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Exact solution of a one-parameter family of asymmetric exclusion processes
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We define a family of asymmetric processes for particles on a one-dimensional lattice, depending on a
continuous parametere [ 0,1], interpolating between the completely asymmetric procedses =1) and the
n=1 drop-push model¢for A =0). For arbitrary\, the model describes an exclusion process, in which a
particle pushes its right neighboring particles to the right, with rates depending on the number of these
particles. Using the Bethe ansatz, we obtain the exact solution of the master equation.
[S1063-651%98)12905-1

PACS numbes): 82.20.Mj, 02.50.Ga, 05.48j

. INTRODUCTION 4o Pk Ky, . k=10

) . ] ] o —NP(kq ks, ... Ky st), (N
Various versions of one-dimensional asymmetric simple

exclusion process¢ASEP have been shown to be of physi- if kKi+1—k{>1. This equation was then augmented by the

cal interest in a variety of problems including the kinetics offollowing boundary condition:

biopolymerizatipn[l], polymers in random r_nedia, dynami- P(k,k,t)=P(k,k+11), Vk. @)

cal models of interface growtf2], and traffic modelq3].

This model is also related to the noisy Burgers equdtidn  In writing Eqg. (2), we have supressed for simplicity the po-

and thus to the study of shocks,6]. Besides the equilibrium  sition of all the other particles, bearing in mind that this

properties of this model, its dynamical properties have alsgondition should hold for every pair of adjacent variaties

been studied if6—-8]. and k; ;. In the following we always use this simplified
Recently the totally ASEP model, with sequencial notation. It was then shown that Eqd) and (2) give the

updating on an infinite lattice, has been solved exactly byeorrect master equation in the whole physical redian, the

Schitz [9] using the coordinate Bethe ansatz. In thisregionk;<k;,,) for the probabilities. In the rest ¢B], the

model, each lattice site can be occupied by at most onéxact solution of the master equatid [with boundary con-

particle and a particle hops with rate one to its rightdition (2)]is constructed.

neighboring site if it is not already occupied; otherwise We now describe what we have done in the present paper.

the attempted move is rejected. In his work, instead of usindgn Sec. Il, we substitute the boundary conditi@ by

the quantum Hamiltonian formalism, which is suitable _ _

for studying the dynamical exponents and certain Plkkt)=P(k=1k1D), vk, @)

time-dependent correlation functions, Sthwadopted the and show that this boundary condition, together with Eg.

coordinate representation for writing the master equationdescribes tha=1 drop-push dynamidsl0]. In this process,

By solving the master equation exactly, he was able taven if the right neighboring sites of a particle are occupied,

obtain explicit expressions for conditional probabilities the particle hops with rate one to the next right site, pushing

P(X1,X2, - .. Xn;tY1,Y2, - .. yn;0) of finding N particles  the right neighboring particles to the next sites. This

on lattice sitest;, ... Xy at timet with initial occupation  means that all the following processes occur with equal rate
Vi, -..,¥n at timet=0. one:
The master equation for the probability of finding
particle 1 on sitek,, particle 2 on sitek,, ..., andpar- AO0—0A,
ticle N on siteky, with ky>ky_1> - -k,>k, is written
as AAO—OAA,
EP(kl,kz, cokN D) AAAD—OAAA,

:P(kl_l,kz, P 'kN ,t)+ P(kl,kz_l, PP ,kN,t)
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where we have adopted the standard notation for rep- [l. GENERALIZED TOTALLY ASYMMETRIC
resenting a particle by and a vacancy by 0. We then ob- EXCLUSION PROCESS WITH A=0
tain a closed form for the conditional proabilities for this

rocess We augment the master equatih with the boundary
P : condition(3). Although we derive the rates for arbitraxyin

This process, in which a particle pushes as many par;

ticles with rate one, is the opposite extreme of whatthe next section by a general argument, here we want to

. . X . how that forA=0 case, the master equati¢b [together
was solved by Schm, and interestingly admits a closed Sh - .

form solutio)r/1 for the conditigo)r:aI probabilities with the boundary conditio(8)] describe am=1 drop-push
P(X,.X Xy :t| :0) in the form of anN dynamics. For simplicity, consider the two particle sector of
% Nl(,ieiér.rﬁi.n’ar’:t’ YiYo, o Yns n=1 drop push dynamics. The master equations are

