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Transversal parametric oscillation and its external stability in photorefractive sillenite crystals
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We develop the nonlinear theory of transversal parametric oscillation in photorefractive sillenite crystals.
The theory is nonlinear in the sense that the nonlinear feedback from the parametric space-charge field waves,
above threshold of their excitation, is taken into account. In this manner, an analytical solution for the station-
ary state of the parametric waves is obtained. We analyze the stationary states’ stability both against small
perturbations in amplitude and pha@eternal stability and against excitation of new secondary wa@s
ternal stability. It is shown that the stationary state of transversal parametric oscillation is stable within certain
regions of external and internal parameters. This is opposed to the degenergt€é/2aaeéharmonic genera-
tion), which is unstable[S1063-651X98)07505-9

PACS numbegps): 42.40.Pa, 42.65.Hw, 42.70.Nq

. INTRODUCTION lowed, the cases df/2, K/3, andK/4 subharmonic genera-
tion proved to be just special cases of a much wider class of
The parametric wave interaction is a very general phephenomena which includes continuous broadening and split-
nomenon observed for many types of waves in continuouging of the additional wave vectors along both the longitudi-
media. The mt_eractlon is known, for example, for plasmanal (parallel tolZ) and transversdperpendicular tdZ) direc-
waves(1,2], spin waved3], and 'optlcal v.vave$4]'. Ope of tions[7—10. The whole class of phenomena may be referred
the latest examples of parametric wave interaction is the on as photorefractive parametric oscillatiéRPO [7] be-
that tak_es place between so-called spac_e-charge WaV&ause of its close resemblance to the analogous optical pro-
(S.CW.S) In photorefrgctwe crystals .Of Fhe sﬂlemte_ family cess, optical parametric oscillation. In characterizing PPO,
[Bi1pSiOy (BSO), Bi1GeQy, and Bi,TiOz]- This is the one can distinguish between three characteristic types that

subject of the present paper. have been observed experimentally, degend2BO), lon-

.”Onte of thtelr_notst corrllmon wa%/s :)fhexcmng SCWsllnta_ itudinal (LPO), and transversalTPO) parametric oscilla-
siienite crystal 1S 1o apply a constant, homogeneous electriy , [10]. The wave vector schemes of the three types are
field to the crystal and then illuminate it by two intersecting illustrated in Fig. 2

coherent laser beams, as shown schematically in Fig. 1. The The origin of PPO became clear a few years Fio-13.

laser bgams for_m a light interferencc_e pattern in the crysta{t turned out that parametric excitation of weakly damped
and by introducing a frequency shift in one of the beams low-frequency eigenmodes of the medium—parametric

the light pattern starts moving in a direction perpendicular t05cws [14,15—lies in its basis. The existence of such

the I|ght.fr|r.1ges. As a consequence of the phOtorefr"’lCt'V‘?nodes in the sillenite crystals is due to a large value of the
effgct, t.h'S I|ght pattern, which may be thpught of as a Wavqifetime-mobility product for photoelectrons. This gives rise
of light intensity, is foIIoweg by the formation of a SCW that to a large drift length of the photoelectrons and, conse-
has the same wave vectdf, and frequency(}, as the in-  quently, a large quality factor of the SCWs, see, d.411].
tensity pattern. This SCW is referred to as the fundamentas the threshold of the instability leading to PPO decreases
wave. When the frequency is varied, one can observe a resgith an increasing quality factor, the SCWs are easiest ex-
nant behavior of the fundamental SCW wh@rreaches the  cited when the lifetime-mobility product is large. The para-
medium’s eigenfrequendb].

In 1988 Mallick et al. [6] discovered a new and very X
spectacular phenomenon when they excited a SCW as out- 1
lined above. They found that whefd was increased well
above the eigenfrequency, the SCW lost the spatial period-
icity of the driving light pattern. In the simplest case, a SCW

with the spatial frequencﬁ/Z appeared in addition to the

fundamental SCW with wave vectét. By further increas- >+
ing Q the authors observed that the wave vector of the addi-

tional SCW changed frorK/2 to K/3 and then td/4. Since

the wave vectors of the additional waves appeared to be in-

teger fractions oK, this new effect was referred to as spatial  FIG. 1. Schematic diagram of the basic configuration for excit-
subharmonic generation. However, in the years that foling space-charge waves in a photorefractive sillenite crystal.
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ks=K/2 k=K waves beyond the threshold as well as their feedback to the
(a) > > 7 fundamental wave may be expressed in terms of these shifts.
DPO - - K Another important notion of the nonlinear theory is the
(b) ks k > renormalization of the nonlinear coupling constant. Such a
LPO > renormalization is important for analyzing the stability of the
kg nonlinear regimes against small perturbations. As was shown
(c) / """"" 5 in Ref. [22], the K/2 subharmonic state is always unstable
TPO = with respect to excitation of parametric waves with wave
vectors neak/2 (so-called modulational instability

FIG. 2. Geometrical scheme of the wave vectors for the three So, until now, the only knowledge we have as regards the

characteristic types of PP(IiS and IZ| are the wave vectors of the steady state of PPO is that the simplest ca&, subhar-

additional SCWs ani is the fundamental wave vector. The casesmOnIC generation, is unstable. In this paper we wish to ex-

(a), (b), and(c) are related to the cases of degenerate parametri eF?g the analysis Olf Ref22] to l'nCIIL.st a generﬁl state of .
oscillation (DPO), longitudinal parametric oscillatiofLPO), and 1.8, a g(_enera transversal split between t_e parametric
transversal parametric oscillatigiPO), respectively. wave vectors is allowed. The reason for choosing TPO and

not LPO is that the theoretical treatment of the latter is more
gomplicated if one wants to describe the entire range of lon-

metric resonance conditions are provided either by frequency., . o
P yired itudinal split. Moreover, the TPO case is still the most spec-

detuned light wave$6,16-1§ (running grating technique tacular one, as its origin is still not completely understood.

or by an alternating applied electric field9—-22. The o o

theory of parametric excitation of the eigenmodes, linear i We star_t our analysis in Sec. Il by can|der|ng the fundamen-
their amplitudes, enabled one to explain a number of chara al relatlons_connected W.'th generation of SCWs, such as the
teristic features ’Of PP(13,23,24 wave equation and the dispersion law for eigenwaves. Based

Along with the origin of PPO, its relation to the photore- on the wave equation we introduce two nonlinear coupling

fractive effect also became clear. The photorefractive effec oefficients, which simplifies the dgrivation of the nonlinear
is described by two wave equations: the material wave equ%.eory' In Sec. lll we present the .Imear anal_yss of the sta-
tion, which governs the SCWs, and the optical wave equa-.IIIty of the fundamenFaI wave against excitation of paramet-
tion'which governs the light probagation Basically, PPO is Jic waves. In this section the main characteristics of paramet-
material effect, hence, it is described by the material wayd'c waves are _explgmed and the use of our nonlinear
equation. So, as regards PPO, the optical part of the phot oupling coefficients is demonstrated. In Sec. IV we present

refractive effect is in use solely when visualizing the effethZencha;nolldr?gr?l'r?;z;rh(farenor:a“r?cearsr:r:‘teolg sagg '\r)t;ﬂgugti ;Qe
experimentally, as the induced SCWs are read out by diffrac- P ! requency shift . -ady
tates of the parametric waves are found from the nonlinear

tion of an optical read-out beam. Unfortunately, the materia ) o
and optical effects are mixed in many of the PPO experi_heory and in Sec. VI the stability of these steady state solu-

ments performed6—10,16—19 However, in 1994 McClel- tions is analyzed against small perturbations in the steady
land et al. [12] introduced an experimental configuration in state__amplltudes. .Th's IS ref_erfed to as analy3|s_ of internal
which it is possible to isolate the two effects from one an-Stability. The stability analysis is then extended in Sec. VII

other due to which more “pure” results can be obtained. Itto the external type in which the perturbations assume the

was then finally proven that, basically, PPO is a nonlineaﬂ?rm. of new paramet'ric Waves. This. analysis leads us to Sec.
material effect that can appear independently of the optica lIl in which the main results are discussed.
effect.

