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Integral equation for the resonant activation rate

I. Klik and Y. D. Yao
Institute of Physics, Academia Sinica, Taipei 115, Taiwan

~Received 20 November 1997!

The boundary value problem for the mean first passage time is transformed here into an initial value problem
by the shooting method of adjoints. Dichotomous fluctuations between two potentialsV1(z) and V2(z) are
assumed. The activation rate is given by an integral equation whose solutions may be computed iteratively with
arbitrary precision. Model calculations are carried out for potentials of the formVi(z)5(21)ivzr, r>0, and
the strongest resonance of the activation rate is found in the linear case ofr51. @S1063-651X~98!06905-0#

PACS number~s!: 05.40.1j, 02.50.2r, 02.60.Nm
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I. INTRODUCTION

The phenomenon of resonant activation over a fluctua
barrier, which was described by Doering and Gadoua@1#, has
attracted considerable attention over the years. Howe
very few analytic results are available@1–3# and for general
potentials the effect is studied either by numerical simulat
@1# or by taking recourse to a non-Markovian kinetic a
proach@4#. In this work we formulate the problem of a res
nant activation rate in terms of an integral equation wh
solution may be found iteratively with arbitrary precision.

In the simplest case of dichotomous fluctuations betw
the two potentialsV1(z) and V2(z) the mean first passag
~MFP! time t(z)5t1(z)1t2(z) satisfies the equation@2#

S 2g1L1
† g

g 2g1L2
†D S t1

t2
D 52

1

2S 1

1D , ~1!

where the adjoint Fokker-Planck~Smoluchowski! operators
are Li

†52Vi8(z)d/dz1d2/dz2, with Vi85dVi /dz ~dimen-
sionless units are assumed!, andg is the fluctuation rate. Fo
simplicity we impose initially on Eq.~1! the boundary con-
ditions

t i~1!50, ~2!

t i8~0!50, ~3!

which, for general potentialsVi(z), represent an absorbin
boundary atz51 and a reflecting boundary atz050. For
symmetric potentialsVi(z)5Vi(2z) Eqs.~2! and ~3! corre-
spond also to two absorbing boundaries atz561.

The minima of the potentialsVi(z) are assumed to b
located at the pointz50 and the quantity to be determine
from Eq. ~1! is the MFP time out of the bottom of the wel
i.e., the valuet(0)5t1(0)1t2(0). The activation rate is
then defined as 1/t(0). It is well known that the MFP time
t(0) is exponentially large@1–3# and, as discussed in Se
III below, numerical solutions of the discretized differenti
system ~1! yield satisfactory results only if the function
t i(z) are slowly varying, i.e., only if the values of the di
ferenceVi(1) –Vi(0) and of the rateg are sufficiently small.
However, solutions of Eq.~1! at large values ofg are re-
quired for the study of the resonant activation rate and
order to find these solutions we employ here the so-ca
571063-651X/98/57~5!/6180~4!/$15.00
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shooting method of adjoints@5#, which we briefly outline in
Sec. II. In Sec. III we then use the shooting method to der
an integral equation representing the missing initial con
tions t i(0) imposed on Eq.~1!. In Sec. III we also propose
an iterative algorithm for the numerical solution of this equ
tion and give some illustrative examples. A computati
with the general boundary conditionst i(z0)5t i(z1)50 is
discussed in Sec. IV.

II. METHOD OF ADJOINTS

Let A(z) be an ~n3n!-dimensional matrix and le
f (z)and y(z) be n-dimensional vectors. Further, let the s
lution of the linear differential system

y85A~z!y1 f ~z! ~4!

be sought on the interval̂z0 ,z1& subject to ther initial
conditions yi(z0)5ci and to the n2r final conditions
yj (z1)5cj . In the method of adjoints@5# this boundary
value problem is transformed into an initial value problem
calculating the missingn2r initial conditions yj (z0) from
the n2r identities,

(
i 51

n

@xi
~m!~z1!yi~z1!2xi

~m!~z0!yi~z0!#

5(
i 51

n E
z0

z1
dz xi

~m!~z! f i~z!, ~5!

where m51,2, . . . ,n2r . The functionsx(m)(z) introduced
above are solutions of the adjoint equation

dx~m!/dz52AT~z!x~m!, ~6!

Ai j 5(AT) j i , on which such final conditionsxi
(m)(z1) are im-

posed that Eq.~5! goes over to a solvable linear system f
the n2r missing initial valuesyj (z0).

