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Macroscopic dynamics in quadratic nonlinear lattices
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Fully nonlinear modulation equations are obtained for plane waves in a discrete system with quadratic
nonlinearity, in the limit when the modulational scales are long compared to the wavelength and period of the
modulated wave. The discrete system we study is a model for second-harmonic generation in nonlinear optical
waveguide arrays and also for exciton waves at the interface between two crystals near Fermi resonance. The
modulation equations predict their own breakdown by changing type from hyperbolic to elliptic. Modulational
stability (hyperbolicity of the modulation equationis explicitly shown to be implied by linear stabilityut not
vice versa When the plane-wave parameters vary slowly in regions of linear stability, the modulation equa-
tions are hyperbolic and accurately describe the macroscopic behavior of the system whose microscopic
dynamics is locally given by plane waves. We show how the existence of Riemann invariants allows one to test
modulated wave initial data to see whether the modulating wave will avoid all linear instabilities and ultimately
resolve into simple disturbances that satisfy the Hopf or inviscid Burgers equation. We apply our general
results to several important limiting cases of the microscopic model in ques8&063-651X98)11804-4

PACS numbg(s): 03.40.Kf, 63.10+a, 73.50.Fq, 42.82.Et

[. INTRODUCTION respect to space and time enter linegrifne modulation
equations can be either hyperbolic or elliptic, perhaps de-
Many nonlinear dispersive equations modeling physicapending on the local values of the wave parameters. If they
systems have multiparameter families of exact wave-train saare elliptic, then the initial value problem of how a wave
lutions. Letting the parameters of the wave train be slowlytrain with given spatial variation of its parameters evolves in
varying functions of space and time typically leads to a dy-time is ill posed and the modulation equations are not valid
namical description of the parameters, the so-cattediula- as a model of dynamicgalthough some significance has
tion equations where nonlinearity dominates over disper- been attributed to their self-similar solutiof). If they are
sion. Dynamics taking place on the scales of a wavelengthyperbolic, then the initial value problem can be solved until
and a period are said to be short waveracroscopi¢c while  the time of breaking, when infinite spatial derivatives appear
the modulation equations are concerned with the long-waver until the time of change of type when hyperbolic dynam-
or macroscopiadynamics of the slowly varying parameters. ics pushes part of the modulated wave into a region where
Indeed, the modulation equations asymptotically extend théhe equations are locally elliptic, whichever comes first.
family of exact wave-train solutions through the introduction  However, the fact that the initial value problem can be
of a small parametee, the ratio between the microscopic solved in some time interval does not necessarily mean that
and macroscopic scales, which is not present in the underlfthe modulation equations are a good model for dynamics in
ing microscopic model. the limit of small-scale ratios. In fact, the well posedness of
Modulation equations can be obtained formally in severathe initial value problem for modulated waves is only an
ways, all connected with the method of averaging.indication of stability of those waves to perturbations of
Asymptotic expansions using the method of multiple scalesiearby wavelength, i.e., to relatively long waves. If other
can reveal the modulation equations as a solvability condishort-wave instabilities are present, then they may obstruct
tion [1], averaged variational principles can be exploited forthe process of smooth modulation of the waves without be-
Lagrangian systemi], and local conservation laws can be ing detected by the formal modulation equations themselves.
averaged in an approach that has a somewhat more physicehe relevance of this observation has not been explored in
appeal(see, e.g.[3,4] for applications in a nonintegrable the literature, mainly due to a lack of examples of micro-
discrete setting in closest analogy with what will follow be- scopic systems having at the same time the following essen-
low). When the modulation equations are meaningful, theytial features: a rich multiparameter family of nonlinear
encode important physical information and can be used teraveling-wave solutions, sufficient structure to control slow
make predictions about macroscopic wave motion and dymodulations of the waves in the family, and a set of rela-
namics. tively short-wave instabilities that can exist without long-
However, when are the formal modulation equationswave instabilities being present as well.
meaningful? One clue comes from the equations themselves. In this paper we study the dynamics of modulated waves
As a set of first-order quasilinear equatiqdsrivatives with  in such a microscopic system where the well posedness of
the initial value problem for the modulation equations is not
sufficient to guarantee their validity as a model. The micro-
*Present address: School of Mathematics, Institute for Advancegcopic system describes pairs of resonantly interacting non-
Study, Olden Lane, Princeton, NJ 08540. linear oscillators arranged on a one-dimensional lattice
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whose sites are labeled with integers In Sec. Il we will describe the family of traveling-wave
_ solutions of the systenil) that will form the basis of our
| Wi+ Wy y 1+ W, +Wro,=0, study. The waves will be characterized by their nonlinear

dispersion relations, which imply the existence of a band gap
in the wave spectrum. By introducing a uniformly small per-
turbation of fixed relative wave number and linearizing, we
will find the linear stability criterion for the waves.

Here y and a are real parameters. Without the nearest- Section Ill will begin to address the issue of slowly modu-
neighbor coupling terms, this system is the generic envelopk&ted waves, where the parameters of the plane waves, pre-
equation for the weakly nonlinear interaction of tviwot  viously held constant, are allowed to be slowly varying func-
necessarily mechanigabscillators in near second-harmonic tions of space and time. The formal derivation of explicit,
resonance. To see this, one supposes a Hamiltonian of tiielly nonlinear modulation equations will be motivated by

. 1
I&tvn+7(vn+1+vn_1)—avn+zwﬁ=0. 1

form numerical simulations of the systefh).
Section IV is the heart of our paper, where we analyze the
p:  p3 kg ka3 formal modulation equations. We first do this in order to
H= 2m; + 2m, + 2 + 2 +U(01,92), (2 understand their validity and to underscore our main point:

that short-wave instabilities that can destroy a modulating
where the interaction enerdy is of third order in the dis- Wave train can be hidden from the modulation equations

placements and the near resonance condition is satisfied: Then we work in regions of linear stability where there is
little doubt that the modulation equations are a valid model

ko Ky for modulating wave dynamics and study their implications
=2\ ea, (3 using the powerful tool of the Riemann invariants.
2 ! In Sec. V we explore relevant special cases of the micro-

with € being a small parameter anda fixed detuning. For Scopic model(1). First we examine thedispersivg con-

small amplitudes, the two oscillators have displacements dfnuum limit that leads to Zthe equations describing optical
the form solitons in homogeneoug® media[10] and Fermi reso-

