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Asymptotic dynamics of short waves in nonlinear dispersive models
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Multiple-scale perturbation theory, well known for long waves, is extended to the study of the far-field
behavior ofshort wavescommonly called ripples. It is proved that the Benjamin—Bona—Mahony—Peregrine
equation can support the propagation of short waves. This result contradicts the Benjamin hypothesis that short
waves do not propagate in this model and closes a part of the old controversy over different solutions for the
Korteweg—de Vries and Benjamin—Bona—Mahony—Peregrine equations. We have shown that, in a short-wave
analysis, a nonlineatquadrati¢ Klein-Gordon—type equation replaces the ubiquitous Korteweg—de Vries
equation of the long-wave approach. Moreover, the kink solutiongybfand sine-Gordon equations are
understood as an asymptotic behavior of short waves to all orders. It is proved that the antikink solution of the
¢* model, which was never obtained perturbatively, occurs as a perturbation expansion in the waveknumber
in the short-wave limit[S1063-651X98)05805-X

PACS numbg(s): 03.40.Kf, 47.35+i

INTRODUCTION Sandri[6]. The use of this fast variable and of an infinite
series of slow time variables constitutes the first key of the
The method of multiple scales, or reductive perturbationSW approach.
method, is a powerful method that allows one to study a The solution is expanded in the form of a power series in
large number of physical phenomena, in particular wave moa small paramete¢ proportional to the inverse of the wave
tion in nonlinear dispersive systems. It is well known that thenumberk. The perturbative series solution is secular. It is
far field dynamics of a long waveLW) with a small ampli- regularized through a renormalization of the frequency. This
tude in a nonlinear and dispersive system can almost alway®sults from the celebrated Stokes hypothesis on frequency-
be reduced to a small set of model equations such as Bousamplitude dependence in water way&s
inesq, Korteweg—de Vrie&dV), modified KdV, etc[1-4]. The Stokes hypothesis is actually the second key tool of
The purpose of this work is to look for the far-field be- our approach. This is explicit here while for LW asymptotic
havior ofshort wave$SW) in some nonlinear and dispersive description, the Kd\{8,9] or MKdV [10] hierarchies occult
systems. In order to see how SW propagate, we reformulatihe need of this tool, as they naturally provide the correct
the method of multiples scales. We will consider three sysseries expansion of the frequency.
tems. We will first study a system that comes from a hydro-

dynamic, Benjamin—Bona—Mahony—Peregrin€BBMP) BASIC MODELS

equation. Then, we will consider SW in two important clas- . . ) )
sical relativistic field theory models: Th* model (¢%) and Hence, the problem is the asymptotic behavior of a SW in
the sine-GordoSG) equation. the Benjamin—Bona—Mahony—Peregrine equafibh| and

We will prove that, for BBMP(1), SW can build up the in two classical relativistic nonlinear modelg# and sine-
same soliton solution as obtained from LIS]. This raises Gordon[12]
the question of the unicity of the soliton description. We will

. _ _ 2

prove that the antikinkor kink) solution of the¢* model BBMP: Upt Uy U= 3(U%), @
(2), which cannot be obtaineds a perturbative solution in 4. =Ml d—\ b3 2
the nonlinearity parametex, occurs as a perturbative solu- P o Pa=MIG =N, @
tion in the wave numbek in the SW limit. Moreover, the m3 \/X

kink solution of sine-Gordon equatid) does not enter the SG: ¢yy— cﬁn:—sir{(—) 4_ 3
classical LW perturbation scheme. We will prove that it ap- NN m

pears as a perturbative solution for SW. o L
The above models have quite different intrinsic character-

istics. First SG is an integrable model, whereas BBMP and
SHORT-WAVE APPROACH ¢* are not. Secondly the linear dispersion relatiofk) has

Let us consider the problem of the asymptotic dynamics® finite limit ask— o (SXV limit) for BBMP, whereas it is
of SW in nonlinear and dispersive systems. All degrees offnPounded for SG ang"™.
dispersion of the system are taken into account in a Tayloideed we have
expansion of the linear dispersion relatiar{(k) around a

large value of the wave numbkr The asymptotic dynamics o _ K (4)
of SW for t—o is considered via the introduction of an (BBMPY 1 k2’

infinite number ofslow timevariablesr;, 73, 75, ... and of

a fast spacevariable £, following the extension theory of 04t = 0(sg=(M?+k?)2 (5)
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The phase and group velocities are all bounded in the SW
limit k—o. This is the crucial point in our approach, as this
very property allows the three models to sustain short waves.

Then we face the problem of tmnlinear propagation of a
SW which is the object of this work.

