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Breakup of two-dimensional into three-dimensional Kadomtsev-Petviashvili solitons

A. Senatorski and E. Infeld
Sottan Institute for Nuclear Studies, Ho89, 00-681 Warsaw, Poland
(Received 24 March 1997; revised manuscript received 15 January 1998

This paper reports on three-dimensional simulations that follow exagtmmetric soliton solutions to an
important model equation of plasma physics and superfluid hel@ose condensakeThis is the Kadomtsev-
Petviashvili equation. Solitons are seen to break up when perturbed alddgpendence of growth on the
wave number of the perpendicular perturbation is found numerically. This leads to a wave number producing
the maximum rate of breakup. Due to numerical instabilities, a somewhat smaller wave number must be used.
Fully three-dimensional entities are produced. After a while they become virtually identical to known, azi-
muthally symmetric solutions. Based on this, implications for the reconnection hypothesis formulated by
Feynman, used in superfluid helium Il theory, are indicaf&d.063-651X98)15905-4

PACS numbgs): 03.40.Kf, 52.35.Sb, 47.20.Ky, 52.35.Py

Solitons are sometimes described as the classical countdesimal sound wave&alled phonon$.At present, it would
parts of elementary particles. They are well researched conseem that KPI is more firmly grounded in physical reality in
pact entities that appear both in nature and in present dage case of FMS waves as compared to the Bose condensate
mathematical considerations of nonlinear, partial differentiakcontext. Nevertheless, we will come back to this latter, fas-

equations. cinating context.
The three-dimensional (3D) Kadomtsev-Petviashvili It is of interest when a line soliton distorts in three dimen-
equation considered hef#] is sions and produces a known nonlinear structure. In the
superfluid-helium context, this would correspond, if Ed).
(ng+6nn,+ny,)y—3(nyy+n,,)=0. (1) is to be accepted as a model, to a step toward answering the

question of whether a line vortex pair of opposite polarity

This equation is known as KPI in three dimensions. Itcan break up and recombine into an array of vortex riegs
describes the dynamics of solitons and nonlinear waves in alse, say, one vortex ring and twbshaped vorticgs This is
least two medidplasmas and superfluidi2—4] about which  a crucial question in He Il theory.
more follows. Equatioril) is usually much simpler than the ExactN-soliton solutions to both one- and two-space di-
full set of equations it models. In deriving it for propagating mensional versions of Eql) are well known. The one-
phenomena, one assumes weak dispersion and that the salimensional solitonn(x—wvt), is unstable in two dimensions
ton or nonlinear wave in question propagates alongxhe [5] and its breakup into an array of two-dimensional, exact-
axis. Changes iy andz are slower than in the direction of soliton solutions has been demonstrated both analytically and
motion. Equatior(1) is integrable by inverse scattering when numerically [6—8]. The two-dimensional soliton,n(x
d,=0. For an extensive discussion of the derivation(bf = —uvt,y), is stable in two dimension9].
and some solutions, see RE$], Chaps. 5 and 8. It is natural to ask the generally more physical question of

The KPI equation appears in plasma physics when dewhat happens in three dimensions. As the 1D soliton, having
scribing small amplitude, fast magnetosorilEMS) waves plane symmetry, is known to disintegrate into 2D entities in
propagating in a lows (=8xp/B?) magnetized plasma. If two dimensions, it should certainly break up somehow in
these waves propagate at an angle with respect to the matwee dimensions. The 2D solitom(x—uvt,y), is known
netic field, collapse may occur. Collapse mechanisms can, iftom theory to be unstable in three dimensi¢8$ (see the
turn, lead to transfer of energy to the plasma ions. A betteAppendix. However, perturbing it along the axis in a
understanding of these mechanisms is lacking. Certain resimulation, actually seeing it break up and following the de-
strictions, such as those of small amplitude, long wavelengthpris all the way to a possible 3D structure, demands some-
propagation velocity within a small interval around that for what cumbersome numerics. As far as we know, this has not
linear FMS waves, wave frequency small as compared witlyet been done. Instability of 3D, azimuthally symmetric soli-
the ion cyclotron frequency, etc., are assumed when derivingpnshasbeen investigated numerical¢,10—-13. In contra-
KPI in this context. distinction to the instability of the 2D soliton, which will be

