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We study out-of-equilibrium dynamics and aging for a particle diffusing in one-dimensional environments,
such as the random force Sinai model, as a toy model for low dimensional systems. We study fluctuations of
two time (t,,,t) quantities from the probability distributio®(z,t,t,,) of the relative displacemers=x(t)

—X(ty) in the limit of large waiting timet,,— using numerical and analytical techniques. We find three
generic large time regimesi) a quasiequilibrium regiméfinite r=t—t,,) whereQ(z,7) satisfies a general
fluctuation dissipation theorem equatidii) an asymptotic diffusion regime for large time separation where
Q(z)dz~6[L(t)/L(tW)]dz/L(t), and (iii) an intermediate “aging” regime for intermediate time separation
[h(t)/h(t,) finite], with Q(z,t,t")=1f(z,h(t)/h(t")). In the unbiased Sinai model we find numerical evidence

for regimes(i) and (ii), and for (i) with Q(z,t,t")=Qq(2)f(h(t)/h(t")) andh(t)~Int. Sinceh(t)~L(t) in

Sinai’s model there is a singularity in the diffusion regime to allow for regjiing A directed model, related

to the biased Sinai model, is solved and shdiisand (iii ) with strong non-self-averaging properties. Simi-
larities and differences with mean field results are discussed. A general approach using scaling of next highest
encountered barriers is proposed to predict aging propehiek, and f(x) in landscapes with fast growing
barriers. It accounts qualitatively for aging in Sinai's model. We also identify a mechanism for aging in low
dimensional phase space corresponding to an almost degeneracy of barriers. We illustrate this mechanism by
introducing an exactly solvable model, with barriers and wells, which shows clearly diffusion and aging
regimes with a rich variety of functions(t). [S1063-651X98)15202-9

PACS numbegs): 64.60.Cn, 64.60.Ht, 64.60.My, 75.10.Nr

I. INTRODUCTION Glassy systems with quenched disorder were found to ex-
hibit a variety of nonequilibrium properties often generically

There is presently considerable interest in out-of-termed “aging.” Loosely speaking, this means that the prop-
equilibrium dynamical processes. For systems withoUkrties of the system are governed by the age of the system
quenched disorder phenomena such as coarsening and 4o- j e, the time after the quen¢hl—13. For instance, it is
main growth are important to understafl]. In systems  expected that correlation functions in these systems have de-
such as spin glass¢€-6], random fields, interfaces, and pengences such ast,,. This type of dependence is also
glasses in vortex systenjg—10], which are dominated by ¢4 in simpler out-of-equilibrium systems such as coars-

guenched disorder and ultraslow relaxations, a detailed u “nind in spin ms with isor which al -
derstanding of out-of-equilibrium dynamics becomes absoq-e g in spin systems without disordel], ch aiso €

) ; : -~ “hibit dependences of correlation functions of the form
lutely necessary to make contact with numerical simulation

and experiments. These usually involve studying relaxatioid‘(t)“‘.(t"") .fThlz_dfpengeg.c;fe qngm?;s f(rjom the grcl)lvvtr'lef
dynamics from an initial configuration a0 (e.g., uncor- omains of size.(t) and diffusion of the domain walls.

related and asking about correlations in the systems betweefi'onger form of aging seems to be obser{2@], and was
two later timest’ (also calledt,, the waiting tim¢ and proposed for spin glasses where th_e linear response shows
t>t’. An interesting question to ask is what happens whedn€mory effepts, e.g. thg remanent linear magnetization after
botht andt’ are taken to infinity. Since there are of course@PPlying a field during time,, decays very slowly over a
many ways to take,t’ to infinity one wishes to classify the time scale set only by, . Other puzzling phenomena such as
possible regimes. memory under thermal cycling are obsenj@#,5|. There is
In out-of-equilibrium situations the usual properties of at present no theory that would account fully for all these
equilibrium dynamics do not hold. Such properties are thephenomen#l4], and understanding is only partial. Ideas and
time translational invariancél Tl), i.e., the dependence on scaling arguments borrowed from domain growth and coars-
t—t’ only of the correlation functions as well as the fluctua-ening were also applied to disordered modétroplet pic-
tion dissipation theorenFDT), which relates linear response ture” [6]), but it is unclear whether they can account for all
to time derivatives of correlation functions. A first question situations. More recently exact solutions were obtaifts
to ask is how to take,t’ to infinity and still recover an for the out-of-equilibrium dynamics of several mean-field
equilibrium regime. models[16,17] , some of which were found to exhibit strong
aging properties. It makes several nontrivial predictifi
for both the correlation functio©(t,t’) and the response

*Unite associe du CNRS(URA 280, UniversiteParis 6. function R(t,t’) of these mean-field models the limit of
TLaboratoire propre du CNRS assaeia'lENS et al'Universite  large times ft’. The asymptotic time regime in these models
Paris—Sud. has been successfully resolved, under some physical assump-
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tions, and turns out to be in direct correspondence with Pais enough to study the second moment. For a diffusing par-
risi's static replica symmetry breaking solutigwith some ticle the interesting quantity is the distributi@(z,t,t’) of
important differences However, the matching of the small displacementz=x(t) —x(t') between times andt’ (the
time regime to the asymptotic one remains problematic. Aparticle having started at=0 at a random positignwith a
general picture for aging dynamics in mean field was protranslational or configurational average @f The second
posed[15]. The resemblance with some of the features omeomentB(t,t’)=<22>Q was computed in mean field.6].
served in spin glass experiments seems encouraging, thougie results are as follows far—~ andt’ —o.

many points remain uncleai8]. There have been some at- (i) There is aguasiequilibrium regiméor finite 7=t—t’
tempts to classify the various aging behaviors, and to differwhere TTI[B(t,t’)=B(7)] and FDT theorems hold. In that
entiate the domain growth coarsening type of “aging” from regime displacements are bounded siB{e— ) =bg,.

a stronger type analogous to what is found in mean-field (ji) For more separated timed(t,t')>bgs keeps grow-
models[19]. Despite these recent advances, there is, howing. This is theaging regimewhereB(t,t’) remains a fixed
ever, at present no detailed microscopic understanding of thr‘?umberB(t,t’)=B providedt andt’ grow in some well

aging phenomen_a. : . _ defined way, i.e., with(t)/h(t’) a fixed numbefa function
An elegant microscopic mechanism for aging was pro-

. : . ; of B). In that very nontrivial regime some new generalized
posed some time ago by.FelgeImar? and \(mc(llétla) [.20] N FDT theorems hold, according to the general theorj/15i.
the context of diffusion in a one-dimensional environment

Using a semiquantitative analysis, they proposed trzis :hlfj funlctpnh(t) 'j’ not determined bybthtzlarge 'tlmg mean-
with a wide distribution of waiting timega diverging first leld solution, and at present must be determined numeri-

moment( )=o) would naturally lead to aging phenomena cally. The value ofB can eventually be chosen as large as
and waiting time dependence. The idea is that becadse desired. For larg® this regime crosses over into a diffusion

=, at timet,, the system is typically in a trap of release regime. Interestingly there is a singularity at the beginning of

time ~t,, and thus the diffusing particle sees potential bar-N€ 2ging regime with a nontrivial exponegi.e., the func-

riers that effectively grow with,,. The Feigelman-Vinokur tion B(t',t'): B[h(t.)/h(t’).] is nonanalyt_ic as a function .Of
trap model was later used by Bouchdad], on the basis of N(t)/h(t’)—1. A singularity at the beginning of the aging
previous work on wide distributions of waiting timgg2—  '€9ime is indeed found in a variety of experlme_ntal glassy
27] to describe various situations, some inspired by the staSYStems. The exponeg, relevant for mode coupling theo-
ics of mean-field modelg28]. It is important to note, how- '1€S of real glassefl?], was obtained analytically ifL6].

ever. that in the one-dimensional Sinai model with a bias NOte also that in mean field there is some mathematical
originally studied by FV and in Ref23] the wide distribu-  COrrespondence between two tintets and replica pairs, b.
tions can be shown to bdynamically generated and not |"ere, roughly speaking, the quasiequilibrium regifeis
artificially set by hand. Despite the phenomenological appedund to correspond to the replica symmetric part of the
of the FV mechanism for aging it is unclear how far it can beStatic solution, while the aging reginig) corresponds to the
pushed 21] to describe all the physics of glasses and provideRSB part of the static soluthn. The corr_espondence is in fact
a nonartificial, dynamically generated mechanism for aging"©t Perfect because dynamical quantities do not always co-
In fact rather different scenarios were proposed to understarfgcide with their static counterpat5,34,16.

more microscopically mean-field dynamig2g]. It is important to know what remains of the above dy-
In this paper we study some simple one-dimensional difhamical mean-field scenario in low dimensional models,

fusion models, such as Sinai's model, and investigate iFUch as the models studied here, and we will attempt to give
some detail their out-of-equilibrium dynamics. We will not SOMe élements of an answer. Obviously this scenario will be
attempt to propose any phenomenological model for aging ijnodified since we now have to dgal w_|th full ghstnbunons
real glasses but simply study the extreme case of low dimerR(z.1:t). One would like, e.g., to identify possible mecha-
sional phase space and identify the various possible larg@Sms that can reproduce aging with nontrivial functiog
time regimes. These low dimensional modé#,31 are  and exponent®. . _ o
dominated by activated dynamics over energy barriers and We Wwill use Sinai's model as a starting point. It is inter-
stand at the opposite end from mean-field models. One cafsting because it is related to coarsening models with disor-
hope that they serve as toy models for diffusion in low di_c_ler. For instance, |_t can m_odel_a single |_nterface ina random
mensional space and give some insight into finite dimensior{i€!d model, or motion of kinks in vortex lines, or dislocation
In particular, one can check whether some of the ideas intrd®0PS, in the presence of point disorder. The dynamics of
duced in mean-field theory carry through. Specifically,Sinai’s model has been studied extensie@§—44,23. The
mean-field generalizations of Sinai's mode¢., diffusion in ~ model was shown to exhibit ultraslow diffusiofx(t)?)
a d-dimensional random potential witth—) were solved ~(Int)*. The response to a driving fordewas also shown
[16] and can be directly compared. The advantage of thi$0 be quite anomalous, with several phases. There is a thresh-
one-dimensional model is that the correlation and responseld force such that fof <f the velocity vanishe¥=0 and
functions can in principle be computed numerically up todiffusion is sublineax(t)%)~t* with a continuously vari-
very large times. Note that a simulation of Sinai's model wasable exponenj.=f/f.. For f>f, one hasv~(f—f;) and
performed recently ih32], but with a much too slow algo- similar transitions in higher order moments of the displace-
rithm to reach significant times, as we will discuss. A sum-ment take place at largdr The physics of this anomalous
mary of the present study was contained 33]. response was also understood and shown to be related
It becomes clear in our study that here thi probability  [23,36 to the existence of barriers with an exponential dis-
distribution should be studied, while in mean-field theory it tribution of energy heights, resulting in power-law distribu-




6298 LAURENT LALOUX AND PIERRE Le DOUSSAL 57

tions of trapping times and My distributions for first pas- is Gaussian and uncorrelated. It may have an aveFdgg
sage times. =f. Writing F(x) = —dU(x)/dx describes the thermal mo-
Let us illustrate some of the questions by some simple contion of a particle in a one-dimensional Gaussian random po-
sideration. In the case of an applied bias, evenfils¢ mo-  tential landscap&l (x). The landscapgx,U(x)] can be seen
mentof the displacement already contains interesting inforas a trajectory of a random walkex playing then the role of
mation. It is known[36,23 that one has exactly, at large the time. In the general case>0 the lanscape is tiltetthe
times(x(t) —x(0))=Ct* whereC depends on the details of walker experiences a bigbsut we will only consider here the
the model. The aging nature of this expression is clear sinceasef =0 (symmetric Sinai model Then the random poten-
one can write tial has long range correlations:

[U(x)—U(y)]*=a|x—y|. (6)

Thus barriers grow with a scale that results in an anoma-
lously slow dynamics ([x(t)—x(0)]%)~(Int)% The
N-dimensional version of this model [i.e.,, X

(X(t)—x(t"))y=C(t*—t'*)~Cpu

T
= (D)
w

for t'=t,, t=t,+ 7. This indicates that there is an aging
regime in this model since one can take»« andt,—®

keeping(x(t)—x(t')) a fixed number, provided [:1%(1’)(2' ... xn)] was solved in the limitN—oo in Ref.
tlh ) In this section we study a space discretized version of
w

Sinai’'s model, which can be easily studied numerically. It is
In particular, in the limit where,, goes to infinity first, there expe_cted that this d|§cretlzed version has the same large time
is no motion at all in any finite time interval. We also note PhYsics as the continuous modéhis was shown for some

that the above result can be rewritten as quantities in the weak disorder linfi22,23. It is defined by
a Fokker-PlanckFP) equation:

Ot = el dP(t
<X(t) X(t )>—C|nh(t’), (3) %:(HFP)num(t):Wn,n+1pn+1(t)+Wn,n71Pn71(t)

whereh(t) = exp*). This form(3) [with h(t) unspecifiediis = (Wpt 10t Wh_10)Pa(t), (7)
of the type found in large time solutions of mean-field mod-
els as mentioned above. Similarly, subaging formsHi) where P,(t) is the probability that a particle is at siteat
=exd(Int)¥] with a>1, as observed in experimenf$8], time t (with some initial condition at=0). The hopping
could in principle originate from a logarithmic diffusion pro- ratesW,.;,,W,_;, are quenched random variables. It is
cess. Indeed one can write convenient to parametrize these rates as in &3] in the
form
h(t) T

In3t—In'=In ~ T
h(t') (t,/Inft,)

(4) \anl,n:e_qSn Wn,nflze(ﬁn- (8)

This describes effectively the Arrhenius diffusion of a par-
ticle on a one-dimensional lattice in a random poteritial
=—23p_o¢. There is in effect a force &, on the link
between sitem—1 andn. The equilibrium solution of Eq. 7

with the observedi(t). One would thus like to investigate
these analogies further.

