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How self-organized criticality works: A unified mean-field picture
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We present a unified dynamical mean-field theory, based on the single site approximation to the master-
equation, for stochastic self-organized critical models. In particular, we analyze in detail the properties of
sandpile and forest-fire~FF! models. In analogy with other nonequilibrium critical phenomena, we identify an
order parameter with the density of ‘‘active’’ sites, and control parameters with the driving rates. Depending on
the values of the control parameters, the system is shown to reach a subcritical~absorbing! or supercritical
~active! stationary state. Criticality is analyzed in terms of the singularities of the zero-field susceptibility. In
the limit of vanishing control parameters, the stationary state displays scaling characteristics of self-organized
criticality ~SOC!. We show that this limit corresponds to the breakdown of space-time locality in the dynamical
rules of the models. We define a complete set of critical exponents, describing the scaling of order parameter,
response functions, susceptibility and correlation length in the subcritical and supercritical states. In the sub-
critical state, the response of the system to small perturbations takes place in avalanches. We analyze their
scaling behavior in relation with branching processes. In sandpile models, because of conservation laws, a
critical exponents subset displays mean-field values (n5

1
2 andg51) in any dimensions. We treat bulk and

boundary dissipation and introduce a critical exponent relating dissipation and finite size effects. We present
numerical simulations that confirm our results. In the case of the forest-fire model, our approach can distin-
guish between different regimes~SOC-FF and deterministic FF! studied in the literature, and determine the full
spectrum of critical exponents.@S1063-651X~98!09805-5#

PACS number~s!: 64.60.Lx, 05.40.1j, 05.70.Ln
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I. INTRODUCTION

After ten years of research and countless papers, the
cise significance of self-organized criticality~SOC! @1# is
still controversial. Originally, SOC was presented as a g
eral theory to understand fractals and 1/f noise as the natura
outcomes of the dynamical evolution of systems with ma
coupled degrees of freedom. Irreversible dynamics wo
generate a self-organization of the system into a critical st
without the fine tuning of external parameters. The SOC i
was illustrated by computer models in which a slow exter
driving leads to a stationary state with avalanches of wid
distributed amplitude@1#. This proposal stimulated a casca
of research activity in experiments, theory, and simulatio
While the explanation presented in Ref.@1# about the origin
of scaling in nature now appears too simplistic, SOC gav
formidable input to the study of slowly driven systems a
avalanche phenomena.

Avalanche behavior was experimentally observed in a
riety of phenomena ranging from magnetic systems~the
Barkhausen effect! @2# and flux lines in high-Tc supercon-
ductors@3#, fluid flow through porous media@4#, microfrac-
turing processes@5#, earthquakes@6#, and lung inflation@7#.
In addition, SOC ideas stimulated a great interest in gran
matter@8#, although it was soon realized that the concept w
hardly applicable there, apart from the academic exampl
a rice pile @9#. All the above mentioned experiments sha
with SOC models the slow external driving and the av
lanche response, but it is unclear whether self-organiza
as described in Ref.@1# plays any role there. To answer th
571063-651X/98/57~6!/6345~18!/$15.00
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question it would be necessary to understand better w
determines the appearance of scaling in SOC models
driven systems in general.

The idea of a critical point without fine tuning of extern
parameters is very appealing, because it opposes the stan
picture of equilibrium critical phenomena. The concept
‘‘spontaneous’’ criticality, as it has been discussed in t
literature, presents several ambiguities. It has been poi
out by several authors that the driving rate is a parameter
has to be fine tuned to zero in order to observe critica
@10–13#. This fact poses no problems to computer simu
tions, where an infinite time scale separation can easily
enforced, but it is crucial in experiments where the drivi
rate is always nonzero. The second ambiguity is mostl
language problem: calling ‘‘self-organization’’ the evolutio
toward a stationary state can be misleading. Any nonequ
rium system poised at its ‘‘fine tuned’’ critical point, whe
started from a generic configuration, evolves toward the c
cal stationary state, thus building up correlations and scal
We would not describe this process as self-organizat
These ambiguities in the definition of SOC have hindered
formulation of precise relations with other nonequilibriu
critical phenomena@14#.

In the past years, several attempts have been made to
a general mechanism to describe SOC models. In particu
Sornette and co-workers proposed several different me
nisms that could lead to SOC, or more generally to pow
law avalanche distributions@15,16#. In a recent paper, it was
claimed that SOC corresponds to the tuning to zero of
order parameterof an ordinary critical phenomenon@11#.
6345 © 1998 The American Physical Society
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6346 57ALESSANDRO VESPIGNANI AND STEFANO ZAPPERI
Our analysis shows that criticality arises from the fine tun
to zero of one or morecontrol parameters~driving rate, dis-
sipation! and there is no coupling between control and or
parameters@13#, in contrast with what was suggested in R
@15#. The incorrect identification of control and order para
eters is at the basis of many misconceptions about SOC
nomena, as we will discuss in the following.

Many theoretical methods have been used in the ana
of SOC models. Few rigorous milestones can be found in
activity of Dhar and co-workers@17,18#, and in the work of
Ref. @19#. Flory @20# and Langevin-type approaches@21–23#
have been used on a phenomenological basis. More rece
a real space renormalization group method provided g
estimates of the avalanche exponents@12,24#. Despite their
richness, however, all these approaches are focused o
critical avalanche behavior, and the external driving does
play any role; i.e., the system is studied in the infinite tim
scale separation regime. Furthermore, many of these
tempts are conceivedad hoc for particular models, and do
not provide a general conceptual framework to underst
SOC phenomena.

The first step towards a comprehensive theoretical un
standing of SOC is provided by mean-field~MF! theory,
which gives insight into the fundamental physical mech
nisms of the problem and a reference language. It provid
feasible treatment to nonequilibrium and complex proble
~often the only one!, and can be used as a starting point
more sophisticated calculations. Whereas many nume
and analytical approaches become harder as the dimen
ality increases, MF theory improves and, despite crude
proximations, it usually gives correct qualitative predictio
for the phase diagrams of high-dimensional systems. Fina
MF theory highlights the importance of symmetries and c
servation laws.

A vast activity concerning MF theory of SOC models c
be found in the literature. Exponents describing avalan
distributions and propagation have been computed in sev
ways: solving infinite-range@25#, Bethe lattice@18# and ran-
dom neighbor@26–28# models, and by mapping the dynam
ics into a branching process@29–33#. Self-consistent MF ap-
proximations for the sand height distribution have also b
used@20,34#. Other MF approaches use analogies with eq
librium critical phenomena@35,36#, leading sometimes to in
correct predictions, as we will discuss in the following.
summary, the MF approach to SOC systems is compose
a number of studies of specific models, but a comprehen
understanding of the phenomenon is missing.

Here we present a unified MF description of SOC mod
using the formalism developed for nonequilibrium critic
phenomena with steady states. We use a single site app
mation to the master equation, and we enforce conserva
laws by effective parameters and constraints. We concen
on models driven by stochastic noise, such as the sand
@1# and forest fire~FF! @37#. In order to write a master equa
tion, we consider finite values of the driving rates, since o
in this case are dynamical rules local in space and time.
analysis shows that criticality in these models correspond
the limit in which the dynamical rules become nonloc
Nonlocality is implicitly enforced in computer simulation
where the evolution of a single site depends on the stat
the entire system. This fact is particularly evident in extrem
g
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models in quenched disorder, where the dynamics proce
by a global minimum search@38#. Also in that case, to write
a local master equation one has to introduce a nonzero d
ing rate, but the driving mechanism differs from the one
discuss here. It is possible to relate these models to a co
sponding nondriven critical phase transition@39#.

The present approach allows us to identify control a
order parameters of SOC models, and to clarify the relati
with other nonequilibrium critical phenomena@13#. In par-
ticular, we show that SOC models have close similarities
nonequilibrium cellular automata with many absorbing sta
@40–42#. The major difference is that in SOC models, t
control parameters have to be tuned to zero to reach criti
ity. As we discussed before, this limit corresponds to
breakdown of locality in the dynamical rules of the mod
and hence to the onset of long-range correlation in the
namical response. While apparently there is no mathema
difference between tuning a parameter to zero or to a n
zero value, the physical differences are quite important@10#.
In the first case, changing the value of the control param
by a given factor still keeps the system close to the criti
point. This is not the case in ordinary phase transitio
where, doubling the value of the temperature, the sys
completely loses the critical properties. Moreover, in ord
for the SOC model to be defined, the control parameter~i.e.,
the driving rate! should always be nonzero, and the critic
point can only be reached through a limit process.

The present MF theory can be applied to any stocha
cellular automaton, and therefore provides a unified desc
tion for the ensemble of SOC models and other related n
equilibrium critical systems, such as contact processes
cellular automata with absorbing states@40–42#. Moreover,
it serves to emphasize the differences between different m
els and between different regimes in the same model.
analysis also points out the inconsistencies contained in
lier MF approaches@35,36# which led to a misleading char
acterization of the model. We identify subcritical and sup
critical states of SOC models, and discuss the different w
in which criticality can be reached. We describe the a
lanche behavior characteristic of these models in terms
response functions, and study the effect of perturbations
the stationary state. We introduce a full set of critical exp
nents, describing the response at the critical point and
scaling close to the critical point in the subcritical and sup
critical states. In the case of sandpile models, a subse
exponents is found to have mean-field values in any dim
sion. The reason for this behavior, which is confirmed
numerical simulations, is ascribed to the presence of con
vation laws in the dynamics.

The paper is organized as follows: In Sec. II, we introdu
the models. In Sec. III, we review the dynamic mean-fie
approximation to the master equation. Section IV conta
the mean-field theory for the sandpile model, and discus
some issues related to conservation. In Sec. V, we repor
mean-field analysis for the FF model, and Sec. VI is devo
to a general discussion. A brief report of these results
peared in Ref.@13#.

