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Macroscopic dynamics in quadratic nonlinear lattices
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Fully nonlinear modulation equations are obtained for plane waves in a discrete system with quadratic
nonlinearity, in the limit when the modulational scales are long compared to the wavelength and period of the
modulated wave. The discrete system we study is a model for second-harmonic generation in nonlinear optical
waveguide arrays and also for exciton waves at the interface between two crystals near Fermi resonance. The
modulation equations predict their own breakdown by changing type from hyperbolic to elliptic. Modulational
stability ~hyperbolicity of the modulation equations! is explicitly shown to be implied by linear stabilitybut not
vice versa. When the plane-wave parameters vary slowly in regions of linear stability, the modulation equa-
tions are hyperbolic and accurately describe the macroscopic behavior of the system whose microscopic
dynamics is locally given by plane waves. We show how the existence of Riemann invariants allows one to test
modulated wave initial data to see whether the modulating wave will avoid all linear instabilities and ultimately
resolve into simple disturbances that satisfy the Hopf or inviscid Burgers equation. We apply our general
results to several important limiting cases of the microscopic model in question.@S1063-651X~98!11804-4#

PACS number~s!: 03.40.Kf, 63.10.1a, 73.50.Fq, 42.82.Et
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I. INTRODUCTION

Many nonlinear dispersive equations modeling physi
systems have multiparameter families of exact wave-train
lutions. Letting the parameters of the wave train be slow
varying functions of space and time typically leads to a d
namical description of the parameters, the so-calledmodula-
tion equations, where nonlinearity dominates over dispe
sion. Dynamics taking place on the scales of a wavelen
and a period are said to be short wave ormicroscopic, while
the modulation equations are concerned with the long-w
or macroscopicdynamics of the slowly varying parameter
Indeed, the modulation equations asymptotically extend
family of exact wave-train solutions through the introducti
of a small parametere, the ratio between the microscop
and macroscopic scales, which is not present in the unde
ing microscopic model.

Modulation equations can be obtained formally in seve
ways, all connected with the method of averagin
Asymptotic expansions using the method of multiple sca
can reveal the modulation equations as a solvability con
tion @1#, averaged variational principles can be exploited
Lagrangian systems@2#, and local conservation laws can b
averaged in an approach that has a somewhat more phy
appeal~see, e.g.,@3,4# for applications in a nonintegrabl
discrete setting in closest analogy with what will follow b
low!. When the modulation equations are meaningful, th
encode important physical information and can be used
make predictions about macroscopic wave motion and
namics.

However, when are the formal modulation equatio
meaningful? One clue comes from the equations themse
As a set of first-order quasilinear equations~derivatives with

*Present address: School of Mathematics, Institute for Advan
Study, Olden Lane, Princeton, NJ 08540.
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respect to space and time enter linearly!, the modulation
equations can be either hyperbolic or elliptic, perhaps
pending on the local values of the wave parameters. If t
are elliptic, then the initial value problem of how a wav
train with given spatial variation of its parameters evolves
time is ill posed and the modulation equations are not va
as a model of dynamics~although some significance ha
been attributed to their self-similar solutions@5#!. If they are
hyperbolic, then the initial value problem can be solved un
the time of breaking, when infinite spatial derivatives app
or until the time of change of type when hyperbolic dyna
ics pushes part of the modulated wave into a region wh
the equations are locally elliptic, whichever comes first.

However, the fact that the initial value problem can
solved in some time interval does not necessarily mean
the modulation equations are a good model for dynamic
the limit of small-scale ratiose. In fact, the well posedness o
the initial value problem for modulated waves is only
indication of stability of those waves to perturbations
nearby wavelength, i.e., to relatively long waves. If oth
short-wave instabilities are present, then they may obst
the process of smooth modulation of the waves without
ing detected by the formal modulation equations themselv
The relevance of this observation has not been explore
the literature, mainly due to a lack of examples of micr
scopic systems having at the same time the following ess
tial features: a rich multiparameter family of nonline
traveling-wave solutions, sufficient structure to control slo
modulations of the waves in the family, and a set of re
tively short-wave instabilities that can exist without lon
wave instabilities being present as well.

In this paper we study the dynamics of modulated wa
in such a microscopic system where the well posednes
the initial value problem for the modulation equations is n
sufficient to guarantee their validity as a model. The mic
scopic system describes pairs of resonantly interacting n
linear oscillators arranged on a one-dimensional latt
d
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57 6039MACROSCOPIC DYNAMICS IN QUADRATIC NONLINEAR . . .
whose sites are labeled with integersn:

i ] twn1wn111wn211wn* vn50,

i ] tvn1g~vn111vn21!2avn1
1

2
wn

250. ~1!

Here g and a are real parameters. Without the neare
neighbor coupling terms, this system is the generic envel
equation for the weakly nonlinear interaction of two~not
necessarily mechanical! oscillators in near second-harmon
resonance. To see this, one supposes a Hamiltonian o
form

H5
p1

2

2m1
1

p2
2

2m2
1

k1q1
2

2
1

k2q2
2

2
1U~q1 ,q2!, ~2!

where the interaction energyU is of third order in the dis-
placements and the near resonance condition is satisfied

Ak2

m2
52Ak1

m1
2ea, ~3!

with e being a small parameter anda a fixed detuning. For
small amplitudes, the two oscillators have displacement
the form

q15e
2Ak1

U112
A2m2w~et !eiVt1c.c.1O~e2!,

q25e
2Ak1

U112
Am1v~et !e2iVt1c.c.1O~e2!, ~4!

where V5Ak1 /m1 is the fundamental frequency,U112

5]q1

2 ]q2
U(0,0), and c.c. denotes the complex conjugate. T

envelopesw(et) and v(et) satisfy the system~1! with the
nearest-neighbor coupling terms neglected and with the t
derivatives taken with respect to the slow timeet. The non-
linear interaction terms are generic for resonant interacti
because they dominate wheneverU112 is nonzero. A weakly
coupled lattice of such pairs of resonantly interacting os
lators can be described in the limite↓0 with the inclusion of
the nearest-neighbor coupling terms, whereg quantifies the
relative coupling strengths of the second and first harmon

In terms of concrete physical applications, the coup
system of equations~1! is used to model the exciton wave
that propagate along the interface between two crystals w
the crystals are near Fermi resonance@6,7#. Fermi resonance
means exactly that the exciton frequency in one crysta
twice that in the other crystal. In this model,wn(t) andvn(t)
are interpreted as expectation values of annihilation op
tors for the bosonic excitations of the two kinds of atoms t
are adjacent at the interface at the siten. The same mode
also describes second-harmonic generation in arrays of
cal waveguides, each having core material with a nonz
value of x (2), the quadratic nonlinear susceptibility tens
@8,9#. In this case,t is the spatial coordinate of distance alo
each waveguide,n labels the individual waveguides of th
array, andwn(t) and vn(t) are the amplitudes of the first
and second-harmonic electric fields in and along each co
-
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In Sec. II we will describe the family of traveling-wav
solutions of the system~1! that will form the basis of our
study. The waves will be characterized by their nonline
dispersion relations, which imply the existence of a band g
in the wave spectrum. By introducing a uniformly small pe
turbation of fixed relative wave number and linearizing, w
will find the linear stability criterion for the waves.

