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Conservation of wave action and radiative energy transfer in space- and time-varying media
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The conservation of théstandardl wave-action density inherent in wave propagation in a space- and
time-varying medium is shown to require a continuity-type equation involving the time derivative of the wave
frequency and the divergengm (r,k) phase spadeof the group velocity. Such a continuity-type equation
embodies the condition for the validity of the equation of radiative transfer. A comparative analysis of three
different definitions of wave-action density is also mad&1063-651X98)06605-7

PACS numbds): 41.20.Jb, 42.15:i, 42.25.Bs, 52.35.Hr

I. INTRODUCTION tion of radiative transfer. In Sec. Ill a comparative analysis
of three different definitions of wave action is made. A few
In the analysis of wave propagation in space- and timeconclusions are finally given in Sec. IV.
varying media, for which the geometrical optics approxima-

tion is assumed to be valid, one encounters two types of Il. CONSERVATION OF THE WAVE ACTION,
wave kinetic equations, namely, the kinetic equation for the  ADIABATICITY CONDITION, AND EQUATION OF
transport of the spectral energy densitk,r,t) [1,2] and RADIATIVE TRANSFER

the kinetic equation for the transport of the wave-action den- . .
sity J(k.r,t) [3,4]. On viewing the waves from a quantum __1he fransport equation for the wave-energy density
viewpoint, the latter equation is the same as the one goverV(K.";1) in & space- and time-varying medium, which fol-
ing the occupation number of a mof&—7]. Herer repre- lows dlrect_ly from the geometrlcal_optlcs equgtlon_ f_or the
sents the point of maximum constructive interference at time[(vave amplitude, can be expressed in the fgion simplicity,
t for a wave packet centered on the local wave vekfort). et us disregard any process of emission and absorption of
The quite different approaches adopted in the derivatiofiadiation [1,9,2
of the two wave kinetic equations make it somewhat arduous AWK, r.1)
to assess the relative physical contents of the two. In particu- —— = — (Vv ) W(k,r,t). )
lar, whereas the kinetic equation for the wave-energy density dt 9
accounts for focusing effec{8], such as caustics and focal . ) ) . .
points, the kinetic equation for the wave-action density isEquation (1), which refers to a single geometrical optics
free from the effects of ray focusing and is conveniently used0de; contains the total time derivative along the ray trajec-
to derive the equation of transfer for the specific intensity of0ries in(r.k) phase space, on its left-hand side, and the total
the radiation2,7]. divergence operator, on its right-hand side, namely,
The definition of wave action for a space- and time- d
varying medium needs to be examined. Whereas in [R¢f. — = i+|'(, iH, 9 (2a)
a definition is adopted that generalizes the standard definition dt 4t ak ar’
of wave action in a unifornti.e., homogeneous and station- . _
ary) medium, namely, the wave action is the spectral energyvhere k=dk/dt and r=dr/dt (=v,, the group velocity,
density divided by the frequency, the latter being the solutiorand
of the dispersion equation, in RE®] an exponential-type
definition for the wave action is proposed that differs, for the _
case of a nonuniform medium, from that given in Hdf. A or
third definition appears in Ref$10, 11}, where the wave
action is defined in terms of the derivative of the LagrangianTr denoting the trace. The right-hand side of Ef). being
density with respect to frequency. With regard to these difnonzero, withV -v, describing the effects of ray focusing,
ferent definitions, one should note that the physical interpreprevents the wave-energy density from being a constant
tation of the equation of radiative transfer as describing thelong a geometrical optics ray and makes Hg.“actually
ray evolution of the specific intensity of radiation requiresof dubious utility”; cf. Ref.[9], p. 122.
the standard definition of action to be adopted even in the Let us now express the wave-energy density in terms of

dk 9
- [ (2b)

case of a space- and time-varying mediL2y7]. the standardHamiltonian wave-action density
In this paper, in Sec. Il, the conservation of {lséandard
wave-action density is examined and it is shown that a W(k,r,t)=J(k,r,t) Q(k,r,t), (©)

continuity-type equation involving the time derivative of the

wave frequency and the phase-space divergence of the groMﬂ’]iCh is the same relation valid for the harmonic oscillator,
velocity must be satisfied. The relevance of such dhe frequencyw of which satisfies the local dispersion rela-
continuity-type equation is assessed in the light of the equation w=Q(k,r,t), with r=0Q/dk, k=—dQ/dr, and @
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(=dw/dt)=00/t the ray equations. On using E@) in Eq.  the wave-action density is given by the standard relat®n
(1), one obtains the kinetic equation for the wave-action denthe specific intensity of radiatiof¥a reduces to its standard

sity definition in terms of the wave-energy densiy,
dJ(k,r,t) 1 aﬂ(k,r,t)jLV JKrD) )
=— Vg L1, A ® )
dt Q(k,r,t) at " l(w,3)=n? Vo W(k(w,9)). (7b)