The linear theory of PPQL1] is only a first step towards Il. FUNDAMENTAL RELATIONS

a full description of the process, as this theory only describes In this section we describe the fundamental characteristics

the growth rate of th.e parametric wave amplitudes _and th%f SCWs in sillenite crystals. We consider here, as we do
threshold values of different parameters. It does not incorpo; | '

; . ""throughout the paper, an experimental configuration like the
\r/s;?/;haemeflfifgé:; i?)trugit'eosfsitte%%iﬁt;ﬁzmrtc:‘;e?ﬁrgfm;gg;”t one shown in Fig. 1. Two coherent optical beams are inci-
P P Ydent symmetrically to a photorefractive sillenite crystal so

against excitation of new parametric waves. To describe . P
these important aspects one needs to develop a nonlinefat the applied electric fiel&t, and the wave vector of the
theory which involves the parametric waves’ nonlinear inter-light interference patterr, are both directed along the
action with themselves and other waves present in the meaxis. Due to the frequency shifl the light interference pat-
dium. The necessity for such a theory is obvious not onlytern| moves as a harmonic intensity wave along xhaxis,
because of completeness, but also in view of the fact thahus its dependence on time and space can be written in the
nearly all experimental results on PPO have been obtained ifollowing form:
steady state.

The foundations of the nonlinear theory were laid in Ref. [=lg+1,=1g[1+m cogKx—Qt)], (D)

[22] in which the steady state of the simplest ca6£ sub- ) o
harmonic generatiofDPO), was analyzed. It was shown that Wherelo andl, are the dc and ac parts of the intensityjs
the amplitudes of the saturating parametric waves are detethe intensity contrast, and is the magnitude oK. Due to
mined to a large degree by their nonlinear frequency shiftsthe photoconductivity of the crystal the light excites elec-
In particular, various stationary states of the parametrigrons from filled donors to the conduction band after which
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they are free to drift and diffuse away from the light regions,charge field waves are formed by space-charge waves; they
in which many electrons are excited, to darker regions wherare connected simply by the Poisson equation. Secondly, one
they can recombine with empty donor sites. This results in aiould also choose to consider the waves of the electrostatic

inhomogeneous charge distribution which moves along witthotential ¢ given by E;=—V¢. This approach has been
the light pattern, hence, a space-charge wave is formed. Thgsed beforg11,22. Finally, because photorefractive media
photoexcitation, drift, diffusion, and recombination of elec- exhibit Pockels effect the space-charge field waves are ac-
trons are described by the band transport equatiPns whereggmpanied by waves in the permittivity of the crystal which
the Poisson equation governs the space-chargeHiglgen-  can be referred to as holographic waves or running phase
erated by the charge separatid@b]. Applied to crystals of gratings. However, because all the equivalent waves are con-
the sillenite family, all these equations can be combined taected by simple, linear relations we need only choose one
give one single equation for the space-charge fiéJd0,11: of them to describe the wave propagation. In this paper, we
choose from now on the space-charge field wa\&SFWs

- e Bl = o= 1 . = . described by Eq(2), as this parameter is the one typically
Eo-(V°E1) + a9 V- (VB - wr V-E1—={loV-Ey considered in photorefractive science.
kaT . . N . . .
n % wOV-(V2E1)+onO-(V2E1) A. Linear eigenwaves

Before describing the nonlinear processes it is convenient

R KgT . R to consider first the linear case. This is because the waves
={Eo- (VI +—— V2,1 +{V-(14Ey) that take part in the nonlinear interactions appear to have
q - spatial and temporal characteristics similar to those for the

s s oo S linear eigenwaves. How can we excite an eigenwave? Let us
—V-[Ey(V-E)]. 2 consider the experimental configuration shown in Fig. 1,
where, provisionally, the light pattern is characterized by an

This is referred to as the material wave equation. Note tha hitrary wave vectok that is not necessarily directed along

one nonlinear term which was included for completeness ifne y axis. The light pattern is assumed to have a sufficiently
Refs.[7,10] has been omitted here because it gives only Miy,y, contrastm so we can assume that the medium responds
nor contributions to the final resultkg is here the Boltz- linearly by forming a SCFW with the same wave vector and

mann constanf] is the absolute temperaturg,is the abso- - - .

lute value of the electronic chargg,is the mobility of free Eﬁ?ﬁ'porilt frequenc?(k an? sz as tﬂ:e ldr|V|nghI|%ht. pattersn(.:FW

electrons, and- is the free electron lifetime. The parameters hen, alter some ime, steady state 1S reached, 1.€., a

0o and ¢ are given bywo=sloNp /N, and ¢=sqNp /e oe with constant amplitude is present. After that we suddenly

Wgeres is the cross segtion 0ofL}heAphotoexcitation c?f ZIec—SWitCh off the light contrast. In practice, this can be done, for

trons, Np is the density of donordy, is the density of ac- example, by a rapid sine-form phase modulation of one of
' b A the optical beam$27]. In this case the ac part of the light

ceptors, anttgeg is the permittivity of the crystal. The dot di 4 th he driving f |

above some terms in EqR) denotes the time derivative. In pattern disappears and, thus, the driving force equals zero.
s A | The question is then, how will the SCFW decay in this situ-

deriving the wave equation it has been assumed that the,. R, !

o . ation? The answer is, it will decay as an eigenwave, also

space-charge field is much less than the so-called saturation . I f h : f

field given byE.=qNa/eoesK [26]. This condition is al- sometlines (I:? ed a free wave as the wave is not forced by

: . . any external force.

ways fulfilled for the relatively small wave numbers in- ; .

volved in the PPO processes. The details of the derivation of Tq analyze}hjs _ffrma”y W? Insert . satzor th? wave,

Eq. (2) can be found in Refd7,11]. Ei=kE;gexplk-r—iwt)+c.c., into the linear, undriven ver-

The left-hand side of Eq2) is linear inﬁl; it determines SN of the wave equatiof®), i.e., the right-hand side is set

the fundamental characteristics of the eigenwaves to be pr&dual to zero. Herd is a unit vector along, Eq is the

sented in Sec. Il B. The first two terms on the right-hand siddnitial amplitude of the space-charge fiel@, is the (un-

represent the driving force due to the intensity distributionknown frequency, and “c.c.” stands for complex conjugate.

I;. The two doubly underlined terms on the right-hand sideTo obtain nontrivial solutions, we find that andk have to

of Eq. (2) are referred to as nonlinear terms. The first term isfulfill the following so-called linear dispersion relation:

a so-called parametric term in the sense that the coeffitjent i .

oscillates harmonically. The parametric term can cause non- = EqxtEok—IEo —ar—ive &)

linear coupling between the intensity walMeand the space- O EgtiEp itiEyp ke

charge field waveE;. The second doubly underlined term i i 5 )

describes the eigennonlinearity. This term is responsible fof'nere E%EZQNA/SOSSKX: Ep=kgTk“/qky, and Ey

the space-charge field’s interaction with itself. The reasori- (47Kx) ~ are characteristic electric fields, denotes the

why both doubly underlined terms can be referred to as noneomponentlongitudinal componentof k. wy is referred to

linear is that they both give rise to nonlinear effects, such asis the eigenfrequency ang is called the damping coeffi-

higher harmonic generation and parametric oscillation. cient of the eigenwave. In conclusion, the space-charge field
As mentioned, Eq(2) describes the wave propagation of wave decays as an eigenwave with the frequemggnd the

the space-charge field. There exist, however, other equivaledamping coefficienty .

waves in the crystal that in temporal and spatial structure By taking the imaginary part of Eq3) one finds that

exactly mimic the space-charge field waves. First, the spacdhree terms contribute to the damping of the waves: one due
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8 \ E versal component oK is increased, the quality factor de-
71 \\q/? creases. Hence, longitudinally propagating eigenwdives
. KIEg) are the weakest damped modes.