II. MODELS

A rapid look at the SOC literature discourages every ne
comer in the field. In less than ten years, more than 2
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papers have been published, and comprehensive review
not yet appeared~a valuable effort in this direction can b
found in Ref. @10#!. This is due to the lack of a genera
understanding which would provide the framework to ord
the huge amount of information about SOC. In particular,
were spectators of an hectic activity in numerical simu
tions, with the introduction of a multitude of different mod
els. A closer look at the literature reveals that the numbe
original models can be greatly reduced by noting that m
of them are variations of prototype models. Using a m
‘‘Draconian’’ approach, we can distinguish just two ma
families of SOC models. The first is represented by stoch
tic SOC models such as the sandpile or forest-fire mode
which the self-organization process is the output of a s
chastic dynamics. The second family groups together the
called ‘‘extremal’’ or ‘‘quenched’’ models@38#, which are
defined by a deterministic dynamics in a random envir
ment. Examples of the latter family are the invasion per
lation @43# and bak-sneppen@44# models. In this paper we
discuss stochastic models, but work is in progress to ext
the present analysis to systems driven by an extremal dyn
ics.

A. Sandpile models

Sandpile models are cellular automata~CA! with an inte-
ger ~or continuous! variable zi ~energy! defined in a
d-dimensional lattice. At each time step an energy grain
added to a randomly chosen site, until the energy of a
reaches a thresholdzc . When this happens the site relaxe

zi→zi2zc , ~1!

and the energy is transferred to the nearest neighbors,

zj→zj1yj . ~2!

The relaxation of a site can induce nearest neighbor site
relax on their turn, i.e., they exceed the threshold becaus
the energy received. New active sites can generate othe
laxations and so on, eventually giving rise to an avalanc
For conservative models the transferred energy equals
energy lost by the relaxing site ((yj5zc), at least on aver-
age. Usually, the only form of dissipation occurs at t
boundary, from which energy can leave the system. I
worth remarking that during the avalanches, the energy in
stops, until the system is again in equilibrium and no act
sites are present. This corresponds to an infinite time s
separation. With these conditions the system reaches a
tionary state characterized by avalanches whose sizess are
distributed as a power law@1,45–48#

P~s!;s2t. ~3!

The model originally introduced by Bak, Tang, and Wiese
feld ~BTW! @1# is a discrete automaton in whichzc52d and
yj51. An interesting variation of the original sandpile is th
three-state Manna model@49#. In this automaton the critica
threshold iszc52, fixed independently of the dimensionali
d, and, if a relaxation~toppling! takes place, the energy i
distributed into two randomly chosen nearest neighbor si
Other variations in which part of the energy is kept by t
relaxing site can also be considered, as well as directed m
are
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els in which energy is transferred along a preferential dir
tion @45#. Finally, sandpile models that include a relaxati
dynamics where part of the energy is dissipated have b
considered@50#. These models can be characterized by
fraction of energy that disappears from the system dur
each relaxation process. When a global dissipation is pre
~energy is lost on average!, the critical behavior is destroye
and a characteristic length is introduced. This numerical e
dence suggests that conservation is necessary to obtain
cality.

As we discussed above, sandpile models are driven
adding a single energy grain on a randomly chosen s
when no active site is present. In this way, avalanches
instantaneous with respect to the driving time scale. This r
is very naturally implemented in a computer algorithm
which can handle the two different time scales at the sa
time. This, however, corresponds to a nonlocal interaction
which the site dynamical evolution depends upon the wh
system configuration. This nonlocal interaction is hard to
scribe, and in order to perform an analytical description
have to fix a reference time scale, as for example the sin
site relaxation step, and measure the driving rate on
scale. For this reason, we consider a generalized sand
model @35#, that includes a nonvanishing driving rate, b
introducing the probabilityh per unit time that a site will
receive a grain of energy. Energy is distributed homo
neously, and the total energy flux is given byJin5hLd. The
parameterh sets the driving time scale, or, equivalently, th
typical waiting time between different avalanches, astd
;1/h. In the limit h→0, we recover the slow driving limit;
i.e., during an avalanche the system does not receive ene
This formulation of the dynamics has the advantage of be
local in space and time. The state of a single site depe
only on the state of the site itself and its nearest-neigh
sites at the previous time step, through a transition proba
ity that is given by the reaction and driving rates. It will b
also convenient in the ensuing analysis to group the poss
states of a site in three classes: active whenz>zc , critical
whenz5zc21, and stable forz,zc21.

B. Forest-fire model

The first example of a stochastic SOC model without co
servation is in the FF model@37#. The model was first intro-
duced in Ref.@51# as an example of SOC, and was th
modified by Drossel and Schwabl@52#. The model is defined
on a lattice in which each site can be empty, occupied b
green tree or a burning tree. Burning trees turn to ashes
a unitary rate, and set fire to the nearest neighbor trees.
model was first studied in the case of a small tree growth
p, and in the absence of a spontaneous ignition of fires
d52, the system reaches a dynamical state in which
fronts propagate with trivial scaling properties@53#. Only
recently, large scale simulations have shown that ford.2
anomalous scaling laws occur@54#. A more interesting situ-
ation appears when a very small rate for spontaneous
ignition f ~lightning probability! is introduced in the automa
ton dynamics. The system shows scaling behavior wit
diverging characteristic length in the limitf /p→0 and p
→0, and the activity occurs in bursts of fire spreading~ava-
lanches! whose distribution follows a power law behavio
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6348 57ALESSANDRO VESPIGNANI AND STEFANO ZAPPERI
P(s);s2t. In the FF model, the driving rates are explicit
defined byf and p, and the dynamical rules are thus loc
However, in numerical simulations, the two driving fields a
implicitly set to zero by the condition that tree growth a
fire ignition occur only when the system does not show
tive sites. Only the ratiou5 f /p is quantitatively defined by
the relative probability of tree growth with respect to fi
ignition events. Also in this case, numerical simulations
done in the infinite time scale separation limit, which cor
sponds to the subcritical state of the system.

It is interesting to note the similarity between SOC mo
els and nonequilibrium lattice automata with multiple a
sorbing states@40#. These models present a critical pha
transition separating two regimes: above the transition th
is a finite density of active sites, while below the transiti
point this density is zero and the system freezes in one of
many stable configurations. In the following, using the fo
malism developed for this class of models, we will make t
analogy more precise.

III. DYNAMIC MEAN-FIELD APPROXIMATION

In Sec. II, we generalized the definition of SOC autom
to the fast-driving regime, thus removing the assumption
time scale separation commonly employed in simulatio
This will turn out to be particularly convenient, since th
restored locality of the dynamical rules allows a simpler d
scription of the models.

The most generic description of SOC models is throug
d-dimensional stochastic cellular automaton withN5Ld

sites, whereL is the lattice size. Each sitei on the lattice is
characterized by an occupation variables i which can assume
q different values: for instance, the possible energy levelzi
or the three different FF model states. The complete ses
5$s i% of lattice variables specifies a configuration of t
system. The dynamical evolution of the system is determi
by the transition probabilityW(sus8) from the configuration
s8 to the configurations. At each time step the state of
given site depends only on the previous state of the site it
and the set of sites interacting with it. The most gene
transition probabilities in the homogeneous and symme
case is

W~sus8!5)
i 51

N

w~s i us8!, ~4!

where w(s i us8) is the one site transition probability tha
depends on driving and reaction rates. The single site tra
tion probability should satisfy the normalization property

(
s i

w~s i us8!51. ~5!

Because of the intrinsic nonequilibrium behavior of the
systems, we have to consider the time-dependent probab
distributionP(s,t) to have a configurations at timet. From
this distribution we can compute the average value of
function of the stateA(s)

^A~ t !&5(
s

A~s!P~s,t !. ~6!
-
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The time evolution of the probability distribution is governe
by the master equation~ME!, which in continuous time read

]

]t
P~s,t !5(

s8
W~sus8!P~s8,t !2W~s8us!P~s,t !.

~7!

The specific form ofW determines the dynamics of th
model and the steady state distribution. Typically, SOC s
tems show a stationary state in which all the single ti
averages are time independent. To this state correspon
stationary probability distributionP(s)5P(s,t→`). For
equilibrium systems the stationary distribution has the Gib
form P(s);exp„2bH(s)…, where H(s) is the Hamil-
tonian. For SOC systems, like other nonequilibrium syste
there is not such a general criterion, but we have to solve
ME explicitly in the stationary limit. In practice, this is
formidable task which is accomplished just in very fe
cases. It is then necessary to use approximate method
order to describe the collective behavior of these syste
The simplest available method is the dynamic cluster va
tion approach, which involves a hierarchy of evolution equ
tions for the probability distribution of configuration of clus
ter of k sites: Pk(s1 , . . . ,sk). If the system is
homogeneous, the distribution of cluster ofk sites will be
position independent. It is easy to recognize thatP1 repre-
sents the average density of sites in a certain state, w
Pk.1 characterizes the correlation properties of the syste
Unfortunately, the time evolution equations for eachPk de-
pends on the higher correlation functions: the dynami
equation for the average densities depends on the two p
correlation functions, the two point correlations on the thr
point correlations, and so on. Therefore, we have an infin
chain of coupled equations. The dynamical mean-field
proximation consists of neglecting correlations up to a c
tain order. In then-site approximationcluster probabilities
are decoupled as a product ofn-sites probabilities. This ap
proximation has proved to be quite instructive for a quali
tive description of the critical behavior of nonequilibrium
systems@41#.