The transport equatio) shows that, in general, the classi-

cal wave-action density in a generic inhomogeneous anth this respect one should note that the equation of radiative
time-varying medium is1ot conserved along a ray in phase transfer is usually obtained, with both wave emission and
space, even in the absence of wave emission and dissipatioapsorption accounted for, on balancing the rate of change of

Conservation of wave-action density demands that the number of wave quanta along a geometrical optics ray, as
given by the left-hand side of E¢4), with the rate of emis-
aQ(k,r,t) sion and absorptiofi7,12]. Thus, though implicitly, such a

ot Ok, )(V-vg) =0, 5) derivation rests on the assumption that the adiabaticity con-

dition (5) is satisfied. The analysis carried out here just
to be referred to as thadiabaticity condition Equation(5)  points out that the adiabaticity conditi®B) is inherent in the
constitutes the main result of this paper. Equati®n which equation of radiative transfer.
is trivially satisfied for a uniformhomogeneous and station-
ary) medium, has the form of a continuity equation, where
the (r k) variations of the rayvecto) field v, are connected Ill. GENERALIZED EXPRESSIONS FOR THE WAVE
with the time variations of the frequendgcalaj field (). ACTION: A COMPARATIVE ANALYSIS
From a geometrical viewpoint E¢5) states that no new ray

can form at a given point of the configuration space unlesg taﬁiasrr:jo\\/,vvgvlg gci?c{rzzlf f?er|:ti%enr(lg)r]lcisngr:;%rlgzrrvegeﬂ:r:?itthe
the frequency at that point depends on time. ) q Y

From a quantum perspective, for which the frequency along a ray in phase space only provided that the adiabaticity

represents the energy of the wave quantum, the action deffg 0 02 % CARE B M VO TR R OO e
sity, according to relation(3), amounts to the densitgin 4 ’ 9

phase spageof the number of wave quanta and E4) rep- wave-action densities, tha.t are bot_h consgrved along a ray,
resents the transport equation for this quantity. One thus eipr a (slowly) space- and time-varying medium, and reduce
pects that, in the absence of emission and absorption prd2 € standard wave actiof8) in the limit of a uniform
cesses, the number of wave quanta per unit volume of pha edium.

space is constant along the ray: That this is actually the case. In Ref. [4] a g_enerallzed wave-action density is obtained
requires the adiabaticity conditiofb) to be satisfied. As a Within a description of wave propagation based on the Weyl

consequence, the radiation propagating in a non- representation of both the integro-differential tensorial op-

homogeneous and time-varying medium can be dealt with iﬁrator relevan.t'to the wave .equation, e, th_e dispersion ten-
terms of wave quanta only if the medium is such that th or, and the bilinear quantities connected with the autocorre-

adiabaticity condition (5) is satisfied ation of both the electric field and the current source field. In
The adiabaticity conditior{5) is particularly relevant in such an approach the wave equation is treated from the out-

the context of the equation of radiative energy transfer. Sucﬁﬁ: '2 t?ﬁ ?/h?isilspatce, r\:\gt(t tr;e t;e?i"t :Eatl thel Z(i)rrelitmn
an equation is derived from theguation of conservatiofor among the variables () a ), that 1s, the local dispe

the wave-action density along a geometrical optics ray or?ion _relation, as _we!l as th_e _t_ransport equation for th_e action
changing the independent variables fronk,r(t) to density along with its definition emerges from solving thg
(0,55.1), with &=v,/|v| and s measuring thé distance &Xact equation for the phase-space evolution of the electric-

along the ray trajectory in space(it suffices that the depen- field spectral density by means of a perturbative method con-

dence on position in the new variables only enters via theS|stent with the assumptions of geometrical optics. This pro-

dependence oB). In the absence of radiation sources andCedure permits, in particular, one to avoid the “quasi-plane-

