phased waves, we derive
a nonlinear dispersion relation whose solutions allow the computation of thermodynamical quantities, which
agree quantitatively with those obtained in numerical experiments, up to temperatures close to the transition. At
low temperatures the propagation of phonons is the dominant phenomenon, while above the phase transition
the system splits into ordered domains separated by interfaces populated by topological defects. In the high
temperature phase, spins rotate, and an analogy with an Ising-like system can be established, leading to a
theoretical prediction of the critical temperaturg;~0.855.[S1063-651X98)15205-4

PACS numbd(s): 05.20-y, 64.60.Cn

[. INTRODUCTION terms of dipole unbinding. However, there is a number of
observations in the literature that seems to complicate this
The two dimensionaKY model, also known as the planar simple picture of the phase transition mechanism. Among the
spin model, presents many interesting behaviors. Despite thdifferent results, those worth mentioning are the visualiza-
presence of a continuous symmetry group, a particular fornion of the vortex distributiof9], the presence of domains
of phase transition existd,2], which can be characterized delimited by topological defecfd 0], and the precise deter-
by the change in the behavior of the correlation functions. Irmination of the transition temperatufg~0.89[11], much
the low temperature phase these latter have power law decapwer than the transition temperature of the Villain model.
showing that the system is in a long range order state; whil®esults are also found on the interaction between vortices
they decay exponentially at high temperatures, the long10], or the vortex interaction enerdy?2].
range order is broken, even though thermodynamic quanti- Although the basic mechanism of the Kosterlitz-Thouless
ties remain smooth across the transitj{@h These observa- transition, in terms of the breaking of vortex dipoles associ-
tions have been interpreted by Kosterlitz and Thouleds ated with the emergence of a disordered state, is well under-
using an analogy with the transition of a Coulomb gas fromstood, the observation of the spatial distribution of defects,
a dielectric phase, where charges are bounded into dipoles, tehich is not uniform(defects tend to appear organized into
a plasmalconducting phase where temperature fluctuationsclusters at temperatures slightly larger than the transition
destroy the dipoles, and the charges become free. IXthe temperaturg and the presence of large ordered domains
system the charges are replaced by topological excitationshere the spins are almost parallel, seem to indicate that the
called vortices. physics of the phase transition is not exhausted by this un-
From the analytical point of view, beyond the spin-wavebinding process but that some kind of partial local order is
approximation5], and the Villain mode[6], the use of the present even beyond the transition temperature. The investi-
renormalization group in the critical region has been thegation of the system properties near the transition is one of
main issue[7,8]. In order to confirm the analytical results the points addressed in this paper.
and to satisfy the need for a better understanding of the tran- On the other hand, the question of whether statistical
sition, many numerical studies have been performed. Differphysics is able to describe, over a wide range of tempera-
ent dynamics, like Monte Carlf®] or Langevin[10], have tures, the behavior of a classical Hamiltonian system with
been introduced. The system has been confirmed to be dominany degrees of freedom, still remains an open (e=,
nated by spin-wave excitations in the low temperature ree.g., the literature on the Fermi-Pasta-Ulam model quoted in
gion. The transition region is then determined using the inRef. [13]). Therefore, it seemed interesting to consider the
formation on the correlation functions, and is interpreted inXY model from the point of view of Hamiltonian dynamical
systems by adding a kinetic energy term to ¥ Hamil-
tonian. Such an approach has proved to provide interesting

*Electronic address: verga@marius.univ-mrs.fr information on typical relaxation time scales and collective
TUnite Mixte de Recherche 6594, Center National de labehaviors in the one-dimensiondlD) case[14] and in the
Recherche Scientifique, Universitd’Aix-Marseille | et II. mean field approximatiofil5]. More recently Lyapunov ex-
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ponents have been computed, confirming the presence of N
long relaxation times to equilibrium both in the very low and HXY:JZ [1—cod6,—6))], (2.1
very high temperature limits in one dimensif6], and the (1)

presence of a change in slope of the maximal Lyapunov exyhereJ is the coupling constarttvith J>0 corresponding to
ponent vs the energy near the transition temperature in twghe ferromagnetic case, that we study heaadi andj label
dimensions[17] (also see also Ref18] for a preliminary  the N sites of a square lattice of sidgN, i.e.,i=(iy,i,),
study of this latter phenomenpn with 1<i,,i,<+/N of coordinates X,y). The summation is
The present model is one of the coupled rotatsfEing  extended over all and its neighboring sites In the follow-
sitting on the sites of a square lattice interacting with neaing, without loss of generality, we sét=1, and the lattice
neighbors, whose statistical properties are described by th&ep equal to unity.
microcanonical ensemble, the total energy being set by the The spins evolve in timeg, = 6,(t), after adding a kinetic
initial conditions. Convergence to a Gibbsian equilibriumenergy term to theX'Y Hamiltonian,
distribution is not taken for granted in the whole temperature N
range on accessible time scales. Therefore, particular atten- i
tion must be devoted to the temporal behavior of the differ- H:;
ent quantities which characterize macroscopic thermody-

namical properties. One notices, however, that the spatig|nere pi=6;, is the spin momentum. The choick=1 is
I I "

topology is unchanged, and that the existence of a continysq,iyalent to setting time units and to rescaling momentum

ous symmetry group of rotation is also maintained in the;ccorgingly(in these units the “inertia” is also unily With

dynamics. This implies that a Kosterlitz-Thouless-type tranis kinetic energy term the spins in fact become rotators,

sition must be observe@in the thermodynamic limjtwith and theXY model becomes a system of coupled rotators.
typically strong finite size effects, like the existence of a|pq equations of motion are

nonzero magnetizatiofb,19].
In this paper we concentrate on a study of those properties 4

of the dynamics of th&X'Y model which reproduce equilib- 0i(t)= —2 sin 6;(t)— 6;(t)], 2.3

rium features, postponing to a future work the study of non- i

equilibrium effects. We anticipate that we are able to reProiyhere the summation is over the four neighbjocs sitei . In

duce most of the equilibrium behaviors of MACrosCopIC,yition to the energid =E, there exists a second constant

