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We improve a recently proposed dynamically driven renormalization group algorithm for cellular automata
systems with one absorbing state, introducing spatial correlations in the expression for the transition probabili-
ties. We implement the renormalization group scheme considering three different approximations that take into
account correlations in the stationary probability distribution. The improved scheme is applied to a probabi-
listic cellular automaton already introduced in the literatiB.063-651X98)05206-4
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[. INTRODUCTION that properly treats the nature of the absorbing state, we fig-
ure the value of the critical exponent of the divergence of the
In order to study cellular automata systems displaying sspatial correlation length, using three different approxima-
second-order irreversible phase transition to an absorbingons involving correlations among clusters of one, two, and
state characterized by a scalar order parameter, a dynamid@ur neighboring sites in the lattice. Our calculations #or,
renormalization groupRG) algorithm[1] has been proposed at small orders of approximation in the mean field scheme
recently. These cellular automata models are in the directefr the stationary distribution, give better values than the
percolation(DP) universality class. The method is based on a®nes reported in Ref1]. o .
dynamically driven renormalization grolDRG) scheme Thg paper is organized as follows. We begin with a brief
(for a recent review about DDRG s&]), which has been description of the model proposed jb] and the general

successfully applied to self-organized critical phenomena, akenormalization scheme. After this, we define the algorithm
sandpile model§3] and forest fire model4]. used in this work and present the values obtainedfor

The basic idea introduced [4] is to couple a real space Finally, after mentioning the ideas involved in the simulation
RG scheme to a stationary condition that drives the RG@€chnique used to study the model, we present the values of
equations through the parameter space. The stationary equi€ Whole set of critical exponents for the PCA obtained by
tions, involving the stationary distribution, have to be ap-means of dynamical numerical simulations and stationary
proximated since the form of the stationary probability dis-Simulations. Ou.r results are in we!l agreement w]th the val-
tribution is not knowna priori, as in the case of systems in U€s corresponding to (i1)-dimensional DP and differ con-
equilibrium. de Oliveira and SatulovsKiL] showed, as pro- Siderably from the ones reported in RE3).
posed in4], that results can be improved using more refined
approximations for the stationary probability distribution. Il. MODEL
The expression for the transition probability usedihcon-
sists in a product of independent one-site transition prob- The model studied 5] is a one-dimensional cellular
abilities at every step of the RG transformation. automaton in which each site can be either vaegrtO or

In this work we exploit another aspect of the scheme inoccupied by a particle;=1. At each time step, the state of
order to include additional correlations. In fact, correlations2 given site will depend only on its previous state and the
can be also introduced in the renormalization scheme if wérevious state of its nearest neighbors. The transition prob-
allow the transition probability to depend upon more neigh-ability T(a|o’) from states’=(01,03, ...,0() to state
bors. In the case of nonequilibrium models, the space iw=(0y,0,, ...,0) will be given by the product
which the RG flows is the space spanned by the transition
probabilities. As we will see later, our approach broadens L
this space providing more degrees of freedom to the RG T(olo") =11 w(oilo]_1,0! 0], 1), (1)
trajectories that flow towards the fixed points. =1

We apply the modified RG scheme to a probabilistic cel-
lular automator(PCA) with one absorbing state already in- whereL is the number of sites ane(oi|o|_;,0] ,0{, 1) is
troduced in the literaturgs]. Using a block renormalization the one-site transition probability given by the following
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rules WsS)=3 3 RSAR(S |0 We(0'), (6
r 000 001 100 101 010 011 110 111 .
from which follows
0 1 1-p 1-p 1 0 1 1 1
\7V(S’)=§S‘, \7V(S,S’)=§; R(S |eHW(a"). (7)
1 0 p p 0 1 0 0 0 7
(2) Once knowing the transition probabilities at the coarse

grained scale, one can easily build the rescaled transition
This probabilistic cellular automaton models a transitionmatrix T(S|S') as
from elementary rule 4 to elementary rule 2@llowing
Wolfram’s nomenclature schemg6]. The system has two
critical points, one of them ap,;=0 and the other ap,
~0.75. The critical point atp;=0 will be shown to be
trivial, in contrast to the result obtained in REB]. Conse- Using now Egs(4), (6), and(7), we obtain the final expres-

quently, we will apply the RG to study the nontrivial transi- gjon for the renormalization equatiops]
tion point. Ruler(0|000)= 1 implies that the vacuum state is

indeed an absorbing state.