Section III will begin to address the issue of slowly mod
lated waves, where the parameters of the plane waves,
viously held constant, are allowed to be slowly varying fun
tions of space and time. The formal derivation of explic
fully nonlinear modulation equations will be motivated b
numerical simulations of the system~1!.

Section IV is the heart of our paper, where we analyze
formal modulation equations. We first do this in order
understand their validity and to underscore our main po
that short-wave instabilities that can destroy a modulati
wave train can be hidden from the modulation equatio.
Then we work in regions of linear stability where there
little doubt that the modulation equations are a valid mo
for modulating wave dynamics and study their implicatio
using the powerful tool of the Riemann invariants.

In Sec. V we explore relevant special cases of the mic
scopic model~1!. First we examine the~dispersive! con-
tinuum limit that leads to the equations describing opti
solitons in homogeneousx (2) media @10# and Fermi reso-
nance interface solitons@6# and show how some of the sta
bility results for plane waves in the continuum model@11,12#
can be deduced from the discrete problem. Indeed, the th
of nonlinear plane waves in the continuum model can
reconstructed asymptotically from the neighborhood of
zero solution of Eqs.~1! when a'2g24. We then briefly
consider two discrete limits of Eqs.~1! in which the dynam-
ics simplify and in fact the distinction between the well po
edness and validity of the modulation equations becom
blurred: the limit of large detuninga and the limit of high-
frequency waves. The former limit reproduces the discr
nonlinear Schro¨dinger equation, for which the modulatio
theory of plane waves is simple by comparison@3#.

Finally, we conclude in Sec. VI with a brief discussion
unanswered questions.

II. EXACT NONLINEAR PLANE WAVES
AND LINEAR STABILITY

The system of equations~1! has a two-parameter family
of exact nonlinear plane-wave solutions of the form

wn~ t !5Wei ~kn2vt !, vn~ t !5Ve2i ~kn2vt !, ~5!

wherek, v, W, andV are real constants satisfying the no
linear dispersion relations

V52~v12 cosk!,

W252~2v2a12g cos 2k!~v12 cosk!. ~6!

Further solutions can be found using the gauge symmetr
Eqs.~1! for any real constantu,

wn~ t !°wn~ t !eiu, vn~ t !°vn~ t !e2iu, ~7!
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6040 57PETER D. MILLER AND OLE BANG
which leaves the equations unchanged. We viewk andv as
independent parameters, with the real amplitudesW and V
determined from Eqs.~6!.

In order for W to be real, plane-wave solutions cann
exist everywhere in the (k,v) plane. SinceW2 is clearly
positive for largeuvu, solutions will fail to exist in a certain
band gap whose shape is determined by the parametea
andg. The band gap will pinch off at those values of (k,v)
for which the two factors ofW2 both vanish together. In the
range of 0<k<p ~the band diagram is even and 2p peri-
odic in k), this can happen once, twice, or not at all. The
are two crossings if

g,21/2, 2g14,a,21/g22g ~8!

or if

g.1/2, 21/g22g,a,2g24. ~9!

There is one crossing ifua22gu,4 and there are no cross
ings otherwise. These three regions of the (g,a) plane are
shown in Fig. 1, along with band diagrams in the (k,v)
plane representative of zero, one, and two crossings.
existence of a gap in the spectrum of nonlinear waves
feature related to the two-component resonant nature of
system~1!. The intriguing shape of the band gap has be
studied recently in the context of optics@8#.

The stability of the nonlinear plane waves can be inve
gated by choosing constantsV, W, k, andv that satisfy the
dispersion relations~6! and then looking for solutions of Eqs
~1! of the form

wn~ t !5@W1w̃n~ t !#ei ~kn2vt !,

vn~ t !5@V1 ṽ n~ t !#e2i ~kn2vt !, ~10!

where the small perturbations have spatial structure of r
tive wave numberb:

FIG. 1. Band-gap-structure dependence on the parametersg and
a. In the upper left plot, regions of the (g,a) plane in which the
band gap does not twist off at all are blank, regions where ther
one twist in the band gap for positivek are shown with horizonta
lines, and regions where there are two twists for positivek are
shown with vertical lines. The remaining plots show representa
band diagrams with the band gap filled in.
t

he
a

he
n

i-

a-

w̃n~ t !5@w̃b,R~ t !1 iw̃b,I~ t !#eibn,

ṽ n~ t !5@ ṽ b,R~ t !1 i ṽ b,I~ t !#eibn. ~11!

The linearized system is then reduced to a fourth-order s
tem for each perturbative wave numberb:

] tF w̃b,R

w̃b,I

ṽ b,R

ṽ b,I

G5F iA V2C 0 2W

V1C iA W 0

0 2W iB 2D

W 0 D iB

GF w̃b,R

w̃b,I

ṽ b,R

ṽ b,I

G ,

~12!

where

A522 sin k sin b, B522g sin 2k sin b,

C5v12 cosk cosb, D52v2a12g cos 2k cosb.
~13!

The real parts of the eigenvalues of this matrix are grow
rates associated with the mode parametrized by the rela
wave numberb. The nonlinear plane wave is declared to
linearly stable if all four growth rates vanish for all
bP@2p,p#. The stability criterion is not easy to express e
plicitly and analytically as a function of the independe
wave parametersk andv. However, it is easy to compute. I
Figs. 4 and 5 we will show the (k,v) plane for some par-
ticular choices ofa and g, indicating the regions of linea
instability as calculated from the eigenvalues of the matrix
Eq. ~12! with gray shading, but we postpone those figur
until we have some information about modulating waves
that we can draw an important conclusion from the comp
son.

If the waves are linearly stable, then weakly nonline
theory can be used to study the small perturbationsw̃n(t)
and ṽ n(t). In the case of long-wavelength perturbation
Korteweg–de Vries dynamics prevails in the moving fram
of each branch of the group velocity of linear waves ne
b50. For some values of the parameters of the underly
plane wave, the dispersion of linear waves atb50 may van-
ish, leading to steepening and shock formation that is re
larized by higher-order dispersion. The dynamics of the
weakly nonlinear perturbations, which do not have any eff
on the background plane wave that supports them, have b
recently studied in a one-component discrete system
Konotop and Salerno@13#.