We will thus first study Sinai's model in Sec. (dymmet-
ric mode) and in Sec. lll(directed model Then we will . . _
give in Sec. IV a general discussion of barrier mechanism§°"responding to gg:ro _lbnk currenly n 1 =Wy n—1Pn-1
for aging that we believe allow one to understand the results Wn-1aPn=0 IS P"=€""n. Here temperature is set o
obtained on Sinai's model. We introduce a method to esti— 1+ N the discrete Sinai model the variablgs are chosen
mate aging functions by looking at the sequences of nexfaussian independent from site to site, with,dn
highest barriers. Finally, in Sec. V we introduce and solve & (0/4) 6, and the random potential thus follows a Gauss-
model based on these considerations that exhibits nontrividgh discrete random walk as a functionrofwith correlations

aging and diffusion behavior. (U,—Up)2=aln—n’|.
The important quantity to determine is the Green function
Il. SYMMETRIC SINAI MODEL P_(n,t|n0,to) _(t>to_) of the FP operatoHFP in a givgn_ en-
vironment. It is defined as the solution of @) with initial
A. The model condition P(n, to|Ng,to) = Snn,-

In this section we study the one-dimensional Sinai model We have computed numericalB(n,t|ng,t) using exact
[38—41,23. In its continuous version it is described by the diagonalization of the corresponding Sctlirger operator
Langevin equation: on a finite size ring. This operator is a tridiagonal symmetric
matrix, which can be easily diagonalized for large size
The method, as well as the expressions for the correlation
and response functions, is detailed in Appendix A. We use
L+1 sitesk=0,L with both reflexive and periodic boundary
where (7(t) 7(t'))=2Té(t—t") is the thermal noise and conditions. We have used up to=250 sites and averages
F(X)F(x")=0d(x—x") is a quenched random force, which over 1¢ and 5x10® disorder configurations. Because Si-

dx_
3t =P+ (), (5)
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P(X) B. Single time quantities
0.60F | | Je=1000 Averaged single time quantities can be obtained from the
B ' Kesten et disorder averaged Green functid?(n,t|no,0). There are
" £=5000.0 some exactly known results for these single time quantities

paboies and we will thus start by comparing with these resuits a

_| t=500000 check of our simulations

In [22] the averaged probability density at the origin
P(ng,t|ny,0) was computed exactly in the continuum limit
for all timest. It describes the weak disorder universal be-
havior (se€[23]). At larget the complete scaling form for the
averaged diffusion front.e., the distribution of the variable
n/(Int)> was obtained in [42] as P(n,t|0,0)
= (Int) ~2p[n(Int) ~2]. The functionp(x) is (up to a constant
rescaling
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0.10 +o

(€)

2 (—1)k (2k+1)2m2
POO= 2 1CXp(_ g X

0.00

-4.0 20 0.0 20 20 X We have computed numericalli?(n,t|0d@)d the x

~(Int)? law as a check of our program. In Figs. 1 and 2 we
have plotted the scaling functiop[x] as it is determined
enumerically and the analytic result of Kesteme have fixed

the scale by imposing equality of the second moment and we
S . denotexms= /(x%(t))). One can see that the agreement is
nal’ss; diffusion is so slow, we were able to study times up t0gycelient. In our opinion, it improves considerably on an
10"° without spurious effectéedges, precisionWe useds  carlier determination by Nauenbefg3]. The behaviorx

=2 in al! simulations and checked the consistency of the~[|n(t/to)]2 is plotted in Fig. 3 and also agrees. We have
results with several random number generators. not attempted to fit the amplitude to known resiite have

From this exact expression one can average either one ahq e that the order of magnitude is corrsiice we were
a product of two of these Green functions to obtain singlegatisfied with the agreement in Fig. 1.

time or two times quantities, respectively. For finite times,  \y/a now turn to two time quantities.
translational averaggsvith, e.g., uniform initial measure in

an infinite single environmehtand averages over disorder
should coincide. Note that this will not be correct in a very
special case studied below of a periodic environment. We There are no analytical results available at present, to our
now describe the results and their interpretation using simplknowledge, for two time quantities. This makes the numeri-

FIG. 1. Single time averaged diffusion front: at large time our
simulations cannot be distinguished from Kesten’s prediction. W

denotex=x/X,,J{t). L=125 and 5<10® configurations.

C. Two time quantities

arguments. cal simulation all the more important.
P(®) x
00 T T T t= 1000 L rau
t= 500.0
1= 1000.0 r e 7
t= 5000.0 200 - AFit
101 i 200 - S i)
t= 50000.0 [ B
10-2 150 - -
L Sinai =
10-3- ; i i
10.0 - s
10'4— : g | — —
K S L . i
& o 500 -
10-5); = ! ! | !
L | | L 102 103 109 105 t

w

1
4.0 2.0 0.0 2.0 4.0 ] S
FIG. 3. Numerical data compared to Sinai's diffusion law

FIG. 2. Same as Fig. 1 in logarithmic scale for ~Xmd 1) ~In(t/t)%. L=125 and 5<10° configurations.
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B(t, t-1) Q(z,7=10, twy)
T T T
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FIG. 4. Mean squared separatiBft=t,,+ 7,t,) as a function )
of 7 for severalt~t,,. A limit curve B(7) can be seen, bus(r) FIG. 5. Convergence, for a fixed, of Q(zt,+ 7.t,) (repre-
keeps growing withr while in mean field it would go to a constant sented here fot,,= 10> andt,,=4x 10') towardsQ.{z,7) com-
bea=B(7=%). L=125 and 18 configurations. puted here from formula6 18),( 19) (curve called ‘t,,= infinity”

in the figurg. The limit curveQ(z, =) is shown by comparison
We have computed numerically the two time averagedcurve called “fit’). L =200 and 5<10° configurations.
Green functionP(n,t|n’,t")P(n’,t'|ny,t;=0). It is a com-
plicated object that is difficult to analyze. Thus we have
started by computing, as in mean-field models, the configuand not only its second cumulant. We have found that when
rationally averaged mean squared displacement. looking at that distribution, several regimes can be identified.

D. Quasiequilibrium regime

B(t,t")=([x(t)—x(t')]%)=>, (n—n")? The first question to ask is whether there is a quasiequi-
n,n’ librium regime whent andt,, are close together. It can be
defined, for instance, ds-t,,+ 7 with 7 fixed and finite(and
XP(n,tIn’ ,t"YP(n',t'[ng,t,=0). (10 tw—%). In mean field this would correspond to the FDT
regime, where time translational invariance and the fluctua-
tion dissipation theorem are found to hold.
The best way is to plot it as a function bf t’ for differ- One can thus ask whether the following limit distribution
ent waiting timeg,,=t’. It is represented in Fig. 4. One sees exists:
that it clearly does not depend only @n-t’ and that, the
larger the waiting time, the slower it grows. The dynamics
slows down considerably a$— . This is very reminiscent Q(z,7)= lim lim Q(z,ty+ 7.ty), (12
of what happens in mean-field models. One also sees that an ty—el—ee
effective plateau develops d&$ becomes larger. In mean
field it would be a true platedqul 6] that defines the Edwards- ) )
Anderson order parametdsz,. Thus here an important yvhereL_lslthe size of Fhe_system. One can also ask whether
question is whether there is a finite limit fé(t,,+ r,t,) as N that limit some equilibrium theorems hold. o
t,>r>1 as in the mean-field model. The answer to this We_ are not ablg to answer this important question rigor-
question isnegative This is because, as will be discussed©Usly in all generality and we encourage other workers to do
below, in finite dimension, contrary to mean field, while the SO- We will however provide some elements which we hope
distribution ofx(t) —x(t') converges towards a limit, its sec- Will shed some light on the issues. o .
ond cumulant is infinite. In fact studying only the second ©One strategy is to first study the case ofiafinite peri-
cumulantB(t,,+ 7,t,,) is of little help in the present problem. ©dic mediumbut with avery large period | (i.e., almost

One needs to study the full disorder averaged distribution offisorderedl There some things can be shown whignis.
relative displacements: very large. Of course this is cheating a bit since the idea

would be to takel ,—o eventually, and thus this is like
interverting the limitt,,—oo andLy—<. It does give some
insight though. Thus we will then check, using numerics and
physical arguments, whether it can be extended to a nonpe-
(11)  riodic case.

Q(zt,t,)= f dx'P(x'+zt|x’,t,)P(x’,t,|0t,=0)
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1. A periodic model +o0

We are considering an infinite periodic medium. We as- Quy(Ztwt mtw) = J_w AXPL(X"+ 2, b+ 7[X "t [X00).
sume that the potentid) (x) is periodic, which corresponds

to the situation with no drift. One can generalize to the case

with a bias by taking a periodic forcgising the results of (13
[44]. We will first consider a single environmefo con-

figurational averages

We are interested in the following distribution: It can be written as a sum over periods:
L
Qu (2t Tt = f "X PL (X + K 2ty 7IX K, ) P (X Kl X00) (14)
k 0
Lo ~
:J’ dx'Pp (X" +2,7[x",0)R_ (X" ,tw|X00), (15
0
|
where we have defined the periodized Green function quasiequilibrium distributionéwhich is not unlike the image

from replica symmetry breakingln addition, there are times
T ) _ , , ty where the packet jumps, but they presumably become
PLO(X ! |X00)_Ek PLO(X LU 1x0) (16 more and more rare at lardg. Thus only the disorder av-
o _ erage(or translational averagean be expected to converge
and we have used the periodicity of the disorderyy some limitQ(z,7), as these features will get smoothed
PG tX 1) =Py (x+mLt]x"+mLt’). So, up to now it oyt We will assume that this convergence holdased on
is exact for any configuration of the disorder. our numerical evidenge
Since the periodized functioRis in fact the Green func- One possible further assumption is that once averaged
tion of the problem on a ring of side, (see, e.g[35,44),it  over disorder one has
converges towards the equilibrium Gibbs measure on the )
ring in the larget,, limit: Q(z,7)=Qeq(z,7)= lim Q (2,7), (19)

Lo—o

e—U(X')/T

lim "|5L0(x’,tw|xoo)= .17 WhereQLO(z, 7) is the distribution in the periodized medium
ty— j dx/ e Y&)IT (using the same disorder distributjogiven in Eq.(18). We
0<x'<Lg have calledQ.(z,7) this distribution.
A possible reasonable starting assumption is that they are

This implies that — —
P equal inQ= Q4 in Sinai’'s model. We do have good numeri-

Lo e~ UoIT cal indication that this is indeed correct, as shown in Fig. 5.
QLO(Z,T)HJ‘ dx'P (X" +2,7x'0) . However, because differences, if they exist, could be subtle,
0 dye YW/t small, and hard to detect we emphasize that whether this is

strictly correct should be checked furthghere are indeed
(18) cases where it is wrong—see the solvable model of Sgc. V

This is particularly useful wherr is fixed and much In any case, the above equation provides at least a basis for
smaller than the time necessary to travel a peiffiod., comparison.
(In9)2<L, in Sinai's mode]. This formula can also be gen-

eralized in the presence of a drift using the stationary distri- 3. Correspondence with the statics
bution obtained if44]. Note that these arguments extend to  Let us investigate the large limit of Q(z,7). One ex-
any finite-dimensional problem. pects, if the above assumption is correct, thatfer+oo:
2. Nonperiodic case Q(z,7)~ lim QLO(ZvT)_’ lim QLO(Z)
In the nonperiodic case, wheln,—o beforet,,, it is Lo Lo

qbyious that for a single configuration of disor_der thgre !s no i o UK +ITg-UGIT
limit to Q(z,t,,+ 7,t,,) ast,,—c°. Indeed numerically Sinai’s = lim odx’ '
diffusion consists of sudden jumps to deeper and deeper Loswd 0 _ 2
. ; _ 0 dye U/
wells. Thus even though in each successive well there is
presumably a quasiequilibrium regim&(zt,+ 7.t,)
~Quwen(z,7) it will depend on the details of each new well  Thus the two time calculation becomes a two replica cor-
encountered. In some sense there ididribution of such  relation function in a replica calculation.

(20)
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U So there is also an Edwards-Anderson order parameter
here but it is adistribution Because of non-self-averaging
effects one needs the full distributi@(z). It would be nice
to check more rigorously tha(z) =Q.4(2) (and thus that
there is no extralynamicalorder parametgr

Finally let us emphasize that the above arguments for the
tail of the quasiequilibrium distribution are very similar to
static droplet model argumenit§]. Here, however, they are
made in a dynamical context.

The above arguments thus suggest that the moments of
the relative displacements

lim ([x(ty+ T)_X(tw)]n>~J' 2'Q(z,7) (22

E. \/ b

0 7, 7 converge towards a finite limit when— only for n<1/2.
For n>1/2 they grow unboundedly with. These moments
FIG. 6. Two well(FDT-TTI) quasiequilibrium regime: rare con- growing with  may nota priori be incompatible with being
figurations leading to sample fluctuations and algebraic decay oih a quasiequilibrium stat&hough it calls for further inves-
Q(2). tigationg. In mean field, this does not happen since even for
unbounded diffusion probleni46] the quasiequilibrium re-
a. Properties of the quasistatic distributioRor the Sinai  gime is such thaB(t,t’) <bga.
model one can argue that there is indeed a limit averaged We now estimate these momeri®2) using a simple two
quasistatic distributiorQ(z). From the above formul&20) well model taking into account the crossing of the barkgr
and since there is typically one global minimum that domi-between the two wells. Let us write
nates the period, in Sinai's landscape, it is clear that this
distribution will consist of two partsfi) a part localized near  Q(z,7)=8(2)3(1+e ™ )+ 8(z—z5)i(1—e ™ ™)
z=0 of finite extent, with a finite weightii) a part that is (23
strongly non-self-averaging with, for each environment,
some localized peaks around some Averaging over dis- and average over, and the barrier height, which we can
order yields a smootf(z) with analgebraic tailat largez:  take to scale aEb(zo)~az$’2, a being a positive random
variable. This yields the moments

A
Q(2)~ 32" (21 1 A P
z lim <[x(tW+T)—x(tW)]“>~§f dzi‘ZT/Z(l—e‘Te ).
ty,—
This tail comes from configurations of the disorder as in (24)

Fig. 6. The lowest well,, in the sample of period. is
represented and it happens that there is a secondary well, |ntroducing the scaled variable=z/In?r and using that
with a bottom atU ,;,+E,, with E,=O(T), at a finite dis- the function (1- e,efamzf(yl’z—l/az))%g(l/az_ ) one finds
tancez, of the first one. Then roughly the meas@éz) will for n>1/2 y '
consist of two peaks localized around the two wells. '

Since in the Sinai model the random potential can itself be
seen as performing a random walk, the probability that such
an environment occurs can be estimated from the probability

of return to the origin of a random walk. This yields a prob- We have plotted these moments as determined numeri-

ability ~z,%?2 and thus the above algebraic tail @{z). A - > :
more refined calculation, taking into account that the princi-Cally in Fig. 7. The logarithmic growth of momerms> 1/2 is

pal well is an absolute minimum, can be performed and Iea&Iearly demonstratedwe have checked that, e.qu=1/4

; : Saturates at large). Though they seem to follow Ed25)
to estimates foA, but goes beyond the scope of this paper. - oo : :
Let us point out that t%]e abO\Ye equilibriumpGibbs mgagur qualitatively, a more quantitative agreement is probably dif-

has been analyzed recently in RP45] and they also ob- Sicult to reach numerically—since these effects entirely come

tained analytically the above algebraic taile., formula from rare events. . . . e
Lo . S The above considerations also predict that the distribution
(21)]. This tail, however, can be explained from simple ar- —

guments Q(z,7) should converge towardd(z) with a z/In?r scaling
It wou.ld be interesting to check whether one can eXtempehavior. This is consistent with our simulations as can be

ideas from mean field and whether in a replica calculation of€€n in Fig. 8 where we have shown Bg(z, ) for various
Eq. (20) the localized part near the origin would correspond7- It does indeed converge towards a limit cur@g(z),
to the replica symmetric part of the solution while the tailswhich was well fitted by its asymptotic behavierz %2,
from the rare events to the part with broken replica symme- One can also check from this simple mod23) that as a

try. consequence, the Edward Anderson “overlap” parameter

lim ([X(ty+ 7) —X(ty) ] ~A(In7)2" "1, (25)

tW~>oc
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FIG. 7. Numerical determination of the momefits"(7))q as a
function of Inr. L=200 and 5< 10° configurations.