S 5 ,% EM k EO

o ] B. The fundamental wave

I
X

In our analysis of PPO we also need to know the space-

ED’,; charge field in the forced case, i.e., when the intensity con-

trast is present. So, now we consider again the case where
the light pattern runs along the axis with a wave vector

IZIIEO. We want to find the space-charge field in the linear
case, hence, we neglect the nonlinear terms in(Bqln this

case the space-charge field has the same spatiotemporal form
as the intensity pattern, i.el,—z_lziEoegyL expKx—iQt)

+c.c., wherex is a unit vector in thex direction. This wave

is referred to as the fundamental wave. By using @gone

can obtain the following expression for the normalized am-

w

Qualityfactor, O,
~ \
N\ /
w

n

2z 2@ 2r 2 plitude, ex | [5,11]:
80 40 20 10
; .. m wg
k, Tum'] L= O wi iy’ 4

FIG. 3. Dependence of the characteristic fidlgs;, Ey , and
Ep « on a log, scale(upper ploj and the quality factoQg (lower

plo) on the longitudinal component of the wave vecty, In the where we assume thitis outside the hatched region in Fig.

lower plot curves 1-4 correspond Ey=1, 5, 10, and 20 kV/cm, 3,.thu5wk~ wg. The SUbSC”pt L r'efer's to th.e linear case.
respectively. All plots have been obtained on the basis of typicat IS knqwn that the linear expression in E(Q) IS onlly valid
material parameters for the sillenite crystal BEQ. In restricted intervals ofn_ a_mdQ. For sufficiently high val-
ues ofm and for Q) sufficiently close to the fundamental
o _ ~_ eigenfrequencyogk , nonlinear contributions from higher or-
to diffusion, one due to drift, and one due to recombinationyer waves affect the fundamental amplity@s,29. How-
when the electrons diffuse and drift through the medium angygm wi (for Q~4wy) due to which Eq.(4) can be used
(if) recombination losses, when the electrons jump from th&yith good accuracy even fan= 1. For this region of) we

high-energy conduction band level to the low-energy donogan even make further simplifications and write
level.

As the expressions fab; and y; are rather complicated

in K we wish to introduce a few simplifications. To justify
these we have plotted the different characteristic fields versus
k. in Fig. 3. We consider in this figure the interval where
0<k,<27/10 um™! because this is the region where the ) ) ) )
PPO processes typically take place. It is seen that if wavheree is a dimensionless parameter givendy wi /().
chooseE, to be about 1®V/m (log;J Eq]=6) we can as-
sume that apart from the narrow, hatched region in wkich
is less than about2/150 um~! we have the following con-
ditions fulfilled: Eqx>Eo>Ey k., Epk. In this case we In the nonlinear case the space-charge field involves
have wg~ wg=woEq k/Eo. Moreover, asEp, i is small ev-  waves with other wave vectors than the one prescribed by the
erywhere in the considered region lof we can neglect this intensity pattern. Hence, the space-charge field consists, in
field. As we shall see later, some particular subprocesses @eneral, of a sum over all waves present in the medium, i.e.,
PPO involve waves witk, being very close to zero. In these
cases we cannot sek = wy, so there we have to use the full E,=Eo> kB explik,-7), (6)
expression. « @

In the lower part of Fig. 3 we have plotted the so-called
quality factorQg, which is given byQy= wi/ i, for vari- ~
ous values OfEO_ le/zﬂ- expresses the number of wave- where @ numerates the Wavee.za is the normalized, com-
lengths the free wave travels before its amplitude is down tglex, and time oscillating amplitude of the wave with wave
1/e of its original value. If we choosE,=10° V/m itis seen  yectork, . Since the space-charge field is a real quantity we
that outside th_e hatched region the qugllty fa(_:tor can be co jave thaB_; =—8* . By combining Eq(6) with the wave
sidered as being much larger than unity, which, as we shall ) a kKe™ ~ )
see, is of major importance in the nonlinear theory to befquation (2) and singling out the terms proportional to
considered in this paper. It is worth noting that if the trans-exp(k,-f) we obtain

m e
2

1-¢’ ®

ek L=

C. Wave equation ink space
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. o m _ and ﬁa,ﬁﬁ are unit vectors alongza ,IZB, respectively.

& + (¥ tiog )& =—i 5 oy Oor EXP(— i) U, x, may be called the coupling coefficient between the

e wave and theegﬁ wave due to the linking intensity wave.
As a second example, suppose that the two SCFWs from

m Jp—
—— (log i) . ) -
2 @ @ above and a third Waveekﬁeprkgr—|wét)+c.c., are now

the only ones present, where ndy+Kz=k, and w,+ w4

K -(IZ K) =w,. Inserting theséAnsazein the eigennonlinearity term
X KR+ €k, +KEXP(i Q1) [EN] in Eq. (7) one can find that the terms proportional to
exp@lza-r—iwat) are given by
n M 8k exp(—iQ) [EN]expiik 7w, =1V, ikg k(@ @6) €k By (11)
Kalka=K]

where
’)/Iza_l—iaiza (Ea'lzﬁ)“za_lzﬁl

———2 - Yok, (o kg
o, B KKK x Vga;gﬁvgg(wﬁ,wg):Td k“'kﬁk wg
@ a,X
X € 8¢ _i. 7) ok
e +ka'kﬂk_5w§> (12
a,X

where 6, is the Kronecker delta; the indexF" refers to _ 1 .
P . ] The factord=(1+4ds5) ~ is a degeneracy factor which
fundamental, i.e k=K. Again, the sum ovepg includes all equals unity except for the degenerate case wigeres; in
the waves present. The length of a ved{giis denoted either this cased=3. In deriving Eq.(11) we have assumed that
by k, or by ||Za| and thex component of the vector is de- the_: wave _amplltudes vary slowly as compared to their oscil-
noted byk, . Equation(7) is the wave equation ik repre- lation penods low;. Due FO this, we can neglec.:t t@i
sentation; it is validor all values of k , considered in Fig. terms in [EN] (slowly varying amplitude approximation
3, i.e., also in the hatched region. As in E) the doubly V;za;lzﬁ,,zé(wﬁ,wg) may be referred to as the coupling coef-
underlined terms on the right-hand side of Ef). represent ficient between the three SCFWSs.
the p_arametric nonlinearity and the eigennonlinearity, re- |f K,.x is well outside the hatched region in Fig. 3 we have
spectively. Qi >1 and the expressions ftt andV can be simplified:

D. Nonlinear three-wave interaction —

1
=
C
1
X
Il
|
N[ 3
S
~
=
R
=>
®

The quadratic structure of the nonlinear terms in &. aikg ™ Kaiky « (13)
implies that, basically, it is nonlinear three-wave interactions __
that can take place in the cases under study As a first ex- Vi, Kg K Sog,0)~Vi K K (wg,05)

ample, suppose that two SCFW, exp(k —iwy)+c.c.,

Il
Q.
=~

R
=~
S2)

ex exp(kﬁ F—iwgt)+c.c., and the intensity wave,
2mlo exp(iKx—iQt)+c.c., are present in the medium. More-
over, let us assume that the following spatial and temporajote that in this case, the andV coefficients become real.

synchronism conditions are fulfilled: As we shall see, the introduction of theandV coefficients
IO considerably facilitates the derivation of the coupled ampli-
tkg=ko, Qtog=o,. ®  tude equations in our nonlinear theory. In particular, when

many waves are present they appear to be very useful.
If we insert the Ansdze into the parametrically nonlinear

term[PN] in Eq. (7) and assume that only the three waves ll. EXCITATION OF PARAMETRIC WAVES

are present in the medium, the terms proportional to ) ) )
expK,-F—iw,t) are given by It is known[28,29 that the nonlinear terms in the wave

equation(7) can generate higher order waves with wave vec-

— tors 2K,3K, etc. However, at =13, which is the main region

[PNJexgri,, 7w, =1Uk, ik, (9 of concern in the present paper, these waves are far from
resonance and, consequently, their amplitudes are negligibly

small. In this section we introduce another type of waves

which is also due to the nonlinear terms in the wave equa-
tion. These are the parametric waves. The parametric waves

U- - __m (@ —ive )ﬁ & (10 always appear in pairs interacting with a third wave, the

Ka ik 2 (ke Yk Ra B pump wave, from which they receive their energy. To be

where
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able to do so, they need to meet the following conditions ofwvhereey (t) andey (t) are the amplitudes of the parametric
parametric resonance: waves. By inserting Eq(15) in Eqg. (7) and using Eqs(9)
and(11) we arrive at the following amplitude equations:
kstki=K, 14 StIngti(og—ws)leg
it 0 =9, =—iu QS;,QIeEI —iVigi—k, K(— o) ,Q)e,g,Lel’fI , (16

i e, + Ly Ti(og—o)]leg
where ks, are the wave vectors of the parametric waves, — . = .

