PHYSICAL REVIEW E VOLUME 57, NUMBER 6 JUNE 1998

How self-organized criticality works: A unified mean-field picture
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We present a unified dynamical mean-field theory, based on the single site approximation to the master-
equation, for stochastic self-organized critical models. In particular, we analyze in detail the properties of
sandpile and forest-fir6FF) models. In analogy with other nonequilibrium critical phenomena, we identify an
order parameter with the density of “active” sites, and control parameters with the driving rates. Depending on
the values of the control parameters, the system is shown to reach a subtaitieatbing or supercritical
(active stationary state. Criticality is analyzed in terms of the singularities of the zero-field susceptibility. In
the limit of vanishing control parameters, the stationary state displays scaling characteristics of self-organized
criticality (SOQ. We show that this limit corresponds to the breakdown of space-time locality in the dynamical
rules of the models. We define a complete set of critical exponents, describing the scaling of order parameter,
response functions, susceptibility and correlation length in the subcritical and supercritical states. In the sub-
critical state, the response of the system to small perturbations takes place in avalanches. We analyze their
scaling behavior in relation with branching processes. In sandpile models, because of conservation laws, a
critical exponents subset displays mean-field valuesiand v=1) in any dimensions. We treat bulk and
boundary dissipation and introduce a critical exponent relating dissipation and finite size effects. We present
numerical simulations that confirm our results. In the case of the forest-fire model, our approach can distin-
guish between different regiméSOC-FF and deterministic FBtudied in the literature, and determine the full
spectrum of critical exponentgS1063-651X98)09805-5

PACS numbeps): 64.60.Lx, 05.40+j, 05.70.Ln

[. INTRODUCTION question it would be necessary to understand better what
determines the appearance of scaling in SOC models and
After ten years of research and countless papers, the préfiven systems in general.
cise significance of self-organized criticalitgOQ [1] is The idea of a critical point without fine tuning of external
still controversial. Originally, SOC was presented as a genparameters is very appealing, because it opposes the standard
eral theory to understand fractals and dbise as the natural picture of equilibrium critical phenomena. The concept of
outcomes of the dynamical evolution of systems with many‘spontaneous” criticality, as it has been discussed in the
coupled degrees of freedom. Irreversible dynamics woulditerature, presents several ambiguities. It has been pointed
generate a self-organization of the system into a critical stateut by several authors that the driving rate is a parameter that
without the fine tuning of external parameters. The SOC idedas to be fine tuned to zero in order to observe criticality
was illustrated by computer models in which a slow externa[10—13. This fact poses no problems to computer simula-
driving leads to a stationary state with avalanches of widelytions, where an infinite time scale separation can easily be
distributed amplitud¢l]. This proposal stimulated a cascade enforced, but it is crucial in experiments where the driving
of research activity in experiments, theory, and simulationsrate is always nonzero. The second ambiguity is mostly a
While the explanation presented in REE] about the origin  language problem: calling “self-organization” the evolution
of scaling in nature now appears too simplistic, SOC gave #&oward a stationary state can be misleading. Any nonequilib-
formidable input to the study of slowly driven systems andrium system poised at its “fine tuned” critical point, when
avalanche phenomena. started from a generic configuration, evolves toward the criti-
Avalanche behavior was experimentally observed in a vaeal stationary state, thus building up correlations and scaling.
riety of phenomena ranging from magnetic systeftite = We would not describe this process as self-organization.
Barkhausen effe¢t{2] and flux lines in highf. supercon- These ambiguities in the definition of SOC have hindered the
ductors[3], fluid flow through porous medip4], microfrac-  formulation of precise relations with other nonequilibrium
turing processef5], earthquake$6], and lung inflation7].  critical phenomeng14].
In addition, SOC ideas stimulated a great interest in granular In the past years, several attempts have been made to find
matter] 8], although it was soon realized that the concept was general mechanism to describe SOC models. In particular,
hardly applicable there, apart from the academic example dbornette and co-workers proposed several different mecha-
a rice pile[9]. All the above mentioned experiments sharenisms that could lead to SOC, or more generally to power
with SOC models the slow external driving and the ava-law avalanche distributiorfd5,16. In a recent paper, it was
lanche response, but it is unclear whether self-organizationlaimed that SOC corresponds to the tuning to zero of the
as described in Refl] plays any role there. To answer this order parameterof an ordinary critical phenomendri1].
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Our analysis shows that criticality arises from the fine tuningmodels in quenched disorder, where the dynamics proceeds
to zero of one or moreontrol parametergdriving rate, dis- by a global minimum seard88]. Also in that case, to write
sipation and there is no coupling between control and ordera local master equation one has to introduce a nonzero driv-
parameter$13], in contrast with what was suggested in Ref. ing rate, but the driving mechanism differs from the one we
[15]. The incorrect identification of control and order param-discuss here. It is possible to relate these models to a corre-
eters is at the basis of many misconceptions about SOC ph&ponding nondriven critical phase transiti@9].
nomena, as we will discuss in the following. The present approach allows us to identi_fy control :_:md
Many theoretical methods have been used in the analysirder parameters of SOC models, and to clarify the relations
of SOC models. Few rigorous milestones can be found in th&/ith other nonequilibrium critical phenomeria3]. In par-
actty of Dhar and co-workeri7. 18, and i he work of 10U W show hat SOC models have cose simiares to
Ref.[19]. Flory [20] and Langevin-type approachigkl —2 . . . :
have[ be]en us)é([j 021 a pheno%enolggicalptf)asis. I\/%e reacent 40-42. The major difference is that in SOC models, _t_he
a real space renormalization group method provided goo ontrol parameters have to be tu_neq to zero to reach critical-
estimates of the avalanche exponefit2,24. Despite their ity. As we dlscussgd .before, this I_|m|t corresponds to the
richness, however, all these approaches are focused on tpéeakdown of locality in the dynamical rules of the model,

critical avalanche behavior, and the external driving does no?nd _he?ce to the (i/'\}i.elt of Iong-rzta}ng:ﬁ cor_relatlon Itrf: the t('jy-l
play any role; i.e., the system is studied in the infinite timehamical response. lie apparently there 1s no mathematica

scale separation regime. Furthermore, many of these ag|ﬁerence between tuning a parameter to zero or to a non-

tempts are conceivedd hocfor particular models, and do zero value, the physical differences are quite imporfa.

not provide a general conceptual framework to understan the first case, che}nging the value of the control parar.n'eter
SOC phenomena y a given factor still keeps the system close to the critical
The first step towards a comprehensive theoretical undef0'Nt This s not the case in ordinary phase fransitions,
standing of SOC is provided by mean-fielMF) theory, where, doubling the va_lge of the temperature, the_ system
which gives insight into the fundamental physical mecha_completely loses the crmcal_propemes. Moreover, in order
nisms of the problem and a reference language. It providesf rtzg SOC ng‘hal tcidbeldeflneg, the control pzr?rrlnete_r% |
feasible treatment to nonequilibrium and complex problem§ € tnvmg r? bS ou ha(\;v?r)]/s ehnor:_ze_;o, and the critica
(often the only ong and can be used as a starting point forpo'_:_‘h can on yt I\Ejllgetzimc N rout? a |r|1_1|dptrocess. tochasti
more sophisticated calculations. Whereas many numerical € presen eory can be applied 10 any stochastic

and analytical approaches become harder as the dimensio?lgllu'ar automaton, and therefore provides a unified descrip-

ality increases, MF theory improves and, despite crude a tion for the ensemble of SOC models and other related non-

proximations, it usually gives correct qualitative predictionseqUIIIbrIum critical systems, such as contact processes and

for the phase diagrams of high-dimensional systems. Finally.CeIIUIar automata W'th abso_rbmg stafe—42. M(_)reover,
MF theory highlights the importance of symmetries and con—'t serves to emphasize the differences between different mod-
servation laws els and between different regimes in the same model. Our

A vast activity concerning MF theory of SOC models can analysis also points out the inconsistencies contained in ear-

be found in the literature. Exponents describing avalanchger MF approache$35,3§ which led to a misleading char-

e : ; terization of the model. We identify subcritical and super-
distributions and propagation have been computed in severaf™ ; :
ways: solving infinite-rangf25), Bethe lattice[ 18] and ran- critical states of SOC models, and discuss the different ways

: B : _in which criticality can be reached. We describe the ava-
S:Zr?n?oegEE:EEMS%QSSEEIZ’_%? ?é”rf ?gnpslinsgtlet:te,v?ggiw lanche behavior characteristic of these models in terms of
proximations for the sand height distribution have also beehcSPONSEe functions, and 'study the effect of pertgr'batmns on
used[20,34]. Other MF approaches use analogies with equi-the stationary state. We introduce a full set of critical expo-
librium critical phenomen§35,36, leading sometimes to in- nents, describing the_r_espon_se at the C”t'c.a.l point and the
correct predictions, as we will discuss in the following. In scaling close to the critical point in the subcritical and super-
summary, the MF épproach to SOC systems is composed itical states. In the case of sandpile models, a subset of
a number of studies of specific models, but a comprehensiv%Xponents is found to h{;\ve mean-ﬂeld yalugs In any dimen-
understanding of the phenomenon is missing. sion. The reason for this behavior, which is confirmed by

Here we present a unified MF description of SOC modelgwmerical simulations, is ascribed to the presence of conser-
using the formalism developed for nonequilibrium critical vat_||_ohn laws n the dyf?afz'cs-f I - In Sec. II introd
phenomena with steady states. We use a single site approxj- € 3a:)erlls grganlllzle asto .owst.hn dec. , We Intro f.u?g
mation to the master equation, and we enforce conservatio € models. In Sec. 1ll, we review the dynamic mean-fie

laws by effective parameters and constraints. We concentra proximation to the master equation. Section IV contains
on models driven by stochastic noise, such as the sandpi e mean-field theory for the sandpile model, and discusses

[1] and forest firgFF) [37]. In order to write a master equa- some issues related to conservation. In Sec. V, we report the

tion, we consider finite values of the driving rates, since onl X X .
in this case are dynamical rules local in sgace and time. O);L}; a gef‘era' discussion. A brief report of these results ap-
analysis shows that criticality in these models corresponds tBeared in Ref{13].
the limit in which the dynamical rules become nonlocal.

