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Integral equation for the resonant activation rate
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Institute of Physics, Academia Sinica, Taipei 115, Taiwan
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The boundary value problem for the mean first passage time is transformed here into an initial value problem
by the shooting method of adjoints. Dichotomous fluctuations between two potevitigs and V,(z) are
assumed. The activation rate is given by an integral equation whose solutions may be computed iteratively with
arbitrary precision. Model calculations are carried out for potentials of the ¥6(@)=(— 1) wz”, p=0, and
the strongest resonance of the activation rate is found in the linear caselof{S1063-651X98)06905-0

PACS numbg(s): 05.40:+j, 02.50—r, 02.60.Nm

I. INTRODUCTION shooting method of adjoin{b], which we briefly outline in

o . Sec. Il. In Sec. lll we then use the shooting method to derive
The phenomenon of resonant activation over a fluctuating, integral equation representing the missing initial condi-

barrier, which was described by Doering and Gadddahas  {ions r,(0) imposed on Eq(1). In Sec. Ill we also propose
attracted considerable attention over the years. Howevegy jierative algorithm for the numerical solution of this equa-
very few analytic results are availatle-3] and for general o and give some illustrative examples. A computation

potentials the effect is studied either by numerical simulationyi, the general boundary conditions(zy) = 7(z,) =0 is
[1] or by taking recourse to a non-Markovian kinetic ap- giscussed in Sec. IV. '

proach[4]. In this work we formulate the problem of a reso-
nant activation rate in terms of an integral equation whose
solution may be found iteratively with arbitrary precision. l. METHOD OF ADJOINTS

In the simplest case of dichotomous fluctuations between Let A(z) be an (nxn)-dimensional matrix and let
the two potentialsv,(z) and V,(z) the mean first passage

f(z)andy(z) be n-dimensional vectors. Further, let the so-
(MFP) time 7(2) = 7,(2) + (2) satisfies the equatiof2] (2)andy(2) be n-dimensional vectors. Further, let the so

lution of the linear differential system
—ytLll oy
) 2 1

: ”):—3(1), D) y'=A@2)y+1(2) @

Y —y+L;

be sought on the intervalzy,z;) subject to ther initial
conditions y;(zp)=c¢; and to then—r final conditions
yj(z1)=c;. In the method of adjointg5] this boundary
value problem is transformed into an initial value problem by
calculating the missingn—r initial conditionsy;(z,) from

where the adjoint Fokker-Plandi§moluchowski operators
are L=—V!(2)d/dz+d?/dZ, with V/=dV,/dz (dimen-

sionless units are assumeendy is the fluctuation rate. For
simplicity we impose initially on Eq(1) the boundary con-

ditions then—r identities,
7(1)=0, (2 "
(m) : — x(m .
(0)=0, @ 2, [x™(20)yi(20) =X (20)¥i(20)]

which, for general potential¥;(z), represent an absorbing N o(n

boundary atz=1 and a reflecting boundary aj=0. For :2:1 % dz %m)(z)fi(z)' ®)
symmetric potential®/;(z)=V;(—2z) Eqgs.(2) and(3) corre-
spond also to two absorbing boundariezat+ 1.

The minima of the potential¥;(z) are assumed to be
located at the point=0 and the quantity to be determined
from Eq. (1) is the MFP time out of the bottom of the well,
i.e., the valuer(0)=7,(0)+ 75(0). The activation rate is
then defined as #(0). It is well known that the MFP time
7(0) is exponentially larg§1—3] and, as discussed in Sec. Aij=(A");i, on which such final conditiong™(z;) are im-

Il below, numerical solutions of the discretized differential posed that Eq(5) goes over to a solvable linear system for
system (1) yield satisfactory results only if the functions the n—r missing initial valuesy;(z).