. X o wave” ansatz inherent in the eikonal treatm¢t9,2. A
absorption, the equation of radiative transfer regjg] different quantity is thus obtained, which satisfies a ray-

0 [1(w,9 0 (1,9 conservation equation even for media not subjected to the
= ( + w? f 7 T) =0, (6) adiabaticity condition5), and is such that it reduces to the
Ug® o Ny standard wave actiof8) in the limit of a uniform medium.

wheren, is the ray refractive inde7,12] and the specific Such a quantity, taken as a generalized wave-action density,

intensity of the radiatiort is defined in terms of the wave- is [4]
action densityd,
R 5 w2 R ‘](MD)(kyrvt)
l(w,5)=n; (2m)3c2 [wI(k(w,9))]. (78) ID(K,w,1.1) do
=s— f Z—WE(k,w,r,t),
do =0k 1,t) m

[k(w,5 represents the wave vector corresponding to the fre-
quencyw and to the ray directios.] For the case for which (8
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whereD is the eigenvalue, relevant to the considered modeyields the standard wave actid8), as well as the standard
of the (Hermitian part of the dispersion tensor and specific intensity of radiatiori7b), not only in the uniform
47We (k,m,r,t) is the corresponding eigenvalue of the limit, the same occurring for expressi@8), but also in an

spectral density of the electric field adiabatic medium for which conditiofb) is satisfied. In
. passing it should be noted that, in this context, the uniform
(EE*} (K, w;r,1) limit is a somewhat trivial limit since in this case the energy

density and the action density are proportional to each other
_ dasf dr(E(r+ist+inE(r—ist—1ir))e ikson and thus are bo.th. conserved.along the [y Egs. (1) an_d _
f HE(r+ stttz nE(r=2st=37) (4)], so that defining a quantity such as the wave action is
(98 redundant.

. . There exists a third definition of wave action, based on an
the angular brackets and the asterisk denoting an ensembleera evariational treatment of the wave propagation in a
average and the complex conjugate, respectively. The tens8y 'y propag

(99 is diagonal in the same basis as the dispersion tens redlqm[ll]. A.S is well known, by S“”‘?‘b'y writing the La- .
[4.2] grangian density for the electromagnetic field, one can obtain

For the specific case of a uniform medium, Maxw_ell s equations as Euler's equations _from Hamlltor_\ s
variational principle. The Lagrangian density for the radia-

do |E(k)|? tion field is[13]
f . We(K,w;r,t)= yPvaE (9b)

which is just the spectral electric energy density of the conk| A1), a ' or
sidered mode, witt€(k) the electric field amplitude and a
volume large compared to the cube of the wavelength. The

IA(r,t) aA(r,t)}

2 .
derivation of the result9b) is outlined in the Appendix. on  _ 1 [ 1 |9A(1,D) LIV XAD[2] + J(rY-AdrY
noting thatdD/dw=1/lwRg, Rg being the ratio of the elec- 87 | c? at ' c '
tric to the total wave-energy density, the wave acti®njust (11

reduces tal(k,r,t) =W(k)/Q(k), as expected in a uniform
medium. It is to be noted that the conservation of the wavewhere A is the vector potential and thénduced current
action density(8) in a nonuniform medium occurs, in gen- densityj for a dispersive, nonuniform, and linear medium

eral, independently of the equalit@b). can be expressed 2]

Within the scheme of the standard geometrical odi®ds
an alternative quantity that is constant along the ray and such 1 , r+r’ t+t’
that it reduces to the standard expression for the wave actiorj(r,t)=— — f d3r’f dt'g(r—r',t—t', , ——
in the uniform limit can be obtained on the basis of the ¢ - 2 2
wave-energy densitEq. (1)], namely[9,2], JA(r' 1)

W(k,r,t) t T o (12
J<BB>(k,r,t)Ew—epr dt’(V~vg)>, (10)