III. MODULATED NONLINEAR PLANE WAVES
AND MODULATION EQUATIONS

The linear stability analysis described above addresses
question of the behavior of solutions of Eqs.~1! that are
uniformly close inn to a given plane-wave solution. How
ever, we may also ask whether there exist solutions of E
~1! that are close to a plane-wave solution only locally, in t
neighborhood of each fixedn. The plane wave nearest th
solution may be different for each neighborhood. The und
lying approximate solution of Eqs.~1! is thus generally a

is

e
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57 6041MACROSCOPIC DYNAMICS IN QUADRATIC NONLINEAR . . .
slowly modulatedplane wave.
To get an idea of what kind of dynamical behavior o

might expect of a modulated nonlinear plane wave, we t
to numerical simulation of the microscopic system~1!. We
prepared a domain of 1600 points with initial conditions th
were, near each fixedn, plane waves satisfying the dispe
sion relations~6!. The initial twistk5arg(wn11 /wn) of each
plane wave was taken to be a constant over the whole
main, while the amplitudesW andV were taken to be slowly
varying functions consistent with Eqs.~6! and the choice of
k. For convenience, periodic boundary conditions inn were
assumed for the whole domain. Snapshots of the quant
uwnu2, uvnu2, arg(wn11 /wn), and arg(vn11 /vn) are shown in
Figs. 2 and 3 with the initial conditions highlighted in bol

It is clear from these simulations that slow variation of t
plane-wave parameters in space implies their slow varia
in time. In fact, the local period of the microscopic oscill
tions in Fig. 2 ranges between 2.1 and 2.5 time units co
pared with 30 time units between snapshots, while in Fig
the local period ranges between 1.3 and 2.1 time units
there are 20 time units between snapshots. It is possibl
deduce scaling properties of the slow dynamics with ad
tional numerical experiments; it turns out that pictures t
are, to the eye, indistinguishable from these can be mad
increasing the number of points sampling the modula
wave by some scaling factorf and then taking snapshots o
the numerical simulation at time intervalsf times as long. In
both simulations, the dynamics of the waves are regular
some time before a local catastrophe appears that break
structure of the smoothly modulated plane wave. In Fig
the wave form spontaneously breaks down for apparently
reason, while in Fig. 3 the wave form separates into t
parts and steepens until it threatens to become multiva
and something resembling a shock wave appears.

FIG. 2. Snapshots taken 30 time units apart of a numerical si
lation of the system~1! with parameter valuesa523 andg520.3
and 1600 points.
n

t
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We want to explain these simulations. Slowly modulat
plane waves are described by allowing the independent
rameters of the family of plane waves,k andv, to be slowly
varying functions ofn and t. To proceed, we considere
!1 and introduce equally stretched slow scalesX5en and
T5et, in accordance with the scaling observations me
tioned above. Our immediate goal is to derive evoluti
equations for the macroscopic quantitiesk(X,T) andv(X,T)
from the microscopic dynamics given by Eqs.~1!.

We will use the fact that the system of equations~1! im-
plies two local conservation laws

] tNn1Fn2Fn2150, ] tHn1Gn2Gn2150, ~14!

with conserved local densities

Nn5uwnu212uvnu2,

Hn5auvnu22Re$2wn* wn1112gvn* vn111wn
2vn* %

~15!

and corresponding fluxes

Fn52 Im$wn11wn* 12gvn11vn* %,

Gn52 Im$agvn* vn111wnwn12* 1g2vnvn12* 1wnwn11vn11*

1 1
2 gvnwn11* 2 %. ~16!

These local forms imply that the sums ofNn andHn over the
periodic domain are global invariants. Evaluating the co
served local densities and their associated fluxes on an e
plane-wave solution withk andv fixed, one finds that

u- FIG. 3. Snapshots taken 20 time units apart of a numerical si
lation of the system~1! with parameter valuesa523 andg520.3
and 1600 points.
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6042 57PETER D. MILLER AND OLE BANG
Nn5W212V2,

Fn52~W214gV2 cosk!sin k,

Hn5aV222W2 cosk22gV2 cos 2k2W2V,

Gn522g2V2 sin 4k22W2V sin k

2~2W222agV21gW2V!sin 2k, ~17!

where the amplitudesW and V are functions ofk and v
according to the dispersion relations~6!. Note that all of
these quantities areconstantsfor plane waves and thus i
this context are explicit functions of the wave parameterk
andv. Takingk andv to depend smoothly onX andT and
assuming that the dispersion relations continue to hold
cally in X andT, we may divide the local conservation law
~14! by e and take the limite↓0 to find the macroscopic
modulation equations

]TN1]XF50, ]TH1]XG50. ~18!

These partial differential equations are themselves local c
servation laws, this time in a continuous setting. With
application of the chain rule, these modulation equations
be written in terms ofk(X,T) andv(X,T) as

]TF k

v
G1M ~k,v!]XF k

v
G50, ~19!

where the coefficient matrix is

M ~k,v!5F 0 1

A~k,v!

D~k,v!

B~k,v!

D~k,v!

G ~20!

and

A~k,v!52@64g cos4 k136gv cos3 k

1~8v14gv2256g24a!cos2 k

1~2v2226gv2av!cosk

12a14g24v22gv2#, ~21!

B~k,v!54@12g cos2 k1~4gv14!cosk

14v22g2a#sin k, ~22!

D~k,v!54g cos2 k18 cosk16v22g2a. ~23!

The first of the modulation equations confirmsconservation
of waves, proving the existence of aphase variableu(X,T),
a potential from whichk(X,T) and v(X,T) are derived by
k5]Xu and v52]Tu. Conservation of waves is often im
posed in anad hocmanner to provide closure for modulatio
equations derived from a variational principle@2#. Here we
see that it can be derived from an explicit limit of the loc
conservation laws.
-

n-

n

l

IV. MODULATIONAL STABILITY AND ANALYSIS
OF THE MODULATION EQUATIONS

A. Well posedness and the modulational stability criterion

The characteristic velocitiesof the modulation equations
are the eigenvalues of the coefficient matrixM (k,v). These
eigenvalues are

l6~k,v!5
1

D~k,v!
$2@12g cos2 k14~11gv!cosk14v

22g2a#sin k6A2~v12 cosk!p~k,v!%,

~24!

where

p~k,v!5a2~k!v21a1~k!v1a0~k! ~25!

and

a2~k!524g cos2 k112 cosk212g, ~26!

a1~k!5216g2 cos4 k1144g cos3 k

1~824ag116g2!cos2 k

1~28a288g!cosk1812ag14g2, ~27!

a0~k!5216g2 cos5 k1160g cos4 k

1~16g2216ag216!cos3 k1~28a2112g!cos2 k

1~a218ag112g2116!cosk. ~28!

