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Conservation of wave action and radiative energy transfer in space- and time-varying media

U. Bellotti and M. Bornatici
INFM, Department of Physics ‘‘A. Volta,’’ University of Pavia, I-27100 Pavia, Italy

~Received 25 November 1997!

The conservation of the~standard! wave-action density inherent in wave propagation in a space- and
time-varying medium is shown to require a continuity-type equation involving the time derivative of the wave
frequency and the divergence@in ~r ,k! phase space# of the group velocity. Such a continuity-type equation
embodies the condition for the validity of the equation of radiative transfer. A comparative analysis of three
different definitions of wave-action density is also made.@S1063-651X~98!06605-7#

PACS number~s!: 41.20.Jb, 42.15.2i, 42.25.Bs, 52.35.Hr
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I. INTRODUCTION

In the analysis of wave propagation in space- and tim
varying media, for which the geometrical optics approxim
tion is assumed to be valid, one encounters two types
wave kinetic equations, namely, the kinetic equation for
transport of the spectral energy densityW(k,r ,t) @1,2# and
the kinetic equation for the transport of the wave-action d
sity J(k,r ,t) @3,4#. On viewing the waves from a quantum
viewpoint, the latter equation is the same as the one gov
ing the occupation number of a mode@5–7#. Here r repre-
sents the point of maximum constructive interference at t
t for a wave packet centered on the local wave vectork(r ,t).

The quite different approaches adopted in the deriva
of the two wave kinetic equations make it somewhat ardu
to assess the relative physical contents of the two. In part
lar, whereas the kinetic equation for the wave-energy den
accounts for focusing effects@8#, such as caustics and foc
points, the kinetic equation for the wave-action density
free from the effects of ray focusing and is conveniently us
to derive the equation of transfer for the specific intensity
the radiation@2,7#.

The definition of wave action for a space- and tim
varying medium needs to be examined. Whereas in Ref.@4#
a definition is adopted that generalizes the standard defin
of wave action in a uniform~i.e., homogeneous and statio
ary! medium, namely, the wave action is the spectral ene
density divided by the frequency, the latter being the solut
of the dispersion equation, in Ref.@9# an exponential-type
definition for the wave action is proposed that differs, for t
case of a nonuniform medium, from that given in Ref.@4#. A
third definition appears in Refs.@10, 11#, where the wave
action is defined in terms of the derivative of the Lagrang
density with respect to frequency. With regard to these
ferent definitions, one should note that the physical interp
tation of the equation of radiative transfer as describing
ray evolution of the specific intensity of radiation requir
the standard definition of action to be adopted even in
case of a space- and time-varying medium@2,7#.

In this paper, in Sec. II, the conservation of the~standard!
wave-action density is examined and it is shown tha
continuity-type equation involving the time derivative of th
wave frequency and the phase-space divergence of the g
velocity must be satisfied. The relevance of such
continuity-type equation is assessed in the light of the eq
571063-651X/98/57~5!/6088~5!/$15.00
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tion of radiative transfer. In Sec. III a comparative analy
of three different definitions of wave action is made. A fe
conclusions are finally given in Sec. IV.

II. CONSERVATION OF THE WAVE ACTION,
ADIABATICITY CONDITION, AND EQUATION OF

RADIATIVE TRANSFER

The transport equation for the wave-energy dens
W(k,r ,t) in a space- and time-varying medium, which fo
lows directly from the geometrical optics equation for t
wave amplitude, can be expressed in the form~for simplicity,
let us disregard any process of emission and absorptio
radiation! @1,9,2#

dW~k,r ,t !

dt
52~“•vg!W~k,r ,t !. ~1!

Equation ~1!, which refers to a single geometrical optic
mode, contains the total time derivative along the ray traj
tories in~r ,k! phase space, on its left-hand side, and the to
divergence operator, on its right-hand side, namely,

d

dt
[

]

]t
1 k̇•

]

]k
1 ṙ•

]

]r
, ~2a!

where k̇[dk/dt and ṙ[dr /dt ~5vg , the group velocity!,
and

“•[
]

]r
•1TrH ]k

]r
•

]

]kJ , ~2b

Tr denoting the trace. The right-hand side of Eq.~1! being
nonzero, with“•vg describing the effects of ray focusing
prevents the wave-energy density from being a cons
along a geometrical optics ray and makes Eq.~1! ‘‘actually
of dubious utility’’; cf. Ref. @9#, p. 122.