?uanu'ttﬁs, Wh'cfh rln,\a/llke? mécrtl)can.onlca;]l dynamldcs cotmhpetlbf the motion, the total angular momentuPs==;p; , which
Ive with canonical Monte £.arlo, Since heré we do ot NAVE.,, e chosen to be zero. We choose periodic boundary con-
to extract random numbers, stochasticity being supplied b

Niitions in both thex andy directions. Numerical integration
the intrinsic chaaoticity of the model. Y g

The fact that we actually deal with a dynamical systemOf Eq. (2.3) is performed using the Verlet algorithm, which

allows us to develop an original analytical approach to the o oo Voo the energ®(At?), At being the time step, but
P 9 y PP ‘exactly preserves momentum and the symplectic structure.

study of the thermodynamics, which is based on the approxi- Thermodynamical quantities are computed by averaging

mate solution of the equations of motion. This method ISover time and over the sites of a single orftite evolution of

based upon the ergodic properties of the dynamics and on tf{ﬁe system from a given initial conditianTypically, the

separation of temporal scales pr.ese'f“ in the spin motion. .system is started with a Gaussian distribution of momenta

In Sec. Il we presept the Ham|ltqn|an model and the baSI%md with all the spins pointing in the same directién
aspects of the numerical computations, and we introduce thge for reasons that are clarified in the following. No
thermodynamic and dynamical quantities that Charac_ter_lz troon,g dependence on the chosen initial condition i.n this
the state of the system. In Sec. il we compare the StatIStIC%Iass was observed, but one could statistically improve our
properties of our model to the usual ones, using both analyti-

cal and numerical approaches. We derive the thermodynamifisrllgittsi O?é gxir?ﬁéngagq\/: L%?gz orbits with different initial

cal properties using the hypothesis that the dynamics is .
dominated by random phased waves. We then propose, ir%msnttir:]npeﬁt:r?nls computed through the average squared
Sec. IV, an Ising-like model based on the observation that, per spin,

N3,

+Hyxy, (2.2

above the transition, synchronized regions of spins appear. 1 N
The relation ofXY to an Ising-like model allows us to de- T=_— E pi (1), (2.9
scribe the high temperature phase and to derive an approxi- N =1

mate value of the critical temperature. A brief summary of

the main results and conclusions is presented in Sec. V. Where the overbar stands for temporal averaging.
The thermodynamical state can be characterized by sev-

eral macroscopic variables: the internal energy per $pin

=h(T)=E(T,N)/N (E being the constant total energy of the

system; the magnetizatiorM =M(T,N), which, as men-

tioned in Sec. | vanishes fdi—-co, but is sizable for any
The XY model was introduced in statistical mechanics adinite N; and the density of topological defegis, or vorti-

a two-dimensional version of the Heisenberg Hamiltoniances, which is intimately related to the mechanism underlying

The spins are fixed on the sites of a square lattice, and atbe phase transition.

characterized by a rotation anglee[ — 7, 7], The magnetizatioM = (M, ,M,) is given by

Il. HAMILTONIAN MODEL, BASIC PROPERTIES
AND NUMERICAL COMPUTATIONS
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FIG. 1. Tota| energy per Spin as a function of the temperature!:he Hamiltonian dynamical Simulations fOI’ different Iattice Sizes
At low temperature the energy grows Bsand at high temperature  N=64°, N=12&, andN=256" respectively; and circles refer to
the energy tends td/2+ 2. The Kosterlitz-Thouless phase transi- Monte Carlo simulations for a lattice size hf=100".

tion occurs atTr~0.89; +, X, and* signs refer to the Hamil- . ) . . . .
tonian dynamical simulations for different lattice sizbs=642, N~ Were investigated, for instance, with half the spins oriented

:]_282, and N= 256 respectively; and circles refer to canonical in the x direction, and the other half in the x direction.
Monte Carlo simulations for a lattice size Nf=100%. After a transient, the system relaxes to the same thermody-
namical state.
1 In Fig. 1, we plot the total energy per sgidT). The low
— > (cos#,sin 6,), (2.5 (T<1, T~1 corresponds to the value for which the kinetic
N =1 energy is of the same order of the potential engemd high
) ) ) o (T>1) temperature behaviors are easy to understand. At low
and describe the mean orientation of the spin field. A t0pOemperature equipartition of kinetic and potential energies
logical c_iefect_ls |dent|f|e.d, as usual, by computing the t°ta|givesh(T)~T (this is the linear regime, where angles be-
angle circulation on a given plaquettthe sum of the four yeen neighboring spins are smalAt high temperature,
plaquette relative angles miodw,7]); when it equals angles are uniformly distributed i 7, 7], the cosine in-
+2m, this quantity identifies a positivenegative unitary  teraction in Eq(2.2) is negligible with respect to the kinetic
v_o_rtex on thg pIaq_uette._The total_deqsﬂy of vqrtlces, Of VOlgnergy, and therh(T)~T/2+2. These simple arguments
ticity, which is an intensive quantity, is then given by suggest that fol <1, the spin field is almost linear, and can
be represented as a superposition of waves, which corre-
PU:% 2 (651~ 6,) mod —m,m], (2.6) spond_ to phonons; vyhile, foF>1, the potential energy is
{] negligible, and this field becomes a set of almost free fast
rotators. The change in the behavior of t@) curve starts
where[i,j] denotes the sitesof theith plaquette. We have around the Kosterlitz-Thouless critical temperattligg . The
studied the temporal evolution and spatial distribution of thepeak in the specific heat, related to the second derivative of
vortices as a function of the temperature. Because of théhe energy, occurs instead at a somewhat higher temperature,
periodic boundary conditions, and sinee=0, the number of a fact well documented in Monte Carlo computations.
positive vortices equals the nhumber of negative ones. Figure 2 shows the absolute value of the magnetization as
We have performed simulations using various sets of pameasured using formul&.5). Although in the thermody-
rameters, to study the system behavior depending on theamic limit the magnetization must vanish, in a finite system
temperature, the number of spins, and the total time to tesind for low temperature we expect an observable macro-
the stationarity of the relaxed state. Having chosen paralledcopic magnetization, which decreases logarithmically with
spins, one has an initially vanishing potential energy, allow-the number of spins, as noted by Berezin§Rii. This slow
ing the exploration of the low temperature region through thedecrease with system size is hardly observable in Fig. 2, but
reduction of kinetic energy. Random angles in fhenr, 7] points corresponding to larger sizes systematically give a
interval would give an energy per spin of 2, which would smaller magnetization. In the high temperature region, since
then remain fixed producing a high temperature configuraangles are randomly distributed in space at any time, the
tion, as can also be deduced from th€T) function we  magnetization vanishes algebraically with the number of
compute below(see Fig. 1L Therefore, initially, the magne- spins.
tization is [M|=1. Other initial conditions, with|M|=0 The behavior of vorticity with temperature, plotted in Fig.