Before proceeding to discuss in detail the single-site M
approximation for stochastic SOC models, we first disc
the basic symmetries of these systems, which will play
fundamental role in formulating a common description. W
can reduce the number of states each site in the system
assume, noting that we can always identify three main sta
stable(s i5s), critical (s i5c), andactive (s i5a). Stable
sites are those that do not relax~become active! if energy is
added to them by external fields or interactions with act
sites. Critical sites become active with the addition of e
ergy. Active sites are those transferring energy; they inte
with other sites~usually nearest neighbors!. Indeed, SOC
always refers to systems in which the only state that gen
ates dynamical evolution is the active one; i.e., stable
critical sites can change their state only because of exte
fields or by interacting with an active nearest neighb
Therefore, SOC models correspond to three CA
d-dimensional lattices. This description is only approxima
since a certain amount of information is lost in groupi
together stable sites. For instance, in the BTW model@1#, we
have several energy levels which pertain to a stable site,
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57 6349HOW SELF-ORGANIZED CRITICALITY WORKS: A . . .
we can take this fact into account, introducing some effec
parameters in the ME. The three state description is exac
the Manna model@49# and the FF model@37#.

In the simple MF single-site approximation, we denote
ra , rc , and rs the average densities of sites in the activ
critical, and stable states, respectively. In the case of ho
geneous systems, these densities can be written as

rk~ t !5(
$s%

d~s j2k!P~s,t !. ~8!

The dynamical equations for the average densities are
tained from the ME by using Eq.~4!,

]

]t
rk~ t !5 (

$s8%
(
$s%

d~s j2k!S)
i

w~s i us8!P~s8,t !

2)
i

w~s i8us!P~s,t ! D . ~9!

The above equation can be simplified by using the norm
ization condition for the transition probabilities:

(
$s8%

)
i

w~s i8us!51, ~10!

(
$s%

d~s j2k!)
i

w~s i us8!5w~s j5kus8!. ~11!

Equation~9! can be further simplified when the interactio
are only among a finite set of sites. In this case, withs8
5$s i8 ,s i 1e8 % we denote the sitei and the set of sites that ca
interact with it—usually a finite number of sites or mo
commonly just the nearest neighbors~NN’s!. By restricting
the sum and dropping the site index, because of the ho
geneity, we finally obtain

]

]t
rk~ t !5 (

$s8%

w~kus8!P~s8,t !2rk~ t !. ~12!

It is worth remarking that in the above expression the
s85$s i8 ,s i 1e8 % refers to the generic set of interacting sit
which depends upon the particular dynamical rules and
tice geometry. In presence of a nonlocal interaction, the
s8 can correspond to the entire system. This presents a
difficult problem that can be treated, introducing a suita
regularization.

In general, therefore, we have that the evolution equati
of the average densities are still coupled to the probab
distribution of configurations of a set of interacting sites.
order to have a set of closed equations for the densities
truncate the evolution equations by using a dynamical
single site approximation. In this MF scheme we appro
mate the probability of each configurations as the product
measure of single site probabilities

P~s!5)
i

P~s i ![)
i

rs i
, ~13!
e
or

y
,
o-

b-

l-

o-

t

t-
et
ry

e

s
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e
F
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thus neglecting all correlations inP(s). Introducing this ap-
proximation in Eq.~9!, we obtain the MF reaction rate equa
tions which depend just on the single site densities, and
be symbolically written as

]

]t
rk5Fk~ra ,rc ,rs!, k5a,c,s, ~14!

whereFk depends upon driving fields and interactions p
rameters through the transition ratesw. In addition, because
the densities must preserve normalization, two of the ab
equations supplemented with the conditionra1rc1rs51,
are enough to describe the system completely.

In practice, the form of the rate equations depends u
the specific model. Nevertheless, we can write the gen
structure of the equations describing SOC models by sim
considerations. In general,Fk can be expanded as a series
the average densities:

Fk5(
n

f k
nrn1(

n,l
f k

n,l rnr l 1O~rn
3!, ~15!

where the constant term is set to zero in order to obtai
stationary state. The first order terms are the transition r
generated by the external driving fields or by spontane
transitions. The second and higher order terms characte
transitions due to the interaction between different sites
SOC models, only the active state generates a nontrivial
namical evolution, while stable or critical sites can chan
their state only because of the external field or the prese
of an active NN site. Since the critical point is identified b
ra50, in correspondence with a vanishing external field,
can neglect second order terms in the density of active s
The solutions of the stationary equations@(]/]t)rk50# are
function of the effective parametersf k

n and f k
n,l , which de-

pend on the details of the model. It is expected that
critical behavior is not affected by the specific values of t
parameters, while universality classes will depend on c
straints imposed on the equations because of symmetries
conservation laws.

IV. MEAN-FIELD ANALYSIS OF SANDPILE MODELS

Here we consider the explicit application of the single s
MF approximation to the class of sandpile models. A simp
derivation based on symmetry considerations can be foun
Ref. @13#. In Sec. III, we showed that the MF dynamic
equations reduce in this approximation to the expression

]

]t
rk~ t !5 (

$s8%

w~kus8!)
i

rs
i8
~ t !2rk~ t !, ~16!

wheres8 denotes the set formed by a single site and its
of interacting sites as specified by the dynamical rules.
the dynamical information of the system is contained in
transition ratesw(kus8). Unfortunately, the sandpile mode
is inherently nonlocal because of the implicit time sca
separation. A site can receive energy only if the system
quescient. This implies that transition rates depend upon
whole set of lattice variables present in the system, giv
rise to a strongly nonlocal dynamical rule. To have any ho
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to treat the model analytically, we have to assume that
sandpile dynamics can be realized as a limiting case o
model with local stochastic dynamics which respects
same symmetries and conservation laws as those of the o
nal model. We refer to this asregularizingthe sandpile rules
by a suitable parametrization which allows us to recover
nonlocality in some particular limit. The simplest regulariz
tion was discussed in Sec. II, introducing the external flow
energy added to the system. We describe this external
by the probability per unit timeh for a site to receive a grain
of energy. The transition rates are now local, depending o
on the field h and the state of the nearest neighbor si
(sNN) that determine the toppling dynamics. The to
amount of energy added to the system at each time step
be Jin5hLd @55#. The nonlocality of the dynamical rules i
recovered in the limith→0 ~see Sec. VI!, that corresponds
to an infinite time scale separation. The external fieldh was
historically introduced in Ref.@35#. Unfortunately, these
early papers failed to address consistently the role played
driving and conservation, and led to several inconsisten
~see Sec. IV B!. We limit our discussion to the present reg
larization of the sandpile dynamics for reasons of simplic
Nevertheless, a more accurate characterization of the de
of nonlocality actually present in the infinitely slowly drive
sandpiles can be obtained via more refined regulariza
schemes@56#.

Since locality is restored (s85$s i8 ,sNN8 %), we can derive
the MF equations for the density of active sites by consid
ing the leading order inh andra in Eq. ~16!. The transition
rates obeyw(aua,sNN)50, because an active site alwa
transfers its energy, thus becoming stable at the next t
step independently from its NN sites. In this way, we a
neglecting higher contribution due to the presence of m
tiple active NN sites, which can transfer energy to the act
site sustaining its activity. The only allowed transitions to t
active state are due to critical sites which receive ene
from the external driving or from active NN sites. In th
absence of active NN sites, we havew(auc,sNNÞa)5h. We
can then obtain the contribution to the dynamical MF eq
tion

(
$sNN8 %

w~auc,sNN8 Þa!rc )
i PNN

rs
i8
~ t !5hrc~12ra!Z,

~17!

whereZ represents the lattice coordination number, i.e.,
number of NN sites. If the sites do not receive energy fr
outside, we have to consider the possibilities that one of
NN sites is active and transfers energy to it. This proc
corresponds to

w~auc,s i5a,s j Þ iÞa!5~12h!
g

Z
~12 p̃!, ~18!

where i , j PNN. The right term represents the probabili
that a critical site receive an energy grain only from an act
NN. This is equal to the ratio between the number of siteg
involved in the dynamical relaxation process and the to
number of NN’s. For instance,g52d for the BTW model
@1# or g52 for the Manna model@49#. In addition, we have
to consider the probabilityp̃ that the active site does no
e
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transfer its energy because of intrinsic dissipation or beca
it is a boundary site. The above transition rate is valid o
for homogeneous processes, and therefore excludes dire
models. The total contribution due to this process, consid
ing the multiplicity of active NN sites, is given by

(
$sNN8 %

w~auc,s i85a,s j Þ i8 Þa!rcra )
j Þ i PNN

rs
j8
~ t !

5~g2e!rcra~12h!~12ra!Z21, ~19!

where the parametere conveniently identifies the averag
energy dissipatedg p̃ in each elementary process. It is wort
remarking thate is also present for fully conservative sy
tems, being an effective term due to the boundary diss
tion: it acts as an external tunable parameter in the cas
bulk dissipation and accounts for size effects in finite s
tems.

Neglecting higher orders inh andra from the Eqs.~17!
and~19!, we can finally write the MF dynamical equation fo
the densities of active sites:

]

]t
ra~ t !52ra~ t !1hrc~ t !1~g2e!rc~ t !ra~ t !

1O~hra ,ra
2!. ~20!

Next we derive the dynamical MF equation for the de
sity of stable sites, following the same strategy used abo
Since, at lowest order, active sites become stable with
tary rate, we have thatw(sua,sNN8 )511O(hra ,ra

2), yield-
ing a contribution to the MF equation which is

(
$sNN8 %

w~sua,sNN8 !ra )
i PNN

rs
i8
~ t !5ra1O~hra ,ra

2!.

~21!

Since critical sites never become stable, we have also
w(suc,sNN8 )50.