Because of the integral forrtl2), due to the nonlocal re-
where the integration along the ray occurring in the exponensponse of the medium, the Lagrangian density is no longer
tial factor is extended to the entire path precedent the point aimply a function of the fieldA and its derivatives, am
time t. It is assumed that the medium is such that the adiavacuq but becomes a rather complicated functional of it. For
baticity condition (5) holds at its boundaries, where  the case for which the properties of the medium vary slowly
= w,, . A feature of definition(10), common also to the stan- in space and time, the kernelin Eq. (12) is a slow function
dard relation (3), is the occurrence of the wave-energy of the sum variables, which makes it convenient to use both
density W(k,r,t) as obtained from the electric-field am- local Fourier transformgthe “eikonal approximation} and
plitude of geometrical optics; the exponential factorthe average Lagrangidil) over space and time. The corre-
exr[ft,xdt’(va)], on the other hand, is the ingredient that sponding average Lagrangiafh can thus be expressed in
guarantees the conservation of the wave actib® in a  terms of the Fourier transformed vector potentigk, w,r,t)
space- and time-varying medium. Under the adiabaticityand the conductivity tensor
condition(5), it is straightforward to see that expressidf)
reduces to the standard relati8) for the wave action, with w _
the consequence that the corresponding specific intensity of a(k,w,r,t)zf d3r’f dt’ o(r’,t’,r,t)e k' —et)
radiation is the standard expressi@tb). 0

Definitions (8) and (10) for the wave action share the
feature of beingionlocalquantities: Whereas expressi(8) (=0, +io,, with o, and o,, respectively, the Hermitian
requires the evaluation of the autocorrelation of the electri@nd the anti-Hermitian partLimiting ourselves to a nonab-
field [cf. Eq. (9a)], which is an integral over space and time sorbing medium, for which the conductivity tensor is anti-
of the bilinear product of fields evaluated at different posi-Hermitian, o=io,, and assuming that, teeroth orderof
tions and times, expressiqd0) contains an integral along the geometrical optics approximation, the relation between
the ray of the geometrical optics quanti%-v,. With re-  the induced current and the electric field is satisfied locally,
spect to Eq(8), the definition(10) has the advantage that it i.e.,j(k,w,r,t)=i0o,(K, 0,r,t)-E(K,w,r,t), there results
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LAK,o,r,t),K, o,r,t) with Rg again the ratio of the electric to the total wave-
. ) energy density. Integrating E@16) over w, accounting for
_ - o N _ ' the dispersion relation, and noting thag(k,w,r,t)|?
VT 82 A (Ko n)- AlK o nO-AK oL, g 12T(2m) 80— Q(K,r 1)) just yields the standard
wave actionW/(). It is to be noted that Eq15) is the same
(139 . .
as the equation for the wave-energy density, namely,
whereT is a time long compared to the wave period and W o
A=(c?k?/w?)(kk—1)+ &, is the dispersion tensor, with, WJF e -(VgW) =0, (173
r

=|— (47l w) o, the (Hermitian dielectric tensor. It appears

that the average Lagrangian densi}3a is a function, . . .
rather than a functional, of the field, notwithstanding the dis-W'th the result that the corresponding ray equation for the

persive nature of the medium. On referring specifically to Wave-action density16) is notin the form of Eq.(4), but in

. %he form of Eq.(1). On the other hand, the equation for the

gg/(\a,\?rig\ec;]dggthe average zeroth-order Lagrangisg can spectral wave-energy density)V, such that W
= [(dw/27)W, obtained within the framework of the aver-

LIAK, @,1,1),K,,r,t) age variational approach, is quite different from E&j7g),

) namely,
=———D(k,o,rt)|AK, o,r,b)3
VT 8ac? | | % (W—L)+ &—i (VW)= — L, (17b)
(13b

which is encumbered by the presence of the Lagrangian den-

A(k,w,r,t) being the(eikona) amplitude of the vector po- . . S . .
te$1tial for)the cognside(zred moc(wh?ch is a function of bgth sity £ and its derivative with respect to the explicit depen-
%ence on time’; .

frequency and wave vector separately, the dispersion relatio Th doxical it that a sinal titv should sati
being not yet availab)e The frequencyw and the wave vec- € paradoxical resuit that a single quantity should sa isfy
two different equations is due to the fact that the average

tor k, which are constants for the case of a uniform medium," " . i | hi th ord h wh
are to be evaluated in terms of the derivatives of the eikona&(arla lonal approach IS a zeroth order approach, whereas, as

W, ie., w(r,t)=—aWw(r,.t)/ot andk(r,t)=aw(r,t)/ar, for is well known[1], to correctly obtain the transport equation
the ge’neraf case of a épace— and tir’ne—varyiné medium. THg' the electric-field amplitude in a space- and time-varying
average Lagrangiafi3b) can be required to satisfy aver- med_lum, one should consistently retain terms umrm_or— .

age variational principlein close analogy to the correspond- der in the small parameter characterizing the nonuniformity

ing one that yields Maxwell's equations from the LagrangianOf the medium. As for the induced current density, one has,