Nonlocality is implicitly enforced in computer simulations,

where the evolution of a single site depends on the state of A rapid look at the SOC literature discourages every new-
the entire system. This fact is particularly evident in extremalkcomer in the field. In less than ten years, more than 2000

II. MODELS
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papers have been published, and comprehensive reviews as in which energy is transferred along a preferential direc-
not yet appeareda valuable effort in this direction can be tion [45]. Finally, sandpile models that include a relaxation
found in Ref.[10]). This is due to the lack of a general dynamics where part of the energy is dissipated have been
understanding which would provide the framework to orderconsidered 50]. These models can be characterized by the
the huge amount of information about SOC. In particular, wefraction of energy that disappears from the system during
were spectators of an hectic activity in numerical simula-each relaxation process. When a global dissipation is present
tions, with the introduction of a multitude of different mod- (energy is lost on averagehe critical behavior is destroyed
els. A closer look at the literature reveals that the number o&nd a characteristic length is introduced. This numerical evi-
original models can be greatly reduced by noting that mostlence suggests that conservation is necessary to obtain criti-
of them are variations of prototype models. Using a morecality.
“Draconian” approach, we can distinguish just two main  As we discussed above, sandpile models are driven by
families of SOC models. The first is represented by stochasadding a single energy grain on a randomly chosen site,
tic SOC models such as the sandpile or forest-fire model, invhen no active site is present. In this way, avalanches are
which the self-organization process is the output of a stoinstantaneous with respect to the driving time scale. This rule
chastic dynamics. The second family groups together the sas very naturally implemented in a computer algorithm,
called “extremal” or “quenched” modeld38], which are  which can handle the two different time scales at the same
defined by a deterministic dynamics in a random environtime. This, however, corresponds to a nonlocal interaction in
ment. Examples of the latter family are the invasion percowhich the site dynamical evolution depends upon the whole
lation [43] and bak-sneppef44] models. In this paper we system configuration. This nonlocal interaction is hard to de-
discuss stochastic models, but work is in progress to extenscribe, and in order to perform an analytical description we
the present analysis to systems driven by an extremal dynanhave to fix a reference time scale, as for example the single
ics. site relaxation step, and measure the driving rate on that
scale. For this reason, we consider a generalized sandpile
A. Sandpile models model [35], that includes a nonvanishing driving rate, by
: . . introducing the probabilityh per unit time that a site will
Sandpile models are cellular automéG) with an inte- receive a grain of energy. Energy is distributed homoge-

ger (or c;ontinuog}; variable 4 (energy defined in a _neously, and the total energy flux is given by=hL%. The
d-dimensional lattice. At each §|me St‘?P an energy grain 13, -ameteh sets the driving time scale, or, equivalently, the
added to a randomly chosen site, until the energy of a sit

X ; pical waiting time between different avalanches, &s
reaches a thresholt . When this happens the site relaxes, ~1/h. In the limit h—0, we recover the slow driving limit;

Z—27—2., (1)  1-e., during an avalanche the system does not receive energy.
This formulation of the dynamics has the advantage of being

and the energy is transferred to the nearest neighbors, local in space and time. The state of a single site depends
only on the state of the site itself and its nearest-neighbor

Zj—zjty;j. (2)  sites at the previous time step, through a transition probabil-

ity that is given by the reaction and driving rates. It will be

The relaxatl_on of a site can induce nearest neighbor sites so convenient in the ensuing analysis to group the possible
relax on their turn, i.e., they exceed the threshold because Q. of a site in three classes: active where. . critical
: .

the energy received. New active sites can generate other henz=z.— 1. and stable for<z.— 1
laxations and so on, eventually giving rise to an avalanche. c ¢
For conservative models the transferred energy equals the

energy lost by the relaxing sit&f/;=z.), at least on aver- B. Forest-fire model
age. Usually, the only form of dissipation occurs at the
boundary, from which energy can leave the system. It is

worth remarking that during the avalanches, the energy inp X
stops, until the system is again in equilibrium and no active uced in Ref[51] as an example of SOC, and was then

sites are present. This corresponds to an infinite time scal@c’diﬁed by Drossel and Schwalti2]. The model is defined

separation. With these conditions the system reaches a st3h @ lattice in which each site can be empty, occupied by a

tionary state characterized by avalanches whose sizes green tree or a burning tree. Burning trees turn to ashes with
distributed as a power layi,45—4§ a unitary rate, and set fire to the nearest neighbor trees. The

model was first studied in the case of a small tree growth rate
P(s)~s"". (3) p, and in the absence of a spontaneous ignition of fires. In
d=2, the system reaches a dynamical state in which fire
The model originally introduced by Bak, Tang, and Wiesen-fronts propagate with trivial scaling properti¢s3]. Only
feld (BTW) [1] is a discrete automaton in whidh=2d and  recently, large scale simulations have shown thatdior2
y;j=1. An interesting variation of the original sandpile is the anomalous scaling laws occlB4]. A more interesting situ-
three-state Manna modp49]. In this automaton the critical ation appears when a very small rate for spontaneous fire
threshold isz.=2, fixed independently of the dimensionality ignition f (lightning probability is introduced in the automa-
d, and, if a relaxationtoppling takes place, the energy is ton dynamics. The system shows scaling behavior with a
distributed into two randomly chosen nearest neighbor siteddiverging characteristic length in the limffp—0 and p
Other variations in which part of the energy is kept by the—0, and the activity occurs in bursts of fire spreadiaga-
relaxing site can also be considered, as well as directed modancheg whose distribution follows a power law behavior

The first example of a stochastic SOC model without con-
ervation is in the FF modéB7]. The model was first intro-
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P(s)~s™". In the FF model, the driving rates are explicitly The time evolution of the probability distribution is governed
defined byf andp, and the dynamical rules are thus local. by the master equatiaiME), which in continuous time reads
However, in numerical simulations, the two driving fields are
implicitly set to zero by the condition that tree growth and d , , ,
fire ignition occur only when the system does not show ac- EP(‘”):E W(ala")P(a’,t)=W(c'|o)P(a1).
tive sites. Only the rati@= f/p is quantitatively defined by 7 7

the relative probability of tree growth with respect to fire

ignition events. Also in this case, numerical simulations arerhe specific form ofW determines the dynamics of the
done in the infinite time scale separation limit, which corre-model and the steady state distribution. Typically, SOC sys-
sponds to the subcritical state of the system. tems show a stationary state in which all the single time
It is interesting to note the similarity between SOC mod-ayerages are time independent. To this state corresponds a
els e_md nonequilibrium lattice automata with mgltlple ad'stationary probability distributiorP(o)=P(o,t—x). For
sorbing state40]. These models present a critical phaseequilibrium systems the stationary distribution has the Gibbs
transition separating two regimes: above the transition thergyrm P(o)~exp(— BH(o)), where H(a) is the Hamil-
is a finite density of active sites, while below the transitiontonian. For SOC systems, like other nonequilibrium systems,
point this density is zero and the system freezes in one of th@ere is not such a general criterion, but we have to solve the
many stable configurations. In the following, using the for-ME explicitly in the stationary limit. In practice, this is a
malism developed for this class of models, we will make thisfgrmidable task which is accomplished just in very few

analogy more precise. cases. It is then necessary to use approximate methods in
order to describe the collective behavior of these systems.
lll. DYNAMIC MEAN-FIELD APPROXIMATION The simplest available method is the dynamic cluster varia-

tion approach, which involves a hierarchy of evolution equa-

to irqesfea Z‘t_”drmigige:ﬂ'ezeiszerg;fg;&on tﬁl;sa(zscu?nmgg]aga(ions for the probability distribution of configuration of clus-
g regime, 9 b er of k sites: P(oq,...,00). If the system is

time scale separation commonly employed in S"muIatlonshomogeneous, the distribution of cluster lofsites will be

This will turn out to be particularly convenient, since the osition independent. It is easy to recoanize tRatrepre-
restored locality of the dynamical rules allows a simpler deP P C Yy ecog Halrep .
scription of the models sents the average density of sites in a certain state, while

The most generic description of SOC models is through g k>1 characterizes .the correla}tion propgrties of the systems.
d-dimensional stochastic cellular automaton with=L¢ nfortunately, th? time evolutu_)n equaulons for edghde- .
sites, wherd is the lattice size. Each siieon the lattice is pends on the higher correlation functions: the dynamical

characterized by an occupation variablewvhich can assume equation for the average densities depends on the two point
q different values: for instance, the possible energy lezels correlation functions, the two point correlations on the three

or the three different EE model states. The completeoset point correlations, and so on. Therefore, we have an infinite
={o;} of lattice variables specifies a .configuratirt))n of theChai'.1 of.coupled.equations. The dynamicgl mean-field ap-
systelzm. The dynamical evolution of the system is determine roximation consists of neglecting correlations up to a cer-

" o , : . ain order. In then-site approximatiorcluster probabilities
b3,/ the transmo_n probab'“tW(U"T ) from the configuration are decoupled as a product fsites probabilities. This ap-
o' to the configurations. At each time step the state of a

iven site depends only on the previous state of the site itse roximation has proved to be quite instructive for a qualita-
9 pend Y € Previous ve description of the critical behavior of nonequilibrium
and the set of sites interacting with it. The most genera