FIG. 9. Plot 0fQ{(z=0,7) — Qez=0,7=2) againstr (in Int
scalg. L=200 and 5< 10° configurations.

5Qh(z,t,t,)
sh(t")

Q(z=0,7r) should also converge towards its equilibrium
value asT—o with 1/(In7)? corrections. This indeed hap-

R(zt,t")=
pens as is shown in Fig. 9. ( )

(26)

where Q(z,t,t") is the probability when an additional in-
. . _ . finitesimal uniform field pulsé(t)=hd&(t—t") is applied at
It is plausible that for large,, equilibrium theorems like '+ A tachnical detail is that it can be applied at time
FDT hold for disorder averaged quantities. These providg, [which definesR*(z,t,t')] or at timet’+e [which

relations between correlation functions and linear resPONSGefinesR(z t,t') and corresponds to the Ito prescription for

functions. . L
. . the response, i.e§(x(t"))/sh(t’')=0]. If quasiequilibrium
Itis gseful to generalize th'es'e theorgms to the fuI.I Proby,o1ds(meaning the current att,, vanishes, see Appendix B
ability distributionQz,t,t"). This is done in the Appendixes —

A and B to which, we refer for details. One defines the time translatlona! mvarlant_averaged functlof_i(sz,r)
for larget’=t,, and fixedr and Rz,7) should verify the
exact differential relation

4. Equilibrium theorems

Q@)
101 L -9.Q(z,7)=Ta,R(z,7). (27)
102 These relations can be generalized to discrete models as
- done in Appendix A. The responsR*(z,7) satisfies a
107 - slightly different equation:
10t - —0.Q(z7)=-T#Q(z,n+To,R (z,1). (29
-5 L
wer We determined both distribution®” (z,7) and R(z,7)
10 | numerically (as explained in Appendix B The response
- R*(z,7) is plotted in Fig. 10. Note that for=c the above
107 - implies simply
10° - R™(z,7)=0,Q(z,7) (29)
107 - and we checked thaR*(z,7) has the form~1/z5? ex-
10'10: pected from the above relation and E}1).
I I w I w I ! The Ito responseéR(z,7) satisfies Eq.(27) and is thus

0 10 20 30 40 50 60 Z

analogous to grobability current ExaminingR(z,7) ob-
tained from our simulation as a function afconfirms the
above arguments based on the two well model: there is a
(statistical current flowing from the center regian~0 to

FIG. 8. Numerical determination d.{z,7) compared to the
predicted asymptotic behavior 1/z3? (fit). L=200 and 5 10°
configurations.
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0 z

FIG. 10. Plot ofR*(z,7) (y coordinatg vs z for various and
comparison with the expected large limit 1/z(5? (“fit” ). L
=200 and 5<10° configurations.
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FIG. 12. Plot of7rIn(7)R(z=5,7) (y coordinate as a function of

7. L=200 and 18 configurations.

with b~1 (for a fixed z). This could be consistent with a

the z>0 (and to thez<0). In each disorder configuration decay ofQ(z,7)~1/In°r for fixed z and a scalingjlnzrin
R(z=0,7) does not have to vanigiince each local environ- Ed. (27). However,Q andR are expected to consist of two
ment is not symmetricbut its averagdR(z=0,7) must van-  Parts with~ dependent relative weights, one part scaling as

ish by symmetry. We observe that in the simulation it is ofZ
the order 10° smaller tharR(z=1,7), which is consistent.

We have plotted?(z=5,7) in Fig. 11. It shows clearly a
1/ decay. To be more accurate, we have plotte
7In7R(z=5,7) in Fig. 12. It indicates that

/In?r and a fixed part ire. Thus more work is needed to

determine these functions more precisely.

Very recently (while this work was in completiona

0promising approach was developed by Cugliandolo, Dean,
and Kurchan(CDK) [46] to obtain bounds that may permit

one to demonstrate that these quasiequilibrium regimes exist
in models such as Sinai’'s. Their approach is explained in

R(z,7)~ ; (30)  Appendix C and some extensions and applications are given.
7(In7)® For Sinai’'s model the bounds should be performed on disor-

R(z=5 der averaged quantitiesince single environment ones do

(z=5,7) not convergg Doing this one can obtain two bounds of in-
105 terest for Sinai's model:
10° - t
07 - GE0) - (X [ Rt
108 -

- 1/2

9 | — t dHs)
10 s[(xz(t)ﬂ”zj/ds( 5 ) (31)
10-107 t S
101 and
10-12_

- 1/2
1013~ dHt")
, "4 "] < 1\1/2]

014 |0y B(t,t")+2TR(t,t")|<B(t,t") e (32
10'15_
1075 The first one was given if46] (though the problem of

. disorder averaging is not discus$edhile the second is new.
10 o B(t,t') is defined in Eq(10) and R(t,t')= &(x(t))/Sh(t’)
107 ! =[dzR(z,t,t") (with lto’s definition of the response

1|04 1|m 1|08 1|01°

1012

1‘014

T

FIG. 11. Plot ofR(z=5,7) (y coordinat¢ as a function ofr.

Two simulations are indicated:=100 and 5< 10? configurations

andL =200 and 18 configurations.

The function

Ht')= f dx' P(x't'|00)[ TINP(x’,t"|00)— U(x")]
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is the averaged free energy, which satisfiedHatheorem(it Q(z=0,t,tw=t ")
is always decreasingThe nice observation d#6] is that e ' ' ' J "]
since in Sinai's modeHt')~ —Int’ the above bound31) Tl ‘”tw;'t‘,otw‘:‘z* .

implies that the right-hand sidehs) bound for the integrated 0.50 -
FDT violation is (I)%(t*2—t'?). Clearly forr=t—t’ fixed
it implies that(integratedl FDT holds, but it does even seem
to imply that it holds further even for~t'2 040
Note that the second bouri@2) immediately implies that
if there is a limit distribution Iimw_,mQ(z,tWJr 7t,) then it
will depend only onr=t—t’ (TTI) and the bound implies .
that FDT is verified sincedH(t’)/dt’ goes to zerp (Note -
that this is also the case for Brownian motion
While these results are as inescapable as rigorous bounds, %20
an explanation for this could be looked for in our previous L
arguments about periodic media. Indeed if our assumption
(19) is correct, then one can choosé#L,<In’,, and still 0.10
have equilibrium and FDTsince the probability of having
another accessible absolute minimum in the hgxat dis- 0106 16 100 102 o t
tances>1 is vanishingly small Thus it is likely that in fact
FDT will hold beyond what is shown by the bound, probably ~ FIG. 13. Plot ofQ(z=0,t) for various values of, which
until 7~t¢ with c<1 (beyond that one enters the diffusion indicates that the aging scaling functionhigt) ~ Int. The curvature
and aging regime, see next seclion of the curves for small at times not very large is due to the

> or VeIY,
Note also for completeness the two single time bounds; Smallness ot®. L=200 and 5¢ 10° configurations.

030

e NEE The above bounds also put constraints on the possible
|<9t,—(x(t’)>|$ Ht") 7 (33 aging fqrms for a large class of models. This will be dis-
t’ cussed in Sec. IV.
dHt) 12 E. Aging and diffusion regime

o (x(t") )< [(x(t")?)|¥2

3
e (34)

We  will now present our results for
P(n,t/n’,t")P(n’,t'|ng,to=0) in the regime where andt’

Thus we have found that afequilibrium) TTI diffusion  are large and well separated. As stressed above the data are
regime for the proces&(r) persists within the quasiequilib- complicated to analyze. We have found numerical evidence

rium regime. for two regimes.
One can also apply these bounds to the case with an ap- (i) The diffusion regimeThe first one is thediffusion
plied force f~ u, anticipating a little on the next Sec. Il regimewherez~(Int)> and Irt’~Int:
where the directed model will be discussed. Let us assume )
thatHt") ~ —(x(t))~—(t")*. Then Eq.(31) leads to WN = z '”_t _ (36)
(Int)2 | (Int)2" Int

t
<x2(t>>—<x(t)x(t'>>—Tﬁ,R(Lt’)

In that regime the three relative displacememnxid)
—=x(t"), x(t)—x(0), andx(t") —x(0) are of the same or-
der of magnitude.

Ll (S Rt 35 (ii)) Thegaging regimeAnother regime was found by look-

ing at the decay 0Q(z~0,,t") for z fixed and smallnear
EXpanding f0r7'<t,, one finds that the left-hand side must 7= O) andt andt’ |arge_ Byz fixed and Sma” we mean in
be smaller tharr/t’(*~*#)"2 Thus it shows the existence of our numerical simulatiom=n’ but it means more generally

an FDT regime foru>0 in Sinai's model. The rhs goes thatn is in a finite neighborhood of’. For instance, we
strictly to zero as long ap<1/3 but if one actually divides hayve found that the decay @f(z=0,t’) could be as slow
the rhs by the expected scale of the Ihst“) one gets as desired by taking bothandt’ to infinity. We have tried
mt' AW Thus a FDT regimgwith X=1) seems to be various dependences of the form

possible foru<1.

This may seem surprising at first, since for-0 the sys- — |h(ty
tem is driven. However, it makes sense physically. Remem- Q(Z:O!t!tw)”f[w : (37)
ber that for u<1 the particles will spend modll for
ty,— ) of their time in a well of release time t,, (see Sec. The best fit was obtained for
[I1). There they have time to equilibrate. Thus in some sense
the fact that there is agin@nd broad distributions of release h(t)~Int. (39

time) is intimately related to the fact that there can be equi-
librium within a well. This is illustrated in Fig. 13 where we have usgg-t?
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Q(z,t,tw=t *)/f(a)=Qeq(z) The fact that the temporal scaling is found to be the same
o | ‘ ' ' ' h(t)~L(t)~Int in both this aging regime and the diffusion
1x10*- B . N - .
regime indicates that these two regimes may in fact be the
_1_ ] same in this model. If that is indeed correct it does imply that
Sx107- I the above two time diffusion scaling functi¢86) must have
n i a singularity near the origine.g., a delta function singular-
101 | ity. This remains to be investigated further.
x10 . . .
L | Note that in mean field, in short range models, one can
10 | also see that the diffusion scale and the aging scales actually
t=10'%1013 coincide[16]. Here it seems that the same happens, though
B 2=0.5,0.6,0.75,0.9,1, for a different quantityQ(z~0t,t").
5x1072- .
r 7 Ill. DIRECTED MODEL
2x10 2: | In this section we study aging and diffusion in a simple
2 model of directed diffusion with disorder where two time
1x10°2- S correlation functions as well as response functions can be
B =y computed simply. This model will appear as a particular case
5x107- ! I I ! i P of a more general “solvable model,” which we will intro-
0 2 4 6 8 10 duce in Sec. V.
FIG. 14. Plot ofQ(z,t,t3)/Q(z=04,t%) as a function ofz for In this model the particle can only jump to the right of the
several values of and for two timest=10° and t=10'3 L  occupied site and quenched disorder is introduced by choos-
=250 and 18 configurations. ing at each site an average waiting time,, according to a

given distributionP( 7). The distribution of waiting times is

further chosen with an algebraic tail at large timeér)

~C/ 7" #, This directed model was introduced and studied

(for single time quantitiesin [26]. It was also showh26,23

that it is a large scaleffective descriptionf the Sinai model

in presence of a bias. The idea is that in the presence of an

applied forcef the potential landscage,U(x)] is a biased

~1/2 in order to test a possibtét,, dependence of this quan- random walk. '_I'here are thus some places where _the waII_<er

tity (upper curvie This curve isWin fact indistinguishable at goes back against the bias. This leads to rare barriers against
— . oo _— the drift of sizeE, with probability exp(fE,). Since the

large t from Q.(z=0). This strongly indicates that aging waiting time in these traps behaves as exi(/T) this is

with a form t/t,, is “”"k‘?'y- enough to generate dynamically an algebraic distribution of
We want to emphasize that we could not rule out other,

! i waiting times[23]. Whether this model is also a good de-
forms more complicated tha(t) =Int. However, the form  gqyintion of the biased Sinai model for two times quantities
t/t,, appears very unlikely for the measured quant®g., emain to be investigated in detail.

with 0<<a<1 and varied with fixed a, which is consistent
with h(t)=Int, since a=Int,/Int. For a=1 one recovers
Qe(2z=0) as expected. Note that it is more difficult numeri-
cally to get correctly the small behavior(hence the curva-
ture of the curves for sma#l on Fig. 13, which is due to the
smallness of the availablg,~t?). We have also tried,,

we have not checked the behaviors of the mon?ents The model is defined by the Fokker-Planck equation
We have also compute@(z,t,t?) for severalz fixed and
larget. We find that the aging behavior is also valid for dP,(t)

#0. In fact we find strong evidence for the behavior: =H mPn(t) =W, _1P,_1(1) —W,P,(t). (40

dt

!

Int
Int

The rates at each site correspond to a mean waiting tjme
=1W,.