(11). On the basis of such an average variational principlef"lcCountlng also for dissipatidi, 2]

one gets the following Euler’'s equations j(k,w,r,t)=ioy(k,0,r,t)-E(k,o,r,t)+K{E}, (183
O 0=D(K.w.r 1) =0 14 1
g4~ 0=DkwrH=0, (143 K{E}= 0 E+5[V- (Vo) |- E+[(VE)T- Vil - (a)
d L d ILC 1|0 [do do, JE
———— . =y, (14b e P o) Y P
ot dw dr Ik ‘ 2[(%(070)” E Jdo  at’ (18b)

along with the ray equations of geometrical opfizs Equa-  the latter being a first-order quantity. It is just on account of
tion (143 just gives the local dispersion relatiom  this contribution that the correct energy conservation equa-
=Q(k,r,t) for the considered mode, whereas E@4b), tion (179 can be obtaine@@]. On the other hand, the aver-
which is trivially satisfied for a uniform medium, for which age Lagrangian density, obtained on the basis of Ef),

L is independent of both position and time, can be rewrittenyould involve also terms with derivatives of the field, which
on exploiting the specific fornil3b) of the Lagrangian den- makes the whole variational approach significantly more
sity, as complicated to deal with.

gL I ( ﬂﬁ) IV. CONCLUSIONS
Htaw o \Voge O (19 '

With reference to wave propagation in a space- and time-
where the equality dL/ok=—vy(dL/dw), with vy= varying medium, the concept of wave-action density is of
—(dD/ok)/(dD/dw) the group velocity, has been used. The particular relevance. As for the standard wave-action density
quantity 9£/dw can now be explicitly calculated from Eq. (3), the corresponding evolution along a geometrical optics
(13b and, on expressing the vector potential amplitude inray is governed by the transport equati@i (here, for sim-
terms of the electric-field amplitude, namely.A|>  plicity, both wave emission and absorption are disregarded
=c?|£]? w?, there results Such a transport equation just states the conservation of the
wave action along a ray under the condition that the
continuity-type equatiort5) is satisfied, this being the con-

L 1 1 [&korb?
' dition for which the radiation can be viewed as consisting of

%_ﬁwRE 8w

(16)
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wave quanta and the description of radiation transfer in terms/here e(k,r,t) is the polarization vector of the considered

of the specific intensity of radiatiofcf. Egs.(6) and (7b)], mode andE(r,t) is the total electric field as a function of

applies. position and time. In the limit of uniform medium, reexpress-
As an alternative to the standard wave-action der@lty  ing Eq. (A1) in terms of the Fourier-transformed electric

one can define generalized wave-action densftiésdefini-  field E(k,w), and noting that

tions (8) and(10)], which are quantities conserved along the

geometrical optics ray, independently of the adiabaticity con-

dition (5), and are such that they reduce to the standard wave E(k,w)=2, £7(k)e”(k)(2m) 8(w—Q7(k))

action(3) in the limit of a uniform medium. As for the gen- 7

eralized wave-action densitjL0), it reduces to the standard

one for media for which the adiabaticity conditidb) is

satisfied. One should note, however, that with specific refer- d 1 43K’

ence to the radiative transfer in space- and time-varying me- f VY (K,w)= — e

dia, the usual description in terms of wave quanta rests on 27 B 4w | (2m)°

the concept of the standard wave-action den@jyand the 1L 10,

utility of the generalized wave-action densitig and (10) X E(k+zk)E" (k=z2k"). (A2)

remains on the whole to be assessed.

(o labels the modgeyield, for the considered mode,

ik'-r

If the radiation field is homogeneous, i.e., the autocorrelation

APPENDIX: RESULT (9b) FOR A UNIFORM MEDIUM tensor of the electric field is independent of position, the
' guantity (A2) must be independent of position, which re-
Let us write[1] quiresk’ =0 on the right-hand side of EqA2), so that
dw 2
hed dow |E(k)|
We(k,o,1,t) f do _
f 20 5 We(k, w) PV (A3)
:i e*(k,r,t)~{f d3s e ik's which is the result(9b). It should be emphasized that for
Am equality (A3) to be valid, not only the medium, but also the

radiation field must be uniforrtthe latter suffices to be spa-
X(E(r+3st)E(r— %s,t))] -e(k,r,t), (A1) tially homogeneous
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