In Sec. lll, we combine the boundary conditi¢?) and 9
(3) in the form —eP(ke ko 1) =P(ki— L1 ko )+ P(ky ko~ 11)

P(k,k,t)=AP(k,k+1t)+(1—\)P(k—1k,t), Vk,(5) CPkiket), kokitl  (©

and show that the resulting master equatiéhh and (5)],
describes a procession that the processes shown itEq
occur with unequal rates: namely, the process

p)
Pk k+10=P(k—1k+10)+P(k—1k,1)

—2P(k,k+11). (10
AA-- A0 —0AAA--- A, . N

A\—T—’ — © Now, if we choose the boundary condition

occurs with rate P(k,k,t)=P(k—1k,t), VK, (3"
_ 1 Eq. (10) can be written as
h= 2 n: (7)
I+Npu+N )+ -+ (M)
J

where u=1—\. We call this modelgeneralized totally —; Pkk+1)=P(k=1k+10)+P(k k1)
asymmetric exclusion process the limit A—0, we have
r,=1¥n, and in the limit\=1, we haver,=1 andr,.q —2P(k,k+11), (11)

=0. Note also that,,,;<r,, Vn. Therefore this process is

perhaps more physical than the two extreme cases studied Which is of the same form as E¢P).

[9] and in Sec. Il of this paper. In the three particle sector, the extra equation that needs
In Sec. IV, we use the coordinate Bethe ansatz and solvt® be taken into account is

the master equation of the process defined in Sec. lll, and

show that there is no bound state in the spectrum. d
In Sec. V, we write the quantum Hamiltonian formalism ¢

for the generalized process and, using a particle-hole ex-

change transformation, show that this generalized process is +P(k=1kk+1)=3P(kk+1k+2).

equivalent(i.e., in the same universality clast another (12)

process, where particles hop only to the left. In this new

process, if a left neighboring site is occupied, the move igjsing the boundary conditiof8), the second and the third

rejected, but if a set of the left neighboring sites are emptyiarms on the right-hand side of E@L2) can be written as
the particle hops with distance dependent rates to these sites:

P(k,k+1k+2)=P(k—1,k+1k+2)+P(k—1K,k+2)

0A—A0 with rate rq P(k—1k,k+2)=P(k,k,k+2), (13

00A—AQ00 with rate r, P(k=1kk+1)=P(kkk+1)=P(kk+1k+1), i

which means that Eq(12) is equivalent to the following

000---0A — A0Q0---0 with rate r. (8)  giandard form:

n n

Therefore a transfqrmation as simplg as a particle-hole e>'<£ P(k,k+1k+2)=P(k—1,k+1k+2)+P(k k.k+2)
change, when applied to our generalized process, has an int
teresting physical consequence. Models with different values

of N all allow exact solutions in the form of the coordinate +P(kk+1k+1)=3P(kk+1k+2).

Bethe ansatz and their spectra have only the continuous part, (15
but only the limiting cases of these models=0 and 1)
allow a closed solution in the form of a determinant. This procedure can be repeated for any sector. We will give

We end up the paper with conclusion in Sec. V. a general proof in the next section.
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To solve the master equatigfh), and the boundary con-
probability

dition (3), for the conditional

P(X1,X2, - - . XnotlYa,Y2, - .. yn;0), we set, following
Schiiz [9],
P(X1, Xz, ... XnGHY1, Y2, - oo yn;0)=e NidetGy,

(16)

where Gy is an NXN matrix with entriesG;;=g;_;(X;

—Yj,t). The functiongy(x,t) are to be determined. Writing

Gy as
i Gl(Xlat) 1
Gy=detf Gi(xi,t) |, a7
L GN(XN 1t)-
where

Gi(x)=[gi-1(Xi—y1,1),8i—2(Xi—Y2,t), .. .,
gi—N(Xi_yNit)]i (18)

and inserting Eq(16) in (1), we obtain

" G D
1(>:<1 ) P Gy(xt) ]
N 9 N :
> def —Gi(x,t) =2, def Gi(xi—1t) |, (19
=1 at =1 .
i NN
| Gn(xnb) | w
the solution of which is
J
EGi(Xi D) =Gi(x—1¢). (20