M(t)=

M
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02 ' : ' . in fact can be considered a function of the temperature. How-
sk s | ever, at low temperature most of these frequencies must van-
o ish, because the energy needed to trigger the free rotation is
0161 » ] only reached at energies of the ordertef 2 (or tempera-
014k T i tures of the order of = 1.5, as can be seen in Fig, When
e a spin, considered as a perturbed pendulum, crosses the sepa-
ed2r * ] ratrix. In the following we sef);=0 at low temperaturé&his
- ,; i term becomes important at high temperatures
= * Although the main assumption in E¢3.1), that is, the
0081 d ] random character of the wave phases, may only be justfied
o6l * | posteriori we performed some numerical tests which
¥ showed that this ansatz is consistent with the properties of
004r # ] the systemat low and also at finite temperatuyeg/e found
ool j | that the probability distribution of the spin velocities is al-
o most uniform, and that, moreover, the motion of one single
L v ] 5 2 25 spin is ergodidin the sense that its temporal mean and vari-
Temperature ance coincide with the spatial one#n addition, if the sys-

FIG. 3. Number density of vortices as a function of the temperat€M were linear, this assumption is equivalent to the assump-

ture normalized to the total number of spins. This quantity is inten{ion  of - thermodynamic = equilibrium(with a bath at
sive. +, X, and* signs refer to the Hamiltonian dynamical simu- temperature). In fact this is the case at very low and very
lations for different lattice sizedl=64%, N=128, andN=25¢, high T; of course, in the intermediate range the influence of
respectively. the nonlinearity becomes important, for instance, establish-
ing nonlocal interactions or some type of self-organization,
3, is related to the form of thl(T) curve. Indeed, at low in which case this assumption would not necessarily be
temperature, aligned angle configurations are typical, ansalid.
consequently vorticity vanisheg,— 0. In the high tempera- In formula (3.1), there are two unknown functions of the
ture regime, spins are randomly distributed and the vortexvave number which remain to be determined: the wave fre-
density approaches the asymptotic vajye-3. A dramatic  quenciesw, and the spectruny, . Note, in addition, that Eq.
growth of the vorticity occurs in the phase transition region(3.1) is in fact a change of variables of the angigsto the
(the temperature in the rande~0.8—1.5. amplitudes«,, where, implicitly, a slow temporal depen-
All our results are in perfect agreement with those ofdence may be included, the fast time dependence being as-
Monte Carlo simulationésee, e.g., Ref20]); some of them sured by the phase,t. In this sense, formulé3.1) is rather
are plotted in Figs. 1 and 2 for comparison. Therefore, mi-general, and can take into account a large variety of field
crocanonicalHamiltonian dynamigsand canonica(Monte  states.
Carlo computations give, at least for the class of initial con- The definition of the temperature imposes a constraint on
ditions studied here, the same thermodynamical equilibriunthe form of the wave spectrum. Indeed, substituting formula
states. (3.1) into the definition of the temperatuf@.4), we obtain

N
Ill. DYNAMICAL AND STATISTICAL PROPERTIES 1 y
T=N 2 (=3 3 afof, 3.2
[

We know that, at low temperatures, the main contribution
to the canonical partition function comes from the configu-where(: --) stands for averaging over the random phaggs
rations in which the spins are almost aligned, configuration@nd where we used the identity
where the angle difference— 6; are small. In such a situ- _ _
ation, the equations of motidi2.3) can be linearized, and the (coq ) cos ¥))= 3 Sk
spin field is therefore represented as a superposition of linear
waves. Here we will determine the effective dispersion rela-dy ' being the Kronecker symbol. For instance, if equiparti-
tion for these waves at low temperature using consistenc{ion of the energy among different degrees of freedom is
relations with temperature and internal energy. Let us intro@ssumed, one obtains the usual Jeans spectrum, given by
duce a representation of the spin angles in the form of a
random phased field, , 2T
ag=—->, (3.3
ka
I I

ai_; aCod b, h=ki—odtdie B i means that each degree of freedom takes a fraction
T/2 of the total kinetic energy. In fact, as we will show
where the summation is over the wave vectors(k,,k,)  below, a detailed knowledge of the spectrum turns out not to
=27r(nx,ny)/\/ﬁ, with nx,ny=1,...,\/ﬁ integers; the wave be necessary to derive the dispersion relation and compute
spectrum is given by, , and the phase#, are supposed to thermodynamical quantities.
be random, uniformly distributed in the circle. We also Before proceeding to the computation of the dispersion
should add to Eq(3.1) a term of the form();t reflecting the  relation, let us derive a general expression of the energy per
individual rotation of spins with some frequen€y;, which  spinh,



57 HAMILTONIAN DYNAMICS AND THE PHASE . .. 6381

T 1 =h(T), we must determine in a self-consistent way the dis-

h= §+2— N E (cod 6;— 6))), (3.9 persion relation; this may be done by using the equation of
() motion in its full nonlinear form. But let us begin with the

where the first term comes from the definition of the tem_Iinear case, which will serve as a guide to the self-consistent

perature; the second term is the constant added for conv&omputation. The linear equation of motion reads

nience to the Hamiltonian to make the energy vanish at zero

temperature; and the last term includes, for each lattice site, a 6i=> 6,— 0; . (3.9

summation over two neighbors, for instance wgstthe x S

direct_io@ and sout_h(in they directior)._ When gxpa_nsion Substituting Eq(3.1), one obtains