- o ~systemdq41].
transition probabilities in the homogeneous and symmetric Before proceeding to discuss in detail the single-site MF

case Is approximation for stochastic SOC models, we first discuss
N the basic symmetries of these systems, which will play a
W(0'|0")=H w(oi|o), (4) fundamental role in formulating a common Qescrlptlon. We

i=1 can reduce the number of states each site in the system can

assume, noting that we can always identify three main states:
where W(O'i|0',) is the one site transition probablllty that stab]e(o-izs), critical (O’i:C), and active(o-i:a). Stable
depends on driving and reaction rates. The single site transéjtes are those that do not relébecome activeif energy is
tion probability should satisfy the normalization property  added to them by external fields or interactions with active
sites. Critical sites become active with the addition of en-
2 w(oi|o')=1. (5) ergy. Active ;ites are those transferr_ing energy; they interact
o with other sites(usually nearest neighbgrsindeed, SOC
always refers to systems in which the only state that gener-
Because of the intrinsic nonequilibrium behavior of theseates dynamical evolution is the active one; i.e., stable and
systems, we have to consider the time-dependent probabilititical sites can change their state only because of external
distributionP(o,t) to have a configurationr at timet. From  fields or by interacting with an active nearest neighbor.
this distribution we can compute the average value of anyrherefore, SOC models correspond to three CA on

function of the staté\(o) d-dimensional lattices. This description is only approximate,
since a certain amount of information is lost in grouping
_ together stable sites. For instance, in the BTW métiglwe
A(t))=2, A(o)P(a,t). 6 : ; .
(A®) g (0)P(e.) © have several energy levels which pertain to a stable site, but
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we can take this fact into account, introducing some effectiveahus neglecting all correlations (o). Introducing this ap-
parameters in the ME. The three state description is exact fggroximation in Eq.(9), we obtain the MF reaction rate equa-
the Manna mod€]49] and the FF moddI37]. tions which depend just on the single site densities, and can

In the simple MF single-site approximation, we denote bybe symbolically written as
Pas Pc, andpg the average densities of sites in the active,
critical, and stable states, respectively. In the case of homo- d
geneous systems, these densities can be written as P~ Fulpa.pc.ps)  k=a.Cs, (14

where F, depends upon driving fields and interactions pa-
Pk(t):% 80— k)P(01). @  rameters through the transition rates In addition, because
7 the densities must preserve normalization, two of the above

The dynamical equations for the average densities are otquations supplemented with the conditjpgrt pc+ps=1,
tained from the ME by using Eq4), are enough to describe the system completely.
In practice, the form of the rate equations depends upon

P the specific model. Nevertheless, we can write the general
apK(t)z > 8(o;— K)( H w(ai|a")P(a',t) structure of the equations describing SOC models by simple

{o’} {0} ! considerations. In generdt, can be expanded as a series of
the average densities:

—H W((Ti'|ff)P(0,t))- 9

Foe=2 fipnt 2 1 pp +0(p0), (19
The above equation can be simplified by using the normal- "

ization condition for the transition probabilities: where the constant term is set to zero in order to obtain a
stationary state. The first order terms are the transition rates
generated by the external driving fields or by spontaneous
transitions. The second and higher order terms characterize
transitions due to the interaction between different sites. In
SOC models, only the active state generates a nontrivial dy-
2 5(01._,()1_[ W(gi|g’)zw(gj:,<|g'), (11) namical evolution, while stable or critical sites can change
{o} i their state only because of the external field or the presence
of an active NN site. Since the critical point is identified by
Equation(9) can be further simplified when the interactions p,=0, in correspondence with a vanishing external field, we
are only among a finite set of sites. In this case, with  can neglect second order terms in the density of active sites.
={o{ ,0{ .} we denote the siteand the set of sites that can The solutions of the stationary equatidr(g/Jt)p,.=0] are
interact with it—usually a finite number of sites or more function of the effective parametef§ and f"”, which de-
commonly just the nearest neighbdféN’s). By restricting  pend on the details of the model. It is expected that the
the sum and dropping the site index, because of the homesritical behavior is not affected by the specific values of the

> 11 w(a{lo)=1, (10)
{o'} !

geneity, we finally obtain parameters, while universality classes will depend on con-
straints imposed on the equations because of symmetries and
i ()= E W(xlo ) P(o" )= po(t) (12 conservation laws.
S Pe(D= klo")P(a", 1) = p,(1).

tr'h IV. MEAN-FIELD ANALYSIS OF SANDPILE MODELS

It,is wo,rthlremarking that in the above expression the set ere we consider the explicit application of the single site

o' ={ai ,0{.¢} refers to the generic set of interacting sites \jr approximation to the class of sandpile models. A simpler

which depends upon the particular dynamical rules and latgerivation based on symmetry considerations can be found in
tice geometry. In presence of a nonlocal interaction, the sekef, [13]. In Sec. IIl, we showed that the MF dynamical

o' can correspond to the entire system. This presents a veguations reduce in this approximation to the expression
difficult problem that can be treated, introducing a suitable

regularization. J ,
In general, therefore, we have that the evolution equations S Pe(U)= Z w(k|o )l_i[ Po! (1) = pi(L), (16)
of the average densities are still coupled to the probability {o’}

distribution of configurations of a se_t of interacting si.t_es. Inwherea’ denotes the set formed by a single site and its set
?rder tto Tﬁve a sle;[_ of cIoseS_I equatlons_ for thg dens_|t|e|siv|w interacting sites as specified by the dynamical rules. All
r_un<|:a € the evolu |on_equzI;1 'O?].S I\}/IlFusmr? a dynamical M, q dynamical information of the system is contained in the
zg%eetk?ge s)%gt?i)l(iltmztfloer;chn CtO:]Sﬁ uraﬁ&qgg(tah;ve rfci)zgrc?x"transition ratesv(x|co’). Unfortunately, the sandpile model

measure gf single )s/ite probabilitieg P is mher'ently nqnlocal becguse of the |mpl_|C|t time scalg
separation. A site can receive energy only if the system is

quescient. This implies that transition rates depend upon the

P(0')=H P(Ui)EH Por (13) vyhole set of lattice variables prgsent in the system, giving

[ [ i rise to a strongly nonlocal dynamical rule. To have any hope
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to treat the model analytically, we have to assume that thé&ransfer its energy because of intrinsic dissipation or because
sandpile dynamics can be realized as a limiting case of & is a boundary site. The above transition rate is valid only
model with local stochastic dynamics which respects thdor homogeneous processes, and therefore excludes directed
same symmetries and conservation laws as those of the origirodels. The total contribution due to this process, consider-
nal model. We refer to this aggularizingthe sandpile rules ing the multiplicity of active NN sites, is given by

by a suitable parametrization which allows us to recover the
nonlocality in some particular limit. The simplest regulariza-
tion was discussed in Sec. Il, introducing the external flow of
energy added to the system. We describe this external flow
by the probability per unit timé for a site to receive a grain =(g—€)pcpall— h)(l—pa)z_l, (19

of energy. The transition rates are now local, depending only

on the fieldh and the state of the nearest neighbor sitesvhere the parametes conveniently identifies the average

(onn) that determine the toppling dynamics. The total energy dissipated pin each elementary process. It is worth
amount of energy added to the system at each time step witbmarking thate is also present for fully conservative sys-
be Jj;=hL? [55]. The nonlocality of the dynamical rules is tems, being an effective term due to the boundary dissipa-
recovered in the limih—0 (see Sec. V| that corresponds tion: it acts as an external tunable parameter in the case of
to an infinite time scale separation. The external freMias  bulk dissipation and accounts for size effects in finite sys-
historically introduced in Ref[35]. Unfortunately, these tems.

early papers failed to address consistently the role played by Neglecting higher orders ih and p, from the Eqs.(17)
driving and conservation, and led to several inconsistenciegnd(19), we can finally write the MF dynamical equation for
(see Sec. IV B We limit our discussion to the present regu- the densities of active sites:

larization of the sandpile dynamics for reasons of simplicity.

Nevertheless, a more accurate characterization of the degree d

2 w(alc,o{=a,0),#a)pepa |1 por(t)
{"l,\lN} j#ieNN l

of nonlocality actually present in the infinitely slowly driven S Pa() =~ pa(t) +hpe() + (g~ €)pc(t) palt)
sandpiles can be obtained via more refined regularization
scheme$56]. +0O(hp,,pd). (20)

Since locality is restoredo’ ={a{ ,o\\}), we can derive

the MF equations for the density of active sites by consider- Next we derive the dynamical MF equation for the den-

ing the leading order it andp, in Eq. (16). The transition sity of stable sites, following the same strategy used above.

rates obeyw(ala,oyy) =0, because an active site always Since, at lowest order, active sites become stable with uni-

transfers its energy, thus becoming stable at the next timary rate, we have that(s|a,ayy) =1+ O(hp,,p3), vield-

step independently from its NN sites. In this way, we areing a contribution to the MF equation which is

neglecting higher contribution due to the presence of mul-

tiple active NN sites, which can transfer energy to the active / _ 2

site sustaining its activity. The only allowed transitions to the {gz,} W(S|a'o’\”\')pai g,\‘ Po/()=patONpa,pa).

active state are due to critical sites which receive energy NN 21)

from the external driving or from active NN sites. In the

absence of active NN sites, we havgalc,ony#a)=h. We  Since critical sites never become stable, we have also that

can then obtain the contribution to the dynamical MF equayy(s|c, ofyy) =0.

tion Energy conservation imposes that energy is stored in

stable sites until they become critical. This implies a nonuni-

> w(alc,opnEa)pe L1 por()=hpe(1-pa)?, tary ratew(s|s,a{,). The simplest way to derive this term

{onnt TeNN - makes use of the normalization condition that yields
(17 w(s|s,a{n) =1—w(c|s,afy)- In fact, these transition rates

are nearly equivalent to those from critical to active sites.

whereZ represents the Iattic'e coordination r_1umber, L.e., theI'he only difference is that only a fractiam of stable sites
num_ber of NN sites. If th_e sites do not receive energy fromreceiving an energy quantum will contribute to te c pro-
outside, we have to consider the possibilities that one of th%ess, i.e., the fraction of stable sites which are subcritical.