nance interface solitorf$] and show how some of the sta-
2k, . bility results for plane waves in the continuum mofkl,12]
.= eU—\/Zmzw( et)eM+c.c+O(€?), can be deduced from the discrete problem. Indeed, the theory
112 of nonlinear plane waves in the continuum model can be
2kt reconstrugted asymptotically from the neighborhooo! of the
q2=e—l\/m_lv(et)e2‘9t+c.c.+O(52), (4) zero _solutlon qf Eqs(l)_ V\_/hen a~2'y.—4. We then briefly
Uirp consider two discrete limits of Egél) in which the dynam-
ics simplify and in fact the distinction between the well pos-
where Q= k;/m; is the fundamental frequencW)i;,  edness and validity of the modulation equations becomes
=t9c2,1¢9q2U(0,0), and c.c. denotes the complex conjugate. Thelurred: the limit of large detuning and the limit of high-
envelopesw(et) andv(et) satisfy the systengl) with the  frequency waves. The former limit reproduces the discrete
nearest-neighbor coupling terms neglected and with the timgonlinear Schrdinger equation, for which the modulation
derivatives taken with respect to the slow tirte The non-  theory of plane waves is simple by comparig@it
linear interaction terms are generic for resonant interactions Finally, we conclude in Sec. VI with a brief discussion of
because they dominate wheneugy;, is nonzero. A weakly —unanswered questions.
coupled lattice of such pairs of resonantly interacting oscil-
lators can be described in the ling{ O with the inclusion of II. EXACT NONLINEAR PLANE WAVES
the nearest-neighbor coupling terms, wherguantifies the AND LINEAR STABILITY
relative coupling strengths of the second and first harmonics. . ,
In terms of concrete physical applications, the coupled TNhe System of equationd) has a two-parameter family
system of equationél) is used to model the exciton waves of exact nonlinear plane-wave solutions of the form
that propagate along the interface between two crystals when i(kn— ot) i (kn— ot)
the crystals are near Fermi resonaf@g]. Fermi resonance Wi(t)=Wée . vn(t)=Ve ' ®)
means exactly that the exciton frequency in one crystal is o
twice that in the other crystal. In this modael,(t) andv,(t)  Wherek, o, W, andV are real constants satisfying the non-
are interpreted as expectation values of annihilation operdinear dispersion relations
tors for the bosonic excitations of the two kinds of atoms that

are adjacent at the interface at the siteThe same model V=—(w+2 cosk),
also describes second-harmonic generation in arrays of opti-
cal waveguides, each having core material with a nonzero W2=2(2w— a+27y cos X)(w+2 cosk). (6)

value of x(?, the quadratic nonlinear susceptibility tensor

[8,9]. In this caset is the spatial coordinate of distance along Further solutions can be found using the gauge symmetry of
each waveguiden labels the individual waveguides of the Egs.(1) for any real constang,

array, andw,(t) andv,(t) are the amplitudes of the first- _ _

and second-harmonic electric fields in and along each core. wh()—wh(t)e'?, v (t)—v,(t)e??, (7
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§ * y==07, a=50 1 oy=m1s, am1s Wn(t)Z[VAJVB‘R(t)+iwlg‘|(t)]eiﬁn,

V() =[vgr(t)+iv g, (1)]eA". (12)

The linearized system is then reduced to a fourth-order sys-
tem for each perturbative wave number

W R A v-Cc 0 -wi[wsr
Wg,| V+C iAW 0 || wg,
(9t —~ = . —~ )
 on 0 -w B -D|7,,
0 0 0 ;ﬁJ W 0 D iB ;B,I

12
FIG. 1. Band-gap-structure dependence on the paramgizns (12

a. In the upper left plot, regions of they(«) plane in which the \where

band gap does not twist off at all are blank, regions where there is

one twist in the band gap for positikeare shown with horizontal A=-2sink sin8, B=-—2v sin 2k sin 3,

lines, and regions where there are two twists for positivare

shown with vertical lines. The remaining plots show representative C= @+ 2 cosk cos8, D=2w—a+2y cos X cos .
band diagrams with the band gap filled in. (13

which leaves the equations unchanged. We vieandw as ~ The real parts of the eigenvalues of this matrix are growth
independent parameters, with the real amplitudésnd V rates associated with the mode parametrized by the relative
determined from Eqg6). wave numbeB. The nonlinear plane wave is declared to be
In order for W to be real, plane-wave solutions cannotlinearly stable if all four growth rates vanish for all
exist everywhere in thek(w) plane. SinceW? is clearly ~ B&[—mm]. The stability criterion is not easy to express ex-
positive for largel |, solutions will fail to exist in a certain Plicitly and analytically as a function of the independent
band gap whose shape is determined by the parameters Wave parameters andw. However, it is easy to compute. In
andy. The band gap will pinch off at those values &f¢)  Figs. 4 and 5 we will show thek(w) plane for some par-
for which the two factors ofV? both vanish together. In the ficular choices ofa and v, indicating the regions of linear

range of G<k<1 (the band diagram is even andr2eri- instability as calculated from the eigenvalues of the matrix in
odic in k), this can happen once, twice, or not at all. ThereEd. (12) with gray shading, but we postpone those figures
are two crossings if until we have some information about modulating waves so
that we can draw an important conclusion from the compari-

y<-12, 2y+4<a<-—-1ly—2y (8  Son. , ,
If the waves are linearly stable, then weakly nonlinear

or if theory can be used to study the small perturbationét)
and v ,(t). In the case of long-wavelength perturbations,
y>1/2, —1lly—2y<a<2y—4. (9) Korteweg—de Vries dynamics prevails in the moving frame

of each branch of the group velocity of linear waves near
There is one crossing |ix—27y|<4 and there are no cross- B=0. For some \{alueslof the.parameters of the underlying
ings otherwise. These three regions of thed) plane are plane wave, the dispersion of linear wavegat0 may van-
shown in Fig. 1, along with band diagrams in the, ) ish, leading to steepening and shock formation that is regu-
plane representative of zero, one, and two crossings. THa"1zed by higher-order dispersion. The dynamics of these
existence of a gap in the spectrum of nonlinear waves is g/eakly nonlinear perturbations, which do not have any effect
feature related to the two-component resonant nature of th@ the background plane wave that supports them, have been
system(1). The intriguing shape of the band gap has beeff€cently studied in a one-component discrete system by

studied recently in the context of optif3]. Konotop and Salernfl3].