- - ; e B =—iUg ._re: —iVg ¢ k(—ws,Q)eg e a7
wig k, are the corresponding eigenfrequencies, EnQ are P —keBig kii—ks K S KL=k
the wave vectors and frequency of the pump wave. If thes -
conditions are fulfilled the two parametric waves might be?n deriving Eqs-(lﬁ? a”‘?(ﬂ) we have assqmed theg, and
excited provided the pump is sufficiently strong. e are slowly varying, i.e.ey <wsey andey <w e . The

In the general situation, however, we need to be able tget of equationg16), (17) has a solution of the formm;S
des_cnbe also the case where E¢5) are not completely «exp(t) and e> xexp(t), wherev is referred to as the in-
fulfilled. Therefore we allow the parametric waves to assume Sk . i
arbitrary frequenciesss, though still close to their respec- crement. Using this representation we obtain
tive eigenfrequencies, i.eustwl;S,l;l, and still so thatwg
+w;=Q. In this manner the parametric waves may still be
considered as having the fundamental properties of eigen- .
waves. [v+ y—i(wlzl—aq)]eg =ih|e|25, (29

Let us consider the excitation of parametric waves in our !
concrete case. Let the fundamental wave with wave véctor Where the coupling coefficientss andh, are given by
and frequency) act as the pump wave. Apart from this wave
there is also some noise in the space-charge field that can be
considered as a statistical mixture of many weak waves. If
two of these noise waves have wave vectossk, and fre-
guenciesws,w,; meeting the conditionES+ k,=|2 and wg
+w =, they can interact with the fundamental wave via _ o - 2
the nonlinear terms in E7) and start growing in time. We holds true if the longitudinal componentsiaf andk; are not
then say that the parametric waves are excited and we hayar from K/2. Furthermore, in Eqs(20) we have assumed
the ;tate of photorefractlye parametnc_oscﬂlatlon: The paragat ES, El are outside the hatched region in Fig. 3,
metric waves are sometimes called signal and idler wave e ey - T . e

. .. k that Uk '—k=Uk K and Vk K K( wS,Q)
which are names taken from similar parametric processes for = “"'s' T SR s .
optical waves[4]. This is why we use the subscriptss® = Vksi—k K(~@s,{2). As a consequence, the coupling co-
and “1” for the parametrically conjugated waves. It should efficients become real parameters. The linear system of alge-
be underlined that there is no conceptual difference betweepraic equationg18),(19) involves the unknowns’ and ws
these two waves. (sincew; =0~ wy).

Imagine now that at=0 we have the fundamental wave  To obtain a nontrivial solution fore,;s,e;(3 we should

|

w||_thdthe gmplguc{eeg anq tvvlo pzlargmetr;]c waves with am”- equalize to zero the determinant of this system which gives
plitudesey, andey, on noise level, i.e., they are very small. s the characteristic equation. From the imaginary part of

For a sufficiently small period of time while the parametric this equation together with the temporal synchronism condi-
amplitudes are still relatively small, we can assume that thgion we obtain

fundamental wave is not affected by the parametric waves.

[v+ y+i(og— ws)]egsz—ihse’kfl, (18)

hs=Uxg; -k Vig:—k K(—0s.)eg .,
hi=Uy kT Vi i—kg K(— @1, Q)€ 1, (20)

In Egs.(18),(19) we have assumed thaa;sz Y= which

Hence, at this stage the nonlinear terms in &¢.are negli- ws= w§S+A, W= wl;|+A,
gible in the equation foEa= K and, as a resulgg may be (22)
set equal teeg , . As regards the parametric waves with the A=3[0— (it wg)].

wave vectorsﬁaz IZS,, , the nonlinear sum in Eq7) includes ) ) , )

terms proportional to the large amplitudg , . Hence, non- As is ;eenA represgnts the parametric waves’ detuning from
linear effects are important for these two waves. The corretn€ir eigenfrequencies. o _ _
sponding amplitude equations may be derived assuming the From the real part of the characteristic equation we obtain

following form of the space-charge field: Vo= —yt \/W (22)

If the incrementy . is positive (v_ is always negativethe
parametric wave amplitudes increase exponentially in time
and we can say that the fundamental wave is unstable against
excitation of the parametric waves.

E1=Eo[Xeg Lexp(iKx —i Q) +kseg expliks: F—iwgt)

+kieg explik, - F—iot)+c.cl, (15)
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One has to bear in mind, however, that higher order correc-
tions to the linear theory might be significant, especially for
m close to unity, so that the maximums in Fig. 4 might be
slightly altered[23].

By settingv, =0 in Eq. (24) one can find the threshold
condition for the instability. The threshold value for the con-

\ trast can thus be found to give
0.00 N Qat(1-4e)? |1
- mth:3 5 . (25)
0820 0.22 0.24 0.26 0.28 0.30 1-2Y?— = (1—4e¢)
€ 3
FIG. 4. Normalized increment , /g, versuse for different A useful parameter to be used in the next sections is the
values ofm. supercriticallity ¢ defined by
— _ A2
To obtain the explicit dependence on the parametric wave £=vhshi =y~ (26)

vectorsks andk; we introduce the following representation: From Ed.(22) one can see that ifA|<¢ the increment is
positive and the parametric waves grow exponentially.
. K R . K A
ks=5 [(A+X)X+Yy], k=5 [(1=X)x=Yy], IV. FORCED WAVES AND NONLINEAR
(23 FREQUENCY SHIFTS

In Sec. Ill we considered the situation where only the
strong fundamental wave and the two weak parametric

Y thus express, respectively, the longitudinal and transversdfaves Were present in the medium. We saw that the funda-

split between the parametric wave vectors. In the simples[P1ental wave  can begome unstable against expongntlal
_ L . growth of the parametric waves. Naturally, after some time
case of degenerate parametric oscillatigf2 subharmonic ¢ exponential growth we can no longer consider the para-

cas¢, we haveX=Y=0. In the case of transversal paramet- yatric waves as weak, so to be able to describe the stabili-
ric oscillation we havex=0 andY#0. In this casev, can  zation (saturation of the growth we need to modify the lin-
be written in the following simple form provided thal  ear theory. What happens as the parametric waves become

whereX andy are unit vectors along the longitudinal and
transversal directions. The dimensionless parameteasd

—4el, Y<1: stronger? They start to generate so-called forced waves.
) These waves are generated when two strong waves interact
Ve —Qf1+ m [1—2Y2— E (1—4e) via the nonlinear terms in E@7) and produce forced sum or
WK/2 Kz 1\ 9 3 difference waves with temporal and spatial frequencies that

12 equal the sum or difference between the two strong waves’

(1 Ae)\2 frequencies. Moreover, to be considered as forced, a wave
(1-4e)| (24) : .

should be driven far from resonance. It means that if a forced

) . L wave is driven at the wave vecterand frequency, thenw
where the first term under the radical originates from theg,,1d be far fromw;,

2 . .
producthsh| ’.t.he last term fror‘r_*A.. Equat|on(24) 'ePre- \What is the effect of forced waves apart from just being
sents a simplified version of a similar expression obtamed iBresent in the medium? Can they disturb the original funda-
Ref. [11]. One can see from Eq24) that a large quality enta) and parametric waves? Indeed they can; they can take
factorQ_m and a Ia}rge intensity contraat bOth_ favor_ .the part in further three-wave interactions with the original
mstablllt_y Whereas increasing suppresses the ms_tablllty. It waves and thereby alter their amplitudes. In the present paper
means, in particular, that the degenerate caseq) is char- 4| forced waves are generated with participation of at least
acterized by the largest increment. As regards the deperyne parametric wave. Therefore, as a general example, let us
dence ore this is displayed for different values afi in Fig.  consider the effect of the forced wave formed by the sum-
4 for the caseéf=0 andQg/;=6.5 (typical for sillenites, see  mation of the parametris wave and another arbitrary wave

Fig. 3). First of all, it is seen that the maximum normalized ith wave vectork. and frequenc To find the ampli-
increment does not exceed 0.2. This means that the slowlv @ a W - P

varying amplitude approximation holds true in all the casedude of this forced wave which has the wave vedtgt -k,
considered. Secondly, one sees that the maximum increme@fd frequencyns+ w, we use the following solutiosnsatz
is obtained for 0.25£=<0.28. From Eq.(22) one might in Eq.(7):

think thatA=0 (i.e., e=0.25 would give maximum incre- - e ~ e

ment. The reason why the optimum valuessadre slightly ~ E1= Eolks8@Xpiks: F—iwgt) + K. eXplik, M —iw,t)
shifted upwards is thdigh, increases witte, as seen in Eq. . .