A second area where three-dimensional KPI appears is theeen to lead to complete destruction and formation of new
condensate model of superfluid helium. The two- and three3D structures, the instability in question was found to lead to
dimensional solitons of KPI then model degenerate limits ofgradual collapse. This involves a steepening and narrowing,
the vortex lines and rings, respectively, that have been olbut with some structure essentially conserved until a final
served there. In this context, KPI is derived as a limit of theimplosion on the axis occurs. Some theoretical estimates of
Nonlinear Schrdinger equation with cubic nonlinearity, the general behavior involved can be found4n (first ref-
which itself is a somewhat controversial though popularerence.
model for superfluid helium [I(The KPI limit is obtained for It might seem odd that simulations for distortion of the 3D
entities moving with velocities slightly below that of infini- soliton have been performed, whereas such simulations for
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the 2D one have not. The explanation is in the symmetryBecause of the geometry, a coefficient in the numerator and
The 3D soliton behavior was studied iR, p [=(y?> the power of the denominator are different from those of Eq.
+2%)12] space, neglecting dependence. On the other hand, (3), but general behavior is similar.
disintegration of the 2D soliton in three-dimensional space Our calculations were performed on both a HP Apollo
can only be followed in a fully three-dimensional simulation, 9000 model 720 workstation and on a Cray EL98. The nu-
which is much more time consuming. This task is the subjectnerical algorithm used for calculating the time evolution
of the present work. was the leapfrog algorithm, applied when E#) was inte-
Although we know from theory that our 2D soliton will grated overx. Periodic boundary conditions were assumed.
disintegrate, there are at least three further questions to Bdore about the algorithm and its stability can be found in the
addressed. second of Ref[8]. These 3D calculations took about a thou-
(1) What is the wave number of the perpendicular pertursand computer hours.
bation leading to the shortest lifetime of the 2D soliton in  The soliton(2) was wiggled along such that, at=0, x
three dimensions@2) When this or a similar perturbation is was replaced byx+ dcosk,z). We do not know the value of
applied, will any products of the inevitable breakup be ro-k,, corresponding to the maximum growth rate of the insta-
bust?(3) If the answer to questiof®) is affirmative, will any  bility, from theory. Therefore, this critical “wavenumber”
robust fragments evolve to the 3D solutions, known approxiwas found numerically. The result is shown in Fig(far
mately from the theory of13]? convenience, we actually used a smaller valuéoin our
Shortly, we will answer questiofl) with numerical simu-  subsequent simulations, to avoid numerical instabilf&gs
lations. First, however, a few brief comments on questionsThe behavior for very smak, in the figure is indicated by
(2) and (3) are in order. Recently, a similar 3D simulation an expansion calculation; see the Appendix. The two meth-
was performed for a different model soliton equationods are complementary and give consistent results.
[Zakharov-Kuznietsov, which differs frorfl) only in they The Kadomtsev-Petviashvili equation is peculiar in that
andz terms[14]]. There, the answers to both questions wereeven the initial conditions must fulfill an infinite set of con-
affirmative. However, in that case, the 3D solitons werestraints. The most obvious one follows fromsaintegration:
known to be stable, in contradistinction to the present study
of Eq. (1). Thus, until we performed the simulation, we had N
to consider both question&) and(3), as open. Vif wn dx=0. ®
The two-dimensional soliton solution to E@) [15] is

Our initial condition satisfies all these constraints. Again,
4v[1-v(x—3wt)?+17y?] this aspect is discussed extensively{ &} (for 2D; see also
n(xy.t)= [1+ v(x—301)2+ v2y72 ' v>0. (2 [16] for theory. One of the conclusions of R{B] is that in
fact not satisfying them had little impact on the result. How-
Note thatn, which is theexcesover the mean density ifl),  ever, here we do satisfy these constraints. Figure 1 shows
can be negative. Valleys appear around xhexis. As al- three-dimensional visualizations of three constastirfaces

ready mentioned, theory tells us that this soliton is unstabl@s the perturbed soliton propagates. Two cross sections aug-
in x,y,zt. In the liquid helium context, Eq2) is the KPI ~ ment each frame. The message is that the 2D soliton does

limit of an oppositely directed vortex pair solution of the break up when perturbed along the third direction, producing

nonlinear Schidinger equation. structures some of which are seen changing their symmetry
The three-dimensional soliton somewhat resembles Edrom z to 6, though at different rates.