THE BBMP MODEL

Let us consider a SW in Eql) characterized byk
=Koe 1 with ko~ (1) ande<1. The plane-wave solution
of the linear problenu=expi{kx— w(K)t} inspires a fast vari-
able {=¢ x and an infinity of slow time variables,, ;
=e?""1t (n=0,1,2, ..), by expandingw in powers ofe.

We assume the expansion

U=Ugy+ €2Up+ e+ -+ (6)

and suppose theextension ,=U,,({,71,73,...), N
=0,1,...,[4,6]. Then, the operators

J B 190 7

X € &_g"’ (7)

o__ 0,59 59 o

at Car, € ars © a7 ®

allow us to study the behavior ofsnort wavefor large time
BBMP gives at orderg 1, ¢,€%, ..., theequationgwrit-
ten only up toe®)

—Ug s, +Uo—3U5=0, (9)

Lu,=Ug,, +Uogzry (10

Lu,= U7, —Uo,ry T Uz gt Uorrr T 3(up),,  (11)
whereL is the linear operator associated with E@):

L(v)= — vyt v;—6(vUg), . (12

The unique solution of Eq.(9) in the formug(#) with
n=Ko{— w17,— w3T3— w575 ..., going to zero for|¢|
—o, s

1

- kg’ (13

up=x= secit 7,

2

w1=

The valueswj,ws, ..., which are the corrections to the

principal frequencyw, (Stokes’ hypothes)sare still free, but

will be determined later by the nonsecularity requirement.
Equation(10) for u, then reads

Lu,={4wsk3— w,— 1205k3seck n}seck 7 tanhy,
(14)

and its two first right-hand side terms are reson@etcular
producing termsbecausd13]

L(sech # tanh7)=0.

These secular terms are eliminated by choosing
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w1 1

Wy3=—F =" —(/—5.

Tk 4A3
Hence, Eq(14) yields the solutionu,(7) =4k, ug(7).

Equation(11) for u,(#) contains secular producing terms

originated by the first four terms in the right-hand side. They
can be eliminated by choosings=—4"3k, °. The solution
IS Ugy( n)=4*2k64u0(n). This procedure can be repeated at
any higher orden=0,1,2 ... and weobtain recursively

Uo(7)

Uzn(ﬂ)=4n—k(2)n1 “’2”+1:_4nTk(2)n+1' (15

Next, the perturbative series solutiéd) can be summed
to give

" 4k?

=—— 16
45" 4k*-1 (10

u( %) =u( n)ngo Uo(7),

and, by usingw,, ., 1, the argument; in the laboratory coor-
dinates yields
1 & ot kt

=kx+ .
nzo (4k?)" 4k*—-1

4k

n=kx+ 17

Therefore, this SW perturbation technique finally leads to
the following solution:
t
ake-1/ |

This very expression—solution of BBMP—was obtained in
[5] as an asymptotic limit of a LW of small amplitude. Thus,
for t—oo, the nonlinear dynamics of a SWith an order one
amplitude and of a LW(with small amplitude are indistin-
guishable in BBMP. The equatid®)

2

k| x+

sech

u(x,t)=— (18)

4k?

— 2
Uogr, = ug— 3ug

is a nonlinear Klein-Gordon equation that substitutes the
classical Korteweg—de Vries of the LW approach in this SW
approach.

THE ¢* MODEL

The topological antikink-type solution af* will be ob-
tained by perturbation expansion starting from the constant
solutions¢,= = m/\/\. Hence we seek a solutia#( 5) such
that p— + m/\/\ for 7— + .

For <0, the functionu= ¢—m/\/\ goes to zero fory
— —o and satisfies

Uy— U= — 2m2u—3myau2—xud. (19
For unidirectional propagation, the convenient fast varigble
and the slow variables,,; are in this caseZ=e *(x
—t), m=et,73=€, ... . Expandingu according tou
= 626(u0+ €’u,+ e*u,+ - - -), the resulting equations atap
to €°)
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Lug=0, (20) m r{ m 08

¢ i Xv
=— —tanh —
Jn

t
\/5 _1_02— _1_02) —Ink}.

Note that the case>0 in the perturbative series would
simply yield the solutionp(— 7).