Let us now express the wave-energy density in terms
the standard~Hamiltonian! wave-action density

W~k,r ,t !5J~k,r ,t !V~k,r ,t !, ~3!

which is the same relation valid for the harmonic oscillat
the frequencyv of which satisfies the local dispersion rel
tion v5V(k,r ,t), with ṙ5]V/]k, k̇52]V/]r , and v̇
6088 © 1998 The American Physical Society
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57 6089CONSERVATION OF WAVE ACTION AND RADIATIVE . . .
([dv/dt)5]V/]t the ray equations. On using Eq.~3! in Eq.
~1!, one obtains the kinetic equation for the wave-action d
sity

dJ~k,r ,t !

dt
52S 1

V~k,r ,t !

]V~k,r ,t !

]t
1“–vgD J~k,r ,t !.

~4!

The transport equation~4! shows that, in general, the class
cal wave-action density in a generic inhomogeneous
time-varying medium isnot conserved along a ray in phas
space, even in the absence of wave emission and dissipa
Conservation of wave-action density demands that

]V~k,r ,t !

]t
1V~k,r ,t !~“•vg!50, ~5!

to be referred to as theadiabaticity condition. Equation~5!
constitutes the main result of this paper. Equation~5!, which
is trivially satisfied for a uniform~homogeneous and station
ary! medium, has the form of a continuity equation, whe
the ~r ,k! variations of the ray~vector! field vg are connected
with the time variations of the frequency~scalar! field V.
From a geometrical viewpoint Eq.~5! states that no new ra
can form at a given point of the configuration space unl
the frequency at that point depends on time.

From a quantum perspective, for which the frequencyv
represents the energy of the wave quantum, the action
sity, according to relation~3!, amounts to the density~in
phase space! of the number of wave quanta and Eq.~4! rep-
resents the transport equation for this quantity. One thus
pects that, in the absence of emission and absorption
cesses, the number of wave quanta per unit volume of ph
space is constant along the ray: That this is actually the c
requires the adiabaticity condition~5! to be satisfied. As a
consequence, the radiation propagating in a non
homogeneous and time-varying medium can be dealt wit
terms of wave quanta only if the medium is such that
adiabaticity condition (5) is satisfied.

The adiabaticity condition~5! is particularly relevant in
the context of the equation of radiative energy transfer. S
an equation is derived from theequation of conservationfor
the wave-action density along a geometrical optics ray
changing the independent variables from (k,r ,t) to
(v,ŝ,s,t), with ŝ[vg /uvgu and s measuring the distanc
along the ray trajectory inr space~it suffices that the depen
dence on position in the new variables only enters via
dependence ons!. In the absence of radiation sources a
absorption, the equation of radiative transfer reads@2,7#

]

]t S I ~v,ŝ!

vgv D1v2nr
2 ]

]s S I ~v,ŝ!

v3nr
2 D 50, ~6!

wherenr is the ray refractive index@7,12# and the specific
intensity of the radiationI is defined in terms of the wave
action densityJ,

I ~v,ŝ![nr
2 v2

~2p!3c2 @vJ„k~v,ŝ!…#. ~7a!

@k~v,ŝ! represents the wave vector corresponding to the
quencyv and to the ray directionŝ.# For the case for which
-
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the wave-action density is given by the standard relation~3!,
the specific intensity of radiation~7a! reduces to its standar
definition in terms of the wave-energy densityW,

I ~v,ŝ![nr
2 v2

~2p!3c2 W„k~v,ŝ!…. ~7b!

In this respect one should note that the equation of radia
transfer is usually obtained, with both wave emission a
absorption accounted for, on balancing the rate of chang
the number of wave quanta along a geometrical optics ray
given by the left-hand side of Eq.~4!, with the rate of emis-
sion and absorption@7,12#. Thus, though implicitly, such a
derivation rests on the assumption that the adiabaticity c
dition ~5! is satisfied. The analysis carried out here ju
points out that the adiabaticity condition~5! is inherent in the
equation of radiative transfer.