Inserting Eq.(16) in the boundary conditioi3), we obtain

[ Gy(x1,1) ] Gi(Xq,t)
G- 1(x,t) Gy-1(x—1})
det Gu(x.t) =det Gu(x.t) , (21
| Gn(Xnst) | Gn(Xn,t)
the solution of which is
Gr_1(X, 1) =Gy _1(X— 1) + BGy(X,1), (22

where B8 is an arbitrary parameter. The explicit form of the
functiong,(x,t) can now be determined: these functions, as
seen by Egs(20) and (22), should satisfy the following re-

lations:

J
21 9p(N)=gp(n— 1), (23
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gp(nrt):gp(n_1:t)+ﬁgp+l(nvt)- (24)

Defining the generating functior(er z transform$§p(z,t):
=3.__,2"gp(n,t), Egs.(23) and(24) are converted to

d~ ~
and
~ 1 ~
gp+l(zit):E(1_Z)gp(zat)7 (26)

the solution of which is simply obtained as

p
EMLU=€5ML®=€{75J§dL®- (27)

00(2,0) is nothing but the generating function fgg(n,0),
the one particle sector probabilities at=0. Since

P(X10 y10): gO(X_yIO): 5X,y ’ we hav%o(nao): 5!’1,01 and
thusgo(z,0)=1, giving finally

- 1—z\P

gp(z,t)ze“ T . (28

The parametep, as long as it is nonzero, drops out of the
determinant and so we can set it equal to unity. The func-
tionsgy(n,t) are obtained by expanding the generating func-
tions. Note that the functiorﬁp(z,t) should be expanded in
terms of positive powers dof, if p<<0. This is due to the fact
that, forp<0, asn— —«, the functiong,(n,t) tend to zero,
since this limit is in the physical region. This expansion
yields, formally,

n -1 n—k
gp(n)= X (nfk)—( k? t 29

k= —o

If p=0, gy(n,t) is converted to a finite sum

min(n,p) Kk
— P =1 n—k
Gp=o(N,t)= kzo (k>mt : (30
In particular,
tn
go(nt)= 7. (3D

If p<0, gp(n,t) is converted to another finite sum

+k—1) thK
Ipl ) (32

9““”:;%(|m—1 (n—K)!"

We have thus obtained an explicit relation for the conditional
probability.
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. GENERALIZED TOTALLY ASYMMETRIC To find the rates in the general case, we first prove a lemma.
EXCLUSION PROCESS WITH ARBITRARY A Lemma:Equation(5’) implies, for arbitraryn, the follow-

We now consider the master equati) together with ing:
the boundary condition
P(k,k+1k+2,... k+n—1k+n,k+n)

—(1—r,:)P(kk+1k+2, ... k+n—1k

P(k,k,t)=AP(k,k+1t)+uP(k—1k,t), Vk. (5")

It can be easily shown that the conservation of probability

demands thatt=1—\. In order to understand what type of +nk+n+1)+r,.,P(k—1kk+1,... k+n
process is described by these equations, we first look at the
two particle case. Equationt4) and (5’) yield —2k+n—=1k+n), (34)
J
EP(k,k+1)=P(k—1,k+ 1)+P(k,k)—2P(k,k+1) where
=P(k—1k+1)+uP(k—1Kk) A [N)2 A\ N2
rhw=|1+—+ —) + +(—) } . (35
—(1+u)P(k,k+1), (33 Lo\ P
which means the following rates: ) )
Proof: We proceed by induction. Far=0, Egs.(34) and
AO0—OA with rate ry=1, (35) are the same as E¢(b’), asr;= . Assuming now that
Egs.(34) and (35) are correct fon—1, and using Eq(5’),

AAO0O—OAA with rate rq{=pu. we have

P(k,k+1,... k+n—1k+n,k+n)
=\P(k,k+1,... k+n=1k+nk+n+1)+uP(kk+1,... k+tn=1k+n—1k+n)
=AP(k,k+1,... k+n=1k+nk+n+1)+u{(1-r,)P(k,k+1,... ktn—1k+n,k+n)