Lu,=—2uq,, + g, —3myAud, (22)

Lus=Upz 2, —2Up 7~ 2Ugsr t 2Uo 7 7,

—6myAuzu,—Aus, (22) THE SG MODEL

Finally in the case of the sine-Gordon mod8), for ¢
=e(po+ 2Ppot e*pyt--+), With ¢, functions of p=ko(
+(2ko) *m27+ wgTgt+ -+, where (=€ l(x—t), 7
=et,73=€t,..., weobtain (up to ordere®)

L being the linear Klein-Gordon operator
L(v)=2v,, +2m?v. (23

For the solutionuy of Eq. (20) we choose the fornug L(¢o)=0, (29)
=Bexp2y with p=kol— (4Ko) "'m?7,+ w33+ --- and B
a constant. All linear terms at the right hand side of the A \
equations foru,(,—,, are secular. They can be eliminated L(¢2)=—2¢0 7+ bo2r,— 5(,53, (30
choosing appropriately,,_ 1, hamely, :

(IH mz2n A _ N,
W 1= — —— _ (24) L(ha)=—2¢217,F 22, = 204, 260,77~ §3¢0¢2
nl(3—n)! 2"k3" 1
N
Next the solutions read + E A (31
n—1

Up(n-1)= B“(ﬁ) exp 7. (250  with L being the following operator

{ (1) = )
With the values ofw,,_; the series fory can again be L(v)=2v;, —mw. (32

summed as ] )
For the solution of Eq(32) we choose the expressiafy

n=kx— K2+ m?/2t, =Cexpn with C a constant. As in the previous case all the
linear terms at the right-hand side of the equations for

as well as the perturbative series forbut only if we choose ~ $2(n-1) are secular. They can be eliminated by choosing

B=—(2m/\\)ky 2. It leads for¢=u+m/ |\ to wy(n-1) AS
m (! 2n
E— — JKCFmet— i w1 =(—1)"l—mo —— (33
¢ \/Xtanr{kx k“+m/2t—Ink } (26) 2n-1 () k2L
To get this expression it is necessary to use the Fourier refdence the solutiong,,_ 1) read
resentation X<<0)
—a\""tc2 lexp2n—1
Pon-1)=— <_) i 7 (34
16 m2("~H(2n—1)

> (—1)"1s,exp2nx)=tanhx,
n=0

The series forp sums forC=4m//\k, and yields
where 8, are the Neumann's numbersSy=1,5,=2,Vn

=1,2,3,..). 4m exd (2n+1)(7—In k)
The above solutiom is the antikink solution of* (with p=—=2, (-1)" H 2n+(17] ]
an initial shift Ink/k), which has never been obtained previ- \/ano

ously within another perturbation scheme.

The expression/szr m?/2 can be interpreted as a nonlin- = 4—marctar{exp(kx— J=—m2t—In k)b (35)
ear frequency,,, which defines the nonlinear group veloc- NN
ity
In this case the Lorentz invariant form of E@5) appears
don, k as a function of the nonlinear phase velocity

It is remarkable that the Lorentz invariance of ER6) is b= A'_marcta ex L(x—ut)—ln klt. (36
precisely related to that particular velocity. Indeed I\ V1—v?
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CONCLUSION AND COMMENTS (4) An initial profile generically contains short-wave com-
We have applied a multiple-time version of the reductiveponents that are usually neglected in favor of the long-wave

perturbation method to study the solitary-wave and the kink_cpmpopeqts. This is the case whenever we realize numerical
wave solutions of some nonlinear dispersive models. Aldiscretizations of the models. As we have shown, the short-
these solutions have already been known before. The altef/@ve components asymptotically build up soliton solutions.
native way given here to obtain them shows that they reprel hérefore the common understanding of a soliton as origi-
sented ashort-wave asymptotic dynami¢s— ). nating fr(_)m the long wave is to be ql_Jestloned.

(1) BBMP for long waves serves about the same purpose (5) It is worth noting finally that, in the long-wave ap-
can be expected to be rather different. From a linear analysi§resent at first order, and we usually find the Boussinesq,
BBMP does not propagate short waves while KdV amplifieskdV, MKdV, etc. equations. This is not the case with the
them[11]. Thus our result answers this old controversy onshort-wave approach wheedi orders are usually necessary
the relative relevance of KdV and BBMR4]. Actually we O unveil the nonlinear character of the solution.
proved that short waves do propagate nonlinearly in BBMP
models, and build up soliton-like solutions s .

(2) The antikink(or kink) solution of the¢* model, which ACKNOWLEDGMENTS
cannot be obtained as a perturbative solution ifiL2], ap-
pears as a perturbative solutionkrin the short-wave limit. The authors wish to thank J. Leon and P. Grafge

(3) Equation(35) shows that the kink solution of SG is many helpful and stimulating discussions. One of us
obtainableonly from a short-wave dynamics, as the likit (M.A.M) is indebted to R. A. Kraenkel and J. G. Pereira for

—0 gives rise to an imaginary argument. fruitful collaboration.
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