Energy conservation imposes that energy is stored
stable sites until they become critical. This implies a nonu
tary ratew(sus,sNN8 ). The simplest way to derive this term
makes use of the normalization condition that yiel
w(sus,sNN8 )512w(cus,sNN8 ). In fact, these transition rate
are nearly equivalent to those from critical to active sit
The only difference is that only a fractionu of stable sites
receiving an energy quantum will contribute to thes→c pro-
cess, i.e., the fraction of stable sites which are subcriti
Therefore, the reaction rates are related by the factoru as
w(cus,sNN8 )5uw(auc,sNN8 ). Recalling the derivation of Eq
~20!, it is straightforward to obtain

(
$sNN8 %

@12w~cus,sNN8 !#rs )
i PNN

rs
i8
~ t !

5rs2uhrs2u~g2e!rsra1O~hra ,ra
2!.

~22!

Adding all these contributions, we finally obtain the dynam
cal MF equation
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]

]t
rs~ t !5ra~ t !2uhrs~ t !

2u~g2e!rs~ t !ra~ t !1O~hra ,ra
2!, ~23!

that together with Eq.~20!, and supplemented with the no
malization condition, fully describes the MF evolution
sandpile automata.

In deriving the MF equations we have made an appro
mation, introducing the parameteru to take into account the
presence of several energy levels instead of a single st
level. For three level modelsu51, and this description is
exact, while for multilevel models like that of BTW@1# the
parameteru can be determined self-consistently in the s
tionary state using the energy conservation@13#. Here we
show that we can also obtainu by the full description of the
MF equations. We consider a generic sandpile mode
which the energy threshold iszc , and, after a relaxation
event, g energy grains are transfered to randomly cho
neighbors. For instance, thed-dimensional BTW model has
zc52d andg52d, but we can think these are arbitrary va
ues for these parameters. We can describe these syste
more detail by introducing the densitiesrn , describing the
probability that a site is in the leveln. We then have tha
rc5rzc21 and rs5(n50

zc22
rn . The dynamical evolution can

be simplified noting that an active site with energyzc be-
comes stable, and its energy becomesn5zc2g. One can
show that stable sites, with energy levels lower thann, have
a zero stationary density. Without loss of generality, we c
therefore assume that the zero energy level isn5zc2g. By
rescaling the energy levels in this way, we obtainrc5rg21

and rs5(n50
g22rn . The intermediate levels are described

the MF equation

]

]t
rn~ t !52hrn~ t !2~g2e!rn~ t !ra~ t !1hrn21~ t !

1~g2e!rn21~ t !ra~ t !1O~hra ,ra
2!, ~24!

where 1<n<g22. In the stationary state we obtainrn

5rn21•••5r0 and, noting thatu5rg22 /((n50
g22rn), we re-

cover the resultu51/(g21) obtained in Ref.@13#. This re-
sult expresses the energy conservation and fixes the sta
ary solution consistently with the energy balanc
Noticeably, in the Manna model@49#, for which g52, we
obtain u51, as must be for a three state model. As a l
remark we point out that, summing up the above set of eq
tions with the one forr0,

]

]t
r0~ t !52hr0~ t !2~g2e!r0~ t !ra~ t !1ra~ t !, ~25!

we obtain Eq.~23! as a function of the parameteru.
When the system is far from the stationary state, the

rameteru will in general be time dependent. In the follow
ing, we will always consider stationary properties or hom
geneous perturbations which leaveu unchanged, but we
could think of situations in whichu does not have a station
ary value. This corresponds to a systems kept far from
‘‘natural’’ configuration. This can have strong influence ev
i-
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on the critical properties of the system as in the case of
with absorbing states. These features will be discussed e
where@56#.

To study the stationary MF solutions, we consider t
simple three level case, and determineu self-consistently as
in Ref. @13#. Combining the normalization equation with th
stationarity limit of Eqs.~20! and 23, we obtain the set o
equations

ra5hrc1~g2e!rcra ,

ra5uhrs1u~g2e!rsra , ~26!

ra512rs2rc .

After some algebra from Eqs.~26!, we obtain a closed equa
tion for ra :

u~g2e!ra
21@11u~11h2g1e!#ra2uh50. ~27!

We can expandra(h) for small values of the fieldh. The
zero order term in the expansion vanishes, and we obta
leading linear term

ra~h!5
uh

11u~12g1e!
. ~28!

This result has to be consistent with the global conserva
law, which states that the average input energy fluxJin must
balance the dissipated fluxJout. In the stationary state, th
conservation law can be written as

Jin5hLd5Jout5eraLd. ~29!

By comparing Eqs.~28! and ~29!, we obtain thatu51/(g
21), which is the result we previously obtained from th
complete analysis. In the limith→0 the densities are there
fore given by

ra5
h

e
, rc5

1

g
1O~h!, rs5

g21

g
1O~h!. ~30!

The numerical values for the density of critical and sta
sites are nonuniversal quantities, and depend on the la
geometry and dynamical rules of each specific model via
parameterg. The result forrc can be directly compared with
the estimates from numerical simulations of several mod
by substituting the correct value ofg. For the original BTW
model (g52d), extensive numerical simulations on the de
sity of energy levels can be found in Ref.@34#. As expected,
the agreement with the MF result increases for hig
dimensional systems, and we recover the exact result in
limit d→`.

We next discuss the critical behavior of these syste
The balance between conservation laws and the dissipa
are essential for the critical behavior of the model, as a
pointed out in Ref.@33#. The model is critical just in the
double limit h,e→0,h/e→0, similarly to the forest-fire
model @37#. We are going to see that in this limit the ze
field susceptibility of the system is singular, signaling a lon
range~critical! response function. The onset of the critic
behavior is then recovered in the limit of vanishing drivin
field corresponding to the locality breaking in the dynamic
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evolution. In analogy with nonequilibrium phenomen
@40,42#, the one particle density of active sites is theorder
parameter, and goes to zero at the critical point. The drivin
and dissipation rates identify the twocontrol parameters,
i.e., the relevant scaling fields. We can then distinguish
ferent regimes as a function of the control parameters.
model is supercritical forh.0 and e.h, while for h→0
and e.0 it is subcritical and the dynamics displays av
lanches. The phase diagram is somehow similar to tha
usual continuous phase transitions, if we replaceh by the
magnetic field ande by the reduced temperature~see Fig. 1!.
We can fully exploit this analogy by allowing the parame
e also to assume negative values. This corresponds to a s
pile in which a positive net amount of energy enters
system during the avalanche activity~negative dissipation!.
The resulting supercritical regime is analogous to many n
equilibrium systems with a negative reduced control para
eter. However, forh.e, the system has only a trivial sta
tionary state, sincera would have to be greater than 1
satisfy Eq.~29!. Thus, in the nontrivial supercritical region,h
and e cannot be varied independently, because the glo
conservation imposes thath,e. This restricts the scaling
behavior to particular limit values of the control paramete
In the following, we individuate the regimes correspondi
to the standard sandpile numerical simulations and a sca
regime in the supercritical region of the phase space.

A. Subcritical regime

The standard numerical simulations of sandpile mod
are carried out in the presence of an infinite time scale se
ration. As already discussed in previous sections, this imp
an infinitely slow driving of the systems, i.e.,h→0. In this
limit, there is a single control parameter, the intrinsic
boundary dissipatione, and the order parameterra is iden-
tically zero in the steady state. To describe the critical
havior quantitatively, we study the effect of a small pertu
bationDh on the steady state density

Dra~x,t !5E xh,e~x2x8;t2t8!Dh~x8,t8!dx8dt8,

~31!

wherexh,e(x2x8;t2t8) is the response function of the sy

FIG. 1. Phase diagram of a generic sandpile model. We incl
negative values of the dissipation corresponding to a net additio
energy during the avalanches. The trivial supercritical regime
given by a saturation of the system, which is receiving more ene
than it can dissipate. The interesting regionh,e is discussed in the
text.
f-
e

-
of

r
nd-
e

-
-

al

.

ng

ls
a-
s

r

-
-

tem. We define the total susceptibilityxh,e of the system as
the integral over space and time of the response function,
show in Appendix A for the stationary state that

xe[ lim
h→0

xh,e5
]ra~h!

]h U
h50

. ~32!

This immediately gives the zero field susceptibility

xe5
1

e
, ~33!

which diverges ase→0. The system is in a subcritical sta
for any value ofe different from zero. Fore50, the system
reaches a critical point in which the response function
comes long ranged and the susceptibility diverges. Clos
this critical point the scaling behavior is characterized by
scaling lawsxe;e2g, with g51, and by the divergence o
the correlation lengthj;e2n.

An important result can be derived from the respon
function by defining

xe~r !5E xe~r ,t !dt ~34!

as the average total response received at positionr , when
Dh(x8,t8)5d(x8). Since energy is transfered locally an
isotropically, the net energy current is given byj
;]x(r )/]r . For locally conservative models the energy cu
rent j must satisfy in average the conservation law

E jds5const, ~35!

whereds is the (d21)-dimensional surface element. Th
ensures that the energy flowing into the system is balan
by the dissipated energy in the stationary state. Hence
large r , we have the solutionx(r );r 22d. A similar result
has been obtained in Ref.@20#. In the presence of boundar
or intrinsic dissipation, the system acquires a finite corre
tion length, and we can establish the general scaling form

xe~r !5
1

r d22
G~r /j!, ~36!

whereG(r /j) is a cutoff function forr @j. This immediately
gives the following relation betweenj and the zero field
susceptibility:

xe5E xe~r !r d21dr;j2. ~37!