If the characteristic velocities are real and distinct for somk
andv, then the modulation equations are locallyhyperbolic.
This means that the initial value problem is locally we
posed and is interpreted as implying themodulational stabil-
ity of the plane-wave solution with wave numberk and fre-
quencyv. On the other hand, if the velocities have nonze
imaginary parts, then the modulation equations are loc
elliptic. In this case, the initial value problem is locally i
posed since a typical initial condition for Eq.~19! will excite
modes with arbitrarily large growth rates. This is interpret
as implying themodulational instabilityof the plane-wave
solution. The modulational stability criterion is thus

~v12cosk!p~k,v!.0. ~29!

We wish to compare modulational stability with linear st
bility. In Figs. 4 and 5 the regions of modulational instabili
are indicated on the (k,v) plane with vertical lines, while the
regions of linear instability are shaded.

As can be seen in these figures, regions of stability can
isolated from each other both by the band gap and by reg
of instability. The way to think of the modulation equation
~19! and their relation to the modulational stability criterio
is the following. If initial datak(X) andv(X) for the modu-
lation equations~19! are parametrically represented in th
(k,v) plane as a curve that lies entirely outside the regio
indicated with vertical lines, then the modulation equatio
describe the dynamics of these functions for slow timesT in
some finite interval 0,T,T* . The timeT* cannot gener-
ally be taken to be infinite because it is possible either for
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57 6043MACROSCOPIC DYNAMICS IN QUADRATIC NONLINEAR . . .
dynamics of Eq.~19! to drive the system to the boundary
the region of modulational stability at which point the initi
value problem for Eq.~19! becomes locally ill posed~ellip-
tic! or for X derivatives ofk andv to become infinite as the
solution of Eq.~19! ‘‘tries’’ to become multivalued or de-
velop a shock. In the latter case, the modulation equat
may continue to have single-valuedweaksolutions~i.e., non-
classical or nonsmooth solutions in the sense of distri
tions! for times greater thanT* . These weak solutions propa
gate as shock fronts and require sophisticated nume
methods to resolve their structure@14#. However, the weak
solutions have no meaningin the microscopic system~1!
because they violate the assumption of the smoothnes
k(X) andv(X) that allowed us to pass to the limite↓0 and
thus obtain a closed description of the macroscopic dyn
ics. When infinite derivatives appear ink(X) andv(X), one
must return to the microscopic system~1! to explain the
subsequent dynamics.

These statements concern only the modulation equat
~19! and the behavior of their solutions. One hopes,
course, that smooth solutions of a globally well-posed pr
lem in some macroscopic time interval 0,T,T* actually
describe the dynamics of a modulating plane wave of
microscopic system~1! in the limit of smalle ~slow modu-
lation!. However, this is not always the case. Figures 4 an

FIG. 4. Regions of instability in the (k,v) plane fora523 and
g520.3. The regions where the modulation equations are elli
are shown with vertical lines and the regions where the plane wa
are linearly unstable are shaded.

FIG. 5. Same as Fig. 4 but fora50 andg52.
s

-

al

of

-

ns
f
-

e
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clearly show that the hyperbolicity of modulation equatio
implies stability in a more restricted sense than is guarant
by linear stability. A smooth solution of Eq.~19! will only be
a good model for the dynamics of modulated plane wave
Eqs.~1! if the waves additionally avoid all regions of linea
instability. In general, if a parametric representation of t
modulating wave in the (k,v) plane is approaching the
boundary of the hyperbolic region so that the time of fi
change of typeT* is on the horizon well before any shock
have the chance to form,it will first enter a region of linear
instability. This leads to the local breakdown of the wa
form at a timeT** that is strictly less than the time for firs
change of typeT* predicted by the modulation equation
alone. It is important to observe that the modulation eq
tions ~19! are utterly unawareof the ‘‘minefield’’ of insta-
bilities that can lie between a region of linear stability and
region of modulational instability.

To clarify the difference between modulational stabili
and linear stability, it is useful to study the four linear grow
rates calculated in the course of linear stability analysis
functions of the relative wave numberb. By definition, a
wave is linearly stable if all growth rates vanish identica
as functions ofbP@2p,p#. So the interesting compariso
is between the growth rates for waves in the two types
unstable regions. In Fig. 6 the linear growth rates are plo
as functions ofb for two plane waves near the boundary
modulational stability.

These plots suggest that the hyperbolicity of the modu
tion equations~19! merely indicates that there exists a neig
borhood of relatively long waves nearb50 that are stable
perturbations of the plane wave. This should be contras
with the more strict linear stability criterion thatall values of
b correspond to stable perturbations. Thus linear stab
implies modulational stability, but the converse is not alwa
true. In general, hyperbolicity of modulation equations
equivalent to linear stabilityonly if all linear instabilities are
of Benjamin-Feir type, that is, if all unstable modes lie in
sideband of the underlying wave train. That the system~1! so
clearly demonstrates this fact is one of the main message
our paper.

Although a proof of this statement in all generality r
mains to be given, the relationship between linear instabi
and ellipticity of modulation equations can be demonstra
exactly in this particular problem. If one considers the lim

ic
es

FIG. 6. Linear growth rates fora523 andg520.3 as a func-
tion of the perturbative wave numberb. Left: k521.5 andv523
in the modulationally unstable region. Right:k521.5 andv522.7
just across the boundary in the modulationally stable but linea
unstable region.
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b↓0, the characteristic polynomial with eigenvalueis of the
matrix in Eq.~12! takes the form

s41@bb31O~b2!#s31@b21O~b!#s21@bb11O~b2!#s

1@b2b01O~b3!#50, ~30!

wherebi5bi(k,v) are real coefficients that can be explicit
calculated by direct asymptotic expansion of the characte
tic polynomial for smallb. Two of the roots areO(1) in the
limit and to leading order satisfy

s21b250. ~31!

Sinceb2 can be shown to be strictly negative for allk andv,
these roots never imply instability. The other two roots a
obtained by settings5bs̃ , where to leading order

b2s̃21b1s̃1b050. ~32!

These roots will be real and the wave parametrized by
pair (k,v) will thus be stable to its sideband if the discrim
nant is positive:

b1
224b2b0.0. ~33!

It can be shown that this condition is equivalent to Eq.~29!
for all pairs (k,v) that lie outside the band gap.