(24), due to which the optimum value efis slightly shifted + Uk k gtk EXHI(KstKy) - F—i(wstw,)t]+c.cl,
upwards bym?/43. Thus for some small region beyone- 27)
3 the detuning from resonance of the parametric waves is

compensated by the increase of the coupling coefficientaand neglect for a moment all other waves. Hérggﬂga de-
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notes a unit vector aloniis+k,, andei_.¢_is the amplitude ~ *+¥¢+k, in comparison with the large termf wy., ~ (@s

of the forced wave. By singling out the terms proportional to+ @.)] on the left-hand side of Eq28), which expresses the

exi(ksK,)-F—i(ws+o,)t] one can obtain the following J°UNING from resonance. As a conseduence of this, the
amplitude equation: orced amplituaegy ¢ 1S ediately obtained:

gi + Yesrk, Filokgk, ~(ost o] e, o Ukgrk, iks
€k+k, = OaF

— K
_ o o ) wks+ka_(ws+wa) S
=10,eUk ik kBT 1Vt k ke k (0s,0,)€ €,
S a'"S S S a'"S a a S . N
Vigrk, ke k, (@5:04)
(28 + ek ke (29

wlzs+ lza_ ((,l)s+ wa)

where the Kronecker deltd,r accounts for the case where

|2a= IZFEIZ; in this case the intensity wave also takes part in : : .
the generation of the forced wave. We are now ready to determine the influence of this forced

We now introduce an important simplification. By using WaV€ On the parametri wave with amplitudeei. By sin-

the fact that the forced wave is excited far from resonanc@”ngaou'[ the terms in Eq(7) that are proportional to
and that Q¢ >1, we can neglect the termsl/dt exp(ks F—iwd) one can find

*

T Ykt i (w,;s— wg) &=~ iU 'Zs?*';elz,

. = N = N * A = o = = =
at —iVigik, -k, (2, — w|)eK,Le|2| T18,rUkg:kg+k Btk
. S 4 o N o o *
—iIVigikgrk, —k (@st 0o, — @4 )€k € (30)

where we assume thﬁ§+ |2a is well outside the hatched region in Fig. 3. If one compareq &@).with Eq. (16) it is seen that
the last two terms on the right-hand side of E20) represent the correction due to the foregd, x wave. If, in Eq.(30), one

substitutesagsﬂga with the expression from Eq29) one can obtain
. - .ol ) .
et [ kgt (wES_ ws) Jex = — |hseE| , (31

wherehg is given by Eq.(20). The influence of thca\,;S+ k, wave is thus represented in a modified eigenfrequarﬂéy called

the nonlinear eigenfrequency, which equals the linear eigenfreque@c)plus a correctiorﬁw,;sygsﬂga, called the nonlinear
frequency shift,

UkgikgtKUkgrKikg  Ukgiket K Vig+Kikg K(@s,(2)

0wk ke+k,= ~ OaF ek.L

Wk~ (w5t Q) Wk~ (ws+ Q)

Vi ik k k(05— Q= D Ui i

w£3++2—(ws+ﬂ)

e L |+ Tig gk Nk (32

where

To g - VIES;IZS+|ZQ,—|Za(ws+wa,—wa)VIZSJrlZa;lZS,IZa(ws:wa)
kg .kgtk, — Zk, kg

: (33

wlzs-*— lza_ (ws+ wa)

andN,gaz |el;a|2. The factorzl;ﬁl;S in Eq. (33) equals zero if  shifts of the parametric eigenfrequencies, so that in total one
ends up with the two modified amplitude equations for the

k,+ks=0 and unity otherwise. It is included to take into parametric waves:

account that any forced wave with wave vectowdnishes
and thus cannot give rise to any frequency shift. This is ec +[ve +i(wgl—ws)]e|2 :_ihse’f (34)
because the spatially averaged electric field is fixed and s s ks S !
equalséo. In a similar manner as for thq;sﬂga wave, all

K3 . rJI . * N
other forced waves can be represented by their frequency ek|+[7kl I(wkl wl)]ekl thiexg (35
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where the influences of all the forced waves are included in

wk andar As for Egs.(18), (19) the solutions to Eqg34)

and(35) assume the forrey, elzlocexp(vt) by which one can

nl R .. . I ...
W = O OOk ke kg T 00k ket K+ O0Kg otk

+ Swky Kk (37)

obtain wp = 0 T S0, i SR, &R 0K, kg 00, kg
nl X > s . i
ws= w|25+ Ap, o= w + Anps It is worthy of note that the forcekls+ k; wave is considered
isolated from the fundamental wave even though they have
identical wave vectors and frequencies. One could add the
v.=—vy++hgh —AZ3, (36) two waves and then obtain a renormalized fundamental
wave. In this presentation, however, we prefer to think of the
L two waves as separate due to which Eig& IZ, wave is act-
Ap=3[0— (0, + o, )] ing as a nonlinear frequency shift, as seen in(@d). Hence,

the indexK always refers to the linear fundamental wave
with amplitude e . Whatever representation is used,
There is, however, a technical problem with E(R6). wg  though, the same result is obtained.
and o, are not easily determined from these equations be- At first sight, one might think that there is a problem with
causewrll andwrJI depend explicitly onog andew, in a rather (e shiftsdwi ki, anddwy kg in EQ. (3? becaijse Fq'
complrcated manner as can be seen from(88). A way to (32 was derived under the assumption thatand k5+k
get around this problem is to use the fact that the parametrigave sufficiently largex components. But the vecté— K
waves are nearly eigenwaves, i.es~wi, o =wi, and Mmay have a very smak component wherk, , approaches

- . > ksx. Therefore we have to consider the validity of E§2)
then simply replace»s by wig and e, by @i, inthe expres- . ose. The key question to be asked is whether the

nl
sion for Wy and w' . In the case of transversal parametric expression for the forced wave amplrtuele K can be sim-

oscillation, however, we know thabs= w;=Q/2 in which  plified in the following way:
case no problem appears.