III. GENERALIZED EXPRESSIONS FOR THE WAVE
ACTION: A COMPARATIVE ANALYSIS

As shown in Sec. II, for a generic nonuniform medium t
standard wave action@cf. relation~3!# is a conserved quantity
along a ray in phase space only provided that the adiabat
condition ~5! is satisfied@cf. Eq. ~4!#. One might wonder
whether there exist quantities, to be referred to as general
wave-action densities, that are both conserved along a
for a ~slowly! space- and time-varying medium, and redu
to the standard wave action~3! in the limit of a uniform
medium.

In Ref. @4# a generalized wave-action density is obtain
within a description of wave propagation based on the W
representation of both the integro-differential tensorial o
erator relevant to the wave equation, i.e., the dispersion
sor, and the bilinear quantities connected with the autoco
lation of both the electric field and the current source field.
such an approach the wave equation is treated from the
set in the phase space, with the result that the correla
among the variables (r ,t) and~k,v!, that is, the local disper-
sion relation, as well as the transport equation for the ac
density along with its definition emerges from solving t
exact equation for the phase-space evolution of the elec
field spectral density by means of a perturbative method c
sistent with the assumptions of geometrical optics. This p
cedure permits, in particular, one to avoid the ‘‘quasi-plan
wave’’ ansatz inherent in the eikonal treatment@1,9,2#. A
different quantity is thus obtained, which satisfies a ra
conservation equation even for media not subjected to
adiabaticity condition~5!, and is such that it reduces to th
standard wave action~3! in the limit of a uniform medium.
Such a quantity, taken as a generalized wave-action den
is @4#

J~MD !~k,r ,t !

[F]D~k,v,r ,t !

]v G
v5V~k,r ,t !

E dv

2p
WE~k,v,r ,t !,

~8!
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6090 57U. BELLOTTI AND M. BORNATICI
whereD is the eigenvalue, relevant to the considered mo
of the ~Hermitian part of! the dispersion tensor an
4pWE (k,v,r ,t) is the corresponding eigenvalue of th
spectral density of the electric field

^EE* &~k,v;r ,t !

5E d3sE dt^E~r1 1
2 s,t1 1

2 t!E~r2 1
2 s,t2 1

2 t!&e2 i ~k•s2vt!,

~9a!

the angular brackets and the asterisk denoting an ense
average and the complex conjugate, respectively. The te
~9a! is diagonal in the same basis as the dispersion te
@4,2#.

For the specific case of a uniform medium,

E dv

2p
WE~k,v;r ,t !5

uE~k!u2

4pV
, ~9b!

which is just the spectral electric energy density of the c
sidered mode, withE~k! the electric field amplitude andV a
volume large compared to the cube of the wavelength.
derivation of the result~9b! is outlined in the Appendix. On
noting that]D/]v51/vRE , RE being the ratio of the elec
tric to the total wave-energy density, the wave action~8! just
reduces toJ(k,r ,t)5W(k)/V(k), as expected in a uniform
medium. It is to be noted that the conservation of the wa
action density~8! in a nonuniform medium occurs, in gen
eral, independently of the equality~9b!.

Within the scheme of the standard geometrical optics@9#,
an alternative quantity that is constant along the ray and s
that it reduces to the standard expression for the wave ac
in the uniform limit can be obtained on the basis of t
wave-energy density@Eq. ~1!#, namely@9,2#,

J~BB!~k,r ,t ![
W~k,r ,t !

v`
expS E

2`

t

dt8~“•vg! D , ~10!

where the integration along the ray occurring in the expon
tial factor is extended to the entire path precedent the poin
time t. It is assumed that the medium is such that the ad
baticity condition ~5! holds at its boundaries, wherev
5v` . A feature of definition~10!, common also to the stan
dard relation ~3!, is the occurrence of the wave-energ
density W(k,r ,t) as obtained from the electric-field am
plitude of geometrical optics; the exponential fact
exp@*2`

t dt8(“•vg)#, on the other hand, is the ingredient th
guarantees the conservation of the wave action~10! in a
space- and time-varying medium. Under the adiabatic
condition~5!, it is straightforward to see that expression~10!
reduces to the standard relation~3! for the wave action, with
the consequence that the corresponding specific intensi
radiation is the standard expression~7b!.