The Green functiorP(n,ng|t—t,) is defined as the solu-
tion of Eq. (40) with initial condition P(n,no|0)=5nn0. Its
Laplace transform(LT) P(n,ne|s)= g “P(n,nelt)e s can
be computed easily from E@40). It reads

Q(zt,t")=Qo(2)f (39

as is shown in Fig. 14 for €z<10, where we have been
able to collapse all the various curv@$z,t,t’) on the same
curve Qq(z). Thus this curve should also be equal to
QO(Z)=Qeq(za7'=°°)/Qeq(Z:017'=°°)- n—1
This behavior seems to be consistent with a picture of P(n,Nols) = 1 11 W
aging in Sinai's mode{at least for smalk) where an equili- o S+Wyk=n, STWi'
brated packet jumps as a whole out of its large well when
t’ ~t&. This will be discussed further in Sec. IV. Though the Averaged single time quantities are easily computed from
collapse in Fig. 14 is perfect at small(better than 10* in
relative precisiohit becomes poorer at larger This is prob- 1
ably due to the fact that for the available times one overlaps P(0,4s)=——==®(s), (42
somehow with the diffusion regime. It is unlikely, but not s+W
ruled out, that this could be the sign of yet another regime
(more work would be necessary P(n,0ls)=d(s)[1—sd(s)]" L. (43

(41)
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The long time limit is then obtained from the small sin(mp) (= L
behavior of the functiorb(s): F(2)= - f ay i .
z y +y
Cal(sinum)s*™ 1, u<l (44)
PD(s)~ AN+ Col(sinum)s* L, 1<u<?2 (45) One has
IN—Ds+Car/(sinum)s* ™1, u>2. (46) F(z)~Sin(7T’M) g 3
n '

This yields the several phases of the model: the subdiffu- _ A
sive phase & u<1 wherex~t* (and zero velocity, the and 1~ F(2)~z at smallz.

anomalous dispersion phase L. <2 where there is a veloc- It has an aging form as a function oft,,. This is the
ity V>0 but dispersion is anomalo==, and the diffu- manifestation of the Feigelman-Vinokur trap model mecha-

? . : . nism of aging. This expression is similar to the one obtained
sive phaseu>2. We will be mostly interested here in the ging P

O ue1. There the ab It diately vield in [28] in an infinite range model. In the present case, how-
case bsu=L1. 1here the above result Immediately yieldS agyer e are also interested in the diffusion regime, which we
Levy diffusion front[26].

. . - now analyze.
We are now interested in the averaged probability that the We see on the above expression that i finite andt
H ! — 4/ . w
particle advances bgn betweent” andt=t"+ . —oo the probability of being trapped in a well is 1. There is
" i no motion on finite time scales. We note that this directed
Qm, 7,t") ={x(t) = x(t") —m)) model is not rich enough to contain information about the
: dynamics inside traps. The quasiequilibrium regime is thus
=2 P(n+m,n,7n)P(n,0t"). (47 degenerat®(z,7) = 8, ¢5(7).
n=0 ) .
The above result also shows that at titge- 7 the frac-
This quantity is computed in Appendix F. The result in tion of particles released by their well is of order{,)* *

Laplace variables is the following: and that the particles that are released exhibit fast mdésn
if the clock is then set back to 0 when they exit the jrdp
D(s))—D(sy) this model the later motion is not slower. Thus they will
Q(M=0.s,,87) = (5,—51)5,D(Sy) move typically bydx~ 7+.

Thus can easily estimate the moments:
S2® () —81P(s1)

(S2—51)8,P(s,)

p(m=1s,,s,)= d(sy) ([X(ty+ 7) = X(t) 1™~ (7/t,) 1 #7", (54)

48
X[1—s,®(sy)]™ 48 Note that this gives, for the first moment,
o1 1 )

wheres; is associated te- ands, to t’. In fact one notices ([X(ty+ 7) = X(ty) 1)~ 7/te *~(t,+ T)* =t (55
that in the regimer<t,, consistent with the known result for the
1 first moment.
Q(m=1s,,8)=|——p(mM=0,;,S,) | P(s;) We note that there is in some sense an “aging regime”
152 for each moment. Indeed one can impose that
X[1—s;P(s)]™ L (490 ([x(t)—x(t")]") is a fixed number while taking both,

—o0 and 7—oo provided:
and thus the disorder averages factorize:
th\(Nl—M)/[H(n—l)M ) (56)
Q(m=1,7t")=[1-Q(0,r,t")]*P(m—1,07), (50
) ) . This depends on the moment itself. This illustrates the
where the * denotes convolution over the variableThis strong non-self-averaging properties in one dimension.
could be expected from the Markovian and directed nature of |, “34dition to a self-averaging aging regime, which is
the walk. The clock is set back to 0 when they exit the rapoonfined taz=0, there is in this model a diffusion regime for
Thus for two times quantities all one needs to know is thezwtﬂ andt~t’. It can be written as
two time averaged probability of not moving betwegrand

tw+ 7 plus the averaged probability of diffusing Iny during 1 [z tfl
T. Q(ztt"y=—F|—,—|. (57)
Let us first examine the probability of no motion. Explicit e te
Laplace inversion is simple on the asymptotic form jor i i
<1 and it gives Using the above exact relation
S|n(7T,LL) '/t _ _ Q(Z,t,t')=Q(Z=0,t,t')P(Z,t—t’,0), (58)
Q(m=0,rt")= - fo dx(1—x) " #x* I1=F(7/t"),

whereP(x,t,0) is the single time diffusion front that takes a
u<1, (51  scaling form P(x,t,0)~t #P(xt™#) where P was deter-
mined in[26,23.
where One finds
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FIy.\l=(1-)\)"#F ka}ﬁ[ya—x)‘M]. (59

The response function can also be computed. Using the for-
mula (A10) of Appendix A one sees that the matf<=H
and thus: C

[/ \
\

o Ld(x(b))
R(t,t")= > T dt (60)
In(t,)

and is thus independent of. In fact any response function

can be obtained that way. For any observable depending only
on timet:

5(0(t))n 1 d{O(1)) _ y .
== (61) FIG. 15. Barrier condition that leads to agingtés, .

ohy, 2 dt

ity ~e~3Eb~T%W) that the next barrier iE,, . A more precise
analysis is presented in the next section.

To have aging irt/t,, there is of course no need to have a

IV. GENERAL DISCUSSION AND BARRIER MODELS scenarioa la Feigelman-Vinokur and also no need for ran-

In this section we first discuss aging and diffusion prop-domness. In the next section we construct a simple model
erties in low dimensional phase space in terms of scaling of?at exhibits a variety of aging and diffusion regimesit
barriers. To illustrate how these ideas work in practice, wehat satisfies the above mentioned property. .
study some cases that can be solved analytically, such as the The property(62) does not mean that there is no aging,
directed model of the last section with more general widePut rather that it is degenerate tift,, . In fact Eq.(62) sug-

distributions. These ideas can in principle be applied to stud@ests that there must be a scaling that gives some aging. One
aging in a wider class of models. can always define a functidr= g.(t,,) such that

which comes from the directed nature of the model.

A. Aging, diffusion, and scaling of barriers Q[z=0gc(tw),tw]=¢, 0<Cc<Qefz=0,7=2). 63
One way to formulate the question of aging is to ask what
is the typical size of th@ext large barriertypically encoun- The question is how does the functigg(t,,) behave for
tered by the partiCl@.ﬂer time tw (i.e., at tlmeg>tw) The |arge ty- A natural poss|b|||ty is thagc(tw)~t\7v(C) and in-
idea is that small barriers have already thermalized. One cafleed we now argue that this is the case in Sinai’'s model.
usually consider that all barriers of siZént,,—TC have al-  Note that more generally one can define for eaarfunction
ready thermalized, whet@ is a constant that can be chosen g(c,z.t,,) such thalQ[z=0g(c,z t,),ty] =c. If the larget,,

!‘arge but can be kept fixed ag—oo (this will be true i pepavior of this function is the same for althen one has an
reasonable” landscapes with fast enough growing barriersgging regime with a nontriviat dependence as in the models
e.g., such that diffusion times are smaller than equilibriumy¢ gac v/,

times. Thus one must look at the next barrier encountered |, the symmetric Sinai model the question of the next
aftert,,, which has a size bigger thaf,>Tint,—TC. Fora 514 parrier to be encountered is difficult to answer analyti-

relaxation behavior of the typit,, to occur one must have )iy byt the following simple arguments can be made. Typi-
that a typical patrticle in a typical environme(ne., that there

is a finite fraction of particles and environmenisust over- \

come a barrier within the rangglnt,—TC<E,<TInt,+TC
after timet,,. This is illustrated in Fig. 15. If typically there

is no such barrier, e.g., the next encountered barrier is always \ I C
larger, then the particle is typically thermalized fdt,,=c \/ I
and thus one expects
lim Q(z,cty ty)=Qed Z, 7=2), (62
ty—
In(t,,)

which seems to hold for the Sinai model from our simulation
results(see Sec. )l This situation is illustrated in Fig. 16.

On the other hand, if the particles typically encounter
such barriers, then one can have a scaling/gs. For that
one needs an appropriate degeneracy of the barriers. This is
the case for the directed model, which has an exponential
distribution of barriere™2E, At t,, there is a finite probabil- FIG. 16. Barrier in Sinai's model.
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Gy ing scaling functiorh(t). In the Sinai model the series fol-
lows a(randon) geometric progressiof,(n)~expn) as
illustrated in Fig. 18, which leads to the observed behavior
(64). In order to have d/t,, behavior one needg,(n) to
grow typically ascn, which is what happens in the directed
model. Note that the progression of barri&g(n) with n
depends only on the topology of the lansdcape and, for in-

FIG. 17. Sequence of next largest barrier in simple mo@ig#e  stance, not of distances along[different landscapes can
text). have the sam&,(n)].

) S ) Of course to predict more detailed properties one may

cally at timet,, the particle is within a.valleysee Fig. 1% need to know more: i.e., the sequence of barréfsctively
Let us callUpy, the lowest energy point of the valley. The gncountered by the particle. For this one needs also to know
walls of the valley are at leakty,+ TInt,—TC. The particle  gpout the well depths. Let us consider, e.g., a nondirected
sits at a point that is withitd <U,+TC in energy(since  model but with a landscape as in Fig. 17 where all the wells
the valley is typically thermalized, sitting any higher has apaye the same depth. There the packet will thermalize in a
vanishingly small probability _ large region(bounded by the next largest barrief size

Geometrical construction of possible valleys such as thesg(t)_ This will result in a geometrical prefactor, e.Q(z
in the energy .random—walk Iandspap_e of Sinqi’s model_ 0t,t")~L(t) "*F[h(t)/h(t")]. If the well depths grow
shows that typically the next barrier, i.e., the size of thegygficiently fast then the packet will be concentrated at the

smallest wall, is of the order of (#a)TInt, wherea is @  pottom and then one may expect a reduced, or even finite
fluctuating positive random variable. This can be seen fromyrefactorl (t) =cst (as in Sinai's modg!

the fractal nature of the landscape. This suggests that a de- Thys if one knows the statistical properties of the-
pendence of type tfnt,, i.e., guence of next largest barrieone knows a lot about the
aging form. In fact if these barriers grow sufficiently fast
(64) with n (faster thann) we expect that this information is
enough to determine these aging foremirely (provided the
wells grow also fast enough—see remarks of previous sec-
which is indeed observed. Note that one also expects, fromon). This suggests, e.g., in Sinai’s model, a program to
the argument after Eq(63), that an aging scaling form study aging exactlythough it is technically difficult Let us

L Int
lim Q(Ot,t,)=F m )

t,twﬂw

should exist for any finite: illustrate these considerations on models where this construc-
Int tion can be done easily.
lim —Q(z,t,tw)zF z, ‘ (65) Classification of aging forms and constraints from the
Lty Int,, CDK bounds.Before we do so let us present some general

considerations about the aging functioné). Remember
Thus to predict aging properties one needs to know théhat there is some gauge freedom in choosing them since

statistical properties of the sequence of barriers effectivelyging quantities are determined by a fixed rdt{@)/h(t,,)
encountered by a particle. It would be appealing to relate it=c. Thus, e.g., the choich(t)~t is as good ah(t)=t"
to the geometry of the environment. A first step would be to(with the proper change in).
define in a one-dimensional landscape #Heguence of the An obvious classification is to distinguish between three
next largest barrierencountered starting from an initial classes of functionh(t).
point. Let us call thenG,=E,(n). Two examples of land- (i) h(t) grows slower thart (or any power oft). This
scapes are shown in Fig. 17 and Fig. 18. Figure 17 reprezorresponds to fast growing barriers. The condition
sents, e.g., the directed model of the last section, with ah(t)/h(t,)=c can also be expressed as=t—t,~t

arbitrary distributionP(E) of barriers[of heightE; corre- ~H(c,t,,). Examples are
sponding to waiting times;=exp(—E;/T)], which general-
izes the algebraic waiting times distribution. The important Int, t~7~t5, (c>1)

question is how does the seri€,=E,(n) grow typically Inc (66)
with n. This will already give a rough idea of the type of n(t)~{ e(m™® t~7~twex;<—(lntw)1‘a>, O<a<1
aging one can expect. In particular it may determine the ag- a (67)
e(lnt)/(lnlnt)' t~ g~ tW(IntW)'“C;
(68)

/
\’ /
“\ (i) Simplest aging behavidn(t)=t; (iii) h(t) grows faster
thant (subaging. Then one must have=t—t,<t,,, such
) as in the following examples:
G4 N ; G3
L6, 2"_ eln® 7= In_c _tw a>1 (69
’ ’ a (Int,)2 1’
Y h(t)~ "

e Inc
_ FIG. 18. _Sequence of next largest barrier in Sinai's model start- eta’ T~ _t\:}v_a* O<a<1 (70)
ing form point 0. a
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The CDK bounds discussed in Sec. Il also put generalhich excludes a large class of subaging behavi&igai
constraints on possible aging forms assuming they have, a®rresponds ter=0).
in mean field, a nontrivial 82X+ 1<« (see Appendix B for
definitiong. Assume indeed that as in mean field all correla- B. Sequence of largest barriers
tion functions anX are functions oh(t’)/h(t). Then bound

(32) implies that It is simple in some cases to determine exactly the distri-

bution of the sequence of next largest barriers.

, — |1 Let us look again at the directed model defined by a set of
dinh(t )< dH(t') _ 71) successive barrier;, identically distributed with a distri-
dt’ dt’ ‘ bution P(E). We denoteH(E)=[£“P(E’)dE’ =ProbE’
. >E).