As demonstrated above, one can significantly simplify the o Vi kg -k (@s T @) o
calculations of including forced waves by using the concept gt ! Yok Hi(@— g — wst @)) €k Cks
of nonlinear frequency shift, a concept that was introduced in s s
the field of PPO recentlj22]. The alternative would be to Vie—k, ;QS'_QI(a)QS,—wgl)
solve N+ 2 nonlinear differential equations, whekeis the = € &g (39

: . Oy, ~ Ok @k
number of forced waves. With the present technique the s S !

problem is reduced to that of solving two linear differential |, han ks.x approaches, ,? If we use Eqs(12) and (13) in
equations given by Eq34) and (35). Eq. (38) and cancel common factors one can find that the
left- and right-hand sides of E¢38) can be represented by

V. STEADY STATE FOR THE PARAMETRIC WAVES yﬁsf §|+ i aﬁsf rZI
feexpige)=——————""— - —,
In this section we use the technique of representing forced © kg k[ Vig-k, Ti(rgk — ok T ok )]
waves by their nonlinear frequency shifts to describe the sta-
tionary states of the parametric waves. fo_ 1 (39)
As the parametric waves grow they start to interact with s Wik~ WkgT 0K

themselves and the fundamental wave via the generation of

forced waves. Hence, in principle, all possible sum and difyespectively, If we use the representationskgandk, from
ference waves formed by the two parametric waves and theq. (23) and, as an example, Sét=0 we can investigaté,
fundamental wave should be taken into account, i.e., wavegndf, for small values oK. The two functions are plotted in
with wave vectorsk5+ kS, ks kI , kS+K k,+k,, and k| Fig. 5 As is seenfg approached, when X goes to zero

+K. However, a few of these waves need to be removedki,x—Ksx). Moreover, the phase dt is only a few degrees
from the list: (i) theIZS IZS andI2| K, waves vanish because which ensures that the frequency shift remains real. In con-

clusion, we can use E@32) in all actual cases.
they have wave vectors equal to @) the waves with wave

The presence of the forced waves is now included;?'n
vectors ks, K are identical to the parametric waves and
thus cannot be considered as forced. As a consequence, tﬂ@dw ' from Eq. (37). To find the stationary amplrtudes of
number of forced waves to be included reduces to six. A%k andek we can s|mp|y use Eq$34) and(35) and set the
demonstrated in Sec. IV, the influence of the forced Wave%i/dt termls equal to 0 after which we obtain
can be represented by nonlinear modifications to the eigen-
frequencies of th& andl waves, so taking the remaining six

_ _ —iAy]eq.=—iheer , 40
waves into account we obtain Ly=iAnle S¥K, (40)
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FIG. 5. Plots of the function$, and fg and of the phaseb,
versusX. Again, the same parameters as in Fig. 3 have been us

along withK=27/30 um™2.

[y+idnle; =iheg, (41)

whereA, is given by Eq.(36) with wE'S and “’E: taken from

Egs.(37).
From Egs.(40) and (41) one can immediately find the

following important relation for the amplitude produet
= e8!
—ihgN;  —ihNg

- = - . 42
y—iAy  y—iAy 42

a’E|a’|exr(—i\I’)=

Moreover, from the condition that the determinant of Egs.

(40) and(41) should equal zero one can obtain

Y?+A2=hshoA3=£2, (43)
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Ay B
N R
L,
o, =0.06
iy

Y

0.22 0.24 0.28

FIG. 6. |0 | versuse andm for different values o¥r. The solid,

G%@ng dashed, medium dashed, and short dashed lines represent the
casesY=0,, 0.2, 0.3, and 0.4, respectively.

From Eq.(43) we see that\,; can assume two values; &,
due to which we obtain the two stationary solutions

A-D=¢

T (47)

|0':|:

Note that apart from the twe.. solutions we also have the
trivial solution, 0o=0. Expressed by Eq$44) and(47), we
have now derived the stationary amplitudes of the parametric
waves. The parametdd corresponds to the nonlinear fre-

quency shifts due to th§3,|+lz waves wherea§ corre-
sponds to the shifts from thﬁsi IZ,, IZS+ IZS, and IZ,+I2,
waves.

Let us consider the expressions for,| in the case of
transversal parametric oscillation, i.X=0 and Y#0. In
this case we havli =Ny, =|a|, thus|o| represents here the

where the sign= is used between equivalent equations. Bymodulus square of the amplitudénergy of the parametric

combining Eqgs(40), (41), and(43) we obtain further

hl 1/2
il o
—iyx¢

Vhehy

Finally, by using Eqs(32),(37) together with Eqs(43) and
(44) we get

exp(—iW¥.)=sgrhs] (44)

A-D—-A,
An|:A—D—T|0'|<:>|O'|:f. (45)
where
D=3(8wig i+ Kkt 00K k1K)
T TES,ES+|ES+T|EI ,|Z,+ES+T|2|,|Z|7|ZS hg 12
= 5 h_|
T'Z| ,EI+|2|+T|ES,|ZS+EI+TES,|237EI h, 12
+ 5 hel (46)

waves. For this particular case, the parameters entering Eq.
(47) assume the following simple form:

A
——=1-4e,
WK /2
D &' P I
wgp (4e+3)(1-e)?|°\7 18" |2 2" ]
g ) 2.2 1/2 (48)
= = -0- _2y?2
x|~ g a2
LN
WK /2 3 7

where terms of ordel* and higher have been neglected.
From Eqgs.(47) and(48) it is seen thati) being positive, the
nonlinear frequency shifb due to theks,+K waves re-
duces|a .|, (ii) |o | increases with the quality fact@g/,,
and(iii ) the nonlinear shifts represented byeducd o . |; in
fact, |0 | would go to infinity in the absence of these waves.
Using Eqgs.(47) and(48) a contour plot of o, | versuse and

m can be obtained, see Fig. 6. It is seen flwat| increases
with m and decreases withi. As regards the dependence on
e, |o,| has a maximum that moves froe=0.25 towards
lower values asn increases. There is a peculiarity whgn
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il

60/ o, .-
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FIG. 8. Wave vector scheme for the primary parametric waves,

FIG. 7. Schematic diagram of the modulus of the three stead)!'{SI and the secondary parametric Wavlé’ss
AR A

state solutionsgy and o.. as functions ofA. Stable branches are

represented by solid lines whereas unstable branches are repre- . . .
sented by dashed lines. the parametric wave amplitudes increase and so figek,

on the other handj|o_| is negative(case() in Fig. 7) v, is
negative ando| decreases. Hence, in total, any perturbation,
- Sl i i ) positive or negative, away from_ will lead to a divergence
+ks andk +k, become identical to the wave with wave fom this steady state solution and, hence, the state is inter-
vectorks+k;, hence, we have degeneracy. This calsés  nally unstable. As regards, , the result of the internal sta-
jump from 5 atY=0, to ¥ at Y=0; thus|o.| experiences bility analysis will be just opposite due to the sign change of
a corresponding jump upwards in this limit. Therefore anA, in Eqg. (49 and, hence, this state is internally stable, see
infinitely small transversal split between the parametric wavecases3) and@) in Fig. 7. As regards the stability af, we
vectors causes the energy of the parametric waves to be reave analyzed this already in Sec. Il and found thah

goes to zero. In this limit the waves with wave vectﬁgs

duced by3. This was discussed further in R¢22]. >¢£2, o, is stable. This inequality is, however, modified
slightly here so that it now reads\(- D)2>¢2 because of
VI INTERNAL STABILITY the shifts from theks, + K waves.
OF THE PARAMETRIC WAVES An analysis of internal stability based on numerical cal-

In Sec. V we found three steady state solutiensand culations was presented in Ref®23,24 which gave the

o . The moduli of the three solutions are plotted schemati>2Me result as .above. To the best of our knovyledge,'how-

cally versusA in Fig. 7. The question is now, are these ever, the analytical treatment presented above is the first of

solutions stable? In general, one can distinguish between tv\)E)S kind.

types of stability: internal and external. Internal stability

means s_tability of a stationary solution _a_gainst perturbat?(_)ns VII. EXTERNAL STABILITY

in amplitude or phase; external stability means stability

against excitation of new waves. In this way, one can say In this section we present the external stability analysis of

that the fundamental wave is externally unstable, since thtéhe steady state representeddy. As o_ is always inter-

instability appears as growth of two additional parametricnally unstable, this solution is not of any interest. The main

waves. This section deals with the internal stability analysisdea of our analysis is as follows. We consider the steady

of the stationary solutions found in Sec. V. state for the two parametric waves found in Sec. V. These
Let us consider the modulus of the steady state solutiongywo parametric waves will, from now on, be referred to as

represented byo;| (i=0,—,+), and add a small perturba- the primary parametric waves. We then assume that two ad-

tion to it, 8|oy|, so that the new perturbed steady state isditional parametric waves, referred to as secondary paramet-

|<Tg'|=|<Ti| +68loi|. What happens after this _perturbation? ric waves, with small amplitudes and with wave vectiogs
Will the perturbed state decay back to the original state? T‘E,’ are present. The new wave vector scheme is shown in Fig.

answer this we need to consider Eg6) for the increment 8. As was the case for the primary parametric waves in Sec.