The question of the meaning of the modulation equati
in the intermediate layer where they are hyperbolic
where short-wave linear instabilities exist is a deep one
quiring more investigation. Are the instabilities seen in t
numerical experiments artifacts of not working sufficien
close to the limite↓0 of vanishing scale ratios~or indeed of
numerical noise due to integration and roundoff errors!? That
is, in the limit e↓0, are any short-wave instabilities excite
by the modulation itself to destroy the leading order beh
ior? Or do genuine limiting modulated wave solutions ex
that are linearly unstable to short waves?

B. Dynamics of modulated waves

With the caveat that we restrict attention to modula
waves that atT50 lie for all X in a region of linear stability,
the modulation equations~19! accurately describe the evolu
tion of the waves for finite timesT,T** . Let us explore
some of the implications of the description of the dynam
offered by the hyperbolic system~19!.

1. A brief remark

There are clearly no dispersive terms in the modulat
equations~19!. These terms have been neglected because~as
will be clearly demonstrated below! they play no role in the
dynamics until shocks form or until the characteristic velo
tiesl6(k,v) degenerate and become identical on the bou
ary of the region of hyperbolicity. In the former case, t
weak dispersion necessary to regularize the behavior is
plied by the underlying discreteness of the system and le
~at least at first! to Korteweg–de Vries–like dynamics at th
shock front, which sheds solitons. In fact, the numerical
periments of Zabusky and Kruskal that resulted in the co
ing of the word ‘‘soliton’’ @15# clearly demonstrated the phe
nomenon of solitons escaping from a steepening shock,
s-

e

e

s
t
-

-
t

d

s

n

-
d-

p-
ds

-
-

nd

in the presence of integrability of the microscopic system~a
luxury we do not have available here! the details of how
weak dispersion regularizes the shock can be worked
exactly @16,17#. In the latter case of nearly degenerate ch
acteristic velocities, a Galilean transformation can be use
move in the frame of the common characteristic velocity
that the first-orderX derivatives disappear altogether and t
leading-order balance appears on a slower time scale y
ing a nonlinear Schro¨dinger equation and envelope soliton
Envelope solitons occur, for example, in the limit of sma
amplitude waves whereV'0 and thusl1'l2 . However,
this case is not always as relevant physically as the fi
amplitude case because, as pointed out in the Introduc
the model ~1! is typically derived with an assumption o
small amplitude~or what is often equivalent, weak nonlin
earity! so thatO(1) values of the dimensionless amplitud
wn and vn already correspond to small physical displac
ments. Considering even smaller displacements is then a
ther restriction that removes the dominant nondispers
terms from the problem. In optics, dispersionless terms s
as those appearing in the modulation equations~19! charac-
terize group velocity mismatch and the so-called walk-
effect of beams and pulses. Since we keep only these te
the dynamics that we will obtain can be interpreted as ‘‘no
linear walk-off’’ because the two distinct group velocitie
l6(k,v) depend on the local field values. Of course, we
not mean to imply that dispersion can be neglected forall
solutions of Eqs.~1!, only that this is so for those solution
that have the form of fully nonlinear modulated plane wav
For example, isolated localized solutions such as self-trap
stationary excitations and breathers often exist in disc
systems such as~1! and thrive on a dynamical balance b
tween nonlinear effects and dispersion. However, the
that such excitations are localized in the lattice when th
amplitudes areO(1) means that they are not individuall
well described by the dispersionless modulation equati
~19!, which are valid as a model for disturbances that
spatially extended. In short, dispersion is important for m
croscopic dynamics but not for smooth macroscopic dyna
ics.

2. Validity of the modulation equations

The fact that the modulation equations~19! are the correct
model for the macroscopic dynamics of modulated wave
best seen by comparing numerical solutions of Eq.~19! with
the data obtained from numerical simulations of the mic
scopic system~1! shown in Figs. 2 and 3. On the left-han
side of Fig. 7, we show the snapshots of Fig. 2 plotted pa
metrically in the (k,v) plane @we take k5arg(wn11 /wn)
and then determinev from the dispersion relations using th
local amplitudes#, while on the right-hand side we show
plots of the corresponding snapshots obtained by numeric
integrating the modulation equations~19! directly using a
stable scheme of centered differences in space and ‘‘le
frogging’’ in time. The first few curves from each simulatio
are indistinguishable to the eye, illustrating the accuracy
the description offered by the macroscopic system~19!. We
then see that the dynamics has driven the system locally
a region of linear instability, at which point the actual mod
lating wave solution of Eqs.~1! breaks up~see Fig. 2!. Since
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this is a region of short-wave instabilities, the modulati
equations remain hyperbolic and propagation continues a
nothing were wrong.

Similar parametric plots comparing the numerical d
from the microscopic system~1! that was first shown in Fig
3 to a numerical simulation of the macroscopic equatio
~19! are shown in Fig. 8. Here again one sees that the mo
lation equations are an excellent model for the dynamics.
also see that the shock wave that forms on the right-h
side of Fig. 3 is different from the breakdown that occurr
in the previous simulations, as it is not related to any ins
bilities; the evolution remains outside of all unstable regio
Other important features to observe are the fact that the c
seems to trace out a four-sided caustic as it evolves and
the curve rapidly contracts to the two sides of this figure t
are joined at the vertex corresponding to the backgro
plane wave in Fig. 3 on which the disturbances are propa
ing. More careful observations reveal that each of the t
waves that seem to have separated in Fig. 3 is confine
just one of the sides of this figure.

FIG. 7. Left: the snapshots of Fig. 2 plotted parametrically in
(k,v) plane. Right: corresponding snapshots obtained by direct
merical simulation of the modulation equations. There is excel
agreement until the dynamics move the wave into a region of lin
instability. Since these are short-wave instabilities, the modula
equations remain hyperbolic and can be integrated beyond the
destruction of the modulated plane wave in the microscopic sys

FIG. 8. Left: snapshots of Fig. 3 plotted parametrically in t
(k,v) plane. Right: Corresponding snapshots obtained by di
numerical simulation of the modulation equations. The waves u
mately lie along two sides of a distorted rectangle joined at
point of the background wave. These two sides correspond to i
pendently propagating simple waves and the distorted rectang
the image of a genuine rectangle in the plane of the Riemann
variants. The scattered points in the upper right corner of the
figure are the oscillations near the shock front; they do not appe
the right figure because the modulation equations cannot be
grated sensibly beyond the shock time.
if
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3. Existence of Riemann invariants

In explaining these observations, the most important t
for interpreting the modulation equations~19! is their repre-
sentation in terms ofRiemann invariants. Riemann invari-
ants for a hyperbolic quasilinear system are new depen
variables for which the matrix of coefficients ofX deriva-
tives is the diagonal matrix of characteristic velocities. In t
case of the equations~19!, these are variablesr 6(k,v) in
which the modulation equations take the form

]Tr 61c6~r 1 ,r 2!]Xr 650. ~34!