III. MFP TIME

With the boundary conditions~2! and~3! the sought after
MFP time valuest i(0) are simply the missing initial condi
6180 © 1998 The American Physical Society
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57 6181BRIEF REPORTS
tions on the left of the interval@0,1#. In order to determine
them from the method of adjoints we first rewrite Eq.~1! in
the form ~4!. With

y5~t182t28 ,t181t28 ,t12t2 ,t11t2! ~7!

the vectorf of Eq. ~4! becomes

f 5~0,21,0,0! ~8!

and writing furtherVi(z)5V(z)2(21)iv(z) we obtain

A5S V8 v8 2g 0

v8 V8 0 0

1 0 0 0

0 1 0 0

D ~9!

for the matrixA5A(z). From Eqs.~6! and ~9! it becomes
immediately obvious thatx48[0 and the adjoint equation~6!
therefore reduces to the 333 system

d

dzS x1

x2

x3

D 52S V8 v8 1

v8 V8 0

2g 0 0
D S x1

x2

x3

D 2S 0

x4
~m!

0
D , ~10!

wherex4
(m) is a constant determined by the final conditions

z51. In order to find the missing initial conditionsy3(0)
andy4(0) from the identities~5! we first impose on Eq.~10!
the two sets of final conditionsx(1)(1)5(0,0,1,0) and
x(2)(1)5(0,0,0,1), respectively. Solving then the 232 set of
linear equations~5! corresponding to these two sets of fin
conditions we obtain the expression

y4~0!5E
0

1

dz x2
~2!~z!2

x3
~2!~0!

x3
~1!~0!

E
0

1

dz x2
~2!~z!5t~0!

~11!

for the initial value y4(0), which equals the sought MFP
time t(0) by virtue of Eq.~7!.

There remains yet the task of finding the two solutio
x(1)(z) and x(2)(z). A brief inspection of Eq.~10! shows
that, similar to the two functionst i(z), the six functions
xi

(m)(z) vary exponentially fast on the interval@0,1# so that
direct numerical integration of the initial value problem b
comes very difficult. We have tested several explicit a
implicit integration schemes@6# for the exactly solvable
case V850 and v85v ~see below!. There is xi

(m)

;exp@(12z)V#,V252g1v2, and we found poor agree
ment between numerical results and analytic solutions wh
everV*5. However, high computational accuracy is ess
tial in view of the fact the MFP timet(0) is defined by Eq.
~11! as a difference between two quantities of the same o
of magnitude and we therefore propose that the differen
equation~10! be first integrated formally and that the resu
ant integral equation then be solved iteratively.

Equations~10! are given with final conditions atz51, but
for purposes of numerical integration it is more convenien
make the change of variables

u512z ~12!
t

s

d

n-
-

er
al

o

and to deal with an initial value problem. Taking into a
count the prescribed initial valuesxi

(m)(0) atu50 and intro-

ducing the notationdV/du[V̇52V8, etc., we obtain

x3
~m!~u!5x3

~m!~0!12gE
0

u

dt x1
~m!~ t !, ~13!

x2
~m!~u!5e2V~u!E

0

u

dt eV~ t !@x4
~m!~0!2 v̇~ t !x1

~m!~ t !#

~14!

by directly integrating the last two of the three equatio
~10!. Substituting these two expressions into the first of
three equations~10! and integrating anew, we finally arriv
at an integral equation for the unknown functionx1

(m)(u):

x1
~m!~u!5e2V~u!E

0

u

dtFx3
~m!~0!eV~ t !2x4

~m!~0!

3 v̇~ t !E
0

t

dt1eV~ t1!G1e2V~u!E
0

u

dtE
0

t

dt1

3@2geV~ t !1 v̇~ t !v̇~ t1!eV~ t1!#x1
~m!~ t1!. ~15!

For sample numerical calculations we have chosen
special case ofV8(z)50 and v(z)5vzr(r>0) for which
Eq. ~15! becomes

x1
~m!~u!5x3

~m!~0!u1x4
~m!~0!

v

11r
@12~12u!r~11ru!#

1E
0

u

dtE
0

t

dt1@2g1v2r2~12t !r21

3~12t1!r21#x1
~m!~ t1!. ~16!

This equation may formally be written asx1
(m)5 f 0

1Ox1
(m) , with O being a bounded linear operator, and w

seek its solution iteratively, in the form

x1
~m!5 (

k50

`

)
l 50

k

Ol f 0 . ~17!

In our numerical calculations the functionx1
(m)(u) was rep-

resented by the set ofN11 valuex1
(m)(uk) at the equidistant

pointsuk5k/N,k50,1, . . . ,N. These values, which define
piecewise linear approximation, were updated in every ite
tion step according to the prescriptionx1

(m)→ f 01Ox1
(m) .

The iterations were terminated once the relative error in
value of *0

1du x1
(m)(u) was less than 1029 and the optimal

value of N was chosen adaptively, so as to yield
N-independent final result. All integrals were done~for r
,1 after a change of variables! using the trapezoidal rule.