which depends via\,, on the amplitudes of the parametric -, - oo
waves. For the steady state solutions, given by Eq.(36) [l the wave vectorkg, k/ can here be chosen arbitrarily as

equals zero. If we linearize this equation for the perturbedong as the synchronism conditidtk+ k| =K is fulfilled.
amplitudes around the stationary amplitudes we obtain th&Vith the external stability analysis we now wish to investi-
increment gate whether the steady state solution from Sec. V is stable
against excitation of any of these secondary parametric
AnTd| ol waves. If so, the state is said to be externally stable.
T- (49 To find the increment of instability for the two secondary
parametric waves we need again to consider the influence of
If v, is positive, the perturbed amplitudes will increase; if forced waves. In this particular case we have to include all
v is negative they will decrease. Let us analyze the stabilitforced waves generated by the secondary parametric waves
of the solutionso .. 7y is always positiveT is positive too  and the three steady state wavesth wave vectors’ZS, I2| ,
Iﬁirstzzngiigzzssgfgﬁt?cgﬁirt;fgfr (%6)-| AS| rgﬁgrd?% r andK). In total, this involves new forced waves with wave
gi|=|0- - WA WA R A s WA AR "
|oi|=|o.]. Let us first considefo;|=|o_|. In this case we vectors Kstks, kst ks=ki, k_' Tk, kg HK, and k
havev, = £T8|o_|/y. From this, it follows that ifs|o_| is +Kg, thus ten forced waves are included. Among these ten

positive (case(D) in Fig. 7) v, is positive too. It means that waves, however, two are mentioned twice becdfgselzs

v,=—1vy+ \/yz-i- 2A T |oi|=
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=—(k —k) andki—k=—(k/ —Ks). As a result, eight dif- 9gives a nonlinear frequency shift whereas the second one

ferent forced waves remain to be taken into account. Théesults in a so-called renormalization of the coupling coeffi-

inclusion of these waves in the theory obviously leads tcfient[22]. Taking all actual nonlinear shifts and renormal-

nonlinear frequency shifts for the secondary parametri¢Zations into account leads to the total nonlinear eigenfre-

waves. quency and the total coupling coefficient for the secondary
However, in addition to that, another type of contribution kg wave of the form

is obtained. Consider, for example, the forced wave with

wave vectorIZ’S— ks. This wave is driven partly by a term “’E’S:“’k'5+ S0k k+kg T OWKL ki—kst SOk k1K

roportional toeg:e- and partl rm proportional

proportional toekseksa d partly by a term proportional to o i+ o b (50)
N kg ketk, kg ke—k

lzll 1

the dynamical equation foel;é two terms proportional to

|24 I . .
|exd “ex; and eg ey ex/, respectively, appear. The different g individual frequency shifts can be found using &g
structure of these two terms is now evident: the first termand the corrections to the coupling coefficient are given by

€€y, as IZ’S— ks= IZ|—IZ|’. When inserting these terms in

nl - - .- [, .. -
= r+ T T o ’or .
hs=hi.+ oy kgt hics ik Oy ki,

Vit ks ki~ k! (@kg @k — @k Vig k! -k, (— @kr o)

Shyr g g = =S o C o
K iKL—Ks wr ot or—or Skl ky—ksT
(| 1 |

Vi ik ks k! (@K @k~ @k Vig-k! 5 —k! ke — @k @kg)

Shyr pr_g = =S kO, 51
KL KL=k oot or— o Skt kK, (51)
S N | S
Vigi-k K(— o, D)V koK, ok
5hk'siks+k|: wi—Q U:Sk’s,ks+k|0'-

The explicit expressions for th8 coefficients are evident where R¢} and In{ } stand for the real and imaginary parts
from Eq. (51). The first two terms are due to the difference and

waves with wave vectorﬁg— ks and IZ’S— k; whereas the last
term is due to the feedback from the two primary parametric =10 — PRLNL
waves on the pump wave. Note that the coupling coefficients n2 ke ki~
are no longer real because the corrections from(kf). are
proportional to the complex parameter

After having found the modified eigenfrequencies and
coupling coefficients for the pair of secondary parametric

waves(the eigenfrequency and coupling coefficient for theThe condition of external stability reads<0. By combining

>

ki wave may be found by interchanging the indi@andl  Eqs.(54) we find that the nonlinear stationary state is exter-
in Eq. (50)] we obtain two coupled amplitude equations for nally stable against excitation of secondary parametric waves
the secondary parametric waves that are similar in form tQuith wave vectorsk’. andk’ if the inequalit

Egs.(34) and (35): s | quality

(55

- 1 nl nl
Apy=3(0 —wst w*,—wlz,).
s |

*

- . | ’ R . nl . nl 2
ek’5+[7+'(“’q’s_“’s)]ekg:_'hgllek{’ (52 'm{hs'(hw)*}) =0

72+<Aa|>2—Re{hg',ml”!)*}—( >
- % . nl ’ * onl (56)
egl,+[y—|(wlzl,—w,)]e»l,=|h|,eké. (53

is fulfilled. The equal sign gives the threshold of the external
Again, the solution to this linear set of equations may beinstability.
taken in the formegé, eE,ocexp(vt). As a result, we get from Let us consider Eq(56) for the particular case of trans-
|

the real and imaginary parts of the characteristic equation \iersal parametric oscillatioX =0, and let the wave vectors

ki and k| be represented byK(2)[(1—X")X+Y'y] and
2(y+ v)Ag=Im{h% (h™)*1, (K/2)[(1+X")X—Y'"y], respectively. If we assume that
(54 =0.25andy, X', Y’ are all much smaller than unity, it is
2 2 . nlnl g possible to obtain the following simplified expressions for
(y+»)"+(Ap)°—(Ay)"=Relhg (h; )"}, the parameters involved in E¢G6):
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',“:_imZ_X/Z_i _imZ—}—i ﬁ) =\
wgp 712 10\ 72 i)\ 3 Rl s
' 0
4X'2 4X'2 !
XZH(Y=Y)? X2+ (Y+Y')?)" !
040552 01 6 01 02 03 %3 02 01 0 04 02 03
hy  m VNI X'2X' = (Y=Y")?]
—_—— — X' —_ r— 0.2 0.2
WK/2 3 ( ) 3 X'2+(Y=Y")? y .
’ r_ 12
_X[2X (Y+Y)]U ¥ o ¥ o
X2+ (Y+Y)2 |7
-0.1 -0.1
A m 10 X'[2X"+(Y=Y")?] 0%3 62 51 6 01 02 03 %362 61 0 01 02 03
= (X)) | T aX - s — X X
wK/2 3 3 X+ (Y=Y") 0.2 02
X'[2X'+(Y+Y")?] 0.1 04
X2H(Y+Y)Z |7+ - o Y o
-0.1 -0.1
3 5 § )( 3 _1) =
~ 2 . I
o= Mmoo M —— || ——+iQ ], 0% 52 - 025
+ 5 72 WK WK /2 K/2 0.3 -0.2 -0.1 )(}, 01 02 03 0.3 -02 -01 )0(’ 01 02 03
£ _, m? 12 FIG. 9. Contour plots of the left-hand side of inequalig) in
PP —Qgpt 9 the X'-Y' plane for six different values of. The dotted contours
K/2

represent negative values of the left-hand side, the dashed line rep-

C id | of i d f resent the threshold left-hand side equal to 0, and the solid lines
onsider now some value o, 1.e., some degree of trans- represent positive values of the left-hand side. In all six plots the

versal split between the p(imary parametric wave yectors. Tohinima are marked by an asteri§kThe minimum values given in
work out whether the stationary state for this particular casgne piot have been normalized hyg .

is externally stable or not, we need to find the minimum of

the left-hand side of the inequalit$6). If, at this minimum, As mentioned, the contour plots in Fig. 9 are based on the
the left-hand side is negative, the stationary state is unstablgimp"ﬁed expressions in Eq$57). To obtain accurate re-

if it is positive, it is stable. By using the expressions in Eas.qits for a larger region of we have used the exact formu-
(57) with Qg,»=6.5 andm=1 one can produce contour plots las for A’