NN sites is active and transfers energy to it. This Processparefore. the reaction rates are related by the factas

corresponds to w(c|s, o) =uw(alc, o). Recalling the derivation of Eq.
g 5 (20), it is straightforward to obtain
w(a|c,ai=a,oj¢i¢a)=(1—h)2(1—p), (19

> [1-w(cls,of)lps [T por(t)
wherei,j e NN. The right term represents the probability (ol ISt SiEnN i

that a critical site receive an energy grain only from an active

NN. This is equal to the ratio between the number of sites = ps—Uhps—U(g— €) pspat O(Npa.p3).
involved in the dynamical relaxation process and the total (22)
number of NN'’s. For instanceg=2d for the BTW model

[1] or g=2 for the Manna modg49]. In addition, we have  Adding all these contributions, we finally obtain the dynami-
to consider the probabilityp that the active site does not cal MF equation
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J on the critical properties of the system as in the case of CA
21 Ps(1)=pa(t) —uhpy(t) with absorbing states. These features will be discussed else-
where[56].
—u(g—€)ps(t) palt) + O(hpa,p2), (23 To study the stationary MF solutions, we consider the

simple three level case, and determinself-consistently as

that together with Eq(20), and supplemented with the nor- in Ref.[13]. Combining the normalization equation with the
malization condition, fully describes the MF evolution of stationarity limit of Eqs.(20) and 23, we obtain the set of
sandpile automata. equations

In deriving the MF equations we have made an approxi-
mation, introducing the parameterto take into account the Pa=hpc+(9=€)pcpa.,
presence of several energy levels instead of a single stable _
level. For three level models=1, and this description is Pa=UhpstU(g—e€)pspa, (26)
exact, while for multilevel models like that of BT\1] the
parameteru can be determined self-consistently in the sta-
tionary state using the energy conservat[d3]. Here we  After some algebra from Eq&26), we obtain a closed equa-
show that we can also obtainby the full description of the  tjon for p,:
MF equations. We consider a generic sandpile model in
which the energy threshold i, and, after a relaxation u(g—e)p2+[1+u(l+h—g+e)]p,—uh=0. (27
event,g energy grains are transfered to randomly chosen _
neighbors. For instance, tiiedimensional BTW model has We can expang,(h) for small values of the field. The
z.=2d andg=2d, but we can think these are arbitrary val- 2610 ordgr term in the expansion vanishes, and we obtain a
ues for these parameters. We can describe these systemd§Rding linear term
more detail by introducing the densitigg, describing the uh
probability that a site is in the level. We then have that pa(h)=
Pc=Pz -1 and p5=2f]°:_02pn. The dynamical evolution can

be simplified noting_that an active site with energybe-  This result has to be consistent with the global conservation
comes stable, and its energy beconmesz,—g. One can law, which states that the average input energy fiypmust

show that stable sites, with energy levels lower thahave  palance the dissipated fluk,. In the stationary state, the
a zero stationary density. Without loss of generality, we carconservation law can be written as

therefore assume that the zero energy leveldsz.—g. By
rescaling the energy levels in this way, we obtajr py_; Jin=hL9=Jou=ep,L°. (29)
and ps=39"2p,. The intermediate levels are described by
the MF equation

pa=1—ps—pc-

l+u(l-g+e" (28)

By comparing Eqs(28) and (29), we obtain thatu=1/(g
—1), which is the result we previously obtained from the
complete analysis. In the limi— 0 the densities are there-

J .
S P =—hpa() = (9= €)pn(V) pa(t) +Npp-1(1) fore given by

h
(- Opn_1(Dpa)+ O(hpa.pd), (24 pa=r, pc=%+0(h), psnglm(h). (30)

where l<n=g—2. In the stationary state we obtajs, The numerical values for the density of critical and stable

=pn-1""* = po and, noting thau,:pgf?/(zgipn)’ WE T€-  sites are nonuniversal quantities, and depend on the lattice
cover the resulti=1/(g—1) obtained in Ref[13]. This re-  qaometry and dynamical rules of each specific model via the
sult expresses the energy Cons_ervatlon and fixes the Stat'oﬁarameteg. The result forp, can be directly compared with
ary - solution consistently with the energy balance.yq egtimates from numerical simulations of several models
Noticeably, in the Manna mod¢h9)], for which g=2, we 1, g pstituting the correct value gt For the original BTW
obtainu=1, as must be for a three state model. As a lasf,qqe| (= 2d), extensive numerical simulations on the den-
r_emark_we point out that, summing up the above set of €QUasity of energy levels can be found in REB4]. As expected,
tions with the one fop,, the agreement with the MF result increases for high-
5 dimensional systems, and we recover the exact result in the
_ limit d— oo,
7 Po(V)="Npo() = (9= €)po(L)pa(t) +pa(l), (29 We next discuss the critical behavior of these systems.
The balance between conservation laws and the dissipation
we obtain Eq(23) as a function of the parametar are essential for the critical behavior of the model, as also
When the system is far from the stationary state, the papointed out in Ref[33]. The model is critical just in the
rameteru will in general be time dependent. In the follow- double limit h,e—0h/e—0, similarly to the forest-fire
ing, we will always consider stationary properties or homo-model [37]. We are going to see that in this limit the zero
geneous perturbations which leawe unchanged, but we field susceptibility of the system is singular, signaling a long-
could think of situations in whiclu does not have a station- range(critical) response function. The onset of the critical
ary value. This corresponds to a systems kept far from itbehavior is then recovered in the limit of vanishing driving
“natural” configuration. This can have strong influence evenfield corresponding to the locality breaking in the dynamical
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h tem. We define the total susceptibiligy, . of the system as
the integral over space and time of the response function, and
show in Appendix A for the stationary state that

trivial
supercritical

trivial region

- dpa(h)

supercritical = T __Fa

region non-trivial Xe=— lim Xh,e= Jh (32)
supercritical h—0 h=0
region

This immediately gives the zero field susceptibility
O lsil:lllcﬂtical 1
g <0 Critical point £>0 Xe™ (33)

€
FIG. 1. Phase diagram of a generic sandpile model. We include | . o .
negative values of the dissipation corresponding to a net addition deh'Ch diverges agfo' The system is in a subcritical state
energy during the avalanches. The trivial supercritical regime idOF @ny value ofe different from zero. Foe=0, the system
given by a saturation of the system, which is receiving more energy€aches a critical point in which the response function be-
than it can dissipate. The interesting regfori e is discussed in the comes long ranged and the susceptibility diverges. Close to
text. this critical point the scaling behavior is characterized by the
scaling lawsy .~ €~ 7, with y=1, and by the divergence of
evolution. In analogy with nonequilibrium phenomenathe correlation lengtli~e™".
[40,42, the one particle density of active sites is th@er An important result can be derived from the response
parameter and goes to zero at the critical point. The driving function by defining
and dissipation rates identify the twaontrol parameters
i.e., the relevant scaling fields. We can then distinguish dif-
ferent regimes as a function of the control parameters. The
model is supercritical foh>0 and e>h, while for h—0 . »
and e>0 it is subcritical and the dynamics displays ava-as the average total response received at positjonhen
lanches. The phase diagram is somehow similar to that oAh(x’,t")=4(x"). Since energy is transfered locally and
usual continuous phase transitions, if we replacby the isotropically, the net energy current is given by
magnetic field ane by the reduced temperatufsee Fig. 1 ~dx(r)/or. For locally conservative models the energy cur-
We can fully exploit this analogy by allowing the parameterfeéntj must satisfy in average the conservation law
€ also to assume negative values. This corresponds to a sand-
pile in whi(_:h a positive net amount of energy enters the f jdo=const, (35)
system during the avalanche activifyegative dissipation
The resulting supercritical regime is analogous to many non-

equilibrium systems with a negative reduced control paramneredo is the {d—1)-dimensional surface element. This

eter. However, foh> e, the system has only a trivial sta- ensures ftha_t the energy fI(_)Wing into _the system is balanced
tionary state, since, would have to be greater than 1 to by the dissipated energy in the stationary state. Hence, at

satisfy Eq.(29). Thus, in the nontrivial supercritical regiom, larger, we haye th? solutiony(r) ~r?. A similar result
and e cannot be varied independently, because the globa{'fas b?en ObFa'F‘Ed_'” R420]. In the presence Of k_)oundary
conservation imposes thdi<<e. This restricts the scaling or Intrinsic dissipation, the system acquires a f|n|t_e correla-
behavior to particular limit values of the control parameters.tIon length, and we can establish the general scaling form
In the following, we individuate the regimes corresponding 1

to the standard sandpile numerical simulations and a scaling xr)= = T(r/8), (36)

regime in the supercritical region of the phase space.