7i(z) are slowly varying, i.e., only if the values of the dif-

ferenceV;(1)-V;(0) and of the ratey are sufficiently small. . MEP TIME

However, solutions of Eq(l) at large values ofy are re-

quired for the study of the resonant activation rate and in With the boundary condition&) and(3) the sought after
order to find these solutions we employ here the so-calletFP time valuesr;(0) are simply the missing initial condi-

wherem=1,2, ... n—r. The functionsx™(z) introduced
above are solutions of the adjoint equation

dx™/dz=—AT(z)x™, (6)
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tions on the left of the intervdl0,1]. In order to determine and to deal with an initial value problem. Taking into ac-
them from the method of adjoints we first rewrite Efj) in  count the prescribed initial value$™ (0) atu=0 and intro-

the form (4). With ducing the notatiordV/d u=V=—V’, etc., we obtain
y=(71— 75,71+ 75, 71— T3, T2+ T2) (7)

u
xgm>(u)=x<3m>(0)+2yJ dt x{™(t), (13
the vectorf of Eq. (4) becomes 0

f=(0-100 R e K RG]
0

and writing furtherV;(z)=V(z) — (— 1)'v(z) we obtain

(14
Vi 2y 0 by directly integrating the last two of the three equations
v V. 0 O (10). Substituting these two expressions into the first of the
A<l1 o0 0 o (9 three equation$10) and integrating anew, we finally arrive
6 1 o0 o at an integral equation for the unknown functiefl’ (u):

x§™(0)e") —x{™(0)

u
for the matrix A=A(z). From Egs.(6) and (9) it becomes X(lm)(u)Zef\/(”)f dt
immediately obvious that;=0 and the adjoint equatiof®) 0

therefore reduces to thex33 system . t u t
Xv(t)f dt,eVt +e*V<“>f dtf dt,
d Xl V, U, 1 Xl O 0 0 0
ol 2= v’ V0| x|=| x™|, 10 X[2yeV+p (v (ty)eVIx{™(t,). (15)
X3 2‘)/ O O X3 0

For sample numerical calculations we have chosen the

wherex{™ is a constant determined by the final conditions aSPe¢ial case oV’(z)=0 andv(z)= wz’(p=0) for which
Eq. (15 becomes

z=1. In order to find the missing initial conditiong;(0)
andy,(0) from the identitieg5) we first impose on Eq.10) o
the two sets of final conditionsx(¥(1)=(0,0,1,0) and  x{™(u)=x{"(0)u+x{"(0) ——[1—(1—u)?(1+pu)]
x?)(1)=(0,0,0,1), respectively. Solving then th&2 set of 1+p

linear equationg5) corresponding to these two sets of final u t
conditions we obtain the expression + fo dtfodt1[2y+ w?p?(1—-t)r 1
(2)
1 x57(0) (1 —t.)P~Lx(m)
Ya(0)= fodz e fodz % (2)=(0) X)) (18
3

(11) This equation may formally be written ax{™=f,

o _ +0x{™ . with © being a bounded linear operator, and we
for the initial valuey,(0), which equals the sought MFP gaak its solution iteratively, in the form

time 7(0) by virtue of Eq.(7).

There remains yet the task of finding the two solutions ©  k
xM(z) and x?)(z). A brief inspection of Eq.(10) shows xm=> T[] 0'f. (17)
that, similar to the two functions;(z), the six functions k=01=0

xfm)(z) vary exponentially fast on the interved,1] so that o\ imerical calculations the functio™ (u) was rep-
direct numerical integration of the initial value problem be-

m o
comes very difficult. We have tested several explicit anares_ented by the set &f+1 valuex(l )(uk) at the e_qwdlsFant
implicit integration scheme$6] for the exactly solvable points U= k_/N’k:O’l' .- N These values, Wh.'Ch defm_e a
case V'=0 and v'=w (see below There is Xi(m) ?lecevgnse Ilneardqppr;)xut];]anon, We_ret.légg?te(fj |:2vr-(32)/ itera-
~exfg (1-2)Q],0%2=2y+w?, and we found poor agree- _ON St€p according to In€ Prescriplion “— 1o Xy =
ment between numerical results and analytic solutions when! e lterations were terminated once the relative error in the
everQ=5. However, high computational accuracy is essenvalue of [odu X4™M(u) was less than 10 and the optimal
tial in view of the fact the MFP time(0) is defined by Eq. valueé of N was chosen adaptively, so as to yield an
(11) as a difference between two quantities of the same orde\-independent final result. All integrals were doffer p

of magnitude and we therefore propose that the differentiaf1 after a qhange _Of Varlabl)aasmg the'trape;mdal rule.
equation(10) be first integrated formally and that the result- AN analytic solution of Eq(16) is easily derived for the