’ : ) , hY, andh™. These results are shown in Fig. 10
of the left-hand side for different values of. A series of here tl'?:a minimum Iis traced through the-Y' space ?or
:heﬂs}e )E!otsr]ésY§ho):/vn 'r?] F'g' St)h Tthvi s%/mn;et::?s wg}hmreﬁfecl creasingY. It is seen that there is a good agreement with
tﬁe guad?ant wr?ere;’ :n"’:j\s(, :re Sosi?veos¥a$§ng aey OnFig. 9. The numerical point of stabilization is at=0.09
=0.01 one can see that the minimum of the left-hand sidt\aNhICh is only slightly lower than what was found from the
appears aK’'=0.07 andY' =0 and that at this minimum the
left-hand side= —0.06. Thus fory=0.01 the stationary state
is externally unstable against growth of secondary parametric

waves with wave vectorESJ:(K/Z)(li 0.07)x. This type
of instability may be referred to as longitudinal instability as

the secondary parametric wave vectors are parallel With
This is opposed to the modulational instability found for the

K/2 subharmonic cage?]. At Y=0.10 the stationary state is
still longitudinally unstable but the minimum has moved fur-
ther out theX’ axis and, moreover, the minimum has in-
creased to-0.003. It means that the stationary state is still
unstable but the instability is very weak as the minimum is
close to zero. Moreover, the regionXi-Y'’ space in which
secondary parametric waves can be excited is drastically re- ¥=0.09
duced, see the dashed contour. ¥=0.12 the stationary

state has become stable as the minimum, which still appears g5 10. The points of X'

on the X’ axis, is positive. AtY=0.14 the minimum has  sjge of Eq.(56), for different values ofY. These results are ob-
moved away from th&" axis but it is even more positive, SO tained from the exact formula. The open circles and dashed lines
the stationary state stabilizes further iss increased. Fi- notify unstable points or branches; the closed circles and solid lines
nally, atY=0.18 the minimum has moved close to té  notify stable points or branches. At=0.69 the minimum jumps
axis. from (0,,0.69) to(0,0).

Y=0.69

Y=0.6

0,---- Unstable
Y=0.4 eo,—— Stable

,Y') that give a minimum left-hand
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FIG. 11. Diagram of the different regions of stability or insta- FIG. 13. Same as Fig. 12, except tmat-0.5.

bility for transversal parametric oscillation at=1. The dashed ) ) . .
abscissa axis indicates that the stationary state is modulational§-5- It is seen that the stable regi® shrinks drastically as
unstable forY=0. In region 1 we have longitudinal instability, in M is decreased. Am=0.46 the regiong1), (2), and (4)
region 2 the stationary state is stable, in region 3 we have moduladisappear, meaning that the solutien no longer exists.
tional instability, and in region 4 we have instability against exci-

tation of theK/2 subharmonic wave. VIIl. DISCUSSION

simple expressions. The stationary state is stable il In the present paper we have found the stationary states of
P P : y . ... transversal parametric oscillation and analyzed the stability
=0.69 where the state becomes unstable against eXC|tat|0n8 ove threshold of the parametric waves' excitation. We
the K/2 subharmonic wave, hence another nonmodulationghaye shown that the growth of the primary parametric waves
instability appears. In total, one can conclude that £0r s stabilized due to formation of nonlinearly forced waves
=0.25 andm=1 the state of transversal parametric oscilla-that exert a feedback on the parametric waves. This feedback
tion is stable for a certain degree of transversal split betweegan be represented as a nonlinear shift of the eigenfrequen-
the wave vectors of the primary parametric waves. It is worthties of the parametric waves. Thus the stabilization is work-
noting that what is causing the instability are the shifts froming by pushing the parametric waves away from resonance.

the difference waves with wave vectd%— IZSJ , IZ,’ —IZS,I . We have analyzed to which extent this stationary state is
In the absence of these forced waves the stationary stagable against excitation of secondary pairs of parametric
would have been stable. waves. Our analysis is restricted to the case of transversal

By performing similar analyses for other valueseoit is parametric oscillation in which the primary parametric wave
possible to work out the region of stability of transversalvectors have equal longitudinal components.
parametric oscillation in the-Y plane, see Fig. 11. Itisseen  The outcome of the stability analysis depends, of course,
that with increasing;, from 0.2 to 0.3, the minimum “stable upon the parameters of a particular crystal as well as on the
value” of Y decreases almost linearly from 0.12 to 0.05.experimental conditions. However, a considerable part of
From above the stable region is bounded by the two regionghese parameters enter the formulas via the quality factor

(3) and(4). In region(3) the stationary state is modulation- Q,, of the wave with wave vectoK/2. Apart from this
ally unstable, i.e., secondary waves with wave vectors neajuality factor we have only the intensity contrastand the
ks andk, are excited here. In regidd) the stationary state is temporal frequency of the light patterf), to take care of.
unstable against excitation of the2 subharmonic wave. The optimum conditions for excitation of parametric waves

Figures 12 and 13 show similar diagrams fo=0.7 and ~ &re fulfilled if @ =4wg andm=1. In this case we have found
that for 0.09<|Y|<0.69, whereY is the ratio of the trans-

versal to the longitudinal component of the parametric wave
vectors, the stationary state is stable. Outside this interval the

stationary state, in particular thé/2 subharmonic state, is
unstable. Conclusively, we have succeeded in finding the
first stable parametric waves. The regionYgfin which the
stationary state is stable, shrinks drastically masis de-
creased. Am=0.46 the region of stability disappears.

We found different types of instability. For tHé/2 sub-
harmonic case the state is unstable against excitation of

waves near t&/2; this is referred to as modulational insta-
T Py YRR oL oLl b|||ty_. Then, for a small tr_ansversal split petween the para-
metric wave vectors we find that the stationary state is un-
stable against excitation of parametric waves with
FIG. 12. Same as Fig. 11, except tmat0.7. In region 5 the longitudinal wave vectors. On the other hand, if the transver-
stationary solutiorr, is nonexistent. sal split is too large, then, depending orthe state becomes

€
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either modulationally unstable or it becomes unstable againgubharmonic is favored. What might happen is that when the

excitation of aK/2 subharmonic wave. K/2 subharmonic wave amplitude has grown up to some
It is essential in the stability analysis to include alsojeye| a broadening process starts which stabilizes the insta-

waves that are generated by quadratic, nonlinear interactionsjity. If this is the case, the transversal parametric oscillation

between the secondary parametric waves and the primargtate will never arise. Another possibility is that instead of a

stationary waves. These waves are referred to as forcergjroadening of thé{/2 subharmonic wave, a pair of growing

wayv nd th n incl in the analysis in an extrao(- . . -
aves and they can be included in the analysis in an e tao{r nsversal parametric waves will take over and stabilize the

g:tnhaerpé:lrr?(?rﬁrxaaxs"r:ig]se;et%seeetihagr?rgy Ssgc?:sri?;ﬁzegéi- stability. In this case transversal parametric oscillation be-
9 q tomes the final state.

onda arametric waves or as renormalizations of the cou- . . .
yp One way to experimentally verify the existence of stable

fh“iggm;?]r:qs;?r:: iget\(l)vss(,eigléht?) |Sn i(l:l?ggZrﬁ/tﬁ:rg:;tg(\:N;V\fgsezhiansversal parametric waves would be to use the so-called
still kee thé simple structure of the amplitude equations PA techniqud30] in which a second interference pattern
P P P q ' excites the parametric waves. Then, after the transversal

tior?sngar:lggt nq:\:jveagls( trgea(zgssf;]%n;gggr;g'g? gft\?vroe_s\'/;'vwaves have grown up the second intensity pattern can be
- . . gar : WO-WaVE moved after which the parametric waves should keep being
mixing (running grating experiment performed in a sillenite

. . present without any broadening. The results of such an ex-
2 ; . . .
crystal? First of all, we know thédfor .certaln par_amete)sshe Perlment would be highly interesting.
fundamental wave is unstable against excitation of paramet-

ric waves with wave vectors near K/2. But what happens ACKNOWLEDGMENTS
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