(2) rotated around the axis. However, known solutions are ~ Note how little thex,y plane traces change during the

approximate[there is no exact formula resembling EG) simulation. This was suggested by the similarity between

with y— p] [13]. This is not surprising, in view of the non- Eds.(3) and(4). At the same time, thg,z traces are chang-

integrability of Eq.(1) in 3D. It is possible, however, to find ing rapidly so as to mimic the contemporary ones Xoy.

the form ofn in the far field by concentrating on the linear After a while, a 3D soliton results from some of the frag-

terms in Eq.(1). We find ments, rather like a butterfly emerging from a cocoon. This is
confirmed by the cross sections. There is a recognizable resi-
vp2—2(x—3wt)? due of the 2D soliton trailing behind it. The new 3D soliton
N—consX —— Pae 3 moves forward faster than both the parent 2D soliton and its
[vp®+ (x=3wt)7] residue.

The two cross sections of the 3D soliton are similar and
resemble those found numerically in REE3]. Comparison
should be made between their-}p for the fourth frame of
Fig. 2 of[13] and ourn. (Their parametet = 0.69, whereas
KPI corresponds to small but positive ¥~ U, as indeed it
is for thisU value, for which it is 0.017.

" It is hard to say how the space array of 3D solitons will
depend on the boundary conditions in general. In our calcu-
lation, we obtained one emerging 3D soliton per box, thus
Y2 (x—3t)2 the space period was just'thg height of the box. However, we
n—sconst y _ (4y ~ cannot rule out the possibility that, with very differeky,
[vy?+ (x—3wt)?]? and hence different height, two or more 3D solitons could be

The complete solution was found numerically ¥8] as a
limit of the nonlinear Schidinger equation solutiofNLS
was solved by Chebyshev-Legendre series expansidre
constant density lines ir,p space somewhat resemble those
drawn from Eq.(2) for x,y [compare Fig. (d) of Ref.[13]
with the bottom trace of our Fig.(d)]. The resemblence is
only qualitative. For example, large-denominator behavio
from Eq.(2) is
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FIG. 1. (Color) Consecutive stages of the evolution of a 2D soliton initially perturbed along theés. The equation of the perturbed
soliton att=0 is given by Eq(2) with x replaced byx+ Scosk,2). Here v= %7 6=0.12,k,=1.4. Three surfaces of constamt —0.8, 1,
8.84) are seen. They are fo=0,t=0.094, and =0.140. The 2D soliton breaks up, producing new structures and debris. Some of the robust
fragments are changing their symmetry to finally produce a 3D soliton. Cross sectionxaldbgttom andx,z (top) are shown. Initially
the bottom ones correspond to constariies as given by Eq2). For halftones of stages intermediate between the first and second frames,

see[17].
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FIG. 1 (Continued.

generated per box. Thus all we can say is thatzlperiod and see them reconnect in an experiment, any theoretical
will in general be just the height of the box divided by  strengthening of the reconnection hypothesis should be of
wheren is a natural number. Just hawwill depend onk, is ~ some importancgSuch reconnection has been observed in a
an open question. very different context, the vortex trail of a B-47 aircrg20].
Recently the present authors prematurely published reFheoretical work has been done in regular fluid dynamics
sults of a simulation that ended before the 3D soliton wag21].)
formed. We erroneously surmised that this entity would
probably not put in an appearanf&7]. There is now no ACKNOWLEDGMENTS
doubt that it doegthe present simulation ran for twice as
long as that of 17]). According to[4,11], it should gradually The authors would like to thank Professors David Kaup,
collapse, steepening and narrowing. Our computational capalerry Bona, Zbyszek Peradzki and Andrzej Skorupski for
bilities did not even permit us to observe the onset of thigdiscussions. We would like to thank the Interdisciplinary
phenomenor(remember, the simulations ¢#,13] were #  Center of Mathematics and Dr. Nieatja, Dr. Lesyng, and
independent, whereas ours are)néil we can say is that, on Dr. Nowinski for use of the AVS computer graphics system.
the time scale of the dynamics we have observed, collapsghis work was supported by KBN Grant No. 2P03B-114-11.
must be very gradual.
With all the reservations mentioned aboveonlinear APPENDIX
Schralinger being a controversial model for superfluid he-
lium, KPI being just a limit of NLS, our results nevertheless ~ The general nature of the onset of instability can be in-
strongly suggest that an oppositely polarized pair of line vorvestigated theoretically for sm&}, [5]. We expand irk, and
tices in “He Il can coalesce and then reconnect into an arrapssume that the expansion of the growth rate begins with
of ring vortexes. v1~k,. Although the numerical calculations of this paper
Up to now, reconnection, resulting in the formation of take us far beyond the linear regime, our result may give
small ring vortices out of a pair of oppositely directed line some indication of how Fig. 2 should look near the left-hand
vortices (or two oppositely directed nearby sections of oneedge. We include the calculation here, as both references
large distorted circular vorteéxwas simply postulated in known to us give incorrect resulf8,10]. (Referencg9] is at
“He Il theory[18,19. Now we have a step-by-step indica- least essentially correct, but gets the coefficient wrong as
tion that this metamorphosis indeed takes place. This is justell as being too brief to follow easily.
an indication, as the reconnection was found for the KPI We perturb Eq(1) around a solutiori2) for somev. Thus
limit, at which NLS vortices degenerate. However, until it
proves possible to isolate two opposed line vortice$He I n=ng(x—vt,y)+one" k2 =3, (A1)
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1.2 55 Sno=any+ Bny+p(n,—1/6).