W(S,S)

T(sls')= T

®

> Z R(S|o)R(S'|a") T (o]0 )W(o")

IlIl. RENORMALIZATION SCHEME

T(ss)=

The RG scheme proposed (4] is a real space RG
scheme[7] in which one renormalizes the transition prob-

2 R(S'le"W(a")
’ ©

ability T. The RG flow takes place in the space of parameters

definingT. A blocking procedure transforms cells bfsites

Let us note that, while this equation expresses rescaled

into one site at the new scale. In order to account for the fagkansition probabilities in terms of transition probabilities
that the vacuum state is absorbing, a cell devoid of particlegt a lower scald, the stationary weight of each state present
will always re_normallze into an empty site. CeIIs_ WIFh at jn Eq. (9), W(o'), is yet unknown. Contrary to the case of
least one particle have been chosen to renormalize into afgsed systems in thermal equilibrium, we do not knaw
occupied site. Other options have been tried, but they do ngiriori the expression for the stationary probability distribu-

preserve the existence of the absorbing state.

Leto=(04,0,, ...,0.) be the state of a system with
degrees of freedom and the vec®*(S,,S,, ...,S./) be
the state of the renormalized system with=L/b degrees
of freedom, wherd is the size of the renormalization block.
The conditional probability of stat® given stater, R(S| o),
must satisfy

=

R(S|o)=0, % R(S|o)=1. ©)

GivenT and the probability of a state’ at timet, W(o"'),

one can write the joint probability of state’ at timet and

states atn time steps latew,(o,o’) by simply applyingT

to W(o’) n successive times
Wy(o,0")=T"(alo" )W(a"). 4

In addition, in the stationary regime, the probability distribu-

tion W(o) must satisfy

W(0) =2 T(alo")W(o") (5)

for any value ofn.

tion. However, including Eq(5), one can get a closed set of
equations to solve at each renormalization step. The station-
arity condition (5) is actually essential in driving the RG
equations(9) through parameter space. Equati(®), to-
gether with a given approximation for the stationary prob-
ability, provides then a well defined RG transformatidn

—T.

In practice, Eq.(5) can hardly be solved and one must
resort to approximations. The values of critical exponents
obtained using the present RG approach are expected to im-
prove as these approximations improve. We have used three
different levels of approximations, in which correlations
among clusters of one, two, and four sites are considered
respectively.

In this work we will be concerned with another way to
improve the RG scheme. An important point is that, in order
to solve Eq(9), an assumption needs to be made on how the

transition probability between stat&s andS, T’(S| S'), de-
pends on local transition probabilities at the coarse grained
level. This choice will determine the degree of proliferation
that the RG will have since the form of the renormalized
transition probability will be preserved along the RG trajec-
tories.

In the former approaclil], the authors carried out the
most general RG transformation considering one-site transi-

In the same way one can write these expressions at thgon probabilities. By preserving the form of the renormal-

coarse grained level. Denoting BYS,S’) the probability of
occurrence of stat&' at a given time and stat®é one time
step later, the RG transformation is obtained imposifig

ized transition probabilities, the RG trajectories are found to
flow to the attractive fixed points in a five-dimensional space
spanned by the dynamical parameters. In contrast to usual
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RG methods in which new couplings arise at each step of the 54 S4 S5 56
transformation, this RG procedure is not able to proliferate
the dynamical parameters since the form of the transition °n i %is ‘u s % | O %
probabilities is kept fixed at the coarse grained level. How- ™. S S ‘ ‘
ever, new dynamical parameters can be considered from th A b PN b
very beginning if we allow the transition probabilities to de- i RN v N i
pend upon more neighbors, i.e., introducing more correla- p p p G G
tions in them. This feature of the method should be com- ’ ‘ 7 ! ’ e
pared with other dynamical RG procedudgg where the A L
introduction of new couplings since the very beginning is an \\ ' "“ "
alternative way to carry out the RG transformation. s s 5 5
We propose, then, a form for the coarse grained transitior ! > i *
probability consisting of a product of independent two-site s S5
transition probabilities instead of one-site transition prob-
abilities. Denoting the position of each lattice site witlihe FIG. 1. Diagram showing the blocking scheme procedure. Num-

new transition probability is defined at even time steps as bers correspond to the indices used in E38)—(20).