We find the MF value of the correlation exponentn5 1
2 by

substitutingj;e2n, and comparing with Eq.~33!.
We can use these exponents to characterize the finite

scaling of the conservative sandpile model, since our
analysis treats both boundary and bulk dissipation in
same way. In conservative systems, when the size is
creased the effective dissipation depends on the system
and we assume thate;L2m. In fact, the dissipation rate is
given by the probability to find a border site instead of a bu

e
of
is
y
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site during an avalanche. Thus the exponentm links the dis-
sipation rate with the system finite size, providing a unifi
view of locally dissipative and open-boundary models. In
conservative case, the characteristic length of avalanc
should go likej;L to ensure dissipation of energy outsid
the boundaries. This implies the scaling relationnm51,
which immediately givesm52. We show in Appendix A
that the susceptibility scales as the average avalanche s

xe;^s&, ~38!

which impliesx;Lmg. From this result, we obtain the sca
ing law

^s&;L2 for L→`, ~39!

which was found numerically in various dimensions@46#,
and rigorously proven ind52 @17#. Our explanation implies
that the diffusive behavior of the avalanches is due to
global conservation law.

Summarizing all these results, we obtain a first set of M
exponents:

g51, m52, n5 1
2 . ~40!

In deriving these exponents we made only use of conse
tion laws. Therefore we expect that these values hold in
dimensions, and can be considered asexactresults. In Sec.
II B we will confirm these results by numerical simulation
performed in the fast driving regime, and discuss some
sults already published in the literature.

In the subcritical regime the dynamics takes place in
form of avalanches, but ifh50 the system rapidly decays i
one of the adsorbing configurations; the ones with no ac
sites. All of them are stable in the absence of a driving fie
It is useful to characterize the proliferation of active sit
starting from a seed initial condition. In close analogy w
CA with adsorbing states, we study the spreading of ac
sites after a small perturbation. We prepare the system i
initial state consisting of a single active site, i.e., an infi
tesimal perturbation in the driving fieldDh(x,t)5d(t)d(x).
Sinceh(t.0)50, active sites cannot be produced sponta
ously from critical sites, and can only appear due to
spreading of the initial perturbation. The properties of t
process close to the critical point characterize the avalan
behavior typical of SOC phenomena.

Following Grassberger and de la Torre@40#, we consider
the probability that a small perturbation activatess sites~an
avalanche in the SOC terminology!

P~s,e!5s2tG„s/sc~e!…, ~41!

wheresc;e21/s is the cutoff in the avalanche size. The pe
turbation decays in the stationary subcritical state as

ra~ t !;thF„t/tc~e!…. ~42!

Here tc denotes the characteristic time which scales astc
;e2D. We can also introduce the scaling exponents wh
relate cutoff lengths to the characteristic size,sc;jD and
tc;jz. These exponents are related by the scaling laws
e
es

e

e
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e

e
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e
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e
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h

D5
1

ns
, zn5D. ~43!

Another scaling relation between critical exponents can
obtained from Eq.~38! ~see Appendix A!,

xe;^s&5E s2t11G„s/sc~e!…ds;e~t22!/s, ~44!

which implies that

g5
~22t!

s
. ~45!

To obtain the MF values of the avalanche exponents,
solve the evolution equation for a small perturbation close
the stationary state. We considerrk(t)5rk1drk(t), where
drk(t) is the deviation of the densities from their stationa
value. By considering a small perturbation around the s
tionary state, keeping only the linear term indrk(t), and
using the normalization condition, we obtain

]

]t
dra~ t !52dra~ t !1hdrc~ t !1~g2e!rcdra~ t !

1~g2e!radrc~ t !,

]

]t
drs~ t !51dra~ t !2

h

g21
drs~ t !2

g2e

g21
rsdra~ t !

2
g2e

g21
radrs~ t !, ~46!

dra~ t !52drc~ t !2drs~ t !.

In subcritical regimes (h→0), we only keep in these equa
tions the leading terms ine. Substituting in Eqs.~46! the
densities given by the solution of the stationary equation
h→0 ~i.e., ra50 andrc51/g), we finally obtain the evolu-
tion equation in diagonal form:

]

]t
dra~ t !52

e

g
dra~ t !. ~47!

The solution of Eq.~47! is given by

dra~ t !;exp~2et/g!, ~48!

which impliesh50. The last equation also defines the ch
acteristic relaxation time for an infinitesimal perturbation
be tc5g/e, yielding D51. We compute the remaining ex
ponents using a further scaling relation, which we derive
Appendix B:

~t21!

ns
5z. ~49!

It is worth remarking that Eq.~49! is valid only in MF
theory. By combining these relations with those of Eq.~43!,
we obtain the second set of MF critical exponents:

z52, D54, t5 3
2 , s5 1

2 . ~50!

It is worthwhile to remark that the numerical value of the
exponents is the same as in other MF approaches, but
significance is completely different, being defined with r
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spect to a different scaling field. All sandpile models with t
same dynamical MF equations share the same critical e
nents and belong to the same universality class. Howe
the degree of universality is highly overstated, as usu
happens in MF approaches. In particular, the exponents
not depend on the dimensionalityd. The exponents describ
ing avalanche distributions in low-dimensional systems,
general, will not agree with the results of MF theory. F
instance, it is still controversial if the BTW and two sta
models are in the same universality class. While it was
lieved for some time that this was indeed the case, rece
large scale numerical simulations questioned this statem
@57#.

To compute the value of critical exponents below the u
per critical dimension, we have to use renormalization gro
techniques, which allow the correct treatment of the sca
free fluctuations present at the critical point. The renorm
ization group approach to a nonequilibrium system prese
several difficulties which can be overcome by suitable
proximations@12,24#.

B. Supercritical regime

The supercritical region is characterized by a finite d
sity of active sites, i.e., a nonzero order parameter. Clos
the critical point, the supercritical region corresponds to
parameter rangesh!1, e!1 andh&e. In this regime the
order parameter is linear inh,

ra;h1/d, d51, ~51!

as we obtain from Eq.~30!. The same result was also co
jectured in Ref.@46#. This is analogous to the MF resul
obtained for contact processes and other nonequilibrium
@40–42#, but it is in contrast with previous MF approach
for sandpile models@35,36#, which yieldedd52. This latter
incorrect result is due to an inconsistency present in th
studies. The scaling is expressed in terms of the ave
energy^z&[( ir izi , which is treated as an independent co
trol parameter. As we have just shown,^z& and h are not
independentin the stationary state. The stationary probabil
distribution of heightsr i is indeed a function of the driving
rate. Moreover,̂ z& cannot be considered as the control p
rameter even forh50, since it does not determine com
pletely the state of the system: The same value of^z& de-
scribes several states corresponding to different value
densitiesr i . This is a typical property of CA with multiple
absorbing states@42#. In preparing an initial condition con
sisting of a localized active region, one has considera
freedom to choose the initial state~the adsorbing configura
tion!. In order to observe the critical properties of the syste
we should choose one of the ‘‘natural’’ initial configuration
which can be obtained by the dynamical evolution for infi
tesimal driving in the long time limit. In numerical simula
tions this is equivalent to first preparing the system in
stationary state in the presence of the time scale separa
and then average over the many different realizations of
avalanches.

The exponentd has been defined in previous works
analogy with usual continuous phase transitions, wher
characterizes the scaling of the order parameter in the p
ence of an external field when the other critical parame
o-
r,

ly
do

n

-
tly
nt

-
p
-

l-
ts
-

-
to
e

A

e
ge
-

-

of

le

,

e
on,
e

it
s-

rs

are set to zero. In SOC, however,h and e are not fully
independent because of thee.h condition. We can define a
consistent scaling regime with respect to the reduced v
ablef5h/e in the double limitsh→0 ande→0, with the
supplementary conditions thate!f!1. These limits define
a parameter region which is identified roughly ase!1 and
e2!h!e. In this region, the MF approximations show th
the order parameter is positive and scales as

ra5fb, ~52!

with b51. The exponentb characterizes the scaling beha
ior of the order parameter with respect to the reduced par
eterf, and should not be confused with the exponentd. In
order to uncover the scaling of the characteristic lengths
the system with respect to the parameterf, we study the
evolution of small perturbations around the stationary sta
As in Sec. IV A, we denote bydrk(t) the deviations from
the stationary state, and write the dynamical equation ke
ing only the leading terms. We thus neglect in Eqs.~46! the
terms in h and e, and keep the terms inf. For this we
compute the first order correction inf to the values of the
stationary densities. These results to bera5f, rc5(1
2f)/g andrs5(g21)(12f)/g, and, by substituting in the
dynamical MF equations, we obtain

]

]t
dra~ t !52~g21!fdra~ t !2gfdrs~ t !,

~53!

]

]t
drs~ t !51fdra~ t !2

g

g21
fdrs~ t !.

By diagonalizing Eqs.~53!, we find the eigenvalues

L652f f 6~g!, ~54!

where f 6(g) always has a positive real part. Both eigenv
ues are thus negative and linear inf, and represent the in
verse of the relaxation time scale of a perturbation around
stationary state. We have, therefore, thattc;f2D8, with
D851, implying that the characteristic time scales as in
subcritical regime. The solution for the spreading of the d
sity perturbation has the formdra(t);F(t/tc), yielding, as
in the subcritical regime,h850.

Equations~53! describe how a localized perturbation d
cays in the stationary state. As in Sec. IV A, this decay c
be related to the susceptibility

xf;E dra~ t !dt;f2g8, ~55!

with g851. A characteristic lengthj is associated with the
characteristic time of fluctuations. Since energy is transfer
homogeneously and isotropically, we have thatxf;j2, as in
the subcritical regime. By comparing this relation with E
~55!, we obtainj2;f21, or j;f2n8 with n85 1

2. We can
obtain a clearer picture of this behavior using the avalan
representation. The condition that the time between two
ergy addictions~the driving time scale! is much longer than
the fluctuation time scale can be written as
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h!tc
21;f. ~56!