The stability of the nonlinear plane waves can be investi-
gated by choosing constants W, k, andw that satisfy the lll. MODULATED NONLINEAR PLANE WAVES
dispersion relation&) and then looking for solutions of Egs. AND MODULATION EQUATIONS

(1) of the form
The linear stability analysis described above addresses the
Wn(t):[W+V~vn(t)]ei<knwt>, qugstion of the' behavior .of solutions of Eq4) Fhat are
uniformly close inn to a given plane-wave solution. How-
_ ‘ ever, we may also ask whether there exist solutions of Egs.
vn(D)=[V+u,(t)Je ey, (100 (1) that are close to a plane-wave solution only locally, in the
neighborhood of each fixed. The plane wave nearest the
where the small perturbations have spatial structure of relasolution may be different for each neighborhood. The under-
tive wave numbep: lying approximate solution of Eqg1) is thus generally a
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FIG. 2. Snapshots taken 30 time units apart of a numerical simu- FIG. 3. Snapshots taken 20 time units apart of a numerical simu-
lation of the systent1) with parameter valuea=—3 andy=—0.3 lation of the systent1) with parameter valuea=—3 andy=-0.3
and 1600 points. and 1600 points.

slowly modulatecplane wave. We want to explain these simulations. Slowly modulated

To get an idea of what kind of dynamical behavior oneplane waves are described by allowing the independent pa-
might expect of a modulated nonlinear plane wave, we turrameters of the family of plane wavdsandw, to be slowly
to numerical simulation of the microscopic syst¢in. We  varying functions ofn andt. To proceed, we consides
prepared a domain of 1600 points with initial conditions that<1 and introduce equally stretched slow sca¥esen and
were, near each fixed, plane waves satisfying the disper- T=e¢t, in accordance with the scaling observations men-
sion relationg6). The initial twistk=argw,. 1 /w,) of each  tioned above. Our immediate goal is to derive evolution
plane wave was taken to be a constant over the whole daquations for the macroscopic quantiti€X, T) andw(X,T)
main, while the amplitude®/ andV were taken to be slowly from the microscopic dynamics given by Eq$).
varying functions consistent with Eq&) and the choice of We will use the fact that the system of equatighsim-
k. For convenience, periodic boundary conditionsiivere  plies two local conservation laws
assumed for the whole domain. Snapshots of the quantities
|Wnl?, |val?, arg@Wn.1/wy), and arg . 1/v,) are shown in ON,+F,—F,_1=0, 4H,+G,—G,_,=0, (14)
Figs. 2 and 3 with the initial conditions highlighted in bold.

It is clear from these simulations that slow variation of thewith conserved local densities
plane-wave parameters in space implies their slow variation
in time. In fact, the local period of the microscopic oscilla- N, = w2+ 2]v,|2,
tions in Fig. 2 ranges between 2.1 and 2.5 time units com-
pared with 30 time units between snapshots, while in Fig. 3
the local period ranges between 1.3 and 2.1 time units and
there are 20 time units between snapshots. It is possible to
deduce scaling properties of the slow dynamics with addi-
tional numerical experiments; it turns out that pictures thaft
are, to the eye, indistinguishable from these can be made by . .
increasing the number of points sampling the modulated Fn=2Im{wn Wq + 2900100},
wave by some scaling factdrand then taking snapshots of
the numerical simulation at time intervaigimes as long. In - G, =2 Im{ayv v, 1+ W W, o+ Y20 08, o+ W Wit 105
both simulations, the dynamics of the waves are regular for L 2
some time before a local catastrophe appears that breaks the T 2YUnWh 4t (16)
structure of the smoothly modulated plane wave. In Fig. 2
the wave form spontaneously breaks down for apparently ndhese local forms imply that the sumsj, andH,, over the
reason, while in Fig. 3 the wave form separates into twagperiodic domain are global invariants. Evaluating the con-
parts and steepens until it threatens to become multivaluegerved local densities and their associated fluxes on an exact
and something resembling a shock wave appears. plane-wave solution witlk and w fixed, one finds that

Hn=a|vn|2_Re{ZW:Wn+l+27U:Un+1+WﬁU:}
(19

nd corresponding fluxes
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N,=W?2+2V?,
Fn=2(W?+4yV? cosk)sinKk,
Hn=aV?—2W? cosk—2yV? cos k—W?V,

G,=—2%?V? sin 4k—2W?V sink

—(2W2—2ayV?+ yWV)sin 2k, (17

where the amplitude®V and V are functions ofk and w
according to the dispersion relatiorni6). Note that all of

these quantities areonstantsfor plane waves and thus in
this context are explicit functions of the wave parameters

andw. Takingk andw to depend smoothly oX andT and

assuming that the dispersion relations continue to hold lo-
cally in X andT, we may divide the local conservation laws
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IV. MODULATIONAL STABILITY AND ANALYSIS
OF THE MODULATION EQUATIONS

A. Well posedness and the modulational stability criterion

The characteristic velocitie®f the modulation equations
are the eigenvalues of the coefficient matiXk,w). These
eigenvalues are

1
Ne(k,w)= m{Z[lZ)f cos k+4(1+ yw)cosk+4w

—2y—alsink* \2(w+2 cosk)p(k,w)},

(14) by € and take the limite|0 to find the macroscopic and

modulation equations

These partial differential equations are themselves local con-
servation laws, this time in a continuous setting. With an
application of the chain rule, these modulation equations can

be written in terms ok(X,T) andw(X,T) as

| |+M(k,w)dx “ =0, (19
® ®
where the coefficient matrix is
0 1
M(k,@)=| A(k,w) B(K ) (20)
D(k,w) D(k,w)
and
A(K,w)=2[64y cos k+36yw cos k
+(8w+4yw?—56y—4a)cos k
+(2w?—26yw— aw)cosk
+2a+4y—4o—2yw?], (21
B(k,w)=4[12y coS k+ (4yw+4)cosk
+4w—2y— alsink, (22
D(k,w)=47y cos k+8cosk+6w—2y—a. (23

The first of the modulation equations confirmsnservation
of waves proving the existence of phase variabled(X,T),
a potential from whichk(X,T) and w(X,T) are derived by

(24)
where
p(k,»)=a,(k)w?+a; (k) w+ag(k) (25
ay(k) =24y cog k+ 12 cosk—12y, (26)
a;(k)=—16y? cos" k+ 144y cos k
+(8—4ay+16y?)cos k
+(—8a—88y)cosk+8+2ay+4y%, (27)

ag(k)=—16y? cos k+160y cos k
+ (16— 16ay— 16)cos’ k+(—8a—112y)cos k

+(a®+8ay+12y*+ 16)cosk. (29

If the characteristic velocities are real and distinct for séme
and w, then the modulation equations are locdilyperbolic
This means that the initial value problem is locally well
posed and is interpreted as implying tmedulational stabil-

ity of the plane-wave solution with wave numbeand fre-
quencyw. On the other hand, if the velocities have nonzero
imaginary parts, then the modulation equations are locally
elliptic. In this case, the initial value problem is locally ill
posed since a typical initial condition for EL.9) will excite
modes with arbitrarily large growth rates. This is interpreted
as implying themodulational instabilityof the plane-wave
solution. The modulational stability criterion is thus

(w+2coK)p(k,w)>0. (29
We wish to compare modulational stability with linear sta-
bility. In Figs. 4 and 5 the regions of modulational instability
are indicated on thek(w) plane with vertical lines, while the
regions of linear instability are shaded.