L2 IV. RENORMALIZATION ALGORITHM

T(S|S'):k:11_i[:2k 7(S,S5+1S-1,5,8+1.5+2) We have used a temporal coarse graining of two time
' (10) steps 6=2). The blocking operatoR was chosen in the
same way as ifil], renormalizing cells of sizb=2 into one

and at odd time steps as site
L/2
L/2
- - D e e o R(Slo) =11 R(Sdoa-1,020, (13
Tslsh=TI =~ (S.SlS 1.8 .18 k=1
k=1,i=2k+1
(12) with
Here we have used the same sym%cbda indicate a different R(Sok-1,020)=0 (19
type of transition probability than the ones appearing in Eg. d
(2). In formulas(10) and (11) periodic boundary conditions an
are assumed.
One can retrieve at any time one-site transition probabili- ; R(Soak-1,020) = 1. (15
ties knowing both two-site probabilities and the stationary x
distribution. It is straightforward to show that In order to preserve the nature of the absorbing state, we
have also require® to satisfy
T(Silsi—l’s ’Si+1) R(O'0,0):l (16)
= 2 ;(Si ,SH1|S|’,1,S’ ,S|'+1, |,+2) and
Si+1'S|,+2
R(0|oz¢-1,02)=0 17
XW(S* S S5 +2) _ (120  wheneveroy_ 170 or o #0.
W(S_,.S .S;1) The diagram in Fig. 1 indicates how two-site transition

probabilities are renormalized. Indices appearing in EQs.
Using expressiongl0) and(11) in Eq. (9) one can imple-  (18)—(20) refer to this diagram. .
ment the RG transformation. The algorithm we used is ex- Using Egs.(9)—(11), we can write down the expression

plained in more detail in the next section. relating 7 to 7, which is given by
7(51,%,95,54,85,56) = [N(S5, 54, 55,80)] > R(Si|o1,02)
01,02,03,04,011, - -, 18

XR(S;|03,04)R(S3] 011,012 R(S4| 013,019 R(Ss| 015, 016) R(Sg| 017, 0719)

XD(O’1,02,03,0'4|0'11, PR ,O'lg)W(O'll, PR ,0'18), (18)

where
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D(0'10'210'3!U4|0'1110'1210'13v0'1410'15!0'1610'1710'18)
= 2 7(0'110'2|0'510'610'7=0'8)T(0-3aU4|U770-810'970-10)7(0'510'6|0'1110'1210'1370-14)

X1(07,08/013,014,015,016) 7(09,010 015,016,017,0719) (19

and

N(S3,54,S5,S6) = E R(33|0111012)R(54|0131014)R(S5|(715,016)

XR(Sg|o17,019W( 011, . .. ,019). (20)

Since we do not knowa priori the stationary weights the two attractive fixed points. A projection of the RG flow
W(o44, - - .,01g), We need an approximate method to esti-along two specific transition probabilities is shown in Fig. 2.
mate them. The simplest approximation, sometimes known We have found one relevant parameter. Since we are only
as simple mean field approximation, consists in neglectinglealing with stationary properties of the model, it is reason-
correlations among different sites, that is, able to assume that this parameter is associated with the di-
vergence of the spatial correlation length and not the tempo-
ral correlation lengthi1]. In order to calculate the eigenvalue
W(oga, - .. 1‘718):.1_11 W(ai), (21) A associated with that parameter, we have to find the linear
- region of the RG transformation.

18

whereW( ;) is the solution of

W(oq)= > (0105 0304050%)

02,03,04,05,0¢4

XW(02)W(0o3)W(a4)W(05)W(0).