ant integral equation then be solved iteratively. §pecia! case of a Iinear. fluctuating potenpat 1 for which,
Equations(10) are given with final conditions a=1, but  in particular, the MFP time(0) of Eq. (11) becomes
for purposes of numerical integration it is more convenient to 2 2 : 2
make the change of variables 7(0)= - + = (coshQ— 1)_27“’ (@ =sinh Q)
Q2 04 0* w?+27v coshw’

u=1-z (12 (18)
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functionv(z) — w6(z—1) asp— and the particle is again
free, with a wall of heightw at the right edge of the integra-
tion domain. This approximation is not compatible with the
boundary condition$2) and(3), but we found no resonance
[2] for the closely related shifted potentia{z) = w0(z— &),

e e(0,1), for which Eq(1) is solvable analytically up to the
matching conditions at=«¢.
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IV. CONCLUDING REMARKS

M A

InT(0)

Using the method of adjoints we have transformed the
boundary value problem for the MFP time into an initial
value problem and, assuming the symmetric boundary con-
= ditions (2) and(3), found particularly simple expressions for
T the resonant activation rate. In this concluding section we
outline an algorithm for the numerical integration of Etj)
with general boundary conditiong(zy) = 7;(z;) =0, corre-
sponding, by virtue of Eq(7), to the conditionsy;(z;)
=Y4(20) =0 andys(z;) =y4(z;) =0 imposed on Eq4).

As in the previous case we require first the missing initial
valuest/(zy) and to this end we again rewrite Eq) in the
form (4) and solve, exactly as in the previous case, the ad-
joint equation (10) with the final conditions x(*)(z,)
=(0,0,1,0) andx®(z;)=(0,0,0,1). By virtue of Ed5) the
missing initial conditions/;(z), andy,(z,) satisfy the X2
linear system

Ll

i1

LI 11 S B O B D OO

PRSI T S T T TS W W S O B I Y A Y B AV A

Y1(2o)X{™ (20) +Ya(20) X3™(20) = f21d2 %" (2), (19
%

—1 -
m=1 and 2, and given its solutions we integrate the differ-
ential systen(4) and obtain

R W

— 2T
T T

N z
-3 -2 -1 0 1 203 4 5 6 yl(z):yl(zo)eV(z)—V(zo)+eV(z)f dt eV

Ino . v’ (DYa(t)

FIG. 1. Mean first passage tim€0) versusy for the potential t
v(z)=wz” and the boundary condition®) and (3). Top: p=1 +27L dt,yl(tl)}’ (20
(short dashand, in ascending order, 2, 3, 4, 5, 6, 7, 9, 11, and 15 0
(topmost curve Bottom: p=1 (short dashand, in ascending order, 7
0.8, 0.6, 0.4, 0,3, and 0.@ong-dashed curye The apparent com- y2(2)=y2(zo)ev(z)’v(20>+eV(Z)J dt eV
mon intercept of the curves is only approximate garlose to 1 and Zy

in the limit p—0 there is7(0) = 1/2. X[v' (H)y(t) 1] 21)
l .

where)?=2vy+ w? was already defined above. Fe=10  Substitution of Eq(21) into Eq.(20) yields an integral equa-
we found excellent agreement between this equation and niion for the unknown functiory,(z) and we propose that this
merical data at the optimal value df=5000. For selected equation be solved iteratively by the method used above to
values ofp>0 we plot the MFP time valueg(0) versusyin solve Eq.(16). The MFP time function, finally, is given by
Fig. 1. A striking feature of these plots is the fact that thethe equation

strongest resonance of the activation rate takes place for ,

=1, i.e., in the field of a fluctuating linear potential. The _ _

physical origin of this phenomenon is not clear to us and we M2=Ya(2)= Lodt ya(b), 22
offer here only two comments on the attenuation of the reso-

nance at small and large The limit p— 0 corresponds to a wherey,(z)=y,[z,y1(2)] is defined by Eq(21). The initial
free Brownian particle for which, according to the aboveconditionsy;(z,) andy,(z,) given by Eq.(19) correspond
equation withw=0, there is7(0)=1/2 and no resonance toy,(z;) = 0 and this final condition provides here a test of
takes place. Similarly, the potentia{z) goes over to a step computational accuracy.
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