The third function fails to vanish at infinity. There are two
physical eigenmodes, andn, (we drop the zero subscript
This dualism often leads to one unstable and one stable
mode, e.g.[22]. In Chap. 2 of 10], the authors claim to treat
the stability of then, mode, and would have it be stable for
our sign of the dispersion. However, their calculation is
flawed, as the adjoint of is miscalculated. In actual fact,
only the n, mode leads to a relation betweenandk, in
second order of the expansion. We now proceed to find this.
Take np=n,, leading to

.1

1.0 . , : ony=—y(on,+B), o+6B6=1, (AB)

k/v in first order of(A2). Once again, the second component can
be discarded as being unphysical. Ttgts 0, oc=1. In sec-

FIG. 2. The maximum value ofn/én, of an unstable pertur- ond order, Eq(A2) yields

bation for fixed time of the runT=0.01, as a function okzv’l.
We see that the most unstable normalized wave nurkper?! is
near 4. The value ok,»~! used in our simulation was 0.5, as
smaller length scales lead to numerical instabilities. We infer tha . . -

9 ) . S ) {ve now need the eigenfunctions of the adjoint of the opera-
the process described in the preceding figure is fastest when the

length scale of the perturbation is eight times shorter than ours. Th 0j1L. The only elge.nfunctlon that vanlshes .at infinity is
line on the left corresponds to the linear, small-wave-number limit?x N- When we multiply Eq.(A7) by this function on the
given by Eq.(A8). This figure was feasible due to the extremely l€ft and integrate twice by parts, the whole left-hand side
small value ofT. For largerT andk,»~* much larger than 0.5, Vanishes. Using the form of, Eq. (2), we obtain as a con-
numerical instabilities would set in. Variables are dimensionlessSistency condition on the right-hand side

(Here th=theory and cp-computer generated.

Lén,= 'yinvx_ YoNyx— 3k§nX' (A7)

y1=6v"%,, (A8)

We obtain, after linearization, o i i .
for the n, mode, which in any case is the linear limit of our

L5n=—y5nx—3k§5n, (A2) perturbation as used in Fig. 1. This augments the behavior
found numerically, as there is a limit on the length of a
L=d2[—v+6ng+ (9)2(]_3(75_ (A3)  perturbation in a simulation; see Fig. 2.
The linear growth rate might seem to be slightly too large.
We now expand irk, An explanation of how this can come about can be found in
5 [22] (it concerns the periodic boundary conditions of a simu-
y=viko T yoKi+- -, dn=dngt+kony+ -, lation). Nonlinear behavior takes over very sodv].
(Ad) Calculations such as the above can be rendered much

more rigorous[23]. This will be the subject of a separate

paper 24]. However, the treatment §23] does validate val-
LSne=0. (A5)  ues ofy, obtained by the above, less rigorous, calculation in

a somewhat similar context in which the strongest secular
Usually expansions of this type lead to dispersion relationgerms only are removed. It transpires that a more rigorous

and so

vy=vy(k) at second ord€l5]. Equation(A5) is solved by treatment leavey; intact.
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