+r,P(k—1kK, ... k+tn—2k+n—1k+n)}, (36)
|
or This proves the lemma.
We now consider a collection af adjacent particles and
P(k,k+1,... k+n—1k+n,k+n) write the master equation for this configuration by Eb:

=5, 1P(k,k+1,... k+n—1k+n,k+n+1)

P
—(k,k+1k+2,... k+tn—1)
+rneP(k—1K, ... k+n—2k+n—1k+n), 379 ot

n—1
where
= Pkk+1,... k+i—2k+i—1k+i—1k+i
;— M—r”— (38) |=0
I—u(l-ry ™Mb 1= 4(1-r,) 'mt +1,. .. k+tn—1)—nP(kk+1k+2, ... k+n—1).
From Eq.(398), it is seen thas, . ;+r,;1=1. One can now (39
solve the second equation (&8) for r,,,; to obtain Using Eq.(34), we find
r )\ P
T =T Of hi= e, (kK 1k+2, . kn-1)
n
. . n—1
which gives . . .
= riP(k—1k, ... k+i—2k+i—-1k+i+1,...]
> riP(k—1k kK+i—2k+i—1k+i+1 K
)\ 2 )\ n i=0
1 _
rn+1—1+— 1+;+ — +---+ ; n-1
, o +n—1)—(2 ri>P(k,k+1,k+2,...,k+n—1).
A i=0
=1+—+|—] +---+|—
) M (40)
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It is now obvious that the above equation describes a process _— (o ol .
in which a collection ofi + 1 adjacent particles hop to the 2 € >k#ii+17(POuHIloP ol I A (1 \el7(Pisy)
right with rater;, as claimed in the Introduction. 7

—ue 19(Pi)y]=0. 47

We denote the expression in the bracketlyy. Noting that

In this section we denote the position of the particlesthe prefactor is unaffected by an interchangeoéndp; 1,
by x;eZ rather thank;, and apply the Bethe ansatz it follows that the proper coefficient of each prefactor, which
for the solution of the master equatiofl) and the Should vanish, i8,+B,,, whereo; is the generator o8y

IV. THE BETHE ANSATZ SOLUTION FOR ARBITARY A

boundary condition (57). Writing Pp(Xy, ... Xnt) (the permutation group df objecd, which only interchanges
=e N (X, ... Xy), Will turn Eq. (1) into an eigenvalue P andp 1
equation for¥y(x, .. . Xy): ai(P1, -« PP+ - PN =Py - - PP PN,
N (48
2 W(Xg, .o —1, ... XN) and oo; stands for the product of two group elements,
=1 acting aftero; . Therefore we find
:(N_GN)\I,N(X]_, e ,Xi PR !XN)' (41) Ao_(l_)\ei‘f(pi+1)_I_Le_i("(pi))+Ao_o_i(1_)\ei‘7(pi)
We write the coordinate Bethe ansatz fbrin the form: —pe 7Pty =0,
s o) or
W(Xg, oo X)) =2 AgeTPX 42
N ) I 42 Aso; NP+ 4 yeTioP) 1

T T Ao, A io(p; 1):S[U(pi),0(Pi+1)]-
where x and p stand for then-tuple coordinates and mo- As 1-he me "

menta ando(p) is a permutation of momenta. The sum is (49

over all permutations. Inserting E(42) into Eq.(41) yields  This relation, in effect, allows one to find all th&,’s in
terms ofA; (which is set to unity. The first few coefficients,
corresponding to the elements ¢l,05,0107,0501,

2 Aa_eiu'(p)'x(e_ia'(pl)+e_io'<p2)+ . +e_ig(pN)) 010,07 are
Al:11 Aa'lzleI AO'ZZSZ?)’
A0'10'2: 8128131 A(Tzalz 813823’ Aalo'zal: 812813823!
(50)
where S;;=3S(p; ,p;). The form of the scattering matri%;

:(N_GN)\I’N(Xl’ P ,XN). (43)

The sum in the parentheses can be writteix fis,e Pk and
taken outside2 ., yielding