(3.1) is introduced into Eq(3.4), the typical contribution to

the sum in the third term on the right hand side is

N
U<N‘*”=<cos{ 2 ALTSInBy (i,]) + )D
n=1 n n n
wheren relabel the modes, and

. K- (X —X;
AL=2 sir{('T')

i) K- (X +X))
n 2

— 2 wgeycos ¥y
K

sin| Y+ —

:_2 Bx
k

]
ot o]

s
SII’122

sin

) —Ek IBy

+sir? cosyi, (3.9

+ (l)kt = - 42 [£9% —y
K 2
are local inn and independent on the phasis. Let us split  although the linearity of the equation allows an identification
the summation over the wave numbers into two terms: onéerm by term in the summation ové&t a different strategy
containing the phas¢k and the other with the remaining for the solution would be to average E@®.9 over all the

n=1,...N—1 phases. Slnce phases but one, e.g., over the phaggs# ¢, after multiply-
(Dt nlid) i ing both sides by co$k, in order to isolate only one term in
<COS{AK,\" sin(By+ di ) 1) =Jo(Ak)), the summation on the left hand side. One finally obtains the
(3.9 linear dispersion relation

sif Al'sin(B{ ) + =0,
(si AL DsInBE Y + ¢y )1) 4( i -nzky) .
=wo=4| sif —+sinf=|. .
whereJ, is the Bessel function of zero order, we obtain the Pk Dok 2 2

recursion relation ) o
The frequency spectrum is symmetric with respect to the

U =Jo(ALURY, exchangek,«k, ; in the following we assume, without loss
of generality, that the spectrum is symmetric with respect to
which readily gives the result this transformation.
This procedure can be generalized to the nonlinear case,
UG =TT Jo(AlD). although the right hand side of E@.3) is no longer local in
n n ¢y. After substituting expansioi3.1) into Eq. (2.3, we

must average over the phaseg # ¢, which we denote

(---)", terms of the form
| _ kT

(sin(6— 6g))' = —{ sin ; Bysin| i+ > ,
whereg,=2a,sink,/2 andB,=2a,sink,/2, and the last two (3.11
products come from norttsouth and eastwes) neighbors
on the lattice. EquatiofB.6) is the general expression for the where 6¢ is, e.g., the east neighbor of angé having a
energy per spin, as long as the system is dominated by raphase yg= ¢+ K, =kx+k,— o t+ ¢. We now split the
dom phased waves. We note that in the case of a symmetrsummation in Eq(3.11) into a term containing the phasgs,
spectrumay k= ay k, (this is the case for the Jeans spec-and others, and develop the sine of the summation of two

trum, when the dlspersmn relation satisfieg, . = i ), 'éerms |tnto a product. The averaging of these two terms re-
uces to

We finally obtain

T
h:§+2‘1_k[ Jo(ﬂx)—l_k[ Jo(By), (3.6)

the products of zero order Bessel functions are equal,

v [ kg
5= 11 3o(B0=11 38, (37 co3 3 Bsin| i (3.12

o
- 230(BY)’

whereuv is related toh by h(T)=T/2+2—v(T), and is the because the averaging of the sine term is zero. The two
average potential energy. In order to obtain an explicit forrneighbors in thex direction (west and east sitegive the
of the energy per spin as a function of the temperathre, following expression:
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(SiN(6— Bg))" +(sin(6— b))’ > ' ' ] '
_ v [sir{ sin( +kx} i
230080 | A T i e
_ sir{ Bxsin( Y~ %) } @13 i

Vortex branch
Those in they direction give exactly the same contribution,

with B,— B, . On the other hand, the left hand side of Eq.
(2.3), the temporal part of the equation of motion, is reduced,
after substitution of the random wave expression, to

Energy

151

(6,)=— wla,cos Y. (3.19 1

As before, in the linear computation, we multiply both sides

of the equations of motio3.14 and (3.13 (including the 05
similar terms for the north and south neighbotsy cos{),

and average over the phagg, noting that this average in- . .
volves first order Bessel functionk,. We finally find the 0 05 1
desired dispersion relation

. & Jl(ﬁx) (&) ‘Jl(,By)
S'”(z 3B SN 2) 348,

Phonon branch

Temperature

FIG. 4. Plot of the energy density vs temperature computed
from Eg. (3.18. The straight line characterizes the random field
: state, the lower branch the phonofspin waveg and the upper
branch the lattice excitations of the vortex dipole type.

wiay=2v

> (3.18

pends on the spectrum amplitudes, in two ways: implicitly
through thea,’s in v and explicitly in the Bessel functions.
To go further, let us investigate the dependence of the argu- ) ) ) ] )
ments of the Bessel functions on the paramefermnd N, We notlce that the nonlinear dlspersmn relation redut_:es to
and the related limiting form of the total energy per spin  the linear one forT=0. The nonlinear effects, taken into
We know thatv, being an intensive thermodynamic quan-&ccount in Eq.(3.17), appear as a renormalization of the

tity, does not depend on the number of spitie size of the Phonon frequency(energy due to the coupling of the
system; moreover, the linear frequendi.10 is bounded phonons with a thermal bath created by the other phonons as
from below w§k~s,in2(k 12)>0(1N). We also note, as it is in a mean field. We also note that the factor 2, found in the

3 X! . ]

éight hand side of Eq(3.18 and in the exponent, can be
related to the lattice dimensionaliit results from the addi-

This dispersion relation is nonlinear, i.e., the frequency de- ;{ T}
v=2exX

natural for a system near an equilibrium state, that a larg
number ofk modes must contribute to the energy of the . .
system, and then in general we hagsink/2—0 whenN tion of the x andy terms. Moreover, as we anticipated,
' X formula(3.18 does not depend explicitly on the form of the
—oo, for a large range of temperatures. If this were not the
. . spectrumay, .
case, the energy would be concentrated in a few tigh

modes, which is clearly in contrast with the observations. For L?t us now |.nvest|gate' the implicit equatid8.19 bY
. - : solving it numerically. In Fig. 4, where the energy density
the Jeans spectrum, one finds speuﬂcalzlgﬁsm k,/2