X1 = f X1 )t (34

A. Subcritical regime wherel'(r/¢) is a cutoff function for > £. This immediately

: . . . ives the following relation betwee& and the zero field
The standard numerical simulations of sandpile mOdelgusceptibility'

are carried out in the presence of an infinite time scale sepa-
ration. As already discussed in previous sections, this implies
an infinitely slow driving of the systems, i.h—0. In this Xf:f x(r)rd-tdr~ g2, (37
limit, there is a single control parameter, the intrinsic or

boundary dissipatior, and the order parametey, is iden- We fi : 1

. ; ' ) ey ind the MF val f th rrelation expon 5
tically zero in the steady state. To describe the critical be- € find the alue of the correlation exponent ; by

havior quantitatively, we study the effect of a small pertur-SUbSt'tUtmggwe » and comparing with EC(S@' S
! , We can use these exponents to characterize the finite size
bationAh on the steady state density

scaling of the conservative sandpile model, since our MF
analysis treats both boundary and bulk dissipation in the
APa(X,t):f Xh,e(X=X";t=t")Ah(x",t")dx"dt’, same way. In conservative systems, when the size is in-
(31) creased the effective dissipation depends on the system size
and we assume that~L~*. In fact, the dissipation rate is
whereyy, (x—Xx';t—t") is the response function of the sys- given by the probability to find a border site instead of a bulk
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site during an avalanche. Thus the exponerinks the dis- 1

sipation rate with the system finite size, providing a unified D=-—. zv=A. (43
view of locally dissipative and open-boundary models. In the

conservative case, the characteristic length of avalanchesnother scaling relation between critical exponents can be
should go likeé~L to ensure dissipation of energy outside obtained from Eq(38) (see Appendix A

the boundaries. This implies the scaling relatiop=1,

which immediately givesu=2. We show in Appendix A XE~<S>ZJ s 7 1G(s/s.(€))ds~ (T 2/7, (44)
that the susceptibility scales as the average avalanche size
which implies that
Xe~(s), (39)
_(2-7)
which implies y~L*?. From this result, we obtain the scal- YT (49

ing law To obtain the MF values of the avalanche exponents, we
(s)~L2 for L, (39) solve the evolution equation for a small perturbation close to
the stationary state. We considef(t) =p,+ dp.(t), where
which was found numerically in various dimensiofs], op,(t) is the de'viat'ion of the densities frpm their stationary
and rigorously proven id=2 [17]. Our explanation implies value. By considering a small perturbation around the sta-

that the diffusive behavior of the avalanches is due to thdionary state, keeping only the linear term dip,(t), and

global conservation law. using the normalization condition, we obtain
Summarizing all these results, we obtain a first set of MF
exponents: 51 9pa(t) == 8pa(t) +hpc(t) + (g~ €)pcIpa(t)
y=1, p=2, v=j;. (40 +(g—€)padpc(t),

In deriving these exponents we made only use of conserva- J h g—€
tion laws. Therefore we expect that these values hold in all g7 9Ps(1) =+ dpa(t) = -1 Sps(t) — 9-1 PsOpa(t)
dimensions, and can be consideredeaactresults. In Sec.

Il B we will confirm these results by numerical simulations g—e€
performed in the fast driving regime, and discuss some re- - g__lpatsps(t), (46)
sults already published in the literature.

In the subcritical regime the dynamics takes place in the Opa(t)=—38pc(t)— Spg(t).

form of avalanches, but ti=0 the system rapidly decays in én subcritical regimesH—0). we only keep in these equa-

one of the adsorbing configurations; the ones with no active. _ . R
sites. All of them are stable in the absence of a driving field.t'ons_t_he '?ad'”g terms ie. Substituting In Eqs(46) the
It is useful to characterize the proliferation of active sitesd(:“ns't'f:"S given by the solution of the stat|0nz_iry equation for
starting from a seed initial condition. In close analogy with 10 (i.e., pa=0 andp.=1/g), we finally obtain the evolu-
CA with adsorbing states, we study the spreading of activ&iOn eguation in diagonal form:
sites after a small perturbation. We prepare the system in an 9 €
initial state consisting of a single active site, i.e., an infini- Eﬁpa(t)= - éapa(t). (47)
tesimal perturbation in the driving fielddh(x,t) = 6(t) 6(x).
Sinceh(t>0)=0, active sites cannot be produced spontaneThe solution of Eq(47) is given by
ously from critical sites, and can only appear due to the
spreading of the initial perturbation. The properties of this Opa(t)~exp(—et/g), (48)
process close to the critical point characterize the avalanc
behavior typical of SOC phenomena.

Following Grassberger and de la Tof#0], we consider
the probability that a small perturbation activatesites(an
avalanche in the SOC terminology

r‘\ﬁhich impliesyp=0. The last equation also defines the char-
acteristic relaxation time for an infinitesimal perturbation to
bet.=g/e, yielding A=1. We compute the remaining ex-

ponents using a further scaling relation, which we derive in

Appendix B:
P(s,e)=s""G(s/s.(€)), 41 1

(5,€)=5""G(s/sc(€)) (4D) (VU):Z' .

wheres;~ e~ 7 is the cutoff in the avalanche size. The per- . . . . _
turbation decays in the stationary subcritical state as It is worth remarking that Eq(49) is valid only in MF
theory. By combining these relations with those of E$),

pa() ~t7F(t/t(€)). (42) we obtain the second set of MF critical exponents:
z=2, D=4, =3, o=3. (50)

Here t. denotes the characteristic time which scalesas
~e€ %, We can also introduce the scaling exponents whicht is worthwhile to remark that the numerical value of these
relate cutoff lengths to the characteristic sisg;~¢° and  exponents is the same as in other MF approaches, but their
t.~ &% These exponents are related by the scaling laws  significance is completely different, being defined with re-
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spect to a different scaling field. All sandpile models with theare set to zero. In SOC, howevdr, and € are not fully

same dynamical MF equations share the same critical expdadependent because of tiee-h condition. We can define a

nents and belong to the same universality class. Howevegonsistent scaling regime with respect to the reduced vari-

the degree of universality is highly overstated, as usuallyable ¢=h/e in the double limitsh—0 ande—0, with the

happens in MF approaches. In particular, the exponents dsupplementary conditions that< ¢<1. These limits define

not depend on the dimensionalitly The exponents describ- a parameter region which is identified roughly &€1 and

ing avalanche distributions in low-dimensional systems, ine><h<e. In this region, the MF approximations show that

general, will not agree with the results of MF theory. Forthe order parameter is positive and scales as

instance, it is still controversial if the BTW and two state

models are in the same universality class. While it was be- pa= P, (52

lieved for some time that this was indeed the case, recently

large scale numerical simulations questioned this statementith 8=1. The exponenB characterizes the scaling behav-

[57]. ior of the order parameter with respect to the reduced param-
To compute the value of critical exponents below the up-eter ¢, and should not be confused with the exponéntn

per critical dimension, we have to use renormalization grourder to uncover the scaling of the characteristic lengths of

techniques, which allow the correct treatment of the scalethe system with respect to the parameggrwe study the

free fluctuations present at the critical point. The renormalevolution of small perturbations around the stationary state.

ization group approach to a nonequilibrium system presentas in Sec. IV A, we denote byp,(t) the deviations from

several difficulties which can be overcome by suitable apthe stationary state, and write the dynamical equation keep-

proximations[12,24]. ing only the leading terms. We thus neglect in E@) the
terms inh and ¢, and keep the terms ig. For this we
B. Supercritical regime compute the first order correction i to the values of the

The supercritical region is characterized by a finite den_s_te:;l)c/)nag ddeEs(lne_sl.)(Tlhiase) /rezlélés btosﬁg: ti(tﬁl,'ltiﬁ C:in(%he
sity of active sites, i.e., a nonzero order parameter. Close t8 g andps=(9— 1 )19, \d, by 9
ynamical MF equations, we obtain

the critical point, the supercritical region corresponds to the
parameter rangel<<1l, e<1 andh=e. In this regime the

o - J
order parameter is linear in, 51 9Pa()=—(9— 1) bpa(t) — 9 dps(t),
pa~h¥?,  6=1, (51) (53
J
as we obtain from Eq(30). The same result was also con- Eéps(t): +dSp,(t)— g?—ldﬁps(t).

jectured in Ref[46]. This is analogous to the MF results
obtained for contact processes and other nonequilibrium C
[40-42, but it is in contrast with previous MF approaches
for sandpile model§35,36], which yieldeds=2. This latter

incorrect result is due to an inconsistency present in those

studies. The scaling is expressed in terms of the average, .. f.(g) always has a positive real part. Both eigenval-

energy(z)=23;p;z;, which is treated as an independent con-, .. " "ty negative and lineardn and represent the in-

Frol parameter. As we have just show(z) gnd h are not verse of the relaxation time scale of a perturbation around the
independenin the stationary state. The stationary probability

distribution of heightsp; is indeed a function of the driving st?tlonqry state. We have, therefore, that ¢ A with

rate. Moreover{z) cannot be considered as the control pa-2' =1, implying that the characteristic time scales as in the

rameter even foh=0, since it does not determine com- subcritical regime. The solution for the spreading of the den-

pletely the state of the system: The same valugzfde- Sty perturbation has the }‘orrﬁpa(t)~]—‘(t/tc), yielding, as

scribes several states corresponding to different values &f the subcritical regimey’=0. _ _

densitiesp; . This is a typical property of CA with multiple Equations(53) describe how a localized perturbation de-

absorbing stateg42]. In preparing an initial condition con- C€@yS in the stationary state. As in Sec. IV A, this decay can

sisting of a localized active region, one has considerabl®€ related to the susceptibility

freedom to choose the initial stafhe adsorbing configura-

tion). In order to observe the critical pro_pgrties of fche system, X¢~f Spa(t)dt~ 67, (55)

we should choose one of the “natural” initial configurations,

which can be obtained by the dynamical evolution for infini- o . ) )

tesimal driving in the long time limit. In numerical simula- With ¥'=1. A characteristic lengtlf is associated with the

tions this is equivalent to first preparing the system in thecharacteristic time of fluctua_tlons. Since energy is trangferred

stationary state in the presence of the time scale separatioiPmogeneously and isotropically, we have thgt- £, as in

and then average over the many different realizations of théhe subcritical regime. By comparing this relation with Eq.

avalanches. (55), we obtainé2~¢ 1, or é~¢~ 7" with v’ =1 We can
The exponents has been defined in previous works in obtain a clearer picture of this behavior using the avalanche

analogy with usual continuous phase transitions, where itepresentation. The condition that the time between two en-

characterizes the scaling of the order parameter in the presrgy addictiongthe driving time scaleis much longer than

ence of an external field when the other critical parameterthe fluctuation time scale can be written as

%y diagonalizing Egs(53), we find the eigenvalues

A.=—¢f.(9), (54)
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h<t '~ ¢. (56) 040 '