Definitions ~8! and ~10! for the wave action share th
feature of beingnonlocalquantities: Whereas expression~8!
requires the evaluation of the autocorrelation of the elec
field @cf. Eq. ~9a!#, which is an integral over space and tim
of the bilinear product of fields evaluated at different po
tions and times, expression~10! contains an integral along
the ray of the geometrical optics quantity“•vg . With re-
spect to Eq.~8!, the definition~10! has the advantage that
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yields the standard wave action~3!, as well as the standar
specific intensity of radiation~7b!, not only in the uniform
limit, the same occurring for expression~8!, but also in an
adiabatic medium for which condition~5! is satisfied. In
passing it should be noted that, in this context, the unifo
limit is a somewhat trivial limit since in this case the ener
density and the action density are proportional to each o
and thus are both conserved along the ray@cf. Eqs.~1! and
~4!#, so that defining a quantity such as the wave action
redundant.

There exists a third definition of wave action, based on
averagevariational treatment of the wave propagation in
medium@11#. As is well known, by suitably writing the La-
grangian density for the electromagnetic field, one can ob
Maxwell’s equations as Euler’s equations from Hamilton
variational principle. The Lagrangian density for the rad
tion field is @13#

LFA~r ,t !,
]A~r ,t !

]t
,

]A~r ,t !

]r G
5

1

8p H 1

c2 U]A~r ,t !

]t U2

2u“3A~r ,t !u2J 1
j ~r ,t !•A~r ,t !

c
,

~11!

where A is the vector potential and the~induced! current
density j for a dispersive, nonuniform, and linear mediu
can be expressed as@2#

j~r ,t ![2
1

c E d3r 8E
2`

8
dt8sS r2r 8,t2t8,

r1r 8
2

,
t1t8

2 D
•

]A~r 8,t8!

]t8
. ~12!

Because of the integral form~12!, due to the nonlocal re-
sponse of the medium, the Lagrangian density is no lon
simply a function of the fieldA and its derivatives, asin
vacuo, but becomes a rather complicated functional of it. F
the case for which the properties of the medium vary slow
in space and time, the kernels in Eq. ~12! is a slow function
of the sum variables, which makes it convenient to use b
local Fourier transforms~the ‘‘eikonal approximation’’! and
the average Lagrangian~11! over space and time. The corre
sponding average LagrangianL can thus be expressed i
terms of the Fourier transformed vector potentialA(k,v,r ,t)
and the conductivity tensor

s~k,v,r ,t !5E d3r 8E
0

`

dt8s~r 8,t8,r ,t !e2 i ~k•r82vt8!

~5sh1 i sa , with sh and sa , respectively, the Hermitian
and the anti-Hermitian part!. Limiting ourselves to a nonab
sorbing medium, for which the conductivity tensor is an
Hermitian, s5 i sa , and assuming that, tozeroth orderof
the geometrical optics approximation, the relation betwe
the induced current and the electric field is satisfied loca
i.e., j (k,v,r ,t)5 i sa(k,v,r ,t)•E(k,v,r ,t), there results
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57 6091CONSERVATION OF WAVE ACTION AND RADIATIVE . . .
L„A~k,v,r ,t !,k,v,r ,t…

5
1

VT

v2

8pc2 A* ~k,v,r ,t !•L~k,v,r ,t !•A~k,v,r ,t !,

~13a!

where T is a time long compared to the wave period a
L[(c2k2/v2)( k̂k̂2I )1«h is the dispersion tensor, with«h
[I2(4p/v)sa the ~Hermitian! dielectric tensor. It appear
that the average Lagrangian density~13a! is a function,
rather than a functional, of the field, notwithstanding the d
persive nature of the medium. On referring specifically to
given mode, the average zeroth-order Lagrangian~13a! can
be written as

L„A~k,v,r ,t !,k,v,r ,t…

5
1

VT

v2

8pc2 D~k,v,r ,t !uA~k,v,r ,t !u2,

~13b!