Thus if H(t")~t'~ % one has that Let us estimate the probability density that the sequence

of successive next largest barriefsee Fig. 1Y be

h(t)<exp(tt=®7), (72 Ey,G1,Gy, ...,G,. Itis by definition
|
Q(Eo,Gy, . - . ’G”):kZo kEO Prob(E;<E, . .. Ex <Eo.Ex +1=G2>Eq,Ex 12<G1, ... E,1, (79
1= ’OC n: ’OC
:Gz PRI Ekn+1:Gn>Gn—l)- (74)

This yields immediately

P(G1) 0(G1—Eg) p(G2)0(G,—Gy) . P(Gp 0(Gr—G-1)
H(Ey) H(G,) H(Gn-1)

Q(Eo, - - ..Gn)=p(Eop) (79

It is easy to see that the exponential distributp(t) = exp(—E)8(E) has a special property. Indeed, in that case,

Q(Eo, - .- Gn)=0(Eq) 8(G1—E) (G~ Gy) - - - 6(Gp— G 1)~ n (76)
but this can be written as the product
Q(Eo, .- Gu=_ I p(Gi~Gi-), (77)

with Gg=Ey and G_;=0. This shows that the difference between successive largest barriethehaame exponential
distribution p(E) and areindependently distributedrhus,

Gn= 2 W,. (79)
i=0,n
The central limit theorem can then be used and leads to a Gaussian distribution for the va’.Bigbea),(\/ﬁ. This
remarkable property of the exponential distribution allows one to understand the Feigelman-Vinokur scenario for aging as a
linear (random growth of the next largest barri&t,(n)=G,~cn.

This remarkable property of the exponential distribution also allows one to obtain the general solution of the problem of
finding the probability of a sequence of largest barrier. Defirin(@) = —Infz “dE'P(E’) one has

P(E)dE=de ®*®g(E)=d'(E)e" *® 9(E)dE (79
and thus Eq(75) can be put in the form

Q(Gy, ...,GhdGy- - -dG, (80)

=d®(Gp) - - -dP(Gp) 0(Gp) O(G1—Gg) 8(Gp—G) - - - 8(Gp—Gp_q)e LG~ Cn-1)F(Cn-17Cn-2)F -+ +(G1=Co) + Gol
(81)
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and the sequence of variabl€s(G), ..., ®(G,) can be correct for the directed model if barriers grow fast enough
constructed as a “random walk’: (which means distribution of waiting times wider than power
laws).
n This can be rewritten as
®(Gy) =2 Wi, (82) .

_ _ o Qrtw) =2, [0(Dy— Py 1) = B(Py— DY)
where thew; are a set of independent variables, identically k=0

distributed with an exponential distributiorP(w)dw —(amae- Yy
=e "“g(w)dw. There are several consequences. First the xexp(—re <), (88)
distribution of eachb(G,) is thus a Poisson process: where ®,=®(G,) and ®,=d(TInt,). Because of the
®(G,)" above statistical properties of the sequence this yields upon
QGydd(Gy) = — F—e PO (gy  Averagng:
! Y
+ o0
and one has the central limit theorem for large Q(T'tw):f dd)go Qu(¢) fo dwe™"[0(Dy,— p+w)
_ -1
®(Gy)—n — (P~ ¢)Jexp — re” (DP9 (89
——v, (84
n and we can use E¢83), namely, that, “,Q«(#)=1. In the

. . . . _large time limit one can shift the integrand globally kgy
wherev is a centered Gaussian random vgnable pf unit vari_, 4+ @ without edge effectéthough one must be careful
ance. One can apply these results to various cdBeatge-

o not to shift terms independently because of divergent inte-
braically growing barriersP(E)dE=aE* 'e = 6(E)dE,  gralg. Thus,
which corresponds té@(E)=E?2. Then one has

+ oo
& nih g5 Qb= | do | dweo-grw—a- )]
Note that the randomnegslisordej is only a subleading X exp( — re~ (UN® Mot Py, (90)
correction. (ii) Exponentially growing barriersP(E)dE
=(1+E) @*Yg(E)dE, which corresponds to®(E) This can be rewritten, after integration by parts, as

=alnE. Then one has

- + o -1
Gn""en/a. (86) Q(T,tW):J’O dve*Uqu_Te*(l/T)‘b (UJr(I)W)). (91)

The variableG,, has a log-normal distribution. This is our general result for this toy model.
Let us estimate Eq91) first for models with fast enough

growing barriers, i.e., faster tha®(E)~E. We introduce
the aging scaling functiorh(t)=e®(™ and thus ®(x)
Having determined exactly the sequence of next largest|nh(e’™) and® ~(y)=TIinh (¢¥). One can rewrite
barriers one can construct a toy model that will mimic the
exact diffusion process. We claim that if barriers grow fast
enough(faster thanE,~n) it will give the exact aging be-
havior. It can be applied to a variety of landscape, but let us
apply it here only to the previously considered directedwith S(w,7,t,)=® [w+®(TInt,)]—Tinz. It turns out that
model. if barriers grow fast enough the function exp 5 acts ex-
The toy model amounts to approximately the quantityactly as a theta functiof(S) and the result is simply
Q(z,7,t,) atz=0 (i.e., the probability to remain still be- H
tweent,, andt,,+ 7) as =ttt - #
Q(7,tw)=Q(0ty+ 7.ty)

(7)

This can be shown by a careful examination of the asymp-
= 6(Gy_,<TInt,,<G,)exp —re~ C«/T).
k=0

C. Consequences: aging properties

+ oo
Q(T,tw)=f0 dwe Vexp(—e (YDSW.ntw) - (9)

(m>ty). (93

totics. The point is that if one takesandt,, to + o such that
the ratioh(t,,)/h(7) is fixed then the result is E¢93). Since
barriers grow fast enough one has Hith,)/h(t)

(87) =limh(t,,)/h(7). A more correct version of the above state-
. . ment is that
This means that &t, all barriers smaller thaitInt,, have
been overcome and that the only relaxation process is to go lim m:y_ (94)
over the next highest barrier. This is illustrated in Fig. 17, tyy @t h(ty)/h(t) =y

which is adequate for the directed model. It thus supposes
that the probability to be in another well is zero, which is It is interesting to note that one hagactly
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(99

and thus the above result follows from the exponential dis-

tribution of w. Note that this is like taking th&=0 limit and
thus if barriers grow fast enough we are dealing witfi a

=0 fixed point. Note that our result can also be rewritten

quite generally as

fth(T)dT

JtMP(T)dT.

W

Q(r (96)

t—ty,tw)=

as a function of the waiting time distribution=e®T. In
particular we have determined that the aging function is ex
actly

1
h(t)=—=

¢ P(n)d7r’

97)

One can also define the probability that at tityethe

particle is next to a barridi.e., in a sit¢ of waiting time 7,
ie.,

+oo _
=f dP, (ne "
0 w

Q(7ty) (99)

Then the above formulas yield that this “aged” waiting time
distribution is

h(ty,) dh(7)

me(h( 7—h(ty). (99

th(’;’) dr—=

This also takes the simple form

- - P(Ddr
P, (Dd =

— (100
f P(7)d7
tW

(1),

which we have shown holds exactly. We can now applyt

these results to several cas@s.Algebraically growing bar-
riers;: ®(E)=E?* with a<1. Then one hash(t)
=exd(TInt)?].

Q(r=t=ty,,t) =exp{~[(TIN~ (TInt,)]}.
(102

(i) Exponentially growing barriers: P(E)dE=(1
+E)~@*Dg(E)dE, which corresponds t®(E) =alnE and
h(t)=(TInt)2. Then one has

)a

Int,,

Q(T=t—tw,tw)=( Int (102
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will be spread out(barrier degeneragy It is instructive

though to see how well this toy model does in that case.
Settingy = 7/t,, one gets

-

0

+ oo

dwe " f Wd¢exp(—ye—¢”). (103
0

After integration by parts and change of variables,

— (*= 170)N
Q(y)=f dwe*Wexp(—ye*W’T)=Ty*Tf T)\Te**.
0 0
(104)
For largey it behaves as
Q(y)~TI[Tly T, (109

which is to be compared with E@53) (T is exactlyu, T
=pu, from the relation between waiting times and barrier
heightg. The toy model gives exactly the exponent, but not
the prefactor. We note, however, that at sriathe prefactor
becomes exact, which is in agreement with the fact that for
faster growing barriers the toy model becomes exact. At
smally the toy model, however, does not yield the nonana-
Iyticity at 7<t,,, which thus entirely originates from the
initial (fracta) dispersion of the packet af, over several
wells. For smallu=T the packet is in fact dispersed over
very few wells, as can be seen easily from the well known
property[26] of sums of Levy variable€;r; to be domi-
nated by a few terms. This is also very reminiscent of replica
symmetry breaking in mean field modéishich have states
with algebraically distributed Boltzmann weights

This confirms our physical picture: only maxima start
playing a role when barrieiG, grow faster tham. The case
G,,~n is the marginal case when finer information is impor-
tant.

Note that the exact resulbl) can be put in the form

Q(r,tw)=J;wdw(U)e‘“”‘w, (106
sin(T) eY (u dt
o= [Me a0

0 be compared with the toy model, which has¢gu)
=Tu'19(0<u<1). Thus one can see that for largethe

e "is correct, however, the barriers that are not large, or the
one atw<0 (smaller thant,), start playing an important
role.

The role of smaller barriers can be illustrated as follows.

The correct distribution of the waiting time of the site
where the particle is &t, is computed in the Appendixes. It

reads
. ~ 1+/J, -1
~ ~ Sin(wu) dqt, fl o~ U
P dr= —| = e~ (tw/7(1-u) .
O ™ - R TTal
(108

Let us now app|y the above model in the case of |inear|y - This should be Compared with the barrier model, which
growing barriers] ®(E)=E]. There we know that the as- 9IV€S
sumption that the whole packet is concentrated next to the ~ 1+p
next highest barrier is certainly not exact. Indeed since there Md_(i_‘”) o(r—1,)
are many barriers withifInt,—C<E<TInt,+C the packet tw\'7 v

P (DdT= (109
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Eb~n P(x,t) =, {D(X)[ 9,P(x,t) —F(x)P(x,t)]}. (110

This model corresponds to diffusion in a landscape with
both barriersE,(x) and a potential (x) (valleys such that

D(x)=e B U’'(x)=—F(x). (112

Here and in what follows we will set the temperatdre 1

for convenience but it can be easily put back in. The poten-
tial is defined by the fact that the equilibrium zero current
measure isPq(x) =exd—U(X)]. The general mode{110
cannot be solved but there is a particular case that can be
solved easily, which is

U(X)= — Ey(X)/2. (112

The model is defined by giving a functiah(x) such that

Vn~n U\
eV =g~ Eo(¥R2= (). (113

FIG. 19. Aging model studied in the text in the continuum limit. Then the diffusion equation becomes

from the above formula(100) and the identificationr P (X, 1) =, { D (X) Iy P(X)P(x,t)]} (119

=e"'T. As above, the toy model gives the correct power-law

dependence folarge waiting times(the prefactor itself be- and is easily solved since one can define a new variable

coming exact whemu—0). There is, however, an accumu- and a new probability5(u,t) such that

lation of smaller barriers effectively seen by the particle,

which is not captured. d_“: L
Let us conclude this section by noting that this type of dx @(x)’

distribution of next largest barriers can be used to analyze a

large variety of models. For instance, the analysis of the [N the variableu the system is a free diffusion problem:

symmetric waiting time model id=1 or of directed model 5

with several branches will be quite similar but goes beyond HG(u,1)=a,G(u,t). (116

the scope of this paper.

P(x,t)dx=G(u(x),t)du(x). (115

Clearly for the choicab(x) =€* and thusE(x) = 2x this
model is some continuum limit of the one represented in Fig.
V. A SOLVABLE MODEL WITH AGING AND DIFFUSION 19. It will have the same expected large time properties.
Note that the quasiequilibrium regime will be lost in this
limit (i.e., reduced to a delta function, see bel@as the size
of each well will become infinitesimal. It would be nice to be

We will now present a solvable model that exhibits simul-
taneously a nontrivial aging regime and a nontrivial diffusion
reg|me.t T_?e_ th'rg reg(ljmteéthe qu_a?i/lqwhbnum olr)e|tsh_de_- able to solve directly the model of Fig. 19 to obtain also the
genliera e(ll IS r? ucl:e blo a EO'ID' %re pr0|9|<|ary| 'St Ids small time behavior. In any case the results presented here
really a class of solvable models, and we will only study &g, large times will be the samghey are not an artifact of

few. . . . . . the continuous limit

In view of the discussion about barriers of the preceding e gt define carefully the boundary conditions. There
section the best way to construct a one-dimensional diffusio%re basically two choices that we will study. They are as
model with a nontrivial aging regimjg.e., such that there is follows:
a finite probability thatz=x(t) —x(t,) remains finite when Free boundary conditiongOne can study a barrier land-
botht andt,, are largé is to make sure that the next largest scapeE,(x) defined from— s <x< . This could either be a
barrier seen after timg, is equal to the previous one plus a ., ,4om landscape (x) or a deterministic one with growing
constant(for aging ast/t,). A natural landscape is thus 10 5 iers ind=1, which we then should choose symmetric for

look at a succession of barrieg~n. However, one wants  gefiniteness, for instancel(x) = —|x|. Then a natural defi-
the valleys also to become deeper and deeper, otherwise th&ion of u is

thermal packet will be too extended. Thus a natural choice is
also to assume the valleys to scalesjs,~ —n, a landscape

represented in Fig. 19. It turns out that tbentinuousver- U(X):J
sion of this model, as well as some generalizations, can be

solved exactly in a very simple way. and — o< y< .