Thus the equations are coupled only through the charact
tic velocitiesc6(r 1 ,r 2)5l6(k,v), now expressed in term
of r 6 rather thank and v. It is also easy to visualize the
dynamics implied by these equations: Each point on
graph ofr 6(X,T) as a function ofX is moving to the right
with speedc6„r 1(X,T),r 2(X,T)…. Finding the Riemann in-
variants amounts to solving the Pfaffian differential equat

DFdr1

dr2
G5Fs1

1 s1
2

s2
1 s2

2G21F dk

dv
G , ~35!

wheresj
6(k,v) are the components of linearly independe

eigenvectors of the coefficient matrixM (k,v) belonging to
the distinct eigenvaluesl6(k,v) and D is an arbitrary in-
vertible diagonal matrix. Rewritten in terms of the Jacobi
matrix of the transformation, this becomes

]~r 1 ,r 2!

]~k,v!
S5D21, ~36!

whereS is the eigenvector matrix. Since the only constra
is that the left-hand side be diagonal, this amounts toN2

2N equations inN unknowns for anN3N hyperbolic sys-
tem. The Riemann invariants are thus generally overde
mined, although there are special cases where ther
enough structure for solutions to exist in theN3N case
nonetheless; see, e.g.,@18#. However, for two-componen
systems such as~19!, there are exactly as many equations
unknowns and thus there exist solutions@14#, although they
may be very difficult to write down explicitly. Using the fac
that M11(k,v)50 and M12(k,v)51, it is easy to see tha
the Riemann invariants satisfy

]kr 6~k,v!1l7~k,v!]vr 6~k,v!50. ~37!

It follows that r 6(k,v) is constant along curvesv5v(k) in
the (k,v) plane where

v8~k!5l7„k,v~k!…. ~38!

Although at this time we do not have explicit expressions
r 6(k,v), the fact that Riemann invariants exist for this pro
lem allows us to make several key observations about
behavior of modulated waves in the microscopic system~1!.

4. Riemann signatures, signature boxes, and instabilities

We recall some useful terminology introduced in@3#. In
terms of the Riemann invariants, given fieldsk(X) andv(X)
can be represented parametrically in the (r 1 ,r 2) plane by a
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graph that we call theRiemann signatureof the data. Each
Riemann signature is contained in a uniquesignature box,
which is the smallest rectangle with edges having cons
values of eitherr 1 or r 2 that contains the signature. An ea
consequence of writing the hyperbolic system of modulat
equations in Riemann invariant form is that, while the R
mann signature of the fields evolves in time, the signat
box remains the same.

The fact that the Riemann signature can never leave
box that initially contained it allows us to see that there ex
some modulated waves that never enter the region of lin
instability until shocks form in the macroscopic fields.
general, initial datak(X) andv(X) contained completely in
the linearly stable region might evolve under the modulat
equations into a region of instability, as in Fig. 7. Howev
observe that if not just the Riemann signature but also
signature box of the data lies completely in the region
linear stability, then this situation is avoided for as long
the solutions of the modulation equations remain smo
~see Fig. 9, left!. This latter case is exactly what is going o
in Fig. 8. In fact, the four-sided figure that is being traced o
by the dynamics of the curve is nothing but the image of
rectilinear signature box under the mapping (r 1 ,r 2)
°(k,v). If we had formulas for the Riemann invarian
r 6(k,v), we could use these observations to establish su
cient conditions on initial modulated wave datak(X) and
v(X) to avoid spontaneous linear instabilities of the ki
shown in Figs. 2 and 7.

5. Simple wave solutions and asymptotic resolution
into simple waves

Another easy consequence of writing the modulat
equations in Riemann invariant form~34! is that the system
admits the reduction of taking eitherr 1(X,T) or r 2(X,T) to
be constant. For example, one can setr 2(X,T)5K so that
the system reduces to the standard form of the Hopf or
viscid Burgers equation

]Tu1u]Xu50 ~39!

FIG. 9. Left: schematic illustration of the Riemann signature
initial datar 6(X) homoclinic to the point (r 1

` ,r 2
` ) asuXu→`. The

homoclinic point is shown with a large dot. The time evolution
these data will avoid the shaded linearly unstable regions bec
its dashed signature box does, and the signature cannot leav
box. Right: signature of the data in the limit of large timeT if the
criterion for resolution into simple waves is satisfied. Although t
signature becomes fixed, nontrivial hyperbolic dynamics are tak
place on the two line segmentsr 65r 6

` in the signature box.
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in the single-dependent variableu5c1(r 1 ,K), which is eas-
ily solved by the method of characteristics@2#. Such special
solutions of the modulation equations, where only one of
Riemann invariants is nonconstant, are calledsimple waves.
The simple waves are the nonlinear analogs of the right-
left-going components in d’Alembert’s solutionu(X,T)
5 f (X2cT)1g(X1cT) of the linear wave equation]T

2u
2c2]X

2u50.
Of course, one of the most striking properties

d’Alembert’s solution is that every localized initial distu
bance eventually resolves itself into isolated right- and le
going waves. This is not always true in the nonlinear syst
~34!, but let us see what we can conclude in this case no
theless. Assume for the moment that we have expression
r 6(k,v) and that we have found initial datar 6(X), such as
that from Figs. 3 and 8, for which we do not have to wor
about instabilities. Assume also that these data represe
localized disturbance on a background wave, so that asuXu
→`, the Riemann invariants take on constant valu
r 6(X)→r 6

` . The Riemann signature of these kinds of initi
data is shown schematically on the left-hand side in Fig
Now, without loss of generality we can assume th
c1(r 1 ,r 2).c2(r 1 ,r 2) at each point in the strictly hyper
bolic region of the (r 1 ,r 2) plane. According to Eq.~34!,
points on the graph ofr 1(X) will move to the right with a
speed bounded below by

c1
inf8 inf

2`,X,`,T.0
c1„r 1~X,T!,r 2~X,T!…, ~40!

while points on the graph ofr 2(X) will move to the right
with a speed bounded above by

c2
sup8 sup

2`,X,`,T.0
c2„r 1~X,T!,r 2~X,T!…. ~41!

This means that ifc1
inf is strictly greater thanc2

sup, then the
region in which the fieldr 1(X) differs significantly fromr 1

`

will eventually overtake the region in which the fieldr 2(X)
differs significantly fromr 2

` and the coupled problem wil
have resolved itself into two uncoupled simple wave pro
lems. We would like to be able to characterize the initial d
for which this simplification will ultimately occur. Unfortu-
nately, the extreme speeds defined by Eqs.~40! and ~41!
cannot be evaluated directly without integrating the coup
system~34!. However, it is easy to bound these quantiti
because we know that the signature box contains the dyn
ics for all X andT. If B is the region bounded by the signa
ture box in the (r 1 ,r 2) plane (B is determined from the
initial data alone!, then we have

d1
inf8 inf

B
c1~r 1 ,r 2!<c1

inf ~42!

and

d2
sup8sup

B
c2~r 1 ,r 2!>c2

sup. ~43!