An analytic solution of Eq.~16! is easily derived for the
special case of a linear fluctuating potentialr51 for which,
in particular, the MFP timet(0) of Eq. ~11! becomes

t~0!5
g

V2 1
v2

V4 ~coshV21!2
2gv2

V4

~V2sinh V!2

v212g coshv
,

~18!
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whereV252g1v2 was already defined above. Forv510
we found excellent agreement between this equation and
merical data at the optimal value ofN55000. For selected
values ofr.0 we plot the MFP time valuest(0) versusg in
Fig. 1. A striking feature of these plots is the fact that t
strongest resonance of the activation rate takes place fr
51, i.e., in the field of a fluctuating linear potential. Th
physical origin of this phenomenon is not clear to us and
offer here only two comments on the attenuation of the re
nance at small and larger: The limit r→0 corresponds to a
free Brownian particle for which, according to the abo
equation withv50, there ist(0)[1/2 and no resonanc
takes place. Similarly, the potentialv(z) goes over to a step

FIG. 1. Mean first passage timet(0) versusg for the potential
v(z)5vzr and the boundary conditions~2! and ~3!. Top: r51
~short dash! and, in ascending order, 2, 3, 4, 5, 6, 7, 9, 11, and
~topmost curve!. Bottom:r51 ~short dash! and, in ascending order
0.8, 0.6, 0.4, 0,3, and 0.2~long-dashed curve!. The apparent com-
mon intercept of the curves is only approximate forr close to 1 and
in the limit r→0 there ist~0! [ 1/2.
u-

e
-

functionv(z)→vu(z21) asr→` and the particle is again
free, with a wall of heightv at the right edge of the integra
tion domain. This approximation is not compatible with th
boundary conditions~2! and~3!, but we found no resonanc
@2# for the closely related shifted potentialv(z)5vu(z2«),
«P(0,1), for which Eq.~1! is solvable analytically up to the
matching conditions atz5«.

IV. CONCLUDING REMARKS

Using the method of adjoints we have transformed
boundary value problem for the MFP time into an initi
value problem and, assuming the symmetric boundary c
ditions ~2! and~3!, found particularly simple expressions fo
the resonant activation rate. In this concluding section
outline an algorithm for the numerical integration of Eq.~1!
with general boundary conditionst i(z0)5t i(z1)50, corre-
sponding, by virtue of Eq.~7!, to the conditionsy3(z0)
5y4(z0)50 andy3(z1)5y4(z1)50 imposed on Eq.~4!.

As in the previous case we require first the missing init
valuest i8(z0) and to this end we again rewrite Eq.~1! in the
form ~4! and solve, exactly as in the previous case, the
joint equation ~10! with the final conditions x(1)(z1)
5(0,0,1,0) andx(2)(z1)5(0,0,0,1). By virtue of Eq.~5! the
missing initial conditionsy1(z)0 andy2(z0) satisfy the 232
linear system

y1~z0!x1
~m!~z0!1y2~z0!x2

~m!~z0!5E
z0

z1
dz x2

~m!~z!, ~19!

m51 and 2, and given its solutions we integrate the diff
ential system~4! and obtain

y1~z!5y1~z0!eV~z!2V~z0!1eV~z!E
z0

z

dt e2V~ t !Fv8~ t !y2~ t !

12gE
z0

t

dt8y1~ t8!G , ~20!

y2~z!5y2~z0!eV~z!2V~z0!1eV~z!E
z0

z

dt e2V~ t !

3@v8~ t !y1~ t !21#. ~21!

Substitution of Eq.~21! into Eq.~20! yields an integral equa
tion for the unknown functiony1(z) and we propose that thi
equation be solved iteratively by the method used above
solve Eq.~16!. The MFP time function, finally, is given by
the equation

t~z!5y4~z!5E
z0

z

dt y2~ t !, ~22!

wherey2(z)5y2@z,y1(z)# is defined by Eq.~21!. The initial
conditionsy1(z0) and y2(z0) given by Eq.~19! correspond
to y4~z1! 5 0 and this final condition provides here a test
computational accuracy.
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@2# U. Zürcher and C. R. Doering, Phys. Rev. E47, 3862~1993!.
@3# M. Bier and D. Astumian, Phys. Rev. Lett.71, 1649~1993!.
@4# C. Van den Broeck, Phys. Rev. E47, 4579~1993!.
@5# S. M. Roberts and J. S. Shipman,Two-Point Boundary Value

Problems: Shooting Methods~American Elsevier, New York,
1972!, Chap. 3. Equation~3.2.14! of this book gives a some
what unwieldy formula for the final conditionsxi

(m)(z1) to be
imposed on the adjoint equation, but we find that in our cas
direct inspection of Eq.~5! is more convenient.

@6# W. H. Press, B. F. Flannery, S. A. Teukolsky, and W. T. Ve
terling, Numerical Recipes~FORTRAN Version! ~Cambridge
University Press, Cambridge, 1990!, Sec. 15.