As can be seen in these figures, regions of stability can be
isolated from each other both by the band gap and by regions
of instability. The way to think of the modulation equations
(19) and their relation to the modulational stability criterion
is the following. If initial datak(X) andw(X) for the modu-
lation equations(19) are parametrically represented in the

k=dyx6 and w= — d16. Conservation of waves is often im- (K,w) plane as a curve that lies entirely outside the regions
posed in arad hocmanner to provide closure for modulation indicated with vertical lines, then the modulation equations

equations derived from a variational princigl2]. Here we

describe the dynamics of these functions for slow tiffiés

see that it can be derived from an explicit limit of the local some finite interval & T<T*. The timeT* cannot gener-

conservation laws.

ally be taken to be infinite because it is possible either for the
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. . - _ just across the boundary in the modulationally stable but linearly
FIG. 4. Regions of instability in thek(w) plane fora=—3 and unstable region.

y=—0.3. The regions where the modulation equations are elliptic

are shown with vertical lines and the regions where the plane waves o ) )
are linearly unstable are shaded. clearly show that the hyperbolicity of modulation equations

implies stability in a more restricted sense than is guaranteed
dynamics of Eq(19) to drive the system to the boundary of by linear stability. A smooth §olut|on of E4L9) will only be .
the region of modulational stability at which point the initial & 900d model for the dynamics of modulated plane waves in
value problem for Eq(19) becomes locally ill posecellip- _Eqs.(l_)_ if the waves addmonally avqld all regions _of linear
tic) or for X derivatives ofk andw to become infinite as the mstablht_y. In general, if a parametric representation of the
solution of Eq.(19) “tries” to become multivalued or de- modulating wave in the K,w) plane is approaching the
velop a shock. In the latter case, the modulation equation@eundary of the hyperbolic region so that the time of first
may continue to have single-valuagaksolutions(i.e., non- ~ change of typel* is on the horizon well before any shocks
classical or nonsmooth solutions in the sense of distripul@ve the chance to fornit, will first enter a region of linear
tions) for times greater tha* . These weak solutions propa- instability. .Th|s leads to the_ local breakdown .of the wave
gate as shock fronts and require sophisticated numericdPrm at a timeT** that is strictly less than the time for first
methods to resolve their structuf4]. However, the weak ¢hange of typeT* predicted by the modulation equations
solutionshave no meaningn the microscopic systenl) alone. It is important to observe that the modulation equa-
because they violate the assumption of the smoothness §pns (19 are utterly unawareof the “minefield” of insta-
k(X) andw(X) that allowed us to pass to the limét 0 and bilities that can lie between a region of linear stability and a
thus obtain a closed description of the macroscopic dynam€gion of modulational instability.

ics. When infinite derivatives appear kiX) andw(X), one Tq clarify th_e_ diffe_:rence between modulatiqnal stability
must return to the microscopic systeft) to explain the and linear stability, it is useful to study the four linear growth
subsequent dynamics. rates calculated in the course of linear stability analysis as

These statements concern only the modulation equatiorf§nctions of the relative wave numbg. By definition, a
(19) and the behavior of their solutions. One hopes, ofvave is linearly stable if all growth rates vanish identically
course, that smooth solutions of a globally well-posed prob@S functions ofge[—m,7]. So the interesting comparison
lem in some macroscopic time intervak@ <T* actually IS between the growth rates for waves in the two types of
describe the dynamics of a modulating plane wave of thémstable_ regions. In Fig. 6 the linear growth rates are plotted
microscopic systenfl) in the limit of smalle (slow modu- @S functions of8 for two plane waves near the boundary of

lation). However, this is not always the case. Figures 4 and gnodulational stability. -
These plots suggest that the hyperbolicity of the modula-

tion equationg19) merely indicates that there exists a neigh-
borhood of relatively long waves ne@=0 that are stable
perturbations of the plane wave. This should be contrasted
with the more strict linear stability criterion thatl values of

B correspond to stable perturbations. Thus linear stability
implies modulational stability, but the converse is not always
true. In general, hyperbolicity of modulation equations is
equivalent to linear stabilitgpnly if all linear instabilities are

of Benjamin-Feir typethat is, if all unstable modes lie in a
sideband of the underlying wave train. That the syst&nso
clearly demonstrates this fact is one of the main messages of
our paper.

Although a proof of this statement in all generality re-
mains to be given, the relationship between linear instability
and ellipticity of modulation equations can be demonstrated
FIG. 5. Same as Fig. 4 but fer=0 andy=2. exactly in this particular problem. If one considers the limit
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B10, the characteristic polynomial with eigenvaiueof the  in the presence of integrability of the microscopic sys{@m
matrix in Eq.(12) takes the form luxury we do not have available heréhe details of how
4 1 3 ) ’ weak dispersion regularizes the shock can be worked out
0"+ [Bb3+O(B)]o”+ [0+ O(B)Jo"+ [ Bby+O(B%) Jo exactly[16,17]. In the latter case of nearly degenerate char-
+[B%by+0(8%)]1=0, (30)  acteristic velocities, a Galilean transformation can be used to
move in the frame of the common characteristic velocity so
whereb;=b;(k,w) are real coefficients that can be explicitly that the first-ordeX derivatives disappear altogether and the
calculated by direct asymptotic expansion of the characterideading-order balance appears on a slower time scale yield-
tic polynomial for smallg. Two of the roots ar®(1) inthe  ing a nonlinear Schidinger equation and envelope solitons.
limit and to leading order satisfy Envelope solitons occur, for example, in the limit of small-
2 _ amplitude waves wherg~0 and thus\  ~\_ . However,
o?+b,=0. (31) . ) _ .
this case is not always as relevant physically as the finite
Sinceb, can be shown to be strictly negative for klandw,  @mplitude case because, as pointed out in the Introduction,
these roots never imply instability. The other two roots areg:r?an]g(rjne;I(i%l)JdIZ(g?/:/%ﬂyisd(ca);;\éidewlljtica?enntas\;g;nkptr:gaIizf
obtained by settingr= o, where to leading order earity) so thatO(1) values of the dicr]nensionless amplitudes
~2 -~ _ w, and v, already correspond to small physical displace-
b20™+ byor+bp=0. 32 ments. Ccnmsiderirzlg even spmaller displaceengnts is the% a fur-
These roots will be real and the wave parametrized by théher restriction that removes the dominant nondispersive
pair (k,w) will thus be stable to its sideband if the discrimi- terms from the problem. In optics, dispersionless terms such