The Green function is thus simply unbounded diffusion,

X ’
de'e—U<X ) (117

A. The general model and its solution

Let us consider the following one-dimensional diffusion G(u,t|ug,0) =
equation: at

e—(u—uo)zm, (118
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which yields the Green function for the original equation:
Q(z,t,t’)=f dxP(x+zt|x,t")P(x,t"|Xo=0,0),

iz
P(X,t[X0,0)= e Ve[ fxaxe (11 (120

We will be interested in the probability of displacements

betweent’ andt: which formally reads

e~ U -U(xt+2) o= (S5dx' e V02t — (1 Zax’ e V0O 2jai—t) (121)

1
Q(zt,t )ZJ de

Another convenient form is to write

8{z—[X(ug+Uy) — x(uy) J}e~ Ui w3t (122

1
Q(zt,t )=f dU1dU2—4W —t’(t—t’)

wherex(u) is the function implicitly defined by Eq117).
Reflecting boundary at+0. Since we will be interested in landscapes with growing barriers such as depicted in Fig. 19,
it is useful in certain cases to introduce a reflecting boundary on the left. One can choose for definiteness a landscape such that
U(X— —00)— + oo, defineu(x)=f>iocdx’e‘u("/) and use a reflecting boundary @+=0. This naturally avoids the particle
being in either one half space or the other. For instance, for the land&ggpe=2x, for which u(x)=¢€* the reflecting
boundary is ak= —«. Because of reflecting boundaries one must choose the free propagatey,Gith=0)=0, i.e.,

1 12 ’ \2 ’
G(u,tlu’,t") = 0(U) ——= (e (U U)TA) } g~ (UFU)TAL-1T)y 123
( )= 000) e ) (
We will be interested in
Q(z,t,t’)zJ dxP(x+z,t|x,t")P(X,t"|Xg= —,0), (124

where we have chosen for convenience the initial conditioxyat—co (and thusug=0). This is a purely technical point on
the definition of the model and has no bearing on the physics. Indeed since we haveEfosen-«)— — and the initial
condition will be immaterial since it takes only a finite time in this model to reach finitalues and we are interested only
in the later(long time behavior. Thus usin@(x,t|x’,t")=®(x) 1G(u(x),t|u(x’),t’) one finds

e—U(x)—U(x+z)e—[(u(x)]2/4t’(e—[u(x+z)—u(x)]2/4(t—t’) + e—[u(x+z)+u(x)]2/4(t—t’))_ (125

1
N — d
QL) f et t)

Let us conclude this section by indicating that a moreWe note that the directed model of Sec. lll can be seen as a
general case can be solvddee also Appendix D i.e., particular case of the class of models introduced here. Indeed

brought back to the casg126) corresponds to the diffusion i given by
8;G(u,t)=32G(u,t)—vd,G(u,t), (126
X r
which corresponds to vt + \/t_’w=u(x)—u(xo)=f e VXdx’, (128
X0

X
U(x)=—(Eb(x)/2+v J dyeEb<y>’2). (127
0
wherew is a normalized Gaussian variable. In the fully di-

These models correspond to either valleys and barriertected casélargev) and for a judicious choice of thgan-
scaling differently and we will not study these models heredom) U(x) one can recover the directed models.
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B. Solution for linearly growing barriers

6315

whereu,; = \t'v, is the positive Gaussian variable represent-

This corresponds to the model of Fig. 15. Again one carind the diffusion process on the half line ang= y7v, an-

either consider the symmetric landscape takidgx)=

other Gaussian variable representing the later diffusion pro-

—|x| and thusx(u)=sgn()In(1+|u]) or one can take the Cess, constrained so that the sum-u, remains positive,

“half landscape” with a reflexive barrier aty= — o, which
we will discuss first.

hence the mirror. The total weight in the second packet is
p=(arctad’)/7 and in 1—p the first.

The above formulas give in that case, for the single time Thus the first Lorentzian packet in EQ.34) corresponds

packet,

P(X,t|X0,0) = e, (129

w

The generating function of moments i®")=T[(1
+\)/2](4t)M?3 /7. Thus one has
(x(t))= 3 In(t/c), (130

(X3(t)) = (x(1))?= =18, (131

wherec=Iny (yis Euler's constant In fact the packet has a

limit shape as one can see by performing the skhift

=1In(4t)+x Then the distribution ofx is asymptotically
time independent:

~ 2%

to particles that have remained in the regiqn’) while the
others have crossed to the mirrorxat — oo at least once and
came back to that region. We are mostly interested in this
first packet(which always contains a fractior 1/2 of par-
ticles) but the second packet will always be there as a mainly
technical feature of the model. If we chose instead the sym-
metric environment, these would be two separate aging pack-
ets, one arounc(t’) and the other aroune x(t’). Aging
then occurs only within each packéthere are diffusion
events between packetwhile here one has aging in all the
packets.

Indeed the above distributiofl34) clearly exhibits an
aging scaling form of the type

tt) ?3( t) b( hm) (136
Z = | = Z_
Q(zt, = oy

thush(t)=t in this model. The functiorQ indeed depends

P(xt)~ \/—_e"e‘e (132 on the times only throughl', which itself can be written as
a
, : h(t)
Thus the packet has a constant width and simply spreads F=fl—-|, (137
over a few wellgin Fig. 15 with its center moving logarith- h(t")

mically towards the right. Thus, since there is some degen-

eracy of barriers one expectg/a,, aging behavior.
Indeed one gets for the two time packet

+o0 e’
Q)= | dwy

Xe~ u2/4t’(e— u2(e?-1)2/4(t—t)

+e—u2(e2+1)2/4(t—t’))_ (133

This yields to an aging form for the distribution of dis-

placements betweerl andt, given by

Qztt)) e’ r N r
Z!I = 1
m\ (e2—1)2+T2 (e?+1)2+TI?
Jt—t’
I'= , (139

W

which, in the variablav=e?, is the sum of two Lorentzians

of width I, the first one centered aroumd=1 and the sec-
ond one its mirror imagéwith the mirror atw=0). This
result is natural considering that thegio of two independent
Gaussian variables with unit varianae=v,/v, is the
LorentzianP(v)=1[ w(v2+1)] and that one has

u
z=x(u;+ u2)—x(u1)=ln( 1+ u—2 =In(1+TIv),
1

(135

where the form off (x) andh(t) is univocally determined as
h(t)=t andf(x)=+1—x. Thus, as in mean fielpl6] there
is a singularity at the beginning of the aging regime: tjge
exponent is equal t@=1/2.

It is interesting to note though that at the beginning of the
aging regimel’<1, there is anomalous behavior of the mo-
mentsz", because the Lorentzian has diverging moments:

n —JHG In(1+T “—dw 138
()= | DnA+Twl——0. (138

One finds in particulalz) = 1/2In(1+T%)=1/2In('t") ex-
actly.

r +oo 1
(z=(2)"= 277\/1+1“2ka duu (cosk[u]—l/\/lJrl“2
+ ! (139
cosfu]+1/\1+T2)

One finds that forn>1{(z—(z))")~TT[n+1] [i.e.,
P(u)=T"e™ "] which is strong intermittence.

For widely separated time scales there is alstiffusion
regimein this model. At larget one gets

z=In(v)+In(t)—In(t"), (140

wherev has a Lorentzian distribution. Thus the diffusing
packet has dinite size (note that since for a Lorentzian
(In(v))=0 (inversion symmetryone recovers the above re-
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sult). Thus there is a diffusion regime defined by,t' — oo periodic boundary conditions and takibg— o, the packet
with z/Int and Irt/Int’ fixed. It has no thermal fluctuatiotd  will converge towards the equilibrium measure. Sitbgx)
is completely deterministand the diffusion scaling function = —x this will result in an equilibrium packet dfnite size
reads However, the dynamical regime-t’<t’ leads only to a

. delta funtion packet ab(z), thus totally different from the
i—(l— '“_t) (141) equilibrium one. We expect this feature to persist for the
Int Int | | model of Fig. 15, i.e., it is not an artifact of the continuous

nd d25
Q(zt,t") z~ﬁ

limit.
As in SR mean-field models the aging regime smoothly  Other quantities can be computed in this model. Let us
merges in the diffusion regiml 6]. give some examples:
This model thus contains both an aging regimé/tp and Calculation of separation of replica®©ne can also com-

a diffusion regime with a different scaling. Only the FDT e the separation of two thermal replicas that are allowed

regime cannot be seen, since it has disappeared in the copy split at timet,,. This quantity was studied if.9].
tinuum limit.

Finally note that this model seems to violate the quasi- One has
static assumption. Indeed in a box of finite slzeor with
QZ(Z,tw,T): J’ ddeF{yvt|X1tW) P(y+zat|X7tW)P(X1tW|X0: —%,0) (142)
+ 00 + 00
=ezj du1J duu,G(uq, 7/u)G(u,€% 7/u)G(u,t,|0), (143
0 0
s L1 (u—u’)? . (u+u’)2) 14z
(u,7u )—\/4_m_ex yp ex i , (144
|
and one finds boundary effects always introduce a cutoff that changes the
expected result. We do not know if this is a purely technical
B e’ r r limitation, and if the model can be improved to really exhibit
Qo(Ztw,7)= - (67— m)2+ T2 + (eZ+m)2+T12)’ a nontrivial and properly defined or if this is a more fun-

damental limitation. We still present some of the calculations
145 : :
in Appendix E and encourage others to improve on them.

7(2t,+ 1) tw
r= W m= — (1406 C. Solution of more general deterministic model
wT T w

1. Barriers growing faster than linear

with 7=t—t’. Note that this distribution is symmetric under
z— —z because of the relatiofi>+m?=1. For larger>t,,
one finds that the distribution of=e” goes to a fixed half
Cauchy unit distributiond(x)1[ w(1+x?)]. Thus for large
time we find that the two replicas evolve within a finite dis-
tance, but this distance iarger than the dynamicabga ,

One can study cases whefg(x) ~ |x|® with b>1. From
Sec. IV we expect that aging should have simple properties.
For the “half landscape” model, using(x)~exp’) for x
>0 and a left reflecting wall ati=1, one finds an aging
regime with no thermal fluctuation:

which is zero for this problem. _ 7 7 \1b 7 \1b
. =| t +\t—t —(In(t , 14
Note that whenr/t,,<1 one recovers exactly the previous z=In(\t'vs v2) = (In(tva) (147
Q(z,t,t"). Z:(ln\/f)l/b_(ln /t/)llb, (148

Nontrivial FDT violation ratio?It is interesting to know if
one can find finite-dimensional models with a nontrivial FDT
violation ratioX as in mean field.

Here one can also compute the response to an addition
field, i.e., the remanent magnetization decay. The calculation
is indicated in Appendix E. Though it does appear that in
some sense this model has a nontrivial FDT violation rAtio 7 1b__ 71 In(vy)

om . [In(Vt'v ) 1%~ (Inyt) Yo+
similar to mean field we were not able to exhibit it in a clear (Inyt")i-1p
way. If one looks at the finite fraction of the packet that has
not touched the reflecting boundary, it has clearly a nonand dropped the contributions of the noise partsaandv,,
trivial X. But on any global quantity we have looked at the which vanish in the limit of large andt’ sinceb>1.

wherev, andv, are uncorrelated normalized Gaussian vari-
aples. We have performed an expansion, in the regime of
terestt>t’, e.g.,

(149



Thus aging becomes thermally deterministic as

h(t)
z=In—-, (150
h(t")
with h(t)=exg C(Int)**] and C=(1/2)*®. These results are
strikingly similar with the resul{95) of the previous section.
In fact the resuli{150) is also similar to what was found in
mean field in[16].
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biased Sinai model and we have introduced several models
that can be studied analytically. Our main results are the
following.

We have identified three generic regimes for large times
ty—°, t—oo:

(i) At small separations=t—t,<t,, a quasiequilibrium
regime. Evidence for that regime was found in Sinai's
model. In that regim&(z,t,,+ 7,t,,) reaches a limiQ(z, )
for t,,—o. We have argued, and checked numerically, that

There is also a diffusion regime, which is identical to thethis distribution has some peculiarities. For largét does

end of the aging onét merges smoothly into )it Indeed,

1 Int’
Int

2. Barriers growing slower than linear (subaging).

1b

z=(Inyt)P (151)

Similarly, in the subaging case whekg(x)~x® with b
<1 one finds

z=In(1+ o+ Jt'v )™ —In(1+\t'vy)®. (152

Performing expansions this gives

1
—= Vo2 (153
b (14 \t'vy)In(1+ t'vy) Pt
and thus
17
= — 0y, 154
b Jinye " (154

wherewv is again a variable with a Cauchy distributione
have not determined the exact form using the walhis is
compatible with a Lorentzian aging packet but with

1 7
F_B—\/t—’ln T (155
consistent with
r=f{% . h(t)=exd C(Int)*"], (156)

with a<<1, again performing an expansion in smalt,, and
with g=1/2.

VI. CONCLUSION

admit a limit Q(z) but this limit exhibits an algebraic tail
originating from rare configurations of the disorder. The mo-
ments of the relative displaceme(at'(7)) with n>1/2 grow
unboundedly withr. We have also proposed an expression
for the distributionQ(z,7) based on arguments on periodic
media.

We have also concluded, from our simulations and from
physical arguments, that in Sinai’'s model usual equilibrium
theorems hold in this quasiequilibrium regin@ Tl and
FDT). We have obtained a generalized expression of these
theorems to probability distributions such @$z,t,t’), and
shown that in this regim€(z,7) and the response function
R(z,7) obey an exact differential relation. That these theo-
rems should hold in that regime is confirmed by recently
obtained rigorous bounds, as we have discussed. This unveils
an interesting situation of a quasiequilibrium regime with a
lot of internal structure, wide fluctuations, and internal loga-
rithmic diffusion (moments growing withr), which calls for
further studies.

(i) At large time separations,(t)~L(t,), there is a dif-
fusion regime. There the displacements scale x4t
~X(t,)~L(t) and there are scaling forms for the probability
distributions. In the model of Se¢V) we have obtained this
regime analytically.