N N , could also be found from the two particle sector alone. The
eni=2, €(p)=2, (1—e Pk, (44)  above analysis shows in fact the factorizibility of tBema-
k=1 k=1 trix in the general case, a sign of the integrability of the
. . . . _ problem.
Note that due to translational invarianc&, is also an ei- To find the range op;’s, we analyze théS matrix,

genvector of total momenturR, which in the lattice is de-

fined as the logarithm of the shift operatdr=e'F: nePetpe P11 ¢y

12_1—)\eip1—,uefip2_ Co’ (6
(U\PN)(X:L, PR ,XN)::\I,N(Xl_l,XZ_l, PR !XN_l)
(45  and the two particle wave function
Acting by U on Eq.(42), we obtain W (X1, Xp) =Cy 8! P+ P2X2) 4 gy el (P21 FPLXD),
or
(PYN) (X1, oo XN)=(Prt - FPN)WN(X, - XD A A .
(46) P (X,x)=ePX(cie'P*+cpe PX), (52

Therefore the eigenvectorg, have additive totanergies Where X:=3(X;+Xp), X:=X;—X, P:=p;+p,, and p:

and momenta. Inserting E¢42) in the boundary condition =z (P1—P2) with clear physical meanings. Singeis nega-

(5"), rewritten in an unabbreviated form tive (X;<X,), to have a bound state one of the following set
of conditions should be satisfied simultaneously. Either

WXy, .. . Xi=&EX11=&, ... XN) c,=0, Imp>0, ImP=0,
=ANV(Xg, - X =EX1=&E+1, ..o XN) or
FpW (X, - X FE X 1= E XN, c;;=0, Imp<0, ImP=0.

we obtain Rewriting c4» in terms of the new momenta, we find
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Ci= eP(e P—\eP2— e P/2), (53 This is just a linear combination of the eigenfunctions, satis-
fying the initial condition
Since InP=0 we have

NP2+ ue PRIs\+pu=1. 54 : :
| pe =M (54 Po(2 X2:00Y1.Y2:0) = 8y, .55, .
Noting that|e '?|>1, it is seen that;, cannot vanish. A

similar analysis applies for the second set of conditions.
Therefore no bound state exists in the spectrum, and th the physical regionX,>X;,y>>Yy4). The eigenfunction

range of all momentum variables[i§,27). W,(Xq,X5) in EQ. (55) is normalized according to
To find the conditional probability
Pn(X1,X2, - .« XnitlY1,Y2, - . . Yn;0), oneshould take a lin-
ear combination of the eigenfunctiods,, with suitable co- Wo(Xq,Xp) = € (PIX1¥P2X2) 1 g gl (PX1+P1Xp)
efficients. Consider the two particle sector. We have
2m 27po1 de . . . . . .
Pz(X1'X2§t|Y1,y2;0)=f f — To avoid the singularity irS,,, we setp;—p;+ie. With
o Jo 2m 2m this prescription, the contribution of the second termiip
« @ [€(py) +e(P)lt=iP1y1—ipay2 to Py(X1,X2,0|y1,Y2,0) identically vanishes in the physical
region. Using the variable& =e'Pt and : =e"'P2, a simple
XWH(X1,X5). (55  contour integration yields

ot Y1 tX2— Y2 i zk ( k) ) tXe—yptm tXa—Y2—k+m
Po(X1,Xz;t|y1,Y2;0) =€~ - AT !
2(X1,%2311Y1,Y230) (X1—=Y1)! (Xo—Y2)! Eb Ao \m (Xa—yp+m! (X;—y,—k+m)!
At p(X2—y1+m)
% 1_x1—y2—k+m+1_ t ' 0

It is easy to see, explicitly, that this solution satisfies the initial condition in the physical region. Also, in the limiting cases
A=1 and\ =0, it reduces, respectively, to

VL e Y2 Y2 PaYetl 12 po-vitk
P2(X1,X2;t|yl,y2;0)=eZt{(xl_yl)! (X2—Yy2)! - (X1 —Yy2)! - (Xg—y2+ 1! k§=:0 (X2=y1t+k)! )’ &7
obtained in[9], and
VL e Y2 X2 V1 eyl 12 pavek
PZ(Xl’XZ”'yl;yz'o):e_a{(xl—yo! (xa—v2)l |Gyl <x2—y1—1>!L20 <x1—y2—k>!]’ 59
obtained in the present paper.
The treatment of thél particle case is similar. We have
Pn(X1y oo XnGt YL, -2 yN0)= f:w%. .. fozv%e[ze(pi)]tiEpiyi\IfN(Xl, XN,