nant is positive: as those appearing in the modulation equatid® charac-
terize group velocity mismatch and the so-called walk-off
b2 —4b,by>0. (33)  effect of beams and pulses. Since we keep only these terms,
the dynamics that we will obtain can be interpreted as “non-
It can be shown that this condition is equivalent to E2f)  linear walk-off” because the two distinct group velocities
for all pairs K,w) that lie outside the band gap. N+ (k,w) depend on the local field values. Of course, we do

The question of the meaning of the modulation equationsiot mean to imply that dispersion can be neglectedafor

in the intermediate layer where they are hyperbolic butsolutions of Eqs(1), only that this is so for those solutions
where short-wave linear instabilities exist is a deep one rethat have the form of fully nonlinear modulated plane waves.
quiring more investigation. Are the instabilities seen in theFor example, isolated localized solutions such as self-trapped
numerical experiments artifacts of not working sufficiently stationary excitations and breathers often exist in discrete
close to the limite | 0 of vanishing scale ratio®r indeed of  systems such agl) and thrive on a dynamical balance be-
numerical noise due to integration and roundoff eidiEhat  tween nonlinear effects and dispersion. However, the fact
is, in the limit €| 0, are any short-wave instabilities excited that such excitations are localized in the lattice when their
by the modulation itself to destroy the leading order behavamplitudes aréD(1) means that they are not individually
ior? Or do genuine limiting modulated wave solutions existwell described by the dispersionless modulation equations

that are linearly unstable to short waves? (19), which are valid as a model for disturbances that are
spatially extended. In short, dispersion is important for mi-
B. Dynamics of modulated waves croscopic dynamics but not for smooth macroscopic dynam-

With the caveat that we restrict attention to modulated'cs'
waves that aT =0 lie for all X in a region of linear stability,

the modulation equationd9) accurately describe the evolu- 2. Validity of the modulation equations

tion of the waves for finite timeJ<T**. Let us explore  The fact that the modulation equatiofi®) are the correct
some of the implications of the description of the dynamicsmodel for the macroscopic dynamics of modulated waves is
offered by the hyperbolic systefd9). best seen by comparing numerical solutions of @§) with

the data obtained from numerical simulations of the micro-
scopic systen{l) shown in Figs. 2 and 3. On the left-hand
There are clearly no dispersive terms in the modulatiorside of Fig. 7, we show the snapshots of Fig. 2 plotted para-
equationg19). These terms have been neglected becéase metrically in the k,») plane[we take k=arg(w, ., 1/w,)
will be clearly demonstrated belgwhey play no role in the and then determine from the dispersion relations using the
dynamics until shocks form or until the characteristic veloci-local amplitude§ while on the right-hand side we show
ties\ . (k,w) degenerate and become identical on the boundplots of the corresponding snapshots obtained by numerically
ary of the region of hyperbolicity. In the former case, theintegrating the modulation equatiort9) directly using a
weak dispersion necessary to regularize the behavior is suptable scheme of centered differences in space and “leap-
plied by the underlying discreteness of the system and leadsogging” in time. The first few curves from each simulation
(at least at firgtto Korteweg—de Vries—like dynamics at the are indistinguishable to the eye, illustrating the accuracy of
shock front, which sheds solitons. In fact, the numerical exthe description offered by the macroscopic systd®). We
periments of Zabusky and Kruskal that resulted in the cointhen see that the dynamics has driven the system locally into
ing of the word “soliton” [15] clearly demonstrated the phe- a region of linear instability, at which point the actual modu-
nomenon of solitons escaping from a steepening shock, ardting wave solution of Eqq1) breaks upgsee Fig. 2 Since

1. A brief remark
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3. Existence of Riemann invariants

In explaining these observations, the most important tool
for interpreting the modulation equatio(s9) is their repre-
sentation in terms oRiemann invariantsRiemann invari-
ants for a hyperbolic quasilinear system are new dependent
variables for which the matrix of coefficients & deriva-
tives is the diagonal matrix of characteristic velocities. In the
case of the equationd9), these are variables. (k,w) in
which the modulation equations take the form

FIG. 7. Left: the snapshots of Fig. 2 plotted parametrically in the Il +C(F 1) dxr = =0. (34)

(k"‘f) pla.ne' R'ght: Co”eSpond'ng.snapShOFS obtained py direct "Yhus the equations are coupled only through the characteris-
merical simulation of the modulation equations. There is excelleniiC velocitiesc. (., .r_)=A. (k.o), now expressed in terms
agreement until the dynamics move the wave into a region of lineal f h ih +k’ - d_ il 2@ I’ press i h
instability. Since these are short-wave instabilities, the modulatio?’ '+ r'at eTr t f’:\n andw. Itis as‘? ea§y to V'Su"’,"ze the
equations remain hyperbolic and can be integrated beyond the locgyN@mics implied by these equations: Each point on the
destruction of the modulated plane wave in the microscopic systenflf@ph ofr.(X,T) as a function ofX is moving to the right
with speedc..(r . (X,T),r _(X,T)). Finding the Riemann in-

this is a region of short-wave instabilities, the modulationva”ants amounts to solving the Pfaffian differential equation

equations remain hyperbolic and propagation continues as if dr st s 17V dk
nothing were wrong. Dl = 1+ f } (35
Similar parametric plots comparing the numerical data dr_ S S do

from the microscopic systeifl) that was first shown in Fig. . _ )