(i) Finally there is an intermediate aging regime. One
should first look at this regime in the probability of staying in
a finite neighborhooa of the same point betweenandt’,
which is generically of the form

h(t)
"h(t")

Q(zt,t")=F|z

. (157

In Sinai’'s model with a biagand in the directed model with
algebraic distribution of waiting timg¢sone has aging with

h(t)=t. If the waiting times are even more widely distrib-
uted, we find(157) (for z=0) with a large class of functions
h(t)>t. Similarly we also find this behavior in a solvable
model in Sec. V where a large class of functidn(g) [in-

In this paper we have investigated two time quantities including subagind(t)<t] can be obtained.

several one-dimensional diffusion models with random and

In the symmetric Sinai moddwithout a bia$ we have

nonrandom environments. These quantities are functions dgbund strong numerical evidence for the aging behavior

the waiting timet’ =t,, after the initial localized condition at
t=0 and a later timé. The (averagedldistributionQ(z,t,t")
of relative displacementz=x(t) —x(t’) betweent andt’
was studied. Part of this study was numeri¢al Sinai's
mode) and we have reached times up to™1@ur results
showed that the times reached in a previous simuld@h

(157 with h(t)~Int (for small finite z). In that model we
have found an even more striking result:

h(t)
Q(z,t,t’)=Qo(Z)f{—l,

e (158)

were vastly insufficient. Our conclusions are different from
those of[32]. Part of the study was analytical: we have com-i.e., a decoupled form for the aging regime. This suggests an
puted two time quantities for a directed model related to thenterpretation of the aging regime in Sinai's model as equili-
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brated wells which get emptied on aging time scales. Thisome of the features of these diffusion processes in higher-
picture should be checked further. dimensional systems, such as barriers growing with distance
Another consequence of our result for Sinai's model isin configuration spacén some cases a direct connection can
that, since the aging regime must be compatible with thde made, such as for the motion of a tip at a directed polymer
diffusion one and we have found tha¢t) ~L(t) ~Int, there in a random potentidl44]). Thus we expect that the various
must be asingularity in the two time diffusion front az ~ regimes defined here should be present in these systems as
=0 to allow for a nontrivial aging regime. well. In particular the properties unveiled here, such as the
We have given a general explanation of these regimedelta function singularity at the origin in the diffusion front
using scaling arguments on the next highest barrier encourand the existence of an aging regime, will clearly have con-
tered by the particle. This allows one to understand the agingequences for domain wall motion, a question that deserves
form in Sinai's model. It also strongly suggests that the agindurther investigations.
in Sinai’'s model could be studied analytically by only com-
puting the distribution of next highest barrigx purely geo- ACKNOWLEDGMENTS
metrical feature of the energy landscap&hese consider- _
ations also lead to defining a class of models for which the We thank A. Barrat, A. Georges, L. Cugliandolo, and J.
distribution of these barriers can be computed exactly, anéfurchan for useful discussions.
allows for predictions of the aging form{g¢57).
Though we did get a consistent picture of aging in Sinai's APPENDIX A: DISCRETE VERSION OF SINAI MODEL
model, we cannot rule out completely other regimes. For AND DIAGONALIZATION
instance, we have not explored in detail the behavior of the

moments of the displacement in Sinai's model. As in Sec. Ii In this Appendix we describe in detail the observables for

.. i ; .
éjlscrete hopping models. We also describe the numerical

one could say that at the very beginning of the aging regim . : :
(i.e., Int/Int,~1+€ fixed, a small fraction of particles have method used in the paper. We eStabI.'Sh some FDT relations
' w X and other useful exact relations for discrete models.

escaped from their well and have experienced Sinai’s diffu- : ' .
sion to another well. One then gets Letus cons@er the Fokker Planck operatty, defined in
(7). It can be written as

BI t—ty)]?" dPy
[In( W)] (HFP)n,um:W: _(\]n+l,n_~]n,n71)a (Al)

S— Int
|<x<t)—x(tw)>|“~(——1

Int,,

~ 2n—-p — B
(Int,,) (Int—Int,,)". (159 where the current flowing from site— 1 ton is by definition

Thus by the same mechanism as in Sec. lll the various mo- Jon-1=€%P,_;—e %P . (A2)
ments may have some different aging behaviors. We have
not attempted to obtain a precise estimategdout a rough We need to compute the Green functiBin,t|ng,to) (t

estimate from our numerical simulatiofiSig. 13 is consis- =tg), which is defined as the solution @7) with initial
tent with B=1. If this is the case the moment=1/2 may conditionP(n,ty|Nng,te) = Onng- Following Ref.[23] it is use-
have an aging behavior d#t,,. The general issue of the ful to map the FP equation onto a ScHimger equation cor-
matching between the three regimes defined here deservesrigsponding to a symmetric matrix. One has

be investigated further.

Another open problem is the behavior of the response in
these regimes. It is important to determine how to define
properly, and study beyond mean field, the way the equilib-
I’ium theorems are ViOlated. Sil’lce, as we haVe ShOWh, Samp\llﬂ'lere the(ﬁ“ are the eigenstates Of the delnger Operator
to sample fluctuations play a strong role and one should fo-
cus on distrib.utions, one needs e_xtensions Qf the mean—_field (HO)nm¥m=—(ns1t n_1—243) +Vahy =E by
ideas. As a first step we have given analytical expressions (A4)
and definitions of quantities adapted to low dimension and
which measure these violations. A detailed numerical andn the potential
further analytical investigation of these quantities is deferred
to the future. Vy=efnrite -2, (AS5)

To summarize, we have found that some of the concepts ) ) .
defined in mean field are still useful in low dimensional ~As discussed in Ref23] the random operatdd, which
models, though they have to be seriously adapted. Our stud§ @ version of supersymmetric quantum mechanics, is quite
should also help one to understand dynamical behavior iReculiar: all states are localized but the spectrunHgfis
low dimensional but more Comp|ex Systems such as domaiﬁOSitive, without the Lifschitz tails Usua”y associated to ran-
wall motion with disorder and coarsening in random spindom one-dimensional potentials. An eigenfunction corre-
systems. Indeed activated proces§egolving passage over sponding to the energy levE,=0 is always exactly known,
barriers become important away from mean field and ul-i.e., #5=_Ze Yn"2. Whether or not this is the actual ground
traslow anomalousiffusion processeare expected to play a state depends on whethes is normalizable, i.e., on the
crucial role. While the Sinai model is clearly oversimplified boundary conditions. This is also related to the breaking of
(the energy landscape is one dimensipnralstill retains  supersymmetry.

P(n,tlng.to)=e~ 2(UnUn) > yeye et (A3)
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The Schrdinger operator is a tridiagonal symmetric ma- if the pulse is at’ + € (Ito). We have defined
trix and is easily diagonalized for large sike Let us first
consider the problem with + 1 sitesk=0,L with reflexive n, _ (OHEp)mpy
boundaries. The same change of functiBp=eYr2y, is mm S,
used and formuldA3) holds: !

= 5m,m’(e_ ¢m5mnl_ e¢m+15m+ 1,nl)

— b ) o , +5m—1,m’e¢m5mnl_5m+1,m’ei¢m+15m+1,nl-
(HFP)ij:5i+1,je ¢J+8i71,je¢“1_5i,j(e ¢|+e¢|+l)'

(Al
Heploi= 018 %1— 8y, €1,
(Heploy= 0y, 0] (AB) We will now establish(i) the FDT relations valid when
(HOi=— (81 +8_1:)+ 68 (e~ bitedit), equilibrium is attained andii) some exact relations always
. ! ! ! valid. These equations will relate the correlation functions of
(He)oj=— 81+ 50]..34)1_ the operatoO(n,n’) with response function of the operator

R(n,n") (for a fixed€). There must be a relation betweBn
These boundary conditions simply amount to choosing  and O for these to hold, which is
=+ and ¢ 1= — and restrict the problem to sitds
= €
0... L. SPIR(nm)+R(n,m=1)]=0(n,m)—O(n,m~1).
1. Explicit expressions of quantities of interest and FDT (A12)

theorems in discrete version , , . . ,
This relation generalizes the usual relatid®(x,x")

The two time quantities of interest are correlation func-— ,0(x,x’) (see next sectigrvalid for continuous systems
tions of some operatdd(n,n’): and for the response to a uniform field. We start with the

O(t,t")=(O[X(t),x(t")]) following identity:
ao(t’)

=>, O(n,n")P(n,t|n’,t")P(n’,t'|ng,t,=0) ————== 2 0(n,n")P(Nt{m,t" ) H o (S
n,n’ at n,n’,mm’
=S e Ealt-t)-Eg’ — S ) P(M',t'|Ng,15=0). (A13)
@b Note the simplification:
X; z O(n:n,)eiunm‘/’gl/’g’ 'r/’f/eunolzlr/’ﬁo Hmm’(gmn’_ 5m’n’):(5m+l,m’ei¢m,+ 5mfl,m’ed)m,+l)
n/

(A?) X(émnr_tsmrnr). (A14)
and response functions of some operaon,n’) Now the following exact relation can be established:
, 5<R(X(t)’x(tl))>f 2 O(nan,)Hmm'(émn’_5m’n’)Pm’

R(t,t ): ; (A8) n',m’
Sf(t))
1 ) ny 1
defined by adding a short-duration pulse of an additional ZEZ R(n,n")en B P+ S RIM) (I 1mem-1
infinitesimal force at timet’. The pulse is not necessarily n’.ng

uniform in space. We define it to be of integrated strength
fey, i.e., dpp— dn+3fe, at timet’. The limit f -0 is then

taken with e, fixed (the response to a uniform field corre- for any set ofP,,, provided the above relatiofA12) holds

+Jm,m-1€m) (A15)

sponds to choosing,=1). between the operato® andR [J being defined as in Eq.
Using the definitionP(n,t|n’,t’)= (e "t)) . one (A2)]. It yields to
has
1 MZRE(t,t’)Jr}E R(n,m)P(n,t/m,t")
RT(t,t)== > R(n,n)P(nt/n’ t") at’ 2f7m
2n,n’,m’,nl

n ><|:‘-]m+l,m(t’)Eerl"'‘-]m,mfl(t,)fm],
X €q,B 7 P(M',t'[Ng,to=0) (A9)

n‘m’ (A16)

if the pulse is at’ — €, or where I m_1(t") =e*mP(m—1t'|ng,to=0)
1 —e %mP(m,t’|ng,t,=0) and we are using the Ito response.

R(t,t") == Z R(n,n")P(n,t/m,t") The indexe is a reminder that we are working for a fixegl.

n.n’,mng When equilibrium is attained, i.e., either in the linit—

+o before L—+ or, if there is an FDT regime in the

ny Y —
><enlen'F’(n t'[no,to=0) (A10) problem (see text, this usually entails averaging all these
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correlations over disorderthen one can set the current to 1
zero,J=0. Then the fluctuation-dissipation relation holds: v 5[Q(zt,t")+Q(z+11t,t)]

JO(tt)
at’

R, AL —R(z+1,t")—R(zt,t") (A21)

1
+23 [P(z+1+m,tmt) — P(z+m,t|mt)]
. . 2 ™
2. Applications

Let us start with responses to uniform fieles=1. X [Ims 1m(t)+Imm-1(t)]. (A22)
The choiceO(m,n)=nm and R(n,m)=n is consistent
with Eq. (A12). It gives This is the discrete equivalent of the continuous relation
derived in the next sectiofEg. (B23)].
AX(DX(t"))  S(x(1))s One can also wonder what happens when a bias is applied

oy St (A18)  on a finite size periodic ring. Theresationarydistribution
when a fixed current is reached at laftje There is an ex-
The choice O(m,n)=(n—m)2 and R(n,m)=—2(n tension of the FDT theorem. Indeed one has

—m) is consistent with Eq(A12). It gives

50(t.t") R(t,t')+J>, R(n,m)P(n,tjm,t")
————=R(t, n,m)P(n,tjm,t").
FH[x(t) —x(t")]?) _ _25<[X(t)—><(t’)]>f (A19) at’ nm
o’ sty (A23)
The general choice Note thatJ is simply related to the velocitysee, e.g.,
[44]).
o(n,m)=1@n,m)+An,m+1)) We now study responses to nonuniform fields. One appli-
’ 2 ' ' ’ cation consists in choosing, for a given
R(n,m)=Qn,m+1)—Qn,m) (A20) OP(n,M) = Spmdnp,  RP(N,M) =8,y
satisfies the condmo(AEZ). . E%J): Som— o1 (A24)
Thus one can choosg(n,m)=6,_(,_m and obtain the ’
exact relation: which is consistent with EqA12). It yields
at’<5n(t),n(’[’)5n(t),p>:R(p)(t!t,) (A25)

+ 3 {Jpp-1(t)[P(ptp—1t" ) +P(pt|p,t')]1=Jps 1p(t ) P(ptp,t’) +P(pt|p+1t)]}, (
A26)

whereR®P)(t,t")=d/d f( 8y p)1em)|1—0 and e is the above staggered field, which takes a value- dfat sitep and —1 at
site p+ 1 (it corresponds simply to changing the potential only at pite
One can also add together these responses and obtain

f7t'<5n(t),n(t')>22p RP(t,t) (A27)

1
+ 52p {Ip.p-1(1)[P(Ptp—L1t") +P(pt|p,t")]=Jp+ 1,5(t)[P(pt|p,t") + P(pt|p+11t")]}. (A28)

One has the following expression:

% R(p)(t,t,) =e ¢m(Am,m,m_Am—1,m,m) + e(/)m(Am,m,m—l_Am—l,m,m— 1) (A29)

—efm Y(Am+ Imm~— Am,m,m) —e” fm YAm+ Imm+1—" Am,m,m+ 1) , (ASO)

with A, mnr=P(ntimt’)P(n’t’[ng0). A simpler expression is
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> RP(tt")=[e" mP(mt')+e’mP(m—1t")][P(mfmt’)+P(m—1t/m—1t)—P(m—1t/m,t’)—P(m,tjm-1t")].
p

Note that we are freely reerxmg the sums and thus assum- g P= —Ta [0 P(x,t|x",t)ID(X)P(X',1']0,0)}.

ing that the boundary conditions are periodic. (B9)
The above response is in fact the response to an additional

random uncorrelated potential. However, the above expreg-inally we obtain

sions allow one to compute it directly without doing any new

averages.

APPENDIX B: FDT AND USEFUL EXACT RELATIONS
FOR PROBABILITY DISTRIBUTIONS

gy P=—To>[D(x")P]
+Ta, {P(X,t|X',t")d [D(X")P(x',t'[0,0]}
(B10)

In this Appendix we derive a generalization of the FDT d sincesH o/ Sh(t' )= — 9., D(x’
theorem on the probability distribution. It can then be used ag © > o0 P () D)

a generating functional to obtain a hierarchy of FDT rela-

tions on all moments of the typex(t)"x(t")™).