N ) N versus the temperaturk is plotted using formulasi=T/2
~O(T/\N). Using these approximations, we can now de-1 5>, (T) and Eq.(3.18, we see three branches according

velop the Iogarithm of the product of the Bessel functions into the solutions of Eq(3.18. Although the three branches
Eq. (3.7) to obtain are in principle acceptable solutions, they would have differ-
ent “weights.” For instance, if one associates to each branch
v=2 expk -1y aiwék] . (3.1  a Gibbsian probability, prpportional to expky /T), whereh;,
k denotes the branch energy 0, 1, and 2, the lower branch
o _ has, at a given temperature, the higher probability. The
In the same approximation, for fixed temperatures and largghoice of a Gibbsian probability distribution of states is not

lattices, the dispersion relatidB.19 reduces to in contradiction with our microcanonical approach. Indeed,
) the energied; are related tanacroscopiequilibrium states,
2_ V®@ok (3.17) and the Gibbs probabilities represent the best choice, taking
RO ' into account the usual constraints of maximal entropy and

normalization.
Introducing this expression into formul®.16 for v, and The straight line corresponds to the solutios 0, which
using the definition of the temperature in terms of randonrepresents a random spin field. Indeed, in the high tempera-
phased waveEEq. (3.2)], we obtain an implicit equation for ture region, since the potential energy is bounded, we can
the potential energy, expect that the rotators are freely rotating without any order,
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2 ' ' The temperaturd,, determines the upper border of the
18l | wave dominated regime; above this temperature the wave
6/ branch disappear&@s well as the vortex dipole branchn
16 1 order to determind,,, precisely it is useful to rewrite Eq.
1al o | (3.18 as a formula for the temperature in termsvof
>"2‘ peat | T=-2v In(v/2). (3.20
3 1t e
L”OS_ v | If we now calculate the extremum af(v) for 0<v <2, we
) = obtain, forv=2/e=T,/2, T=T,=4/e~1.47, which is ex-
o6l 1 actly the critical temperature found in Rdi21] using a
oal Hartree-Fock approximation. This temperature also appears
‘ with the use of renormalization techniques in R&2]. In
02t 1 this case, we note that the equationdais formally identical
. . . to the one for the renormalization constant in this renormal-
0 05 Temperature 1 15 ization group calculation. However, the two methods are ba-

sically different, and in particular the relation betweeand

FIG. 5. Plot of the energy density vs the temperature. Thethe dispersion relatio(8.17), allows us to obtain more pre-
circles refer to the numerical data, the dashed line to the phonogise information on the different thermodynamical quantities
branch of Eq.(3.18, and the solid line to the theoretical averaged of the system. For instance, as mentioned above, the relation
density of energyEq. (3.19]. betweenv andh, which is different from the relation be-

tween the renormalization constant and the energy, leads to a

i.e., that @ — 6;) is random with constant distribution ®, ~ Vvery good description of th(T) curve up toT,,.
2m). This gives us an energy density=T/2+2 and Let us now evaluate the magnetization for a finite size
v(T)=0. The implicit solution of Eq.(3.18 thus extrapo- System with periodic boundaries using the same approach as
lates the good asymptotic behavior of the energy for higHefore: we assume that the spin field can be represented by a
temperature to low temperature regions. This solution existsuperposition of random phased wavasl). We call ¢, the
for any temperature, but in the low temperature region a spiidverage over the lattice of th; it is a constant, since the
configurations associated with this branch should be unstabltal momentum is conserved. An average of the magnetiza-
(in the sense that for general initial conditions, as in ourtion over the random phases brings up a calculation similar
numerical computations, the system cannot evolve to thi& the one for the energy per spin, and leads to
state.

Below a certain temperatuie=T,,, we also see that two ,
other branches appear. As the lower branch has the higher <M>:1_k[ Jo(ay)(cos b,sin bp). 329
probability, in the low temperature region we may expect the
lower energy branch, which we call the phonon branch, to be

the physical relevant solution, and the third branch to have This expression remains exact as long as the random

no physical meaning at all. However, if we now consider thachase approximation is valid. In order to develop the loga-

in fact the lattice is populated with two types of species ofr|t2hm of this expression, we have to take into account that

different energiesh,(T) and h,(T) corresponding to the a;,<O(T), which implies that the development is only valid

lower (phonons and upper(which we call vortex branch in the low temperature regimeE< 1. Mo_reover a detailed
respectively, we obtain " knowledge of the spectrum is also required. Therefore, con-

sidering the observed almost flat spectrum of the momentum,
we assume the equipartition of the kinetic energy among the
modes and use the Jeans spectrum given in(E®. The
absolute value of the magnetizatiaffiyl |), is given by the
product over the differenk of the Bessel functions. In the
which is almost in total agreement with the numerical datdow temperature regime, using E¢8.17) and(3.3), we ob-

hle72h1/T+ h2e72h2/T
h= o 2T g 2T (3.19

up toT,,, as we can see in Fig. 5. tain, for its logarithm,

The upper branch can be related to “dipole vortices,”
since it starts at an energy equal to(ge Fig. 4, corre- aﬁ T 1 T
sponding to a lattice composed by topological defects form-  In({[M[))= —; 2- 2N ; w2 - G(0),

ing a perfect crystal 6, — 6= += w/2 andZj(;sin(é— 6,)=0
overall the latticg This crystal state, which is in fact a pe-

riodic array of dipoles, is a stationary solution of the equa- . . . .
. . ~ . . whereG is the Green function of the linear wave equation,
tions of motion aflf =0, around which no linear development

2 .
can be madéthe linear term is zero, vortices can be consid-C(N = Zkexplk-1)wpy, with G(0)=(1/4m)In(2N). The ex-
ered as nonlinear particlesThe factor 2 in the exponents of pression for the magnetization is then
Eq. (3.19 takes into account that vortices come in p&ds
poles at low temperaturen the lattice in order to conserve (M)=
the total circulation.