These quantities are easy to evaluate given the Rieman
variants and one now can say that if the initial datar 6(X)
has the signature boxB, then the condition
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d1
inf.d2

sup ~44!

is a sufficient condition for the dynamics to naturally sep
rate into two simple waves. The signature will ultimate
contract onto the two line segmentsr 65r 6

` in the signature
box, as shown on the right-hand side in Fig. 9. The dynam
on each of these segments is given by independ
Hopf equations ~39! for the variables u1(X,T)
5c1„r 1(X,T),r 2

`
… and u2(X,T)5c2„r 1

` ,r 2(X,T)…. The
simulation shown in Figs. 3 and 8 is one in which an init
condition is resolved into simple waves. In this case,
homoclinic point (r 1

` ,r 2
` ) lies at one of the vertices of th

signature boxB. For this simulation, the condition~44! can
be shown to be satisfied and the dramatic effect of the s
ration of the two simple waves can be seen in Fig. 3. Inde
the phenomenon of resolution of an initial condition in
simple waves appears to be quite common in the partic
set of modulation equations~19!.

The arguments above presume that shocks do not f
before the separation into simple waves is complete
r 1(X) is initially different from r 1

` only for X.X1 and
r 2(X) is initially different from r 2

` only for X,X2 , then
the separation time is

Tsep5
X12X2

c1
inf2c2

sup
<

X12X2

d1
inf2d2

sup
. ~45!

If shocks do not form beforeT5Tsep, then the time for
shock formation can be calculated exactly@2# from the inde-
pendent equations for the two simple waves.

V. IMPORTANT LIMITING CASES

With its two free ‘‘material’’ parametersa and g, the
discrete quadratic chain~1! is a very rich system that in
cludes other known models as limiting cases. Also, for fix
values of the material parametersa and g, the plane-wave
parametersk and v can be scaled so that the dynamics
modulated plane waves simplifies considerably.

A. The continuum limit

Introduce a small parametere!1 and slow scalesX
5en andt5e2t and make the following transformations o
parameters in Eqs.~1!:

a52g̃241e2ã , g5 g̃ . ~46!

Then set

wn~ t !5e2w̃~X,t!e2i t/e2
, vn~ t !5e2ṽ ~X,t!e4i t/e2

~47!

and assume thatw̃ and ṽ are smooth functions ofX andt to
obtain the system

i ]tw̃1]X
2w̃1w̃* ṽ 50,

i ]t ṽ 1 g̃ ]X
2 ṽ 2ã ṽ 1

1

2
w̃250. ~48!
-

s
nt

l
e

a-
d,

ar

m
If

d

f

This is a new family of systems, with material parametersã

and g̃ , that includes the model for two-wave solitons due
cascading in quadratic nonlinear optical media or so-ca
x (2) materials@10#. For a general review of cascading
optics see@19#. Note that as mentioned above, the continuu
limit leading from the discrete system~1! to ~48! is not al-
ways very relevantif the discrete system already represen
the dominant weakly nonlinear physics. As we will now see,
the limit is, however, generally useful as a mathematical
vice in the study of the continuum system~48! when it arises
on its own, more or less from first principles.

Nonlinear plane waves of the discrete system~1! go over
to nonlinear plane waves of the continuum system~48! in the
limit e↓0. The latter waves have the form

w̃~X,t!5W̃ei ~ k̃X2ṽt!, ṽ ~X,t!5Ṽe2i ~ k̃X2ṽt!. ~49!

The relations between the continuum and discrete pla
wave parameters are

W5e2W̃, V5e2Ṽ,

k5e k̃ , v5221e2ṽ ~50!

and the corresponding nonlinear dispersion relations for E
~48! are obtained by substituting these into the discrete
persion relations~6! and taking the limite↓0.

These facts indicate that the linear stability results for
continuum system~48! can be obtained from the family o
discrete systems~1! satisfyinga'2g24 by examining the
stability of the waves in the vicinity ofv522 andk50.
The (k,v) plane of one such system is shown in Fig. 5. B
considering a perturbative wave numberb5eb̃ and then us-
ing thee dependence to ‘‘unfold’’ the degenerate eigenv
ues~for e50) of the matrix of the linearized problem for th
discrete system, the stability properties ofall waves in the
continuum limit system~48! are determined from the stabi
ity of an arbitrarily small neighborhood of asingle waveof
the discrete system~1!. Equivalently, by direct linearization
about plane-wave solutions of the continuum problem~48!, it
has been shown@11# that all plane waves withk̃50 are
unstable and ifg̃51/2 then the system is Galilean invarian
so that instability fork̃50 implies instability for all k̃ . Ex-
perimental results@12# suggest that all plane waves may b
unstable for all values ofg̃ .

Although the boundaries between regions of stability a
instability may disappear in the continuum limit, with a
waves becoming unstable, the distinction between mod
tional instability and linear stability does not disappear. F
example, takingã50, g̃52, andk̃50, one can see that fo
ṽ negative~below the band gap! there are always instabili
ties in a sideband ofb̃50, while for ṽ positive ~above the
band gap! the longest unstable mode appears for finite n
zero b̃ . We suspect that this is true more generally and t
below the band gap the linear instabilities of plane waves
the continuum system are of Benjamin-Feir type, wh
above the band gap they are not. The continuum versio
the modulation equations~19! are hyperbolic above the ban
gap, but are elliptic below the band gap. The coexistence
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6048 57PETER D. MILLER AND OLE BANG
both stable and unstable waves in the system~1! is a direct
consequence of its discreteness, but clearly the existenc
short-wave instabilities without sideband instabilities is no
feature of discrete systems alone.

B. The discrete NLS limit and the high-frequency limit

Another system that can be obtained from Eqs.~1! by a
passage to a limit in the material parameters is the disc
nonlinear Schro¨dinger equation. Make the scaling

wn~ t !5Auauw̃n~ t ! ~51!

and consider the limit of large detuninguau↑`, holding vn

and w̃n fixed. This leads to the system

i ] tw̃n1w̃n111w̃n211
h

2
uw̃nu2w̃n50, ~52!

whereh5sgn(a). The weak second harmonic is slaved
the strong fundamental byvn5hw̃n

2/2. This model is a dis-
crete version of the nonlinear Schro¨dinger equation. Its sta
tionary solutions and their linear stability properties a
known @20# and the modulational behavior of its plane-wa
solutions was studied in@3#.