We are interested in the joint probability that the particle

isinx att’ and then inx att.
P(xt,x"t'|Xoto) =P(X,t|x",t")P(X,t'[X0,0).  (B1)
Let us recall the forward and backward FP equations:

P (xt|x't")=Ta,D(x)dP(xt|x't")

—d,D(X)F(x)P(xt|x't"), (B2)
A P(Xt|x't")=—=Ta,,D(X")dy P(xt|x't")
—D(X")F(x")d P(xt|x't"). (B3)

We now derive the differential equation for the joint prob-

ability P:
Ay P=[dyP(X,t|x" ,t")]P(x’,t'|0,0) + P(x,t|x',t")

X[ dP(x',t']0,0)], (B4)

atﬁ=—f dydy POX,tly,t")([Hep, 85 )y P(y',t|0,0),
(B5)
with
[Hep, 6 1=[TdDd—dDF, 8, 1=TdD[ 3,8y 1+, 6y]
X(TDJ—DF). (B6)

The last term is the currertt=—(TDJ—DF)P. In the

FDT regime(for larget’) the current is expected to vanish

and we are left with the following equations fér.

at,ﬁ:—f dydy P(x.t]y,t")

X(TaD[a,8, 1)y, Py’ ,t'[0,0,  (B7)

at,ﬁzax,f dydy P(x,t|ly,t')(TdD 8,:)yy P(y',t']0,0),
(B8)

A~ 2[ ( )A] 5|Ah
o P=—T3&,,[D(X")P]—Tdy: ,
! X X 5h(t')

(B11)

where we defin®;’ (xt|x't’|xo0), the joint probability when
a field pulse has been appliedtat- €. This is the equation
that relates exactly the joint probability distribution
P(xt,x't’ [Xoto) to the response distribution in the quasiequi-
librium FDT regime. It was obtained by setting the current at
timet’ to zero.
A similar equation can be derived for the field applied at
timet’ + €. From Eq.(B10) one has also that

(B12)

where P (xt|x't’|xo0) the joint probability when a field
pulse has been applied Ht+ €. This corresponds to Ito’s
prescription for the response functions since
SPL(xt'|x't"|x0)/6h(t')=0.

From this it is immediate to derive a similar FDT equation
for the probability function Q(zt,t")= fdxdx &(z—x
+x")P(xt,x"t’|Xoto) . Multiplying the above equation by the
delta function, integrating with respect oandx’, and in-
tegrating by parts one gets

8Qp (z,t,t")

v Q(z,t,t")=—Ta2Q(zt,t' )+ T4, )

+T&ZJ dXx1dX,8(Z2— X1+ X5)

X P(Xq,t|X5,t")J(X5) (B13)

in the the long time regimé&’ — o the current vanishes and
we are left with the FDT regime of the equation

Qp (z,t,t")

v Q(z,t,t")=—Ta2Q(z,t,t')+ T4, prypes

(B14)

Similarly with the Ito prescription:
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oQn(z,t,t")

’ ,t,t, =T z
dpQ(z,t,t")=Ta Sh(t)

(B15)

We can check that this equation is more general than the

LAURENT LALOUX AND PIERRE Le DOUSSAL 57

sh(t")
=[1—Xo(t,t")]0(O)(t,t")

VO(t!t,):ﬁt’<o[x(t)vx(t’)]>_-r

(B21)

conventional FDT theorem, and indeed gives back the usual

FDT result. Defining
B(Lt/)FDT:f dzZQepr(z t,t') (B16)

and inserting it in the generalized equation gives

at,B(t,t')z—Tf dzZ202Q(z,t,t')

85Qy (z,t,t
+Tf dzfazL) (B17)
sh(t’)
after integration by parts this gives simply
duB(t,t")=—2T-2T o dzzQ (zt,t")
’ s =— — —_— 7z Z,1,
' Sh(t’)
=—2T[1+R*(t,t")—R*(t',t'—¢€)]
=—2TR(t,t"). (B19)

With the Ito prescription one has simply

P
auB(tt')=—2T——

Sh(t) dzzQ(zt,t")=—-2TR(t,t")

(B19)

usingR(t’,t")=R(t',t'+¢€)=0.

A motivation is to find a generalized form to this equation

which would be valid in the aging regime as well.

Exact relations and FDT violation ratios

the relation reads

Vo(t,t’)=f dxdx P(x,t|x’,t")O’(x,x")J(x"t’'|00).
(B22)

We have defined above the FDT violation ratk
associated with the operatdD. If the other response
was used there would be in addition a term
—T(D[x(t")]0,[x(t),x(t")]) in the above equation with
Oz(x,x’)=&)2(,0(x,x’). Again for the Ito response the sec-
ond derivative term is absent.

We will also give an exact relation for thelative dis-
placementsLet us consider an operat@(z). Then one has

+T5<0’(Z)>h

d(0(2)) Sh(t))

= J XmdXZO/(Xl_Xz)

X P(X1t|Xot")J(X,t"|00).
(B23)

And thus one can define also a generalized FDT ratio:

Yo(t,t')

f dx;dX%,0" (X1 — X2) P(X1t|X,t" ) I(X,t|00)

3(0(2))

=1

(B24)

APPENDIX C: BOUNDS

Here we illustrate the bounds recently proposed by CDK

It is useful also to give the exact relatiof@ways valid  [46]. We use the framework of the generalized FDT relation
for averages of operators. They allow one to obtain expliciiof the preceding section and our derivation is thus techni-
the FDT violation ratios. cally slightly different, though identical in spirit {g46]. We

We put back the current term that we have neglected. Wevork directly with the FP equation and a space dependent
obtain then instead of EqB10) the (still) exact relation diffusion coefficient.

The nice observation of CDK is that the current that ap-
pears in Eq.(B22) also appears in thél theorem, which
states that the free energy

duP+Td,[D(x)P]
—To[P(x,t|ly,t")a,D(x")P(x’,t'|0,0)]

:J dydyP(X,t|y,t,)[(9,5Xr]yy/\](y’t/|00), H(t,):f dX'P(X’t’|00)[T|nP(X’,t’|00)—U(X')]

(CY
(B20)
. is always decreasing with
with J(y't’[00)=—D(y')[Tdy—F(y')]P(y't’|00). We
will use the Ito response here. / 1yt 2
Let us study a general observali&x,x’). Multiplying dH(t ):_j dx’ [J(x't"[00)] . (C2)
the above equation, integrating oweandx’, and integrating dt’ D(x")P(x’,t’|00)

by parts(assuming no contributions from boundajieme
has an exact relation that relates the averag€x(&fx’) and
of O'(x,x")=d,O(x,x"). Defining

The CKS bounding amounts to boukg(t,t’) defined in
Eq. (B21) by
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H(t) 172

|Vo(t,t’)|$ v fdXdX’P(X’t|X,=t')0'(X,X')2D(X’)P(x’,t’|00) 3
FTUNEL:

- di’ ) {O'[x(t),x(t") D[ x(t")]})¥? ca

using the Cauchy-Schwart£s) inequality andfdxP(x,t|x't")=1.

Note also that disorder averages can be bounded similarly by applying the CS inequality at the same time to the integrals
overx,x’ and configurations.

One then gets

1/2

AL [{O"[x(t),x(t")]*D[x(t")])|*2 (C5)

dt’

[Vo(t,t")|=<

Or, as pointed out by CDK, in an integrated version,

t [|dHs)
sﬁ,ds( ds

If we chooseO(x,x")=xx" andD(x)=1 one gets

1/2

’ f tdsvc,(t,s) |<O'[x<t>,x(s)]zD[x<s>]>|1’2)- (C6)
y

- t dHs)
<((@) ft,ds( .

1/2
) . (C7)

t
<x2(t)>—(x(t)x(t’))—Tft,R(t,t’)

One can also derive bounds using E823) for the relative displacementdJsing CS, Eq(B23) leads to the bound

1/2

(60" (2))n dHt)
{02+ T——2| < |{O'[x(t) — x(1)]3)|*2 C8
e{0@)+T— = | <K =Xt I (c8)
which can be rewritten as

— 2

8Qu(z,t,t") v gH)|*
a,fdz 2)Q(z,t,t")+T fdzo’ ) — < fdzO’2 2)Q(z,t,t’ Cc9
t A(2)Q( ) h(t) (2) Shit) (2)Q( ) at (C9

T
This yields in particular APPENDIX D: MAPPINGS OF SEVERAL MODELS

The method of change of variables allows one to relate

dHt') 12 exactly members of a class of landscape. Let two landscapes
|9 B(t,t")+2TR(t,t")|<B(t,t")¥? " and their corresponding Green’s functions be
(C10 [Ep(¥),U(x)]=P(x,tx,0), (D1)
or its integrated version [Ep(x),U" (X)]= P’ (X,t[Xg,0). (D2)
If there exists a functioly(x) such that
t t dr(S) 1/2
—B(t,t’)+2TJ R(t,t") sf dsB(t,s)? dy(x)
v v ds E(x)=Es[y(x)]+2In—= —,
(C11) X
- . Y
More generally the bound can be used to constrairkhe U (x)=Uly(x)]=In—5—, (D3)
defined in Eq(B24):
then the two Green functions are related through
~ (O"2)(t,t")[dHt")/dt'|2 dy(x)
1-X%(t,t’ . (C12 ' -2
1%t (O (L) (€12 P’ (x.t]x0,0)= =5 = PY/(X).1]y(%0).0).  (D4)
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In particular one can map at,ﬁ: —Taz,[¢(x’)zl5]
[O,U(x)]«[2U(x(u)),0] (D5) + T {P(XtIX't") d [P (X )2P(X't |Xoto) ]} (ED)
and + T, {P(xt|x't")P(X")dy [ P(X)P(X"t'|Xoto) 1}
(E6)
[Ep(X),0]<[0,3Ep(x(u)]. (D6)

Since the diffusion coefficient iB(x’)=®(x’)? in this
L N . _model, and the response &Hgp/oh(t’)=—0,,D(x") the

It is interesting in general because the new funCt'onsabove equation can be rewritten in a form very similar—but
U(x(u)) or Ey(x(u)) are usually better behaved at lange | igentical—to the above general FDT equation:

Two general scenarios exist, confining potentials and un-
confining ones. Let us take rapidly growing landscapes A 5,5h
[Ep(X),U(X)] as in the last section and map them onto Oy P=—=Tdy ———

. )—&xr[P(Xt|X’t’)J(X’t’)]. (E7)

[0,U’(u)]. Then typically one has)’(u)~blnu at largeu. h(

The caseb>0 is confining and corresponds to the case L .

where barriers grow faster than valleg(x)>-2U(x). The Iastt‘;[err,r:,cin_n(?rt(bbe ,sgnpl(lil;led/ f;rths{r/|antd mvc;lves

The caseb< 0 is fast diffusion and corresponds to the case € curren ().( )= . .(X ) [ (X_) (Xt'[Xoto)] O
. the model. This equation is always valid for our model, even

where barriers grow slower than vallefg(x) < —2U(x).

. . . in the out-of-equilibrium regime.
buiilgzlilr)]/gnt%tg ]}Qﬁvtv'ir:g SE)%ZZ%?Q:_ mappings could also bé The idea is that in the nontrivial aging regime all three

terms of the above equation will be roughly of the same
1 order int’ and thus it will effectively lead to a nontrivial
QU )= ——— (U= ugel oA Za(e! o1y FDT ratio X(t,t').
4et~lo—1 One can use, e.g., this equation to study the correlation
(D7) C(t,t")=(x(t)x(t")). Multiplying by xx’ and integrating
overx andx’ one obtains
which satisfies

(x(t)p)
#Q(u,H)=9,0,Q(u - 33,uQu,t).  (D8) R(tLt)= 5h(t’; TXLOOA). - (E8
APPENDIX E: RESPONSE IN THE AGING MODEL where we have defined

We start from the exact equation obeyed by the Brownian

diffusion propagator: f dxdx' xP(xt|x't")I(x't")

1 , A (X(H)x(t"))
R(Utju't’) = —————e (U-U)TA-t)  (E1) (E9

VATT(t—t")

The joint propagator

X(t,t)==| 1—

—| =

One can also define

F(x(1)?) )

1
Xp(tt)=—5Xc(tt )( 1_m

R(utju’t’|ugte)=R(utju’t)R(u't’|ugty)  (E2)

(E10
satisfies the exact equation Introducing
dR=—=Ta,R+2Ta, [R(utju't’)a,R(u't’ [ugte)], At 7)= (X[t us+ VU uy P[X[ YVt u 1), (E1D)
(E3)
t/
3 B —2Ta SRy, E4 D(t',T):<<U1_U2 \f;) X[V U JO[X[Vt Uy + TUz]]>-
v R= u’ Sh(t) (E12
o _ ) ) One finds
This is valid for the free(lunboundegl Brownian motion
and vyields, for instanceR(t,t")=Xd;,C(t,t’) with X 1 D
=1/(2T). A bounded Brownian motion would instead con- XC:? A+D’ (E13
verge to equilibrium withX=1/T and satisfy the FDT equa-
tion with 2T replaced byT in the last term. 1 D
One can now use the change of varialshgx)d/dx XB:_ﬁW_AOa (E19

=d/du and R(ut|u’t’|ugte) =P (x)D(x")P(xt|x"t’|X,to)
and obtain for the model studied previously, the exact equanhereAy=A(t’,0).
tion valid in the unbounded case: Thus one gets, for instance,
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oo X (e(up) e(Ug+XU))IN(L+ Vt' [ug+xuo|) = (IN(1+ Vt'|uy ) E15
% 2T ([(xuy— Uy)/(Uy + XUp) Je(Uy) €(Uy + XU IN(L+ VE |ug + X))

with x=/7t’. The divergences make the calculation depend strongly on the boundary conditions. As explained in the text we
have not pursued it further.

APPENDIX F: DIRECTED MODEL CALCULATIONS

Defining
®(S):S+W (FD
we will use that
w =1-s®
stw S (s),
1 _D(s1)—D(sp)
(s1+W)(S,+W)  sp—sp
W _5P(sp) =51 D(sy) F2)
(s +W)(s,+W) S,—S; '

Let us compute the averaged probability that the particle advances listweent’ andt=t"+ 7:

Q(m, 7,t")=(8[x(t)—x(t')—m])= >, P(n+m,n,7)P(n,0t). (F3

n=0

The double LT,

Q(m,sl,82)=f J drdt’e 172U P(m, 7,t"),
0Jo

can be calculated:

w
= + = - |+(1-
Q(maslrsZ) ngo P(n manasl)P(nvost) |:5m0 (Sl+W)(Sz+W) (l 5m0) S]_+W (S]_+W)(32+W)
X
S1+W ngo S,+W 4
It yields the result given in the text.
Let us now estimate the probabilit?tw(W) that at timet,, the walker is on a site with a waiting tim&/'=1/r.
Its Laplace transform with respect tg (Laplace variables,) is simply given by
n—1
W
S(W—W, . F5
5 ow-woo I s 79
This easily leads to
1 1 1
(F6)

st WS W a(sy)

By Laplace inversion this yields for the distribution of the waiting tire 1/\W:

. ~ 1+u -1
~ ~ Sin(ww)dqt 1 ~ ut
Py, (7= n(w“)—ffw) Jor e e G

twl\'r Ilu]
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