3 to a numerical simulation of the macroscopic equationgvheres; (k,») are the components of linearly independent
(19) are shown in Fig. 8. Here again one sees that the modgigenvectors of the coefficient matM (k, ») belonging to
lation equations are an excellent model for the dynamics. Wéhe distinct eigenvalues . (k,0) andD is an arbitrary in-
also see that the shock wave that forms on the right-handertible diagonal matrix. Rewritten in terms of the Jacobian
side of Fig. 3 is different from the breakdown that occurredmatrix of the transformation, this becomes

in the previous simulations, as it is not related to any insta-

bilities; the evolution remains outside of all unstable regions. I(r+,r-) s=p-1! (36)
Other important features to observe are the fact that the curve d(k,w) '

seems to trace out a four-sided caustic as it evolves and that

the curve rapidly contracts to the two sides of this figure thatvheresS is the eigenvector matrix. Since the only constraint
are joined at the vertex corresponding to the backgrounds that the left-hand side be diagonal, this amountsNfo
plane wave in Fig. 3 on which the disturbances are propagat=N equations ifN unknowns for artNxXN hyperbolic sys-
ing. More careful observations reveal that each of the twdem. The Riemann invariants are thus generally overdeter-
waves that seem to have separated in Fig. 3 is confined t@ined, although there are special cases where there is
just one of the sides of this figure. enough structure for solutions to exist in tieXN case
nonetheless; see, e.d18]. However, for two-component
systems such a4.9), there are exactly as many equations as
unknowns and thus there exist solutiddg], although they
may be very difficult to write down explicitly. Using the fact
that M 1(k,w)=0 andM 5(k,w)=1, it is easy to see that
the Riemann invariants satisfy

5.0

450

=

R
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AT = (K, @)+ A= (K, @) 3,1 (K, )=0. (37)

It follows thatr .. (k,w) is constant along curves= w(Kk) in
the (k,w) plane where

o' (K)= Az (K, o(k)). (38)
FIG. 8. Left: snapshots of Fig. 3 plotted parametrically in the
(k,») plane. Right: Corresponding snapshots obtained by direcilthough at this time we do not have explicit expressions for
numerical simulation of the modulation equations. The waves ultiy . (k, w), the fact that Riemann invariants exist for this prob-
mately lie a|0ng two sides of a distorted rectangle J0|ned at thqem a”OWS us to make Several key observatlons about the

point of the background wave. These two sides correspond to ind&5ehavior of modulated waves in the microscopic syst&m
pendently propagating simple waves and the distorted rectangle is

the image of a genuine rectangle in the plane of the Riemann in-
variants. The scattered points in the upper right corner of the left
figure are the oscillations near the shock front; they do not appear in We recall some useful terminology introduced(8]. In
the right figure because the modulation equations cannot be intderms of the Riemann invariants, given fiekdX) andw(X)
grated sensibly beyond the shock time. can be represented parametrically in the (r _) plane by a

4. Riemann signatures, signature boxes, and instabilities
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in the single-dependent variahle=c_ (r , ,K), which is eas-

ily solved by the method of characteristid]. Such special

solutions of the modulation equations, where only one of the

Riemann invariants is nonconstant, are cabedple waves

The simple waves are the nonlinear analogs of the right- and
T left-going components in d’Alembert’s solutioa(X,T)

=f(X—cT)+g(X+cT) of the linear wave equatiorﬂ%u

—c?9%u=0.

Of course, one of the most striking properties of

d’Alembert’s solution is that every localized initial distur-
o ] . ) bance eventually resolves itself into isolated right- and left-
N _FIG. 9. Left: schemat_lc_ |IIustrat|on_of tbe Elemann signature Ofgoing waves. This is not always true in the nonlinear system
initial datar.(X) homoclinic to the pointi(; ,r”) as|X|—=. The (34 “ht |et us see what we can conclude in this case none-

homaclinic point is shown with a large dot. The time evolution of 4,0 e55  Assume for the moment that we have expressions for
these data will avoid the shaded linearly unstable regions becauK
t

its dashed signature box does, and the signature cannot leave s (k. @) and that we have found initial data (X), such as

€ . .
box. Right: signature of the data in the limit of large tifidf the at from Figs. 3 and 8, for which we do not have to worry
criterion for resolution into simple waves is satisfied. Although the

about instabilities. Assume also that these data represent a
signature becomes fixed, nontrivial hyperbolic dynamics are takindocal'zed dlst'urbance ona background wave, so thgXps
place on the two line segments =r” in the signature box. —o, the Riemann invariants take on constant values:
N r.(X)—r% . The Riemann signature of these kinds of initial
data is shown schematically on the left-hand side in Fig. 9.
Now, without loss of generality we can assume that
+(ry,r)>c_(r,,r_) at each point in the strictly hyper-
olic region of the (,,r_) plane. According to Eq(34),
oints on the graph of . (X) will move to the right with a
peed bounded below by

graph that we call th&Riemann signaturef the data. Each
Riemann signature is contained in a unicgignature box
which is the smallest rectangle with edges having consta
values of either , orr_ that contains the signature. An easy
consequence of writing the hyperbolic system of modulatio
equations in Riemann invariant form is that, while the Rie-
mann signature of the fields evolves in time, the signature inf_ :
box remains the same. o —00<>!22,T>0 S CTr-CGT), (40

The fact that the Riemann signature can never leave the
box that initially contained it allows us to see that there existwhile points on the graph af_(X) will move to the right
some modulated waves that never enter the region of lineagith a speed bounded above by
instability until shocks form in the macroscopic fields. In
general, initial datk(X) and w(X) contained completely in cSUP= sup c_(r (X, T),r_(X,T)). (41
the linearly stable region might evolve under the modulation —e<X<®,T>0
equations into a region of instability, as in Fig. 7. However, .
observe that if not just the Riemann signature but also th@his means that it is strictly greater tha®®, then the
signature box of the data lies completely in the region ofregion in which the field . (X) differs significantly fromr?
linear stability, then this situation is avoided for as long aswill eventually overtake the region in which the field (X)
the solutions of the modulation equations remain smootfiffers significantly fromr” and the coupled problem will
(see Fig. 9, left This latter case is exactly what is going on have resolved itself into two uncoupled simple wave prob-
in Fig. 8. In fact, the four-sided figure that is being traced outlems. We would like to be able to characterize the initial data
by the dynamics of the curve is nothing but the image of thefor which this simplification will ultimately occur. Unfortu-
rectilinear signature box under the mapping, (r_) nately, the extreme speeds defined by Ed®) and (41)
—(k,w). If we had formulas for the Riemann invariants cannot be evaluated directly without integrating the coupled
r.(k,o), we could use these observations to establish suffisystem(34). However, it is easy to bound these quantities
cient conditions on initial modulated wave ddtéxX) and because we know that the signature box contains the dynam-
w(X) to avoid spontaneous linear instabilities of the kindics for all X andT. If B is the region bounded by the signa-
shown in Figs. 2 and 7. ture box in the (. ,r_) plane @ is determined from the