This condition is implicitly verified in the limit we are con
sidering (h!e!f). Under this assumption, it is very un
likely for fluctuations to overlap. Thus, on average, ea
event is separated from the others, and can be defined
the subcritical case as an avalanche. In the stationary s
the average nonzero order parameter is produced by the
dom appearance of a finite number of nonoverlapping a
lanches. Furthermore, we can identify the response func
with the time evolution of an avalanche, and we recover
the limit h→0 thatxf;^s&. In its turn the latter implies tha
in this regime the average sizes of avalanches diverge
^s&;f21 asf→0. Work is in progress to obtain a numer
cal confirmation of the MF predictions for the supercritic
regime.

C. Numerical simulations

In this section, we compare the results of numerical sim
lations with the prediction of MF theory, and in particular w
expect that the set of MF exponents related to the glo
conservative nature of the model are also valid in low dim
sions. Sandpile models have been extensively studied on
the subcritical state@45–48#. Most of the numerical results
refer to an avalanche distribution in the conservative lim
with open-boundary conditions. In these conditions the fin
size scaling has been found to be problematic, and des
the use of very large scale simulations there is not comp
agreement on the values of the exponents@48#. The reason
for this is probably that open-boundary conditions impos
value for the effective dissipation which depends on the
tice size, and does not act homogeneously through the
tem.

We simulate the BTW model numerically with finite driv
ing rateh and boundary dissipation ind52. In this case the
dissipation is implicitly considered through the ope
boundary conditions. When a boundary site topples, it di
pate part of the energy outside, without transferring it to
neighbors. The driving rateh is introduced as the probabilit
for unit time that a site receives an energy grain. Apart fr
the driving the simulation proceeds as in Ref.@46#. We see in
Fig. 2 that the density of critical sites goes to zero linea
with h (d51), with a slope that increases with the syste
size asL2. This is in agreement with the MF theory whic
predicts that the susceptibility scales asLmg, with mg52.

To observe more clearly the scaling with dissipation
the sandpile model, we study the BTW model withperiodic
boundary conditions and fixed dissipatione. We model the
dissipation introducing a probabilityp̃[e/g, for which the
energy in a relaxation event is lost, instead of being tra
fered. In Fig. 3, we plot the susceptibilityxe5dr/dh as a
function ofe. We observe the 1/e behavior (g51) predicted
by mean-field theory. We should add to this the value on
50.5 that was obtained studying a dissipative sand
model ind52 @50#.

In summary, we have shown that some MF features
present in thed52 sandpile model. The global conservatio
law imposes that the exponentsm,n, andg assume their MF
values. This strongly supports the MF picture provided he
The other critical exponents do not necessarily assu
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mean-field values ind52, and we do not analyze them her
Extensive measurements of these exponents can be fou
the literature@45–48#. We are currently performing simula
tions of the model in the supercritical regime ind.2, and
the results will be published elsewhere@58#.

A very important issue in SOC models is the definition
universality classes. We expect critical properties, such
exponents and scaling, to be independent of the precise
ues of dynamical parameters, being determined only by
symmetry of the problem and the number of spatial dim
sion. Therefore, it is important to understand to what ext
we can change the automaton rules without changing
universality class. The dynamical rules, in fact, contain
basic symmetries of SOC models, and it would be interes
to classify the critical behavior in terms of their microscop
dynamics. So far, no theoretical treatment has been abl
address this question rigorously. Also, from the point of vie
of numerical simulations, the situation is controversial.

FIG. 2. The density of active sites in the BTW model wi
boundary dissipation, as a function of the driving rateh, is plotted
for different system sizesL.

FIG. 3. The susceptibilityxe5dra /dh as a function of the dis-
sipatione, for a system with periodic boundary conditions and s
L564. The line corresponds to the theoretical predictionxe51/e.
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appeared immediately that directed sandpile models, wh
dynamics acts on a preferred direction, belong to a sepa
universality class@45#. On the contrary, early numerica
simulations supported the belief that the Manna and BT
models belong to the same universality class@46,47#. A few
years ago, larger numerical simulations@57# provided some
evidence of two distinct universality classes. A better und
standing of universality classes could be obtained using
framework discussed in this paper, studying the scaling w
respect to the control parameters.

D. On the role of conservation

In the previous discussion, we emphasized the role
conservation in the dynamics of sandpile models. Using c
servation laws, we found a subset of critical exponents
retain their mean-field values even in low dimensions. C
servation has an important effect on criticality as well, sin
the amount of dissipation plays the role of control parame
Only by tuning this parameter to zero does the system
come critical.

The role of conservation in SOC models has been
object of a long controversy. It was first claimed that cons
vation was a necessary condition for criticality in this cla
of model @21,22#. Results on dissipative sandpile mode
seemed to confirm this conclusion@50#. Later on, simulation
of an earthquake model contradicted these results@59#. The
model studied in Ref.@59# is a continuous height sandpil
model in which energy is dropped uniformly over the ent
lattice at an infinitesimal rate. This in practice correspond
raising the heights of all the sites by the quantity needed
the higher site to become unstable. When a sitei is unstable
(zi.zc), the relaxation rules are

zi→0, ~57!

zj→zj1azi , ~58!

where j ’s are the nearest neighbors ofi . The dissipation
parametera @60# can be tuned: fora51/(2d) , the system is
conservative. It has been observed in simulations that,d
52 for a.ac, the system is critical. There is still not agre
ment on the precise value ofac , which was first estimated a
ac.0.05 @59#, and later found to be higher (ac.0.18) @61#,
while it was claimed in Ref.@62# that ac50.

The mean-field analysis of this model is not easy, beca
of the continuous number of levels a site can assume. U
an approximate analysis of the random neighbor mode
was claimed in Ref.@63# that ac.0.22, a value that was
found to be in agreement with simulations. A comple
analysis of the master equation later revealed thatac50.25
~the conservative case!, showing also the presence of ve
strong finite size correction@64#. From this analysis, it ap
pears that the random neighbor model behaves like the B
model. Criticality is only reached in the conservative case
the limit of a zero driving rate. The situation in two dime
sions is still controversial, and it is believed that the inhom
geneity created by the open-boundary conditions is resp
sible for the observed power law distributions.

The role of conservation for criticality still remains ope
in these models, while it is now agreed that in MF theo
conservation is a necessary condition to achieve criticalit
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sandpile models. In Sec. V, we will discuss a model@37# that
shows criticality without conservation even in MF theor
The price of achieving this result will be an additional dri
ing rate.

V. NONCONSERVATION AND CRITICALITY:
THE FOREST-FIRE MODEL

We have discussed that conservation in sandpiles is
cial to achieve criticality. The controversial issue of contin
ously driven models raises the question of the possibility t
time scale separation alone can produce scale invarianc
systems without conservation laws. In this context the fore
fire model acquires a very important role, in that it is a no
conservative automaton displaying criticality.

As outlined in Sec. III, we can describe the model in t
same language used for sandpile models. We identify bu
ing sites with the active sites, since they interact with oth
sites independently of the driving fields. Furthermore, th
density vanishes in the limit of small driving fieldf . In the
same way, trees correspond to critical sites, and empty s
to stable sites. In this case the general three state descri
is exact. Using this language, we can emphasize differen
and analogies between FF and sandpile models. While
main dynamical transitions are very similar, we can imme
ately recognize the effect of nonconservation. In the
model energy in not stored, and critical sites are created b
second independent field: the tree growth probabilityp. Thus
in the FF model we replaceh→ f and uh→p. This intro-
duces an independent field~or a time scalep21) related to
the injection of critical sites in the system. Since energy
not accumulated, there is no need of an additional diss
tion, so that in the FF model there is no parameter play
the role ofe.

The FF model was originally introduced in the lim
f 50 andp→0 by Bak, Chen, and Tang in Ref.@51#. The
model was claimed to show SOC, but later Grassberger
Kantz @53# showed that ind52 the model was critical in a
trivial sense. The system shows a diverging characteri
length that is essentially the distance between straight
fronts. This implies that the dynamics is governed by t
average tree density over larger and larger regions. In hig
dimensions, the possibility of a nontrivial behavior has n
been ruled out, as recent work seems to suggest@54#. Drossel
and Schwabl@52# introduced the ignition or lightning prob
ability f . This field sustains fires, and the system flows in
stationary state which shows critical properties in the dou
limit f !p!1. This version of the model has been the su
ject of several studies, both analytical@12,27,65–67# and nu-
merical @68–70#.

Despite the various efforts, the two versions of the mo
were always studied as very different cases, almost two
ferent models. For this reason, it is difficult to find in th
literature a precise connection among the two different
gimes. In this section we recover, within our framewor
many results already present in the literature. By recas
these results in the language developed for sandpile
tomata, we provide a unified picture of both models. W
discuss the FF model in terms of the response function
gularities and we show that the SOC-FF and the determi
tic FF correspond to the supercritical and subcritical regim
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In this way, we can understand several features of the
model in terms of the same concepts developed for sand
model.

The MF equations can be derived by the single site
proximation to the master equation. Since the derivation p
ceeds as in Sec. IV, we do not repeat it here in detail, and
instead present some general considerations. Active site
come stable~fire → empty! with unitary rate, and critical
sites become active if ignited by the lightning with probab
ity f . The interaction term is then given by the fire spreadi
an active site creates as many new active sites as the nu
of NN critical sites. To the first order inra , this term is
proportional torarc times the usual geometrical factorg that
takes into account the lattice coordination and other mo
dependent geometrical effects. The reaction rate equat
then reads

Fa52ra1 f rc1grcra1O~ra
2!. ~59!