(3.22

T/4mv
) (cos by,sin 6y). (3.23

2N
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00 0.5 ] 15 and we obtain the expression
Temperature

<|M|2>=$ 211 %

X;— Xi
o - 2aksin( k'—’) } (3.24
FIG. 6. Finite size effects on the magnetization. The upper plot 2

shows —4mv In(M)/In(2N) as a function of the temperature; the

line refers to formula3.23; +, X, andO refer to numerical data Which, in the low temperature regime, assuming a Jeans
for lattice sizes of N=64°, N=128, and N=256, respect- Spectrum, and making the same expansion as in(%g32,
ively. The lower plot showsM(T); circles are for aN=256 leads to

lattice. The thin line is the analytical result, and the dotted line is

the result using only the contribution of linear spin waves: o0 1 _E )
M =exp[-T In(2N)/8]. (M| >—N7 IE] ex 5 G(rij)

A plot of this expression, scaled in order to obtain a func-Wherer;=X;—x;. Afirst order calculation leads to the same
tion of the temperature;- 4o In(M)/IN(2N), is shown in  esult as Eq.(3.23, implying that the variance Val()
Fig. 6 (top). Within the errors of the numerical data, the =(IM|*)—[(M)|? vanishes at leading order in the tempera-
points collapse, at low temperature, to a unique curve. Resuftre. However, at finite temperature, the two values can dif-
(3.23, obtained including the correction due to the nonlinearfer, and the variance of the magnetization can have a nonzero
contribution to the dispersion relation, substantially improvesvalue. This variance can moreover be used to characterize
the usual estimation based on the linear wave approximatiofe Phase transition, since it is the average over the lattice of
(see the bottom of the figueThe agreement of the theoret- the correlation functiore’i~%); it is also related to the sus-
ical results and the numerical data can be made more preci§gptibility x=(N/T)Var(M). Indeed, in Fig. 7, we plot the
by taking into account the different energy branches. IndeedNagnetization variance as a function of the temperature, and
if we now take into account that the lattice is populated byfind that up to temperatures of the order of the Kosterlitz-
two types of species, we can consider that only the phonon&houlessTyr, the variance remains very small, and, sud-
contribute to the magnetization, vortex dipoles having totadenly, it grows around'yr. This behavior suggests that the
magnetization zero. As the density of phonons is given bynagnetization is distributed almost likecfunction, in the
ny=e 2M/T/(e=2n/T4+e=2M/Ty " the observed magnetiza- low temperature regiméall the spins are pointing to the
tion must then be simply;M. The absolute value of this Same directioh and that,.near the transitiqn, the amount of
quantity is plotted in Fig. 6bottom. The agreement with randomly orlentec_j spins increases dramatlcally. Higher order
numerical data is valid up to the critical temperature. effects on the variance of the magnetization can be computed

In the same way we compute the averaged absolute valuésing the identity
of the magnetization,

Jo(2z sin a)=J(2)(z)+mZ:l J2(z)cog 2ma),

1
2 = o — .
(IMI%) N2 .2, (cod 6= b)), which gives, after replacing it into E43.24),
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1 plex processes related to the appearance of a kind of self-

Var(M)=[(M)|? N2 > I ra+myrpi-14, organization in the system: the vortex distribution is not uni-

Wk form; vortices form clusters which separate domains of
relatively well ordered spins. In this section we study, using

where
numerical simulations, the spatial distribution of topological
2 (ay) defects and the equilibrium configurations of the system, us-
Mi(rij) =2, mcos(mkr”—). ing an Ising-like model, in order to describe the partial order
m  Jol @

which is still present abové .

In Sec. Ill, we showed that the ordered state of the system
is dominated by phonons, and that a second type of excita-
2 1 tions, the vortex dipoles, is also present. The energies of the

|<M>|22 — - two branches meet at a temperatiig, above which both
ko @ok modes disappear, suggesting that a phase transition to a dis-

: : ordered state might occur. Within this pictuilg, would thus

This allows us to compute an approximate value of the SU%e the temperature where the unbinding of vortex dipoles

ceptibility x, appears, destroying the long range order created by the

To the first nonvanishing orden(=1), we obtain

_ (T
Var(M)=2 N

T waves. However, the actual transition temperatligg is
x~3.8710 3 — (2N)(~T2m), much lower thanT,,, indicating that other processes, not
v included in the representatid.1) of the spin motion, take
A similar result can be found in Ref23], in the limit v place.

2 Indeed, in this low temperature analysis we have omitted

Concerning the density of vortices, we can see in Fig. sche rotation of the_sp_lfrj, exlcludlng rt]erms of the Lomht' H
that aroundT~1.3 the curve has an inflexion point. This MOreover, most significantly, we have assumed that the

change in the number of defects may be explained as folPhases of the spin field were random and uncorrelated from

lows. Let us consider a single plaquette. A defect may appea‘ff'te to site, thus neglecting the influence of organized spin

when the four angles are in increasitdgcreasing order motion. Although the proliferation of vortices breaks the
and the last angle is largé&mallej than (— ), if the first, long range order, the spin field can still be organized into

angle is set to zero. In our model, due to the continuou?oma'?s(w?_ere ﬂ_}%Sp'?‘S rot?te s%pchronollés?parateq ?yd'
symmetry group, no particular direction is favored, and INES ot vortices. 1he pnase transition would be associated in

therefore the successive differences between the arggles this case, with the appearance .Of a self-orggmzed state,
— g, (discrete gradienisare all equivalent. A defect is then where, although long range order is absent, a kind of partial

obtained when these gradients satisfpn average local order, established by separated domains of coherent

0,— 0;|)> /3. At low temperatures, the amplitudes of the spins, sets |n . - o
I<(|)clal gjrgdients are determiiz]ed by the phonopns and become We consider ihis possmlllt.y.and study the spatial (_jlstnbg—
steeper at higher temperatures, reaching a point where th n .Of Qefects afo“?‘d f[he critical temperature. By direct vi-
are large enough to generate the vortices. Using the previo alization of the spin fielth; = (cos,sin ), we noted that

results, we calculate the temperature for which this conditio e number of |solgted defects is negligible, and _that they
often appear to be in small clusters along the domain borders

's reached, (this may already be seen in Fig. 7 of REF]). The problem
ke, T a2 one encounters with a direct visualization is that the spins
((6,—0)%= ZEK aﬁSiHZE TR (3.25  move too fast to allow the observation of coherent structures.