initial data along then we have

5. Simple wave solutions and asymptotic resolution

inf inf
into simple waves di'=inf ¢, (r ,r_)=<c? (42)
B

Another easy consequence of writing the modulation
equations in Riemann invariant for(84) is that the system and
admits the reduction of taking either (X,T) orr _(X,T) to
be constant. For example, one can sefX,T)=K so that d®P=supc_(r, ,r_)=c" (43
the system reduces to the standard form of the Hopf or in- B

viscid Burgers equation . . ) .
These quantities are easy to evaluate given the Riemann in-

variants and one now can say that if the initial datgX)
dtu+udxu=0 (39 has the signature bdg, then the condition
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d"f> gsup (44  This is a new family of systems, with material parameters

andy, that includes the model for two-wave solitons due to
is a sufficient condition for the dynamics to naturally sepa-cascading in quadratic nonlinear optical media or so-called
rate into two simple waves. The signature will ultimately @ materials[10]. For a general review of cascading in
contract onto the two line segments=r< in the signature  gptics sed19]. Note that as mentioned above, the continuum
box, as shown on the right-hand side in Flg 9. The dynamlCﬁmn |eading from the discrete System) to (48) is not al-
on each of these segments is given by independer{ays very relevanif the discrete system already represents
Hopf equations (39) for the variables u.(X,T)  the dominant weakly nonlinear physidss we will now see,
=c,(ry(X,T),r2) and u_(X,T)=c_(r7,r_(X,T)). The the limitis, however, generally useful as a mathematical de-
simulation shown in Figs. 3 and 8 is one in which an initial vice in the study of the continuum systé#8) when it arises
condition is resolved into simple waves. In this case, theon its own, more or less from first principles.
homoclinic point ¢7 ,r”) lies at one of the vertices of the Nonlinear plane waves of the discrete syst@mgo over
signature box8. For this simulation, the conditio®4) can  to nonlinear plane waves of the continuum systds) in the
be shown to be satisfied and the dramatic effect of the sepdimit €| 0. The latter waves have the form
ration of the two simple waves can be seen in Fig. 3. Indeed,

the phenomenon of resolution of an initial condition into W(X,7)=We kx-on  T(x, 7=Ve2ikx-on (49
simple waves appears to be quite common in the particular
set of modulation equatiord9). The relations between the continuum and discrete plane-

The arguments above presume that shocks do not foriwave parameters are
before the separation into simple waves is complete. If

r.(X) is initially different from r? only for X>X, and W=e2W, V=¢?V,
r_(X) is initially different fromr> only for X<<X_, then _ _
the separation time is k=ek, w=-2+¢w (50)
X, =X X,—=X_ and the corresponding nonlinear dispersion relations for Eqs.
= <

(45) (48) are obtained by substituting these into the discrete dis-
persion relationg6) and taking the limite | 0.

) These facts indicate that the linear stability results for the

If shocks do not form beford =T, then the time for  continuum systen{48) can be obtained from the family of

shock formation can be calculated exad®y from the inde-  giscrete systemél) satisfyinga~2y—4 by examining the

o= — <= _
Peinfcsup  ginf gsup

pendent equations for the two simple waves. stability of the waves in the vicinity ofo=—2 andk=0.
The (k,w) plane of one such system is shown in Fig. 5. By
V. IMPORTANT LIMITING CASES considering a perturbative wave numkgt €3 and then us-

ing the e dependence to “unfold” the degenerate eigenval-
ues(for e=0) of the matrix of the linearized problem for the
fliscrete system, the stability properties alf wavesin the
continuum limit systen{48) are determined from the stabil-
ity of an arbitrarily small neighborhood of single waveof
the discrete systerfl). Equivalently, by direct linearization
about plane-wave solutions of the continuum prob(é8), it

has been showfll] that all plane waves wittk=0 are
unstable and ify=1/2 then the system is Galilean invariant,

so that instability fork =0 implies instability for allk. Ex-
perimental result§12] suggest that all plane waves may be

unstable for all values of.

With its two free “material” parametersyr and vy, the
discrete quadratic chaifil) is a very rich system that in-
cludes other known models as limiting cases. Also, for fixe
values of the material paramete#sand vy, the plane-wave
parameterk and o can be scaled so that the dynamics of
modulated plane waves simplifies considerably.

A. The continuum limit

Introduce a small parameter<1l and slow scale
=en and 7= €t and make the following transformations of
parameters in Eqg1):

a=2y—4+ea, y=7. (46) Although the boundaries between regions of stability and

instability may disappear in the continuum limit, with all
Then set waves becoming unstable, the distinction between modula-
tional instability and linear stability does not disappear. For

Wo(1) = e2W(X, ed ™€, v (1) = €20 (X, 7)ed e example, takingr=0, y=2, andk =0, one can see that for

(47) & negative(below the band gapthere are always instabili-

ties in a sideband 0B=0, while for w positive (above the
band gap the longest unstable mode appears for finite non-

zero 8. We suspect that this is true more generally and that
below the band gap the linear instabilities of plane waves in
the continuum system are of Benjamin-Feir type, while
above the band gap they are not. The continuum version of
the modulation equationd9) are hyperbolic above the band
gap, but are elliptic below the band gap. The coexistence of

and assume that andv are smooth functions of andr to
obtain the system

i9,W+d2wW+W*v =0,

_— o o e 1
id,v+ yc9>2(v —av+ EWZ:O' (48)
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both stable and unstable waves in the sys{éjris a direct sgnw)[2y coS k+cosk— y]>0. (55)
consequence of its discreteness, but clearly the existence of

short-wave instabilities without sideband instabilities is not aOn the other hand, two of the rooits of the characteristic

feature of discrete systems alone. polynomial of the matrix in the linearized systda?) are of
the formo= *+ w12+ O(1), while the other two are of the
B. The discrete NLS limit and the high-frequency limit form o=o /|a>|, where to leading order