This expression is very similar to the one obtained in
sandpile case, with the exception of the dissipative term
here is missing. The two models differ in the dynamical ev
lution of stable sites. In the FF model there is a term, due
the fieldp, corresponding to the transition rate from stable
critical sites, and there is no interaction between active
stable sites. We can then write the stationarity equations
the FF model as

ra5 f rc1grcra ,

ra5prs , ~60!

ra512rs2rc ,

where we have neglected the second order term inra . As for
the sandpile model,g is an independent parameter of th
model, andf and p represent the tunable external drivin
fields. The lowest order solutions inf and p to the above
equations are

ra5
g21

g
p1

1

g
f 1O~ f 2,p2!,

rc5
1

g
2

1

g

f

p
1O~p, f !, ~61!

rs5
g21

g
1

1

g

f

p
1O~p, f !.

These results were already obtained in Ref.@27#, where a
random neighbor version of the FF is analyzed. Th
method and the present MF scheme are equivalent, and
will recover the same stationary densities. We compute
critical exponents by using the same lines adopted for sa
piles, and obtain some insight into the critical properties
the FF model. The density of active sites depends line
upon f and p, which are independent driving fields playin
the same role ash in sandpile automata. If we consider th
density of active sites as the order parameter, it appears
mediately that the critical point is reached iff→0 and p
→0 simultaneously. This double limit again corresponds
the locality breaking of the dynamical rules. In this case
F
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order parameter is identically zero in the steady state, and
system develops long-range correlation properties. Also,
the FF model we can then distinguish among subcritical
supercritical regimes depending on the values of the driv
fields.

A. Subcritical regime

The subcritical and critical regimes correspond to t
limit in which we have a zero order parameter and theref
f 50 andp50. This limit is, however, not completely de
fined because the density of critical and stable sites dep
upon the ratiof /p. In order to study the critical behavior in
this limit, we repeat the discussion inspired by the study
CA with adsorbing states that we already used for the sa
piles. Since whenf 50 andp50 the dynamics is frozen, we
have to prepare the system in a stationary state in the lim
p→0 and f→0, and then study the spreading of small pe
turbations. This is what is actually done in numerical sim
lations, where the fire evolution and the action off andp act
separately. In doing that, however, we prepare the system
one of the ‘‘natural’’ configurations, corresponding to th
stationary state in the limit of infinitesimal driving. In thi
configuration the density of critical sites reaches a limit va
rc51/g2g21f /p, which depends, via the parameteru
[ f /p, on the way the limit has been performed.

In order to study the scaling behavior, we consider
limit f !p!u!1, keepingu constant. In this regime we ca
considerf 5p50 andra50, and we can study the system
the leading order inu. By considering small deviations
drk(t) from the stationary state, and retaining just first ord
terms inu, we find the linearized dynamical equation in d
agonal form

]

]t
dra~ t !52udra~ t !. ~62!

Hence the relaxation behavior follows an exponential law
which the characteristic relaxation time is given bytc
;u2D with D51. This implicitly tells us that the system
indeed reacts in avalanches. In fact, both driving time sca
p21 and f 21 are much larger in this regime than the chara
teristic spreading time of an avalancheu21, that therefore
remains an isolated event connected in space and time, i.
does not overlap spatially with other avalanches or grow
processes due to the driving field.

Along the lines we followed for sandpiles, we define t
response function of the systemx f ,u(x2x8;t2t8) that char-
acterizes the way the system responds to an external pe
bation. The response is now a function off andu. The total
susceptibilityx f ,u is related to the derivative of the stationa
density of critical sites, and the zero field susceptibility c
be obtained as

xu5 lim
f→0

]ra~ f !

] f
. ~63!

Since the density of active sites can be written asra( f ,u)
5 f /g1(g21) f /(gu), the singular part of the susceptibilit
diverges as
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xu5u21. ~64!

In Appendix A it is shown that the zero field susceptibility
related to the divergence of the average fire size as^s&
;xu . Hence the characteristic fire size diverges foru→0.
This implies that the system is in a subcritical regime, a
perturbations to the stationary state show a finite charac
istic length for anyu.0. Only in the limit u→0 does the
system respond on all length scales to infinitesimal pertu
tions. We can define the standard scaling lawsxu5u2g with
g51, and j;u2n that characterize the divergence of t
correlation length.

Next we consider the total response at a positionr given
by xe(r )5*xe(r ,t)dt. We note that fire clusters are give
by the connected clusters of critical sites, because in
regime fires are not overlapping. Since a tree can burn
once, the average response at a distancer is given by the pair
connectedness function that gives the probability that
sites at a distancer are connected, i.e., belong to the sam
cluster. This function and thus the response function is s
posed to behave asr 22d G(r /j) in MF theory@71#. In gen-
eral, by integrating the local response function, we have

xu5j2, ~65!

and, therefore, by comparing with Eq.~64!, we obtainn5
1
2. It is worth remarking that in this case the above MF re
tions are not enforced by conservation laws, and anoma
exponents can appear in low dimensions.

To study the avalanche behavior, we introduce the pr
ability P(s,u)5s2tG„s/sc(u)… that a fire involvess sites,
and we identify the usual set of critical exponents defined
the scaling lawssc;u21/s, sc;jD, and tc;jz. Associated
with these we have the scaling relationsDs51/n, zn5D,
and gs522t. We have shown previously that in this re
gime the class of ‘‘natural’’ configurations have a density
critical sites which depends onu; thus we consider the dif
ference of densities with respect to the critical state

rc2rc~u!;uz, z51. ~66!

We can then find another scaling relation that links the a
lanche exponents toz, noting that the avalanche size distr
bution corresponds to the distribution of connected criti
site clusters. In Appendix B we derive this scaling relatio
which results to be

z5
t21

s
. ~67!

Collecting all the results obtained above, we have the co
plete set of MF exponents:

g51, n5 1
2 , ~68!

t53/2, D54, s5 1
2 , z52. ~69!

Also in this case, as previously shown by several auth
@27#, the MF values correspond to those of mean-field p
colation. It is important to stress again that in the FF ca
the absence of a conservation constraint implies that MF
ues for critical exponents are not valid in low-dimension
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system. Anomalous scaling appears below the upper crit
dimension, and the model shows nontrivial values of ex
nents@37#.

B. Supercritical regime

Here we consider the scaling behavior in the region
which the order parameter is not zero. In order to remain
the critical region, we must haveu!1, but now we consider
nonvanishingf and p, with f much smaller thanp. This
essentially corresponds to the FF model without ignition, t
in this perspective can be considered as the supercritica
gime close to the critical point. In this limit, we obtain im
mediately from the solution of Eq.~61! that the order param
eter is positive, and scales as

ra;pb, ~70!

with b51. To calculate the relaxation properties we have
perform a linear stability analysis of the system around
stationary solutions~61!, retaining only the lowest orde
terms inp. We consider small fluctuationsdrk(t), and the
eigenvalues of the diagonal form of the dynamical evolutio
are

L652~g/2!p6 i ~gp!1/2. ~71!

The negative real part identifies the characteristic relaxa
time that scales astc;p21. Together with the exponentia
relaxation, the system shows oscillations with periodT
;p21/2, related to the imaginary part of the eigenvalue
This MF behavior was already discussed in Ref.@53#.

In the supercritical state the time scale of a perturbatio
comparable to the driving scale, both being of the order
p21. Thus active sites do not spread just on connected c
ters of critical sites. In other words, the critical site config
ration is not frozen during the perturbation, and the tim
evolution connects several clusters of critical sites beca
connecting sites might appear during the time evoluti
Also in this case, however, the susceptibility is given by t
total response to a localized fluctuation,

xp;E dra~ t !dt;p21. ~72!

Since the response of the system is due to the connect
properties, we have still the usual MF relationxp;j2, which
implies thatj;p2n8 with n85 1

2. Another way to see this
result is to think that the fluctuation spreads as waves
active sites. Since the propagation velocity is finite, the c
relation length is proportional to the wave periodT. This
simple MF picture does not work in low dimensions@54#.

VI. DISCUSSION AND OPEN QUESTIONS

A. Relations with branching processes

A clear mean-field description of the avalanches in SO
models has been obtained through mapping to branch
processes@29–32#. A branching process@72# is defined by a
number of active sites that can either die or generaten new
sites with certain probabilities. The simpler example is t
casen52: a site dies with probability 12q or generates two
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new sites with probabilityq. The process usually starts wit
a single active site and continues until no more active s
are present. Depending on the value ofq, the branching pro-
cess will die after a finite number of steps or continue f
ever. There is a critical valueq5qc that separates the tw
regimes (qc5 1

2 for n52). Forq,qc , the size distribution of
the branching process is a power law

P~s!;s23/2f ~s/s0!, ~73!

where the cutoffs0 diverges forq5qc .
It was shown in Ref.@31# that the Manna model can b

exactly mapped into a branching process with a time dep
dent parameterq(t), depending on the density of critica
sites (rc) and on the dissipation@32#. A critical branching
process was obtained as a stationary state in the limit of s
driving and conservation@31#.

Branching processes can be considered as a ge
framework to describe avalanches in mean-field theory
general terms, we can describe an avalanche by an evo
front that can either propagate or stop. In the mean-fi
description, the elements of the fronts do not interact a
evolve independently. Thus the avalanche can be descr
as a branching process with an effective parameterq that
depends on the detail of the model under study.

In our formalism, a branching process is associated w
the propagation of active sites in the subcritical regime.
the stationary state forh50, an active site generatesk
51, . . . ,g new active sites with probabilities

qk5~12e!S g

kD rc
k~12rc!

g2k, ~74!

while no active sites are generated with probability

q05e1~12e!~12rc!
g. ~75!

In this case, the control parameter for the branching proc
is given by q̃5(kkqk , with a critical valueq̃c51. In the
stationary state, we findrc51/g and henceq̃512e. The
critical branching process corresponds, therefore, to the l
e→0. A similar analysis can be done for the FF model.