Let us take a trajectory passing close enough to the un-
stable point and construct a sequence of numbers consisting
in the distance between two successive points along that tra-
jectory. Now let us call the ratio between two consecutive
numbers in that sequence. In the portion of the trajectory
corresponding to the linear region of the RG transformation
(around the unstable fixed pojntone expects to see two

Correlations, however, are actually taken into account irPlateaus in the values of N _
the geometrical aspects of the blocking procedure, leading to The first plateau corresponds to a trivial parameter, while
nonclassical exponents. Better approximations can be aldbe value ofr at the second plateau corresponds to the eigen-

implemented(as a reference sd8]). We used one-, two-,

value A of the RG transformation. Figure 3 shows an ex-
ample of one of such curves for the simple mean field ap-

and four-site approximations.
Equations(18)—(20) involve each transition probability. Proximation. So, figuring the eigenvalue associated with
Being so many terms, we are prevented from an analyticdhe relevant parameter, we get=In2/InA. The value mea-
determination of the fixed points of the transformation. Sosured numerically for the plot in Fig. Gimple mean field
we performed our search numerically, using initial values forapproximation is v, =0.965+0.001.
the transition probabilities that correspond to the original To the best of our knowledge, the best valueiof is
model[Eq. (2)].
As a technical remark, let us say that in each iteration of 0.7484
the RG and given a set of parametér$, we need to solve
Eq. (22) (or its analog for two- and four-site approximatipns
before the next RG step. We have done this by iterating the

equation until reaching convergence. 0.7474
V. RG RESULTS Y f".&‘-;
The behavior of the RG equations can be described as 07464 | e
follows. For values ofp that are small enough, the set of N
transition probabilities flows towards an attractive fixed point e

characterized by a lattice devoid of particles. Increaging

above a critical valug,,, the flow is driven to another at- 0.7454 ‘ ‘ ‘ .
tractive fixed point, consisting of a lattice full of particles. 02%5 0%k 023 02346 0233

The value ofp.,, for each level of approximation used, can

be found in Eq(23). Starting around the critical values, the  FIG. 2. Two-dimensional projection of the RG flow alomg
representative point of the parameter set spends a long time7(000010) andy=7(001000) for the simple mean field ap-
near an unstable fixed point before leaving towards one ofroximation.
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3.00 VI. SIMULATION TECHNIQUE

250 | i A. Spreading analysis
The basic rules governing the dynamical evolution of the

system have been formulated in Sec. Il. As in ordinary cel-

. ! lular automata, all lattice sites are updated simultaneously.
150 1 | 1 Simulations were performed on lattices of size-10 000,

f taking periodic boundary conditions. We briefly discuss here

1.00 1 the scaling theory for directed percolation that supports the

el spreading analysis. A detailed treatment can be found else-

050 ¢ ] where[9].

‘ ‘ ‘ It should be stressed that far finite, the steady state of

15 25 35 45 the system is metastable since, due to fluctuations of the

X stochastic process, there is always a finite probability for the

FIG. 3. Ratior of successive distances among two consecutiveSyStem to become empty. This probability increases when
points for one of the trajectories shown in Fig. 2. Theoordinate ~ @pproaching the critical point. Consequently, it is very diffi-
denotes the precedence of each point along the curve. cult to calculate critical points and critical exponents by

means of numerical simulations. Furthermore, since the tran-

v, =1.0972+0.0005[10] and the most accurate value for the sition between the stationary regime and the absorbing state
critical point p,, obtained by dynamical numerical simula- 1S second order, a mean field treatment is not adequate.

tions (see the following sectionsis p,~0.7513. Although These shortcomings can be avoided by evaluating critical
our value of the critical exponent, is still inaccurate, it is €xPonents related to the dynamic critical behavior of the sys-
worth at this point comparing it with the one obtained usingt®m-. For this purpose one startst &0, with a particle at the
the same approximatiofthe simple mean fieidin [1]. In  center of the lattice otherwise empty, i.e., a configuration
that work the authors obtained =0.931+0.005, so that our  Very close to the absorbing state. Then the following quanti-
result is a better approximation for the actual. Our  lies are computedi) the survival probabilityP(t), that is,
scheme is able to take into account correlations in a moré1€ Probability that at least a particle is still in the system at
accurate way than the original one. timet, (i) the average number of particlbt), and(iii) the

By increasing the order of the approximation, results im-average mean distancB(t) over which particles have
prove, as shown in Eq23). The value we found using the SPread. Averages are taken ovet 50" samples and runs are
two-site approximation was, =1.013+0.001, while the perforr_ned up t_d=104. Finite size effects are av0|de_d since
value found in the four-site approximation was=1.015 the epidemic disk never reaches the edge of the lattice during
+0.001, which is closer to the actual one. Below we showthe simulation. Close to the critical point and for long
the critical valuep,, for the three approximations, as well as €nough times, the following scaling laws should hEgg