Another system that can be obtained from Eds.by a _
passage to a limit in the material parameters is the discrete 0?=2 sgriw)[1—cos B][27y cos k+cosk—y].
nonlinear Schrdinger equation. Make the scaling (56)

wp(t)= «/|a|v~vn(t) (51) Since 1-cosg is non-negative for alB, the reality of these
roots is equivalent to E(55).
and consider the limit of large detuning| 1, holdinguv,

andw,, fixed. This leads to the system VI. CONCLUSION

o _ N e e The quadratic nonlinear two-component lattice modg!
1 OWp+ W+ W+ §|wn|2wn:O, (52  has a family of plane-wave solutions, some of which are
linearly stable and some of which are not. For linearly stable
waves, spatiotemporal modulations of the wave paramkters
and o that are slowly varying but have finite amplitude sat-
isfy a dispersionless nonlinear hyperbolic system of macro-
scopic modulation equatior{$9). The modulation equations
can be hyperbolic even in regions of the ¢) plane where

where n=sgn(«@). The weak second harmonic is slaved to

the strong fundamental by,= »w?/2. This model is a dis-
crete version of the nonlinear Schiinger equation. Its sta-
tionary solutions and their linear stability properties are
known[20] and the modulational behavior of its plane-wave o hiane waves are linearly unstable. In this case, the linear

solutions was studied ![8]' _instabilities are not Benjamin-Feir instabilities. The wave is
Let us deduce the linear growth.ra.tes for plaqe Waves Itaple to a sideband of relatively long waves and the unstable

the system(52_) fror_n the characteristic P‘?'y”f’m"”!' 9f the perturbation with the longest wavelength has a strictly non-

matrix of the linearized problertl2) by taking the limit of zero relative wave numbes. To our knowledge, this is the

"’%rge @ anq keepm_g a_II other_ parameters fixed. Calling thefirst concrete example of a nonlinear system with modulated
eigenvalue o, we find in the limit that two of the roots are |, .\ a5 that are susceptible to such instabilities.
given by ==+ a+O(1). The remaining two rootss are Of course, there are other models with similar short-wave
O(1) and are real if the discriminant is positive: instabilities. For instance, all plane waves in the continuum
equations(48) that lie above the band gap are unstable to
some modes, but the sideband neighborhoo@of0 con-
sists only of stable modes. By contrast, the waves below the
band gap are also unstable, but always suffer from the long-
wave Benjamin-Feir instability. This means that having the
longest wavelength unstable perturbation with nonzero wave
number(so that modulation equations are hyperbolic in spite
S ) . k ; of linear instability is not a phenomenon restricted to dis-
>0 the d|s_cr|m|nant s strictly 'negatlve for aff in the left crete systems alone. Nor is the phenomenon implied by dis-
and right sidebands g8=0 defined by creteness. The discrete nonlinear Sdimger equatior(52)

~ is a system that is contained in the general mddgin the

[(3—4 cosB+ cog B)cosk+ w(1—cosB)]cosk>0.
(53

The large|a| behavior of the dispersion relatioti6) gives
w=—2 cosk—7W?/2, where W?=|w,|?, so that a(w
+2 cosk) is negative. From this it follows that ifx cosk
<0 the discriminant is positive for a8, while for « cosk

W limit of large detuninga and for which hyperbolicity of
2 cosk<Cos'8<1' (54) modulation equations always goes hand in hand with linear
stability.

Therefore, if linear instabilities exist at all, then they cer- The phenomenon might be related to multicomponent
tainly exist for a sideband g8=0. This asymptotic analysis systems, as this is the obvious common feature of the dis-
verifies what was shown if8], that in the discrete nonlinear crete systen{1) and the continuum syste8) that is not
Schralinger equation linear stability in general is equivalentshared by the discrete nonlinear Salinger equatior52) or

to linear stability to perturbations of relative wave numberother familiar models where Benjamin-Feir instabilities are
B~0 and thus to modulational stability as determined fromthe rule. Having contributed this observation, we view the
the hyperbolicity of a pair of modulation equations. The dis-classification of wave equations for which all linear instabili-
creteness of a system does not imply a difference betweelies of a wave are restricted to its sideband as an open prob-
the two kinds of stability. lem.

We also note that the difference between instability of the Another question raised by our analysis of the plane
neighborhood3~0 and instability in general also vanishes waves in the systertl) is that of the meaning of the modu-
from the systentl) for fixed arbitrary values of the material lation equations in the twilight region where, in the presence
parametersr andy in the limit of high frequencyw. Taking  of linear instabilities, they are nonetheless hyperbolic. The
the limit | w| 7o, the modulational stability criteriof29) be-  most challenging form of this question asks whether there is
comes simply a dispersionless macroscopic limit in such a region at all.
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Similarly, the problem of establishing whether there exists ehyperbolic systeni19) would be strengthened if we had ex-
macroscopic description of plane waves in the focusing nonplicit expressions for the Riemann invariants. (k,).
linear Schrdinger equatiorfwhere the modulation equations Analysis of the ordinary differential equatiori88) for the
are always elliptic remains open despite the integrability of contours of constant. (k,w) leading to solutions of the cor-
that system(but see[21] for recent progregs There are responding partial differential equatiori87) is clearly an
fewer tools available to study the systdf) since it is not avenue for future work.
integrable, but the problem is more interesting because, as When discreteness makes itself known at the front of a
we have seen in this paper, there is good evidence that tferming shock wave, one expects microscopic oscillations
macroscopic limit may not exist even in some regions wheravith wave numbers possibly close to the edge of the Bril-
the modulation equations are hyperbolic. louin zone to appear in the formerly smooth functid{X)
When instabilities of all types can be avoided at leastand w(X). If these oscillations are regular, in the sense that
initially, the modulation equation€l9) are evidently a good they have envelopes and mean values that appear to be
model for the time evolution of a smoothly modulated wavesmooth functions oK (this is at first a matter of interpreting
train over some finite time interval. The length of this inter- numerical experiments then it is possible that moments
val is limited only by the possibility that the wave might constructed from local averages such & and({«P) could
encounter instabilities during modulation or that the wavebe found to satisfy a larger quasilinear system of equations in
might break. Because we know that Riemann invariants exisk andT and the analysis could thus be continued beyond the
for the modulation equations, we know that we can in prin-shock formation time. As has been shown several times
ciple identify spatial modulations that will never encounter[16,17, this is indeed the case if the microscopic system is
any instabilities as they modulate. In some cases, which caintegrable. To our knowledge, there is not yet an example of
also be characterized in terms of the Riemann invariants, the nonintegrable microscopic system that has enough local
modulated wave will separate into two isolated pulses, theonservation laws to allow wave modulation to be continued
evolution of each of which can be found from the Hopf equa-through first shock formation in some weak sense.
tion for simple waves by the method of characteristics. These
simple wave solutions will be valid until they form infinite ACKNOWLEDGMENTS
derivatives, at which point dispersion introduced by the dis-
creteness of the microscopic system must be taken into ac- We would like to thank Gennady EI', David Levermore,
count. Obviously, the predictive capacity of the theory of theand Alan Newell for useful discussions.
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