To gain some further insight, we then introduce a new diag-

nostic to visualize the spatial structures correctly. We update

each spin of the lattice with one fifth of the sum of itself and

22 ;{ 772) its four nearest neighbors, and repeat this operation a few
- ~1.27,

If we now substitute this result into E¢3.18, we find

T=——ex 18 (3.26  times, to obtain an effective local magnetization centered on

9 the considered spin. This local average magnetization is then

which is in very good agreement with the position of thedefmed by the iteration

inflexion point in the numerical data. One may consider that
around this temperature a proliferation of vortices should D —

4
1
occur. i 5

m{M+ > m{"

r n=1,...],
i)

IV. PHASE TRANSITION wherej (i) are the four neighbors of site and the number of

The usual physical picture of the Kosterlitz-Thouless traniterations is typically|=10. The resulting fieldm{ is
sition is based on the unbinding of vortex pairs: below thesmoother than the initial fielch"; at these temperatures the
critical temperature long range correlations are establishedmplitude of spin motion is large, and it defines a direction at
by spin waves, the phonons in our Hamiltonian model; above given site, weighted by the orientation of the surrounding
the critical temperature long range order is destroyed by thepins.
proliferation of free vortices. This simple physical picture of The effective spin field is shown in Fig. 8. The upper
the mechanism of the transition does not exhaust the conplots are linear gray scale images of the quantity(gii")
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FIG. 8. Spatial distribution of the local magnetization, showing the domains and the inte(f@eesext (a) and (c) Orientation
[sinz(diIZ)]; one passes from white to black by a rotationmg#i. (b) and(d) Intensity dmi(')|); disordered regions are shown in bla¢&).
and(b) T=1.02.(c) and(d) T=1.29.

(see also Ref10]), whered!" is the angle of the local mag- the energy is kinetic, and therefore most of the spins are fully
netization, and the bottom ones are images of the quantitgotating, with similar amplitudes. This is illustrated in Fig. 9,
Im®|. In the upper plots we can easily locate the vortices bywhere the typical temporal behavior of one spin in a high
looking at pinching of the darker and brighter areas. Theytemperature field is shown. Conversely, at low temperatures,
appear to be all bounded in dipoles or chains of dipoles. Thangles remain bounded in time. On the other hand, the spin
presence of these chains can be interpreted as the birth ofomentum takes essentially constant valgpsesitive or
interfaces separating domains with local order. These lattenegative ones, depending on the sense of rotatibine in-
are more visible in the bottom images, where the brightedividual behavior of the spins also reflects the statistical
regions characterize strong local magnetization, and thergsroperties of the system. The angle variance is bounded at
fore locally aligned spins; while the darker regions, wherelow temperatures, in agreement with the random phase ap-
the orientation of spins change rapidly with position, indicateproximation, while it steadily increases in time at high tem-
the presence of vortex defects and disorder. In the left imperatures, as we can see in Fig. 10. In analogy with the
ages, representing a systemM& 128 spins at a tempera- properties of a perturbed pendulum, the change of the topol-
ture slightly above the critical temperatuiies 1.02, we see ogy of trajectories is related to the crossing of a separatrix.
that the disordered regions are highly concentrated, and th&elow a certain value of the energy density. [h.
they tend to connect themselves along lines. This tendency ish(Txt)~1 in our mode], the spins are collectively
even more clear in the right images, where we show a systetnapped, and, after the transition, as the behavior of the topo-
at T=1.29. We also note that the size of the ordered regiondpgical defects suggests, they start to rotate in organized do-
the domains, are much smaller at higher temperature3. At mains, whose size progressively decreases as the energy den-
=1.02, the domains occupy connected regions of a size consity increases.
parable to that of the whole system; at higher temperature, An important consequence of these results is that the sys-
the domains are instead confined in localized regions. tem, at these temperatures, can be represented by local or-
At higher temperature the weight of random regions in-dered regions of synchronized spin motion, and random in-
creases, and the size of domains is reduced. In this regimigrfaces where the defects accumulate. To these rotating spin
since the density of the potential energy is bounded, most alomains, one may add some level of fagith respect to the
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FIG. 9. Typical temporal behavior of a rotator at high tempera-
ture. Top: sping;(t) at the central site fol =4.100, measured in 0.7
units of 27. The spin rotates in the same direction and with an
almost steady speed for long periods of time. Bottom: plo@¢f) :a’; 0.6
showing that its fluctuations are fast compared to the evolution of v
0, .
0.5
time scale of rotationfluctuations characterized by an effec-
tive low temperaturd, which takes into account the poten- 0.4
tial energy. In this context we may introduce relevant vari- 0 t%%% 400

abless;, which take the values 1 according to the sign of

spin rotationd; . It is important to keep in mind that the FIG. 10. The spatial variance @fvs time is plotted for different
system is considered to be in its thermodynamical state, ari@mperatures. At the bottom we have the plotTer0.4783, while

: : . : on top the one folf =2.7905. The numerical data are obtained for
that the temporal average of spin rotation velooﬁfy:T 1S, a lattice size oN=256. We clearly see that the variance ®is an

using ergodicity, independent of the spin site. We can theri1ncreasing function of time only fof > T
. . - KT.
assume that the angle velocity is of the forth=();

~s.\/T, and write

cog 6, — 6;) = cog (s;—s;) Qt]cog §— 4)

0= Qt+g(t/e), (4.1 —sin(si—s)tIsin(4—4), (4.2

whereQ = \/T, ande characterizes the fast temporal fluctua-Wherei andj denote two neighbors. The fast temporal be-
tions of the functionq, i.e., |e[<1 and[§(t/€)|<s Ot havior of thef’s assures its fast thermalization at a tempera-

(See F|g 9 The f|e|d~q is in fact similar to theai used in ture’:i-, and decorrelates the two terms in each pI’OdUCt. This
Eq. (3.1), but associated with another temperafiirein a allows us to split the time average in two steps, first on the

rotating reference system, attached to each doweiere all fgst time dependence and then on the slower time scale. The
thes;’'s are equd| it is an effective “low temperature’XY first average leads to
spin field.