2.00

0.00

the corresponding value of andv, : P(t)oct~SD{ AtV (24)
Approximation Per A v,
N(t)=t7p{ ALY, (25)
1 0.639825 2.050 0.9630.001
R(t) < t??Z{AtY1}, (26)
2 0.681490 1.982 1.0%30.001

whereA=|p—p|, &=A""I gives the temporal correlation
4 0.695017 1.979 1.0150.001 length close top., v is the correlation length exponent
(time direction, ®, ¢, andZ are suitable scaling functions,
23 andé, n, andz are critical exponents. In the absorbing state,
P(t) and N(t) are expected to decay exponentially since
It should be noted that the present RG scheme leads tcorrelations are short ranged. This can only happen if
fairly good values for the exponemt already within lower- ¢ (A,t)oc{AtYI}~ 7"lexp(—A"t) for t—o. Therefore, one
order mean field approximations. This fact indicates that théas from Eq.(25)
introduction of new correlations in the transition probabili-
ties plays a relevant role within the lower-order mean field — A
approaches. For mean field approximations of order higher N(D=A"Texp(= A", - t—ee. @7
than 2, the convergence of the scheme becomes slower.
Reconsidering the ideas that led us to Ed€) and(11) At criticality, one expects that log-log plots &f(t), N(t),
for the transition probabilities, one may think of obtaining andR(t) would give straight lines, while upward and down-
better approximations far, by allowing the transition prob- ward deviations would occur even slightly off criticality.
abilities to depend upon even more neighboring lattice sitesThis behavior would allow a precise determination of the
While this idea is clearly right, one can presently not over-critical point and the critical exponen 7, andz. It should
come, in practice, the huge amount of computer time needelle noted that by means of E@7) it would be also possible
to obtain values that are accurate enough. to calculatey .
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B. Finite size scaling analysis initial state, the stationary density of the systenpatO can

As in standard second-order phase transitions it is ad?® determined as
sumed that in the supercritical region and close to the critical = po(1—po)? (32)
point, the system displays spatial correlations characterized P=Pot==Pol

by a typical length scal&s, which diverges at criticality Then, since we used,=0.5, the expected value of the sta-
according to tionary density isp=1/8.
— For arbitrary small values gd, the stationary state is the
L
GrAn, A0, (28) vacuum stat¢5]. We now consider the relaxation process to

where v, is the correlation length exponent in the spatialthe vacuum state. We take as starting configuration0y)

direction. The natural order parameter of the model is thé"Y of the static stationary states @t 0. Then we follow

density of particlesp, which at criticality depends on the ;Ehe e;/r?lunonl Otf the (Iienil]tytfofﬁ close t(i. zler_o. It |stcldeatrw
system sizd andA as rom the evolution rules that after a particle is created, two

particles are removed from the system at the next time step.
p(p,L)=L"Brf(ALYL)Y, (29) Then the system stays in another static state until the next
creation process occurs. Suppose that a creation process hap-

pens at position; . If no new particle is created in the neigh-
borhood ofx; at the next time step, correlations cannot be
generatedsee the evolution rules in ER)]. The probability
of two consecutive creation processespi<p. Then the

B system cannot develop long-range correlations and a mean
f(x)ocx (30 . ; : o

field analysis should be appropriate. Foclose to zero it is

possible to consider the creation process as a creation-
induced annihilation process. We then have

where f is a suitable scaling function and is the order
parameter critical exponent. For small positide and L
—oo, f(x) should have the form