. e e . o L=256

This condition is implicitly verified in the limit we are con- o =128

sidering h<<e<<¢). Under this assumption, it is very un- 0.30 | - i
likely for fluctuations to overlap. Thus, on average, each + L=64

event is separated from the others, and can be defined as |
the subcritical case as an avalanche. In the stationary statt
the average nonzero order parameter is produced by the rafa 020 | 1
dom appearance of a finite humber of nonoverlapping ava-
lanches. Furthermore, we can identify the response functior

with the time evolution of an avalanche, and we recover in 4,
the limit h— 0 thaty ,~(s). In its turn the latter implies that

in this regime the average sizes of avalanches diverge a
(s)~¢ ! as¢p—0. Work is in progress to obtain a numeri-

- H 1 H H'H 000 1 Il Il Il
cal confirmation of the MF predictions for the supercritical 00 20 20, 60 3.0 10.0

regime. hl’

FIG. 2. The density of active sites in the BTW model with
boundary dissipation, as a function of the driving ratds plotted

In this section, we compare the results of numerical simufor different system sizek.
lations with the prediction of MF theory, and in particular we
expect that the set of MF exponents related to the globahean-field values id=2, and we do not analyze them here.
conservative nature of the model are also valid in low dimenExtensive measurements of these exponents can be found in
sions. Sandpile models have been extenSiVE|y studied Only iﬂhe |iterature[45_4a_ We are Currenﬂy performing simula-
the subcritical stat¢45—48. Most of the numerical results tions of the model in the supercritical regime o2, and
refer to an avalanche distribution in the conservative limit,the results will be published elsewhd#s8].
with open-boundary conditions. In these conditions the finite p very important issue in SOC models is the definition of
size scaling has been found to be problematic, and despiighiversality classes. We expect critical properties, such as
the use Of Very Iarge Scale SimulationS there iS not Completexponents and Sca”ng, to be independent Of the precise Va'_
agreement on the values of the expondd®]. The reason yes of dynamical parameters, being determined only by the
for this is probably that open-boundary conditions impose aymmetry of the problem and the number of spatial dimen-
value for the effective dissipation which depends on the latsjon, Therefore, it is important to understand to what extent
tice size, and does not act homogeneously through the sygre can change the automaton rules without changing the
tem. _ o ~universality class. The dynamical rules, in fact, contain the

We simulate the BTW model numerically with finite driv- pasic symmetries of SOC models, and it would be interesting
ing rateh and boundary dissipation ith=2. In this case the o classify the critical behavior in terms of their microscopic
dissipation is implicitly considered through the open-dynamics. So far, no theoretical treatment has been able to
boundary conditions. When a boundary site topples, it dissigddress this question rigorously. Also, from the point of view

pate part of the energy outside, without transferring it to thepf numerical simulations, the situation is controversial. It
neighbors. The driving rate is introduced as the probability

for unit time that a site receives an energy grain. Apart from 4

the driving the simulation proceeds as in Hdf]. We see in

Fig. 2 that the density of critical sites goes to zero linearly

with h (6=1), with a slope that increases with the system

size asL?. This is in agreement with the MF theory which

predicts that the susceptibility scalesla¥’, with uy=2. 20
To observe more clearly the scaling with dissipation of

the sandpile model, we study the BTW model withriodic

boundary conditions and fixed dissipatienWe model the 3

dissipation introducing a probabilitp=e/g, for which the
energy in a relaxation event is lost, instead of being trans- 19 - _
fered. In Fig. 3, we plot the susceptibility.=dp/dh as a
function of e. We observe the &/behavior (y=1) predicted
by mean-field theory. We should add to this the values of
=0.5 that was obtained studying a dissipative sandpile
model ind=2 [50]. 0.0 w . .
In summary, we have shown that some MF features are 90 1.0 20 3.0 4.0
present in thel=2 sandpile model. The global conservation €
law imposes that the exponentsy, andy assume their MF FIG. 3. The susceptibility.=dp,/dh as a function of the dis-
values. This strongly supports the MF picture provided heresipatione, for a system with periodic boundary conditions and size
The other critical exponents do not necessarily assume=64. The line corresponds to the theoretical prediciQr 1/e.

C. Numerical simulations
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appeared immediately that directed sandpile models, whos&andpile models. In Sec. V, we will discuss a md@a] that
dynamics acts on a preferred direction, belong to a separasghows criticality without conservation even in MF theory.
universality class[45]. On the contrary, early numerical The price of achieving this result will be an additional driv-
simulations supported the belief that the Manna and BTWng rate.

models belong to the same universality clp48,47. A few

years ago, larger numerical simulatidis] provided some

evidence of two distinct universality classes. A better under- V. NONCONSERVATION AND CRITICALITY:

standing of universality classes could be obtained using the THE FOREST-FIRE MODEL

framework discussed in this paper, studying the scaling with \we have discussed that conservation in sandpiles is cru-

respect to the control parameters. cial to achieve criticality. The controversial issue of continu-
ously driven models raises the question of the possibility that
D. On the role of conservation time scale separation alone can produce scale invariance in

In the previous discussion, we emphasized the role ofystems without conservation laws. In this context the forest-

conservation in the dynamics of sandpile models. Using confl"® model acquires a very important role, in that it is a non-
servation laws, we found a subset of critical exponents thatOnservative automaton displaying criticality. .
retain their mean-field values even in low dimensions. Con- AS outlined in Sec. Ill, we can describe the model in the
servation has an important effect on criticality as well, sinceS@Me language used for sandpile models. We identify burn-
the amount of dissipation plays the role of control parameteriNd Sites with the active sites, since they interact with other
Only by tuning this parameter to zero does the system bes_ltes_lndepe.zndentlly of the Finvmg f|elds.. .Furthermore, their
come critical. density vanishes in the limit of small driving field In the

The role of conservation in SOC models has been th§@me way, trees correspond to critical sites, and empty sites
object of a long controversy. It was first claimed that conser{0 Stable sites. In this case the general three state description
vation was a necessary condition for criticality in this classiS €xact. Using this language, we can emphasize differences
of model [21,27. Results on dissipative sandpile models@nd analogies between FF and sandpile models. While the
seemed to confirm this conclusi¢B0]. Later on, simulation Main dynam|§:al transitions are very similar, we can immedi-
of an earthquake model contradicted these re§68 The ately recognize the effect of nongonsgrvaﬂon. In the FF
model studied in Ref[59] is a continuous height sandpile model energy in not s_tored, and critical sites are qeated by a
model in which energy is dropped uniformly over the entireS€cond independent field: the tree growth probabgitfhus
lattice at an infinitesimal rate. This in practice corresponds tdn the FF model we replack—f and uh—p. This intro-
raising the heights of all the sites by the quantity needed fofluces an independent fie{dr a time scalep™*) related to
the higher site to become unstable. When aisiteunstable ~ the injection of critical sites in the system. Since energy is

(z>z.), the relaxation rules are not accumulated, there is no need of an additional dissipa-
tion, so that in the FF model there is no parameter playing
z—0, (57) the role ofe.
The FF model was originally introduced in the limit
zj—z+az, (58 f=0 andp—0 by Bak, Chen, and Tang in Rd&1]. The

model was claimed to show SOC, but later Grassberger and

where j's are the nearest neighbors of The dissipation Kantz[53] showed that ird=2 the model was critical in a
parametew [60] can be tuned: for=1/(2d) , the system is trivial sense. The system shows a diverging characteristic
conservative. It has been observed in simulations thad, in length that is essentially the distance between straight fire
=2 for a> a,, the system is critical. There is still not agree- fronts. This implies that the dynamics is governed by the
ment on the precise value af., which was first estimated as average tree density over larger and larger regions. In higher
a.=0.05[59], and later found to be higher(=0.18)[61], dimensions, the possibility of a nontrivial behavior has not
while it was claimed in Ref{62] that a;=0. been ruled out, as recent work seems to sug@<st Drossel

The mean-field analysis of this model is not easy, becausand Schwab[52] introduced the ignition or lightning prob-
of the continuous number of levels a site can assume. Usingbility f. This field sustains fires, and the system flows in a
an approximate analysis of the random neighbor model, istationary state which shows critical properties in the double
was claimed in Ref[63] that a.=0.22, a value that was limit f<p<Z1. This version of the model has been the sub-
found to be in agreement with simulations. A completeject of several studies, both analyti¢aP,27,65—6Yand nu-
analysis of the master equation later revealed that0.25 merical[68—7Q.
(the conservative cageshowing also the presence of very  Despite the various efforts, the two versions of the model
strong finite size correctiof64]. From this analysis, it ap- were always studied as very different cases, almost two dif-
pears that the random neighbor model behaves like the BTVierent models. For this reason, it is difficult to find in the
model. Criticality is only reached in the conservative case, iditerature a precise connection among the two different re-
the limit of a zero driving rate. The situation in two dimen- gimes. In this section we recover, within our framework,
sions is still controversial, and it is believed that the inhomo-many results already present in the literature. By recasting
geneity created by the open-boundary conditions is resporithese results in the language developed for sandpile au-
sible for the observed power law distributions. tomata, we provide a unified picture of both models. We