B. Locality breaking

We have seen that criticality in stochastic SOC system
achieved only in the limit of infinitesimal driving corre
sponding to the locality breaking of the dynamical rules. T
nonlocality is evident if we consider the zero driving lim
that is naturally implemented in computer simulations us
two different time scales, one for the avalanche evolut
and one for the driving. With this infinite time scale sepa
tion, the evolution of each site depends on the entire sys

For a more concrete physical explanation of how the
cality breaking generates long-range interactions in the
tem, let us consider the case of a vanishing driving ra
corresponding to a small density of active sites. Becaus
the infinitesimal driving, each region, devoid of active pa
ticle, is virtually frozen until an active site is generated. T
activity spreads, and in general alters the configuration
fore it moves away or disappears. The active sites leav
trace of their dynamical history in the frozen configuratio
s
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of critical and stable sites they produced. If new active si
are created in the same region at some later times, they
‘‘feel’’ the effect of the active sites present earlier in th
region. This is basically a memory effect, which creates
long-range interaction in time and space among diffus
active sites. The range of this interaction depends on
characteristic time scale of the driving, because the fluct
tions induced by the driving destroy the memory effect.

Close to the infinite time scale separation, the charac
istic driving time scale is diverging, and the range of t
nonlocal interaction extends to the entire system. A lo
interaction is recovered, however, if we introduce a size c
off in the wandering region of active particles. This is th
case of dissipative sandpile in which after a finite number
steps the active sites disappear@73#. Over this characteristic
size active particles do not interact, and to obtain a lo
range nonlocal interaction the dissipation should go to ze
The same discussion applies to the FF model, due to
finite range of connected critical sites obtained by tuning
ratio of f andp.

C. Conclusions

In this paper, we have presented a unified mean-fi
theory for stochastic SOC models. We have treated th
models in analogy with other nonequilibrium cellular a
tomata, using a single site approximation to the master eq
tion. With the present approach, we are able to identify
order parameter and the control parameters of the mo
and to emphasize similarities and differences between S
and other nonequilibrium system. In particular, the langua
of cellular automata with absorbing states can be emplo
to describe SOC models. For finite driving rates, we find
supercritical regime characterized by a finite fraction of a
tive sites. In the limit of infinitesimal driving, the system
subcritical and displays an avalanche response. Critica
arises from a double limit: the driving rate and the dissip
tion ~in the sandpile model! or the two driving rates~in the
FF model! should have vanishing values. This limit corr
sponds to the onset of nonlocal dynamical rules, which
responsible for the critical behavior characteristic of SOC

From this perspective, SOC models appear to be none
librium systems with steady states, reaching criticality by
fine tuning of control parameters. While this statement
technically correct, we note that SOC systems are quite
culiar, since the fine tuning can only be achieved by lim
procedure. This is in contrast with ordinary critical pheno
ena, where the control parameter can be directly tuned to
critical value. In this sense, SOC systems are less sensitiv
fine tuning@10#. Moreover, the driving rate can in general b
small in many natural phenomena, and this could make
SOC framework relevant.
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APPENDIX A: RESPONSE FUNCTION PROPERTIES

For small perturbations around the stationary state,
spontaneous microscopic dynamics can be represente
introducing the response function. We first consider the
sandpile case. If we apply a time dependent perturba
h(x,t) to the stationary state, the density of active si
changes as

Dra~x,t !5E E xh,e~x2x8;t2t8!Dh~x8,t8!ddx8dt8

1O„~Dh!2
… ~A1!

wherexh,e(x2x8;t2t8) is the response or generalized su
ceptibility function. Here we assume a stationary and hom
geneous system, i.e., the two point averages depend jus
the time or space displacement. The above expressio
valid in the linear regime, only for small variations of th
perturbing field. We next derive some simple properties
the response function for systems whose dynamics is c
acterized by avalanches. We first consider an impulsive
turbanceDh(x8,t8)5d(t)dd(x). This is a very small pertur-
bation with respect to the total energy inputJ5*h(x)ddx. In
practice, it corresponds to the addiction of an energy grain
top of the stationary average driving field. Inserting this p
turbation intoDra(x,t) yields

Dra~x,t !5xh,e~x;t !. ~A2!

We then define the total susceptibility of the system,

xh,e5E dtE xh,e~x;t !ddx, ~A3!

which quantifies the total response of the system to an
pulsive disturbance. The total number of active sites due
the perturbation is

Na5E dtE Dra~x,t !ddx5xh,e . ~A4!

In the absence of an external fieldh→0, the only active sites
present in the system are due to thed perturbation. That is,
all the active sites are casually connected in space and t
thus forming an avalanche whose average size is^s&5Na .
This is precisely stated by the expression

xe[ lim
h→0

xh,e5^s&, ~A5!

which defines a relation between the average avalanche
and the zero field susceptibility. As we have seen in
previous sections, the above expression is at the bas
several scaling relations, and it explains, together with c
servation, the diffusive behavior of the average activity.

Another way to look at a stationary perturbation
equivalently to the variation of the stationary averages is
following. We consider a different perturbation

Dh~x8,t8!5Dh for t8,t, ~A6!
d
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corresponding to a uniform driving in space and time.
changing the variables of integration tot95t2t8 and x9
5x2x8, we obtain

Dra5DhE
V
E

0

`

xh,e~x9;t9!ddx9dt9. ~A7!

Hence the density fluctuations are time and space inde
dent, as it must be in the new stationary state withh→h
1Dh. Performing the double integral in the right term, w
obtain the total susceptibility. Therefore,

Dra5Dhxh,e , ~A8!

from which we obtain that in the stationary state and
infinitesimal perturbations,

xh,e5 lim
Dh→0

Dra

Dh
5

]ra~h!

]h
. ~A9!

Notice that from this equation we are able to provide a re
tion between the total response function and the diverge
of avalanche size

^s&5xe5 lim
h→0

]ra~h!

]h
. ~A10!

Equation~A10! states that the zero field susceptibility in th
stationary state and the average avalanche size have the
singular behavior in the thermodynamic limit.

We next consider the forest-fire model. In this case
have the two driving fieldsf and p, and the response func
tion depends upon them. The interesting subcritical regim
the one in which we take the limitf→0 andp→0 with u
5 f /p!1. We study the response of the system for sm
perturbationD f and a fixed value ofu. The general expres
sion that characterizes the response of the system is give

Dra~x,t !5E E x f ,u~x2x8;t2t8!D f ~x8,t8!ddx8dt8

1O„~D f !2
…. ~A11!

As for the the sandpile case, we can apply ad perturbation.
It follows that, simply rewriting what we derived in the san
pile case, we obtain

xu[ lim
f→0

x f ,u5^s&, ~A12!

where^s& in this case is the average size of fire events. In
same way we can consider a stationary perturba
D f (x8,t8)5D f for t8,t, and, by repeating the above arg
ments, we recover

x f ,u5
]ra~ f !

] f
, ~A13!

from which follows that the divergence of the average size
fires is related to the zero field susceptibility in the usu
way.
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APPENDIX B: SCALING RELATIONS

Here we obtain two scaling relations whose derivation
straightforward but rather lengthy.

1. Sandpile model

Let us consider the flow decays of activity in the subcr
cal regime. We definera(s,t), the space integrated respon
of an avalanche ofs sites. If we assume scaling behavior, w
have that

ra~s,t !.sqw~ t/ts!, ~B1!

wherets is the upper characteristic time of an avalanche os
sites and scales asts;sz/D. By imposing the condition tha
*ra(s,t)dt5s, we obtain q512z/D. We have also tha
w(0)5w(1)50, and thatra(s,t) is independent ofs for
small t. This implies thatw(x)→x211D/z asx→0. The total
response function is the average of the various possible
lanche response

ra~ t !5E ra~s,t !P~s!ds, ~B2!

which, after the proper substitution by means of scaling
lations, gives the expression

ra~ t !;exp@2~ t/tc!
~t21!/nsz#. ~B3!

In the MF picture, the above relation is consistent with t
results obtained from the dynamical equations only if

~t21!

nsz
51, ~B4!

thus recovering the relations used in Sec. IV. An analog
result was already obtained in the paper by Tang and
@35#. Again, we stress that this is not a general scaling re
tion, but an exponent equality valid just in MF theory.
.

t.
s.

n-

an

.

s

a-

-

e

s
k
-

2. Forest-fire model

The density of critical sites in the stationary configurati
approaches the critical value foru→0 as a power law

Drc[rc~u50!2rc~u!;uz. ~B5!

In the subcritical regime, we have a complete time sc
separation. Therefore, each spreading of activity invol
just clusters of connected critical sites. This is because
tree growth time scalep21 is much longer than the activity
time scale, thus preventing new critical sites from chang
the connectivity properties of the configuration. In this co
dition, the probabilityP(s,u) to have an avalanche of sizes
scales as the distributionn(s) of connected clusters withs
critical sites times the size of the clusters. This factor takes
into account the probability that the ignition process starts
any site of a cluster of sizes. On the other hand, the densit
of critical sites, leaving apart normalization factors, is giv
by rc;*sn(s)ds; that is, given by the integral of the ava
lanche distribution. We can therefore write

Drc;E s2t@12G„s/sc~u!…#ds, ~B6!

where we used the explicit form of the avalanche distrib
tion. Noticing thatG„s/sc(u)….0 for s.sc , we obtain that
the main contribution to the above integral is given by

Drc;E
sc

`

s2tds, ~B7!

or, as a result of the integration,

Drc;sc
12t . ~B8!

By substitutingsc;u21/s in the above expression and re
quiring the scaling consistency with Eq.~B5!, we finally ob-
tain the scaling relation

z5
t21

s
. ~B9!
-

@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381

~1987!; Phys. Rev. A38, 364 ~1988!.
@2# G. Durin, G. Bertotti, and A. Magni, Fractals3, 351~1995!; D.
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