in order to recover the well-known critical behavior of the
order parameter in the thermodynamic limit
poc AR, (31) dp/dt pp. (33
Consequentlyp=0 is a trivial critical point since the relax-
VII. SIMULATION RESULTS ation time behaves as=(1/p)?. This result is in disagree-
ment with the one reported in Rdf5], probably due to a
Before presenting the simulation results we will briefly poor statistics of the simulation data.
discuss the critical point gi=0. If we start att=0 with a In the following, the results of the epidemics analysis at
random initial configuration of density,= 0.5, the station- p=p, are presented. We measure the time evolutioR(¢},
ary density of the system js~1/8. It should be noted that at N(t), andR(t) for different values of the parametpr Log-
p=0 the system reaches a static stationary state in one timeg plots of these quantities as a function of time are straight
step[see the evolution rules in E¢R)]. Taking into account lines at the phase transition and show curvature away from
this observation, the stationary density of the system can bihe transition. It is important to mention that the epidemics
obtained as follows. It is clear from the evolution rules thatanalysis is a very sensitive method since it is possible to
the probability of having an occupied sitetat 1 is equal to  distinguish among supercritical and subcritical behavior for
the probability of finding an occupied site surrounded byp values that differ in the fourth decimal. Our best estimation
empty sites at=0. Since there are no correlations in the of the critical point isp,=0.7513-0.0002 and the dynami-

100 + s e J

p L[i/v_L

FIG. 4. Data collapse on a universal curve,
according to Eq(29).
«L=100
= L=1000
* L = 2500
4 L=5000
+L = 10000

10 " ‘ =
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cal critical exponents are5=0.162+0.0004, »=0.304 critical pointp,, the conclusions concerning the universality
+0.0005, andz/2=0.643+0.0007. It should be remarked class of the model are in complete agreement with the ones
that the error bars merely indicate the statistical error obfound in this work.

tained from regressions. The values of the dynamical expo-

nents are in good agreement with those corresponding to VIIl. CONCLUSIONS
directed percolation in 1 dimensions, as it was expected. _ o _
It is possible to calculate the exponentfrom the analy- We have introduced a renormalization group algorithm

sis of the subcritical behavidsee Eq.(27)]. In fact, the for probabilistic cellular automata with one absorbing state.
decay constant =¢; ! governing the long-time behavior of The scheme introduces correlations in the RG procedure by

N(t) behaves according to allowing the transition probabilities to depend upon two
neighboring lattice sites. Three different approximations for
A=¢, t=A", (34) the stationary probability distribution have been used,

namely, the simple mean field approximation, the pair mean

so, if p, is known, we can calculate for different values of  field approximation, and the four-site mean field approxima-
A. Then a log-log plot o\ vs A allows us to evaluate the tion.
exponenty. This analysis gives an exponemf=1.738 The present RG scheme leads to fairly good values for
*+0.002, which is quite close to the valug=1.73 corre- even within mean field approximations of low order. This
sponding ta1+1)-dimensional DR10]. It should be pointed result shows that the introduction of spatial correlations in
out that our value of sharply differs from the one reported the transition probabilities is the relevant reason for the im-
in Ref. [5] (»=~1.087). The error in the last value of the provement of the results.
exponenty| is due to the fact that it was calculated taking  The critical exponents, , especially for low-order ap-
into account not only subcritical but also supercritical curvesproximations, are better than the ones obtained with schemes

We have also calculated the order parameter critical exthat make use of an independent product of one-site transi-
ponent measuring the densigy as a function ofA in the tion probabilities[1,12]. Using very simple arguments, we
supercritical regimelsee Eq.(31)]. We obtain 3=0.277 have shown thap,;=0 is a trivial critical point since the
+0.002, which is once again very closefe- 199/720, cor-  time relaxation constant behavesmas(1/p)*. This behavior
responding to (% 1)-dimensional DP[10]. It should be differs from the one reported in RgB] [ 7= (1/p)°®.
mentioned that the reported value of the order parameter We have also obtained, by means of numerical simula-
critical exponent in Ref\5] is 8~0.32, which differs around tions, the critical pointp=p, and the whole set of critical
16% from the theoretical value. This difference may be dueexponents. The value of the critical poim,=0.7513
again to the poor statistics of the data. +0.0002 is in agreement witf]. However, we found very

We finally present the finite size scaling analysis. Figure 4ifferent values for exponentg and 8. Our values of the
shows a log-log plot opL#*1 vs ALY1 for different values  exponents ap=p, are in good agreement with those corre-
of p and lattice sizet, where we have use@l=199/720 and sponding to (3 1)-dimensional DP, as it was expected,
v, =1.0972[10] corresponding to (% 1)-dimensional DP. since there is only one absorbing state for the sy$tgyi 4.
We obtain an excellent collapse of the data on an universal
curve, as it is predicted by E¢R9). ACKNOWLEDGMENTS
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