The role of conservation for criticality still remains open discuss the FF model in terms of the response function sin-
in these models, while it is now agreed that in MF theorygularities and we show that the SOC-FF and the determinis-
conservation is a necessary condition to achieve criticality iric FF correspond to the supercritical and subcritical regimes.
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In this way, we can understand several features of the FBrder parameter is identically zero in the steady state, and the
model in terms of the same concepts developed for sandpilgystem develops long-range correlation properties. Also, for
model. the FF model we can then distinguish among subcritical and
The MF equations can be derived by the single site apsupercritical regimes depending on the values of the driving
proximation to the master equation. Since the derivation profields.
ceeds as in Sec. IV, we do not repeat it here in detail, and we
instead present some general considerations. Active sites be-
come stable(fire — empty with unitary rate, and critical
sites become active if ignited by the lightning with probabil- ~ The subcritical and critical regimes correspond to the
ity f. The interaction term is then given by the fire spreadingjimit in which we have a zero order parameter and therefore
an active site creates as many new active sites as the number 0 andp=0. This limit is, however, not completely de-
of NN critical sites. To the first order ip,, this term is fined because the density of critical and stable sites depend
proportiona| topapc times the usual geometrica| facmmhat upon the rathf/p In order to Study the critical behavior in
takes into account the lattice coordination and other modelhis limit, we repeat the discussion inspired by the study of

dependent geometrical effects. The reaction rate equatioffsA With adsorbing states that we already used for the sand-
then reads piles. Since wheri=0 andp=0 the dynamics is frozen, we

have to prepare the system in a stationary state in the limits
Fa=—patfpctgpcpat O(pd). (59 p—0 andf—0, and then study the spreading of small per-

turbations. This is what is actually done in numerical simu-
This expression is very similar to the one obtained in theations, where the fire evolution and the actiorf aindp act
here is missing. The two models differ in the dynamical evo-pne of the “natural” configurations, corresponding to the
lution of stable sites. In the FF model there is a term, due o&tationary state in the limit of infinitesimal driving. In this
the fieldp, corresponding to the transition rate from stable toconfiguration the density of critical sites reaches a limit value
critical sites, and there is no interaction between active ang —1/9—g~1f/p, which depends, via the parameter
stable sites. We can then write the stationarity equations fotf/p on the way the limit has been performed.

the FF model as In order to study the scaling behavior, we consider the
limit f<p<f<1, keepingd constant. In this regime we can
considerf=p=0 andp,=0, and we can study the system to
the leading order ind. By considering small deviations
op,(t) from the stationary state, and retaining just first order
terms iné, we find the linearized dynamical equation in di-
agonal form

A. Subcritical regime

pa=Tfpct9pcpa,
Pa=PpPs, (60)
pa=1-ps—pc,

where we have neglected the second order term inAs for 5

the sandpile modelg is an independent parameter of the v __

model, andf and p represent the tunable external driving 71 9pa() = = 05pa(). (62)

fields. The lowest order solutions ihand p to the above

equations are Hence the relaxation behavior follows an exponential law in
which the characteristic relaxation time is given Iy

pa=Ep+ lf_i_o(fz’pz), ~6 with A=1. This implicitly tells us that the system

indeed reacts in avalanches. In fact, both driving time scales
p~tandf ! are much larger in this regime than the charac-

:E_ } i+0( f) 61) teristic spreading time of an avalanciée?, that therefore
Pe g gp .1 remains an isolated event connected in space and time, i.e., it
does not overlap spatially with other avalanches or growth
g-1 1f processes due to the driving field.
Ps=7g Ty EJFO(p’f)- Along the lines we followed for sandpiles, we define the

response function of the systep 4(x—x";t—t") that char-
These results were already obtained in R&f7], where a acterizes the way the system responds to an external pertur-
random neighbor version of the FF is analyzed. Theirbation. The response is now a functionfoind 4. The total
method and the present MF scheme are equivalent, and veisceptibilityy; , is related to the derivative of the stationary
will recover the same stationary densities. We compute theensity of critical sites, and the zero field susceptibility can
critical exponents by using the same lines adopted for sandse obtained as
piles, and obtain some insight into the critical properties of

the FF model. The density of active sites depends linearly apa(f)
uponf andp, which are independent driving fields playing Xo=lim pr: (63)
the same role ab in sandpile automata. If we consider the =0

density of active sites as the order parameter, it appears im-

mediately that the critical point is reachedfif~0 andp Since the density of active sites can be writtenpgéf, 6)
—0 simultaneously. This double limit again corresponds to=f/g+(g—1)f/(g#), the singular part of the susceptibility
the locality breaking of the dynamical rules. In this case thediverges as



6358 ALESSANDRO VESPIGNANI AND STEFANO ZAPPERI 57

Xe=0"1. (64) system. Anomalous scaling appears below the upper critical
dimension, and the model shows nontrivial values of expo-
In Appendix A it is shown that the zero field susceptibility is nents[37].
related to the divergence of the average fire size(ss
~xy- Hence the characteristic fire size diverges fier 0. B. Supercritical regime
This implies that the system is in a subcritical regime, and

perturbations to the stationary state show a finite character- I_-|ere we consider the sgallng behavior in the region in
istic length for any6>0. Only in the limit ¢—0 does the which the order parameter is not zero. In order to remain in

system respond on all length scales to infinitesimal perturbat—he critical region, we must haug<1, but now we consider

tions. We can define the standard scaling laws 6~ with nonvanishingf and p, with f much smaller tharp. This

y=1, and &~ 6" that characterize the divergence of the gssennally corresponds to the FF model without ignition, that

correlation length in this perspective can be considered as the supercritical re-

Next we consider the total response at a positiagiven gime_ close to the critica_l point. In this limit, we obtain im-
by x(r)= [ x.(r.t)dt. We note that fire clusters are given medl_ately f_rpm the solution of E¢61) that the order param-
by the connected clusters of critical sites, because in thigter is positive, and scales as
regime fires are not overlapping. Since a tree can burn just pa~pP, (70)
once, the average response at a distarisajiven by the pair
connectedness function that gives the probability that twayith 3=1. To calculate the relaxation properties we have to
sites at a distance are connected, i.e., belong to the sameperform a linear stability analysis of the system around the
cluster. This function and thus the response function is supstationary solutiong61), retaining only the lowest order
posed to behave ag™ ¢ T(r/£) in MF theory[71]. In gen-  terms inp. We consider small fluctuationsp (t), and the
eral, by integrating the local response function, we have  eigenvalues of the diagonal form of the dynamical evolutions

Xo= £, 65

_ i 12
and, therefore, by comparing with E(4), we obtainy= A (a/2)p=i(gp)™ 7y
3. It is worth remarking that in this case the above MF rela-The negative real part identifies the characteristic relaxation
tions are not enforced by conservation laws, and anomalougme that scales ak~p~ 1. Together with the exponential
exponents can appear in low dimensions. relaxation, the system shows oscillations with peridd

To study the avalanche behavior, we introduce the prob~-p=2 related to the imaginary part of the eigenvalues.
ability P(s,0)=s""G(s/s¢(6)) that a fire involvess sites,  This MF behavior was already discussed in RB8].
and we identify the usual set of critical exponents defined by |n the supercritical state the time scale of a perturbation is
the scaling lawss;~ 6~ 17, s;~¢P, andt.~ £ Associated comparable to the driving scale, both being of the order of
with these we have the scaling relatioDsr=1/v, zv=A,  p~1 Thus active sites do not spread just on connected clus-
and yo=2—17. We have shown previously that in this re- ters of critical sites. In other words, the critical site configu-
gime the class of “natural” configurations have a density ofration is not frozen during the perturbation, and the time
critical sites which depends oft thus we consider the dif- evolution connects several clusters of critical sites because

ference of densities with respect to the critical state connecting sites might appear during the time evolution.
: Also in this case, however, the susceptibility is given by the
pe—pc(0)~ 65, (=1 (66)  total response to a localized fluctuation,

We can then find another scaling relation that links the ava-
lanche exponents tg, noting that the avalanche size distri- XpNI Spa(t)dt~p~ ™. (72
bution corresponds to the distribution of connected critical

site clusters. In Appendix B we derive this scaling relation,since the response of the system is due to the connectivity
which results to be properties, we have still the usual MF relatigp~ &2, which
—1 implies that§~p"’/ with »'=3. Another way to see this
(= . (67)  result is to think that the fluctuation spreads as waves of
active sites. Since the propagation velocity is finite, the cor-
relation length is proportional to the wave peridd This

Collecting all the results obtained above, we have the com-: : . . .
plete set of MF exponents: simple MF picture does not work in low dimensiof&4].

NI

v=1, wv=3, (68 VI. DISCUSSION AND OPEN QUESTIONS

7=3/2. D=4, o= % =2 (69) A. Relations with branching processes

A clear mean-field description of the avalanches in SOC
Also in this case, as previously shown by several authorsnodels has been obtained through mapping to branching
[27], the MF values correspond to those of mean-field perprocesse§29—32. A branching procesgr2] is defined by a
colation. It is important to stress again that in the FF casepumber of active sites that can either die or genenatew

the absence of a conservation constraint implies that MF valsites with certain probabilities. The simpler example is the
ues for critical exponents are not valid in low-dimensionalcasen=2: a site dies with probability * q or generates two
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new sites with probabilityy. The process usually starts with of critical and stable sites they produced. If new active sites
a single active site and continues until no more active siteare created in the same region at some later times, they can
are present. Depending on the valuegjpthe branching pro- “feel” the effect of the active sites present earlier in the
cess will die after a finite number of steps or continue for-region. This is basically a memory effect, which creates a
ever. There is a critical valug=gq, that separates the two |ong-range interaction in time and space among diffusing
regimes €= 3 for n=2). Forq<q_, the size distribution of ~active sites. The range of this interaction depends on the
the branching process is a power law characteristic time scale of the driving, because the fluctua-
w32 tions induced by the driving destroy the memory effect.
P(s)~s " (s/%0), (73 Close to the infinite time scale separation, the character-
where the cutoffs, diverges forq=gq. istic driving time scale is diverging, and the range of the
It was shown in Ref[31] that the Manna model can be nonlocal interaction extends to the entire system. A local
exactly mapped into a branching process with a time deperinteraction is recovered, however, if we introduce a size cut-
dent parameteq(t), depending on the density of critical off in the wandering region of active particles. This is the
sites (p,) and on the dissipatiof32]. A critical branching case of dissipative sandpile in which after a finite number of
process was obtained as a stationary state in the limit of slowteps the active sites disappéa8]. Over this characteristic,
driving and conservatiof31]. size active particles do not interact, and to obtain a long-
Branching processes can be considered as a genemange nonlocal interaction the dissipation should go to zero.
framework to describe avalanches in mean-field theory. ImThe same discussion applies to the FF model, due to the
general terms, we can describe an avalanche by an evolvirffhite range of connected critical sites obtained by tuning the
front that can either propagate or stop. In the mean-fielgatio of f andp.
description, the elements of the fronts do not interact and
evolve independently. Thus the avalanche can be described
as a branching process with an effective paramgtéhat
depends on the detail of the model under Study_ In this paper, we have presented a unified mean-field
In our formalism, a branching process is associated witfiheory for stochastic SOC models. We have treated these
the propagation of active sites in the subcritical regime. Inmodels in analogy with other nonequilibrium cellular au-
the stationary state foh=0, an active site generatds tomata, using a single site approximation to the master equa-
=1,...,g new active sites with probabilities tion. With the present approach, we are able to identify the
order parameter and the control parameters of the models