A(k,v,r ,t) being the~eikonal! amplitude of the vector po
tential for the considered mode~which is a function of both
frequency and wave vector separately, the dispersion rela
being not yet available!. The frequencyv and the wave vec-
tor k, which are constants for the case of a uniform mediu
are to be evaluated in terms of the derivatives of the eiko
C, i.e., v(r ,t)52]C(r ,t)/]t andk(r ,t)5]C(r ,t)/]r , for
the general case of a space- and time-varying medium.
average Lagrangian~13b! can be required to satisfy anaver-
age variational principle, in close analogy to the correspon
ing one that yields Maxwell’s equations from the Lagrang
~11!. On the basis of such an average variational princip
one gets the following Euler’s equations

]L
]A50⇒D~k,v,r ,t !50, ~14a!

]

]t

]L
]v

2
]

]r
•

]L
]k

50, ~14b!

along with the ray equations of geometrical optics@2#. Equa-
tion ~14a! just gives the local dispersion relationv
5V(k,r ,t) for the considered mode, whereas Eq.~14b!,
which is trivially satisfied for a uniform medium, for whic
L is independent of both position and time, can be rewritt
on exploiting the specific form~13b! of the Lagrangian den
sity, as

]

]t

]L
]v

1
]

]r
•S vg

]L
]v D50, ~15!

where the equality ]L/]k52vg(]L/]v), with vg[
2(]D/]k)/(]D/]v) the group velocity, has been used. T
quantity ]L/]v can now be explicitly calculated from Eq
~13b! and, on expressing the vector potential amplitude
terms of the electric-field amplitude, namely,uAu2

5c2uEu2/v2, there results

]L
]v

5
1

VT

1

vRE

uE~k,v,r ,t !u2

8p
, ~16!
-
a

on

,
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,

n

with RE again the ratio of the electric to the total wav
energy density. Integrating Eq.~16! over v, accounting for
the dispersion relation, and noting thatuE(k,v,r ,t)u2

5uE(k,r ,t)u2T(2p)d„v2V(k,r ,t)… just yields the standard
wave actionW/V. It is to be noted that Eq.~15! is the same
as the equation for the wave-energy density, namely,

]W

]t
1

]

]r
•~vgW!50, ~17a!

with the result that the corresponding ray equation for
wave-action density~16! is not in the form of Eq.~4!, but in
the form of Eq.~1!. On the other hand, the equation for th
spectral wave-energy densityW, such that W
5*(dv/2p)W, obtained within the framework of the ave
age variational approach, is quite different from Eq.~17a!,
namely,

]

]t
~W2L!1

]

]r
•~vgW!52Lt , ~17b!

which is encumbered by the presence of the Lagrangian d
sity L and its derivative with respect to the explicit depe
dence on timeLt .

The paradoxical result that a single quantity should sat
two different equations is due to the fact that the avera
variational approach is a zeroth order approach, wherea
is well known @1#, to correctly obtain the transport equatio
for the electric-field amplitude in a space- and time-varyi
medium, one should consistently retain terms up tofirst or-
der in the small parameter characterizing the nonuniform
of the medium. As for the induced current density, one h
accounting also for dissipation@1,2#,

j ~k,v,r ,t !5 i sa~k,v,r ,t !•E~k,v,r ,t !1K $E%, ~18a!

K$E%[sh•E1
1

2
@“•~“ksa!#•E1@~“E!T

•“k#•~sa!T

2
1

2 F ]

]t S ]sa

]v D G•E2
]sa

]v
•

]E

]t
, ~18b!

the latter being a first-order quantity. It is just on account
this contribution that the correct energy conservation eq
tion ~17a! can be obtained@9#. On the other hand, the ave
age Lagrangian density, obtained on the basis of Eqs.~18!,
would involve also terms with derivatives of the field, whic
makes the whole variational approach significantly mo
complicated to deal with.