The integration is defined with the following prescription:  tors, respectively. Their action on a bra stéte, («=0,1),

in S (i<j), p; is replaced byp;+ie. can be conveniently represented ég|n=a(a|, {(a|oc™
=(1-a){1l-a| and(aloc"=a(l—a].
V. HAMILTONIAN APPROACH The state of the systefW (t)) evolves according to the

_ . . Schralinger type equation—a/dt| W (t))=H|W¥(t)). The
The Hilbert space of generalized totally asymmetric ex-connection between the two representations is given by the
clusion process ig{=®C,, the tensor product of all the (g|ation
local Hilbert spaces of the lattice sit&3; is the two dimen-

sional vector space with basis statés=(3) and|1)= (). P(ki Kz, .o Knot)=(ka Ko, oo K| Wn())
The stateg0) and|1) represent vaccant and occupied sites, — 0l o gt
respectively. The local operatons= (3 9), o =(§ %), and (Oloigaig s - i [ n(D)-

o =2 9) are the number, annihilation, and creation opera- (59)
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The Hamiltonian of the process can now be written as VI. DISCUSSION AND OUTLOOK
We have defined a generalized exclusion process, param-
H=- 2 2 r—qfoe(h)—we (D1, (60 etrized by a real parametare[0,1], and have shown that
kel 1=1 the master equation of this model admits for evergn exact

solution via the coordinate Bethe ansatz. We have also

wherel represents the sites of the lattice and shown that this model interpolates continuously between two

_ 4 o - very different models: the totally asymmetric exclusion
oD =01 M aMer - M -1 61 model(for A =1), which we may consider as the weak cou-
WD) =My 1Mo - it (1= Nies ). 62) pling limit and the drop-push modélor A =0), which may

be considered as the strong coupling limit of the model. In
Consider a bra state containihgarticles on adjacent sites: th€se two limits, the solution acquires a simple determinant

(k+1K+2, ... k+1|. The only terms irH with nonvanish- ~ form. . : : .
ing action on this state are Our work can be further investigated in one definite way.

It may be that the poink = 3 is a point of phase transition

(k+1k+2, ... k+1vy(i) and the study of the equilibrium properties of the model on a
periodic lattice may reveal this transition. There are already
two pieces of evidence for the validity of this conjecture.

First, there is some sort of duality between two models with

=(kk+1,... k+i—1k+i+1,... k+I|,

1<i<l, (63 parameters symmetric with respectXe=1/2. To be more
ific, h
(K+1K+2, . K Wys g1 (D) Speciiic, we have
— (Kt 1k+2 K+l 1=<i=<| (64) S(P1,P2;N)=S(=pP2,—P1;1—=N). (65

Second, the largk behavior of the transition rates is
Note that the action of the above operators on every other

state that contains, beside the above particles, other collec-

tion of particles disconnected from the above one is the

same. Using Eqg59)—(64), one arrives at Eq(40) for the 1

evolution of the probability. Note that the quantum Hamil- r~< -

tonian (60) is a stochastic operator, meaning that all of its I

off-diagonal matrix elements are nonpositive with the sum of ( N
\

A
1-—, A<
M

entries in each column being equal to zero. This last property
is expressed by saying théB|H =0 where(S| is the sum of

all basis states of{. Equivalent models may be obtained by It will be interesting to study the stationary behavior of this
constructing operatorsQ): H—H and HamiltoniansH’  system along the lines that have been followefllih-14, to
=QHQ 1, which preserve the above properties. An obvioussee What kind of phases develop in the system by varying
example is the particle-hole exchange oper&erIl;of. It
clearly has the property thg§Q=(S|, so that forH’ we
also have/S|H' =0. It is easy to see that this transformation  V.K. would like to thank M. E. Fouladvand for useful
induces the changes—1—n ando " <o ~. So the master discussions. M.A. would like to thank the research council of
equation obtained frorhl’ describes the proce$8). the Tehran university for partial financial support.
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