C. Conclusions

B g\ « g—k and to emphasize similarities and differences between SOC
G=(1-¢) K pe(1=pe)® " (74 and other nonequilibrium system. In particular, the language
of cellular automata with absorbing states can be employed
while no active sites are generated with probability to describe SOC models. For finite driving rates, we find a
supercritical regime characterized by a finite fraction of ac-
Qo=€+(1—€)(1—pc)°. (75 tive sites. In the limit of infinitesimal driving, the system is

) , subcritical and displays an avalanche response. Criticality

In this case, the control parameter for the branching procesgises from a double limit: the driving rate and the dissipa-
is given by g=2kqy, with a critical valueq,=1. In the tion (in the sandpile modglor the two driving rategin the
stationary state, we fing.=1/g and henceg=1—e. The FF mode] should have vanishing values. This limit corre-
critical branching process corresponds, therefore, to the limigponds to the onset of nonlocal dynamical rules, which are
e—0. A similar analysis can be done for the FF model. responsible for the critical behavior characteristic of SOC.

From this perspective, SOC models appear to be nonequi-
librium systems with steady states, reaching criticality by the
T ) fine tuning of control parameters. While this statement is

We have seen that criticality in stochastic SOC systems ifechnically correct, we note that SOC systems are quite pe-
achieved only in the limit of infinitesimal driving corre- cyjiar, since the fine tuning can only be achieved by limit
sponding to the locality breaking of the dynamical rules. Theprocedure. This is in contrast with ordinary critical phenom-
nonlocality is evident if we consider the zero driving limit eng, where the control parameter can be directly tuned to its
that is naturally implemented in computer simulations usingcritical value. In this sense, SOC systems are less sensitive to
two different time scales, one for the avalanche evolutiorfine tuning[10]. Moreover, the driving rate can in general be

tion, the evolution of each site depends on the entire systengoc framework relevant.

For a more concrete physical explanation of how the lo-
cality breaking generates long-range interactions in the sys-
tem, let us consider the case of a vanishing driving rate,
corresponding to a small density of active sites. Because of We thank G. Caldarelli, A. Chessa, K. B. Lauritsen, V.
the infinitesimal driving, each region, devoid of active par-Loreto, E. Marinari, A. Maritan, M.A. Mlog, A. Omar Gar-
ticle, is virtually frozen until an active site is generated. Thecia, and L. Pietronero. We are grateful to R. Dickman for
activity spreads, and in general alters the configuration bevaluable comments and suggestions. A. V. is indebted to J.
fore it moves away or disappears. The active sites leave Bl. J. van Leeuwen for interesting discussions. We thank the
trace of their dynamical history in the frozen configurationsinstituut-Lorentz in Leiden, where part of this work was

B. Locality breaking
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=x—x', we obtain
APPENDIX A: RESPONSE FUNCTION PROPERTIES

For small perturbations around the stationary state, the Apa=Ahjvfo Xh, (X" t)doX"dt". (A7)
spontaneous microscopic dynamics can be represented by

mtrodgcmg theresponse functlc_)nWe first consider the_ Hence the density fluctuations are time and space indepen-
sandpile case. If we apply a time dependent perturbatloaent, as it must be in the new stationary state withh

Qrg);,r:z;etsoatshe stationary state, the density of active S|tes+ Ah. Performing the double integral in the right term, we

obtain the total susceptibility. Therefore,
Apa(x,tFJ f Xh,e(X—X';t—t")Ah(x",t")d%’dt’ Apa=Ahxn ., (A8)

+0((Ah)?) (AL fro_m_ which we obtain that in the stationary state and for
infinitesimal perturbations,
where yp, (X—X’;t—t") is the response or generalized sus-
ceptibility function. Here we assume a stationary and homo-
geneous system, i.e., the two point averages depend just on
the time or space displacement. The above expression is

valid in the linear regime, only for small variations of the notice that from this equation we are able to provide a rela-

perturbing field. We next derive some simple properties Ofjon petween the total response function and the divergence
the response function for systems whose dynamics is chagf gyalanche size

acterized by avalanches. We first consider an impulsive dis-

turbanceAh(x’,t") = &8(t) 5%(x). This is a very small pertur- apa(h)

bation with respect to the total energy ingut fh(x)d". In (s)=xe=lim o (A10)
practice, it corresponds to the addiction of an energy grain on h—0

top of the stationary average driving field. Inserting this per-
turbation intoA p,(x,t) yields

i Spa_dpalh)
h,e™ -

(A9)
ah-oAh dh

Equation(A10) states that the zero field susceptibility in the
stationary state and the average avalanche size have the same

Apa(X,1) = xp (X;1). (A2)  singular behavior in the thermodynamic limit.
We next consider the forest-fire model. In this case we
We then define the total susceptibility of the system, have the two driving field§ andp, and the response func-
tion depends upon them. The interesting subcritical regime is
Yn f:f dtf ¥ (X:)dx, (A3) the one in which we take the limit—0 andp—0 with
' ' =f/p<1l. We study the response of the system for small

. - . _perturbationAf and a fixed value ob. The general expres-
wh|gh qugntlﬁes the total response of the system to an 'Msion that characterizes the response of the system is given by
pulsive disturbance. The total number of active sites due to0

the perturbation is
Apa(x,t)=f fXf,e(x—x';t—t')Af(x',t')ddx'dt'

Nazf dtf Apa(X,t)ddXZXh,e- (Ad) +O((AF)?) (A11)

In the absence of an external fidid- 0, the only active sites As for the the sandpile case, we can appl§ perturbation.

present in the system are due to higerturbation. That is, ¢ ¢iows that, simply rewriting what we derived in the sand-
all the active sites are casually connected in space and t'mﬁile case. we obtain

thus forming an avalanche whose average sizgs)s-N,.

This is precisely stated by the expression Xo=1im x1 4=(s), (A12)
Xe=1im xn, e=(s), (A5)
h—0

where(s) in this case is the average size of fire events. In the

which defines a relation between the average avalanche siséM€ Way We can consider a stationary perturbation
and the zero field susceptibility. As we have seen in the® (X',t')=Af for t'<t, and, by repeating the above argu-
previous sections, the above expression is at the basis Gi€Nts, we recover
several scaling relations, and it explains, together with con-
servation, the diffusive behavior of the average activity.

Another way to look at a stationary perturbation or

equivalently to the variation of the stationary averages is the ) ) )
following. We consider a different perturbation from which follows that the divergence of the average size of

fires is related to the zero field susceptibility in the usual
Ah(x',t")=Ah for t’'<t, (A6)  way.

apa(T)
Xt0= (A13)
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APPENDIX B: SCALING RELATIONS 2. Forest-fire model
Here we obtain two scaling relations whose derivation is The density of qr!tical sites in the stationary configuration
straightforward but rather lengthy. approaches the critical value for—0 as a power law
Apc=pc(0=0)—pc(6)~ 6. (B5)

1. Sandpile model » ) )
) o ~In the subcritical regime, we have a complete time scale
Let us consider the flow decays of activity in the subcriti- separation. Therefore, each spreading of activity involves
cal regime. We definp,(s,t), the space integrated responsejust clusters of connected critical sites. This is because the
of an avalanche of sites. If we assume scaling behavior, we tree growth time scalpfl is much longer than the activity
have that time scale, thus preventing new critical sites from changing
the connectivity properties of the configuration. In this con-
pa(s.t)=sw(t/ty), (B dition, the probabilityP(s, #) to have an avalanche of size
scales as the distributiom(s) of connected clusters with
critical sites times the size of the clustrThis factor takes
into account the probability that the ignition process starts on
. any site of a cluster of size On the other hand, the density
w(0)=w(1)=0, and thatp,(s,t) is independent ob for o critical sites, leaving apart normalization factors, is given

smallt. This implies that(x) —x "> asx—0. The total  py p ~ [sn(s)ds; that is, given by the integral of the ava-
response function is the average of the various possible av@gnche distribution. We can therefore write

lanche response

wheretg is the upper characteristic time of an avalanche of
sites and scales ag~s?°. By imposing the condition that
Jpa(s,t)dt=s, we obtaing=1-z/D. We have also that

Apc~f s”1—-G(s/s.(6))]ds, (B6)
pa(0= [ pa(sPE)ds ®2)
v_vhere W_e_used the explicit form of the avalanche_ distribu-
which, after the proper substitution by means of scaling retion. Noticing thatG(s/s.(6))=0 for s>s., we obtain that

lations, gives the expression the main contribution to the above integral is given by
pa(t)~exiL — (t/to) /7], (83) Ape~ f “s s, (B7)
In the MF picture, the above relation is consistent with the ) SC_
results obtained from the dynamical equations only if or, as a result of the integration,
(7—1) . _- N Aplc~sg*f, | (B8)
voz ' By substitutings,~ 6~ in the above expression and re-

) ) ) quiring the scaling consistency with E@®5), we finally ob-
thus recovering the relations used in Sec. IV. An analogousgain the scaling relation

result was already obtained in the paper by Tang and Bak

[35]. Again, we stress that this is not a general scaling rela- = 1 (BY)

tion, but an exponent equality valid just in MF theory. o’
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