The introduction of a new field,= *= 1, which labels each
lattice site by the sign of the spin rotation, suggests an anal-
ogy between the high temperatuxe&r system and the Ising

model. We will exploit this analogy to construct a model where we use the results of Sec. III, due to the effective low

aimed at describing the complex properties of the SySte"E'emperatureNT within a domain. Then the mean of (s

near the Kosterlitz-Thouless transition, which do not resume_sj)m] is zero if the two spins do not rotate in the same

direction(do not belong to the same dompiand one if the
two spins corotate, which means that the average of this

o 4) =50, sind-4)=0.

to the simple unbinding mechanism of dipole vortices.

In order to map theXY system into an Ising system, we
take advantage of the time scale separation between the re'fé'rms can be represented by a Heaviside funceds;s;).
tive slow rotation and the fast thermal fluctuations. Let US\ya then obtain the expression )
now average the potential energy over a few rotation periods,
during which the approximation made in E@.1) remains 1 %)
valid. For that purpose, we are reduced to computing the —_ = a2\ .
average of terms of the form 72N in Co% 6~ 0) =N OE,D Oss) (43
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for the mean interaction energy, where the summation iggs. (4.5) and (3.18), gives Tx7~0.855, which is in good

over all neighbors, and the Heaviside function just states thaigreement with the numerical value Bf;~0.898 found in

only synchronized, corotating spins contribute to the averthe literature.

aged potential energy. Using the identi§(s;s;)=(1 There is, however, an important difference between the

+s;s;)/2, we finally obtain an effective Hamiltonian usual Ising model, and the present one, derived fronXtife
system. It is the global constraint associated with the conser-
vation of the total momentum. The mean value of the total

T oM\ v momentumP=0 is given by 0=36,=3s;. But this last
He=N 24T T | g %‘4) iSj (4.4 expression is precisely the Ising magnetization
1
We notice that this effective Hamiltonian is the sum of two |\/||=N Z s=0, (4.6
i

different terms, which we denoté; andH, . The first term

Ht depends on the temperature, the size of the lattice, and, . o o
T aep d heref pb idered ; which means that only symmetric distribution of positive and
v(D), an Car'? therefore be considered as an Ignergy re err'legative spins are allowed. This constraint prevents the sys-
ence term. The second tet) introduces a coupling energy em from undergoing, as in the Ising model, a second order

between the spins, and can be recognized as a ferromagnefifiaqe transition, with the spontaneous appearance of a mac-
Ising-like Hamiltonian whose coupling constar(T)  455c0pic magnetization below the critical temperature. In the
=v(T)/4 is a function of the temperature. Using an Ising present case, this would mean that a significant fraction of
terminology, we now have a population of spigs=*1,  the spins would rotate in a preferred direction, but Eq6)
interacting with their close neighbors on a square latticeforbids this kind of phase transition, and forces the system to
Therefore, under the assumption of ergodicity and takindaccommodate to a vanishing magnetization. In fact, what
into account that spins rotate on a well separated time scalgappens is that, below the transition temperature, the spins
with respect to their fluctuations, we have mapped X  cannot fully rotate, domains disappear, and the long range
system into a Ising-like model; these two models are linkecbrder is established by a reorganization of spin motions in
through a coupling constant dependent on a temperature rehe form of spin waves, which can still generate a noninten-
lated to fluctuations. We shall note that the time dependencsive finite-size magnetization.
of the Hamiltonian is masked, but tisgs are still functions
of time, and we still are within the r'nicrocanlqnic':al ensemble. V. CONCLUSION
Invoking again the thermodynamical equilibrium, and the
fact that both the microcanonial and canonical approaches In this paper we took a dynamical point of view to ana-
lead to the same thermodynamic limit, we can now continudyze the statistical properties of ti€Y model. This approach
our study within the canonical ensemble. has the advantage of offering a natural physical framework.
As is well known, the Ising model undergoes a phase~rom the structure of the evolution equations of the spins
transition and generates a spontaneous magnetizafion (which become coupled oscillators in the linear approxima-
whenJ, /T> B,.~0.44[24]. In order to know if the present tion), one is prompted to consider the phondpspagating
Ising system reaches the transition, we have to investigatwaves in the latticeas the basic excitation at low tempera-
the behavior ofv (7). The previously observed domains ture. In the thermodynamic limit, and assuming that the sys-
(Fig. 8 are in agreement with the phenomenology of thetém reaches an ergodic equilibrium state, it is reasonable to
Ising model above its transition, the maximum value of theintroduce random phases in the waves. Using this basic
coupling constant being(fl)/4<% implies that both models mgghanlsm, we obtained a nc_)nlmear dispersion relation con-
are surely in their high temperature states Tor1/28,, taining the fundamental physics of the system. Macroscopic

— . / uantities, such as the energy and fieite size magneti-
1.14. In the low temperature regime, none of the spins argation, are well described by this method up to temperatures

rotating; T=Tandv,=v, and all the potential energy is due ¢|ose to the Kosterlitz-Thouless critical temperature.

to the waves. We know that thg energy is continuous throygh On the other hand, for high temperatures, our dynamical

the Kosterlitz-Thouless transition and also through th~e 'S'n%pproach allowed us to map theY model into an Ising

transition. As a consequence, we expect #@tr)=v(T)  model with a coupling constant depending on the tempera-
at the transition temperature. Moreover, the effective domaiure. This relation to an exact model is beneficial to under-

temperaturel has to be an increasing function @ and  standing the physics near the transition, and moreover per-
thenv, is a decreasing function of; in order to obtainh mits an analytical computation of the critical temperature, in

=T/2+2 at high temperaturey(T) has to vanish as excellent agreement with Monte Carlo simulations.

—.. The equation Thes_e results lead to a physical description of the
Kosterlitz-Thouless transition in terms of the change from an
ordered statélong range correlation are established by the

~ wave excitationsto a local ordered state where macroscopic
JiT=v(DI(AT)= B¢ (4.5 domains are separated by interfaces populated with topologi-
cal defects. Topological defects have then a tendency to bind
themselves in clusters. The generation of disorder by the
therefore has a unique solution. A calculationTf;, using  unbinding of dipoles is accompanied by the fragmentation of
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the low energy unique domain of nonrotating spins into sepagiving us his Monte Carlo data used in Figs. 1 and 2. Part of

rated regions of synchronized rotating spins. the numerical simulations were performed at the Center de
Calcul Rgional, Rgion Provence-Alpes-Ge d’Azur. A.V.
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