Let us deduce the linear growth rates for plane wave
the system~52! from the characteristic polynomial of th
matrix of the linearized problem~12! by taking the limit of
large a and keeping all other parameters fixed. Calling t
eigenvalueis, we find in the limit that two of the roots ar
given by s56a1O(1). The remaining two rootss are
O(1) and are real if the discriminant is positive:

@~324 cosb1 cos2 b!cosk1v~12cosb!#cosk.0.
~53!

The largeuau behavior of the dispersion relations~6! gives
v522 cosk2hW̃2/2, where W̃25uw̃nu2, so that a(v
12 cosk) is negative. From this it follows that ifa cosk
,0 the discriminant is positive for allb, while for a cosk
.0 the discriminant is strictly negative for allb in the left
and right sidebands ofb50 defined by

12
hW̃2

2 cosk
,cosb,1. ~54!

Therefore, if linear instabilities exist at all, then they ce
tainly exist for a sideband ofb50. This asymptotic analysis
verifies what was shown in@3#, that in the discrete nonlinea
Schrödinger equation linear stability in general is equivale
to linear stability to perturbations of relative wave numb
b'0 and thus to modulational stability as determined fro
the hyperbolicity of a pair of modulation equations. The d
creteness of a system does not imply a difference betw
the two kinds of stability.

We also note that the difference between instability of
neighborhoodb'0 and instability in general also vanishe
from the system~1! for fixed arbitrary values of the materia
parametersa andg in the limit of high frequencyv. Taking
the limit uvu↑`, the modulational stability criterion~29! be-
comes simply
of
a

te

in

e

t
r

-
en

e

sgn~v!@2g cos2 k1cosk2g#.0. ~55!

On the other hand, two of the rootsis of the characteristic
polynomial of the matrix in the linearized system~12! are of
the forms56vA121O(1), while the other two are of the
form s5s̃Auvu, where to leading order

s̃252 sgn~v!@12cosb#@2g cos2 k1cosk2g#.
~56!

Since 12cosb is non-negative for allb, the reality of these
roots is equivalent to Eq.~55!.

VI. CONCLUSION

The quadratic nonlinear two-component lattice model~1!
has a family of plane-wave solutions, some of which a
linearly stable and some of which are not. For linearly sta
waves, spatiotemporal modulations of the wave parametek
andv that are slowly varying but have finite amplitude sa
isfy a dispersionless nonlinear hyperbolic system of mac
scopic modulation equations~19!. The modulation equations
can be hyperbolic even in regions of the (k,v) plane where
the plane waves are linearly unstable. In this case, the lin
instabilities are not Benjamin-Feir instabilities. The wave
stable to a sideband of relatively long waves and the unst
perturbation with the longest wavelength has a strictly n
zero relative wave numberb. To our knowledge, this is the
first concrete example of a nonlinear system with modula
waves that are susceptible to such instabilities.

Of course, there are other models with similar short-wa
instabilities. For instance, all plane waves in the continu
equations~48! that lie above the band gap are unstable
some modes, but the sideband neighborhood ofb50 con-
sists only of stable modes. By contrast, the waves below
band gap are also unstable, but always suffer from the lo
wave Benjamin-Feir instability. This means that having t
longest wavelength unstable perturbation with nonzero w
number~so that modulation equations are hyperbolic in sp
of linear instability! is not a phenomenon restricted to di
crete systems alone. Nor is the phenomenon implied by
creteness. The discrete nonlinear Schro¨dinger equation~52!
is a system that is contained in the general model~1! in the
limit of large detuninga and for which hyperbolicity of
modulation equations always goes hand in hand with lin
stability.

The phenomenon might be related to multicompon
systems, as this is the obvious common feature of the
crete system~1! and the continuum system~48! that is not
shared by the discrete nonlinear Schro¨dinger equation~52! or
other familiar models where Benjamin-Feir instabilities a
the rule. Having contributed this observation, we view t
classification of wave equations for which all linear instab
ties of a wave are restricted to its sideband as an open p
lem.

Another question raised by our analysis of the pla
waves in the system~1! is that of the meaning of the modu
lation equations in the twilight region where, in the presen
of linear instabilities, they are nonetheless hyperbolic. T
most challenging form of this question asks whether ther
a dispersionless macroscopic limit in such a region at
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Similarly, the problem of establishing whether there exist
macroscopic description of plane waves in the focusing n
linear Schro¨dinger equation~where the modulation equation
are always elliptic! remains open despite the integrability
that system~but see@21# for recent progress!. There are
fewer tools available to study the system~1! since it is not
integrable, but the problem is more interesting because
we have seen in this paper, there is good evidence tha
macroscopic limit may not exist even in some regions wh
the modulation equations are hyperbolic.

When instabilities of all types can be avoided at le
initially, the modulation equations~19! are evidently a good
model for the time evolution of a smoothly modulated wa
train over some finite time interval. The length of this inte
val is limited only by the possibility that the wave migh
encounter instabilities during modulation or that the wa
might break. Because we know that Riemann invariants e
for the modulation equations, we know that we can in pr
ciple identify spatial modulations that will never encoun
any instabilities as they modulate. In some cases, which
also be characterized in terms of the Riemann invariants,
modulated wave will separate into two isolated pulses,
evolution of each of which can be found from the Hopf equ
tion for simple waves by the method of characteristics. Th
simple wave solutions will be valid until they form infinit
derivatives, at which point dispersion introduced by the d
creteness of the microscopic system must be taken into
count. Obviously, the predictive capacity of the theory of t
,
ys

y
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hyperbolic system~19! would be strengthened if we had ex
plicit expressions for the Riemann invariantsr 6(k,v).
Analysis of the ordinary differential equations~38! for the
contours of constantr 6(k,v) leading to solutions of the cor
responding partial differential equations~37! is clearly an
avenue for future work.

When discreteness makes itself known at the front o
forming shock wave, one expects microscopic oscillatio
with wave numbers possibly close to the edge of the B
louin zone to appear in the formerly smooth functionsk(X)
andv(X). If these oscillations are regular, in the sense t
they have envelopes and mean values that appear to
smooth functions ofX ~this is at first a matter of interpreting
numerical experiments!, then it is possible that moment
constructed from local averages such as^kp& and^vp& could
be found to satisfy a larger quasilinear system of equation
X andT and the analysis could thus be continued beyond
shock formation time. As has been shown several tim
@16,17#, this is indeed the case if the microscopic system
integrable. To our knowledge, there is not yet an example
a nonintegrable microscopic system that has enough l
conservation laws to allow wave modulation to be continu
through first shock formation in some weak sense.
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