IV. CONCLUSIONS

With reference to wave propagation in a space- and tim
varying medium, the concept of wave-action density is
particular relevance. As for the standard wave-action den
~3!, the corresponding evolution along a geometrical opt
ray is governed by the transport equation~4! ~here, for sim-
plicity, both wave emission and absorption are disregard!.
Such a transport equation just states the conservation o
wave action along a ray under the condition that t
continuity-type equation~5! is satisfied, this being the con
dition for which the radiation can be viewed as consisting
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6092 57U. BELLOTTI AND M. BORNATICI
wave quanta and the description of radiation transfer in te
of the specific intensity of radiation@cf. Eqs.~6! and ~7b!#,
applies.

As an alternative to the standard wave-action density~3!,
one can define generalized wave-action densities@cf. defini-
tions ~8! and~10!#, which are quantities conserved along t
geometrical optics ray, independently of the adiabaticity c
dition ~5!, and are such that they reduce to the standard w
action~3! in the limit of a uniform medium. As for the gen
eralized wave-action density~10!, it reduces to the standar
one for media for which the adiabaticity condition~5! is
satisfied. One should note, however, that with specific re
ence to the radiative transfer in space- and time-varying
dia, the usual description in terms of wave quanta rests
the concept of the standard wave-action density~3! and the
utility of the generalized wave-action densities~8! and ~10!
remains on the whole to be assessed.

APPENDIX: RESULT „9b… FOR A UNIFORM MEDIUM

Let us write@1#

E dv

2p
WE~k,v,r ,t !

5
1

4p
e* ~k,r ,t !• H E d3s e2 ik•s

3^E~r1 1
2 s,t !E~r2 1

2 s,t !&J •e~k,r ,t !, ~A1!
i-

s

,

s

-
ve

r-
e-
n

wheree(k,r ,t) is the polarization vector of the considere
mode andE(r ,t) is the total electric field as a function o
position and time. In the limit of uniform medium, reexpres
ing Eq. ~A1! in terms of the Fourier-transformed electr
field E~k,v!, and noting that

E~k,v!5(
s
Es~k!es~k!~2p!d„v2Vs~k!…

~s labels the mode! yield, for the considered mode,

E dv

2p
WE~k,v!5

1

4p E d3k8

~2p!3 eik8•r

3E~k1 1
2 k8!E* ~k2 1

2 k8!. ~A2!

If the radiation field is homogeneous, i.e., the autocorrelat
tensor of the electric field is independent of position, t
quantity ~A2! must be independent of position, which r
quiresk850 on the right-hand side of Eq.~A2!, so that

E dv

2p
WE~k,v!5

uE~k!u2

4pV
, ~A3!

which is the result~9b!. It should be emphasized that fo
equality ~A3! to be valid, not only the medium, but also th
radiation field must be uniform~the latter suffices to be spa
tially homogeneous!.
,

@1# I. B. Bernstein, Phys. Fluids18, 320 ~1975!.
@2# U. Bellotti, M. Bornatici, and F. Engelmann, Riv. Nuovo C

mento20, 1 ~1997!.
@3# S. W. McDonald and A. N. Kaufman, Phys. Rev. A32, 1708

~1985!.
@4# S. W. McDonald, Phys. Rep.158, 337 ~1988!.
@5# R. Z. Sagdeev and A. A. Galeev,Nonlinear Plasma Theory

~Benjamin, New York, 1969!.
@6# V. N. Tsytovich, Lectures on Nonlinear Plasma Kinetic

~Springer, New York, 1995!.
@7# T. H. Stix, Waves in Plasmas~American Institute of Physics

New York, 1992!, Sec. 4-10.
@8# A. H. Glasser and A. Bravo-Ortega, Phys. Fluids30, 797
~1987!.

@9# I. B. Bernstein and D. E. Baldwin, Phys. Fluids20, 116
~1977!.

@10# A. J. Brizard and A. N. Kaufman, Phys. Rev. Lett.74, 4567
~1995!.

@11# G. B. Whitham,Linear and Nonlinear Waves~Wiley, New
York, 1974!, Sec. 11.7.

@12# G. Bekefi,Radiation Processes in Plasmas~Wiley, New York,
1966!.

@13# H. Goldstein,Classical Mechanics~Addison-Wesley, Reading
MA, 1965!, Sec. 11-5.


