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Angular momentum loss by a radiating toroidal dipole
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If a system of charges and currents besides the usual electric and magneticlependentmultipole
moments does possess also time varying toroidal moments and distributions, there will be, in general, an
additional angular momentum loss by the system through the radiation emitted by the toroidal sources. The
classical electrodynamics formula for the rate of angular momentum loss by a time-dependent toroidal dipole
is derived and discussed in connection with a forced precession of the toroidal dipole arround a given axis.
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I. INTRODUCTION wherej (r,t) denotes the current density of the source. It is a
vector having the same transformation propertie$ @st);

The toroidal dipole was originally introduced by Zeldov- i.e., it is a polar vector odd under time reversal. The contri-
ich [1] (under the name of “anapolg”as a specific electro- bution of the toroidal dipole moment to the interaction en-
magnetic moment of a dipole type, different, however, fromergy with the external electromagnetic figd§is [1-3]
the usual electric and magnetic dipoles, for systems in which
parity is not conserved. In work summarized in the review H, .. dipoid ) =—T(1)-[VX VXA(r, )], -0
articles [2,3], by clarifying and generalizing Zeldovich's

idea, an entire class of toroidal multipoles was shown to be =—T(t)-[VXH®(r,t)],-0
needed in order to achieve a correct and complete multipole
characterization of the most general type of source in both __ 4_7" ex 1 “yex

. . . =-T(1)- I t)+— D®r,t)
classical and quantum electrodynamics. Nowadays toroidal C C

. . . . r=0
moments are mvestlgated in various contexts and research

areas ranging from classical electrodynamics to elementary @
particle, nuclear, atomic, molecular, and solid state physics. . . ] .
References to previous work may be mainly found in theand is responsible for everything regarding the manifesta-
already mentioned reviewg,3]. Among such investigations tions and properties of the toroidal dipoles.

here we particularly note the following: work done in con-  The purpose of this paper is to bring clarifications to the
nection with parity nonconservation in atomic phenomenelassical aspects of the theory. The main results are those
[4], the calculation done by Ginzburgh and Tsytovich for thestated in the abstract. This work contains also some parts
Cherenkov radiation emitted by a classical pointlike toroidalessentially methodological in nature, devoted again to clari-
dipole [5], electromagnetic properties of toroidal solenoidsfication purposes; some speculative remarks are also put for-
[6,7], toroidal electromagnetic structure of Majorana fermi-ward.

ons, induced toroidal moments and toroidal polarizabilities The paper is organized as follows: In Sec. Il we show in
[8,9], first experimental evidence of a nuclear spin-dependerifie framework of the classical electrodynamics how the no-
contribution to atomic parity nonconservation claimed totion of toroidal dipole moment arises quite naturally when
agree with that predicted to arise from a nuclear toroidainvestigating the behavior of a system of charges moving in
dipole momen{10], detailed calculations of the intrinsic to- an external magnetic field configuratidt™ chosen such
roidal dipoles of hydrogenic atoms and positronilit] (see  thatVxXH®is constant in space and time. When computing
also[12]), intrinsic toroidal moments of certain molecules the average force and moment of forces acting on the system,
arising even in the framework of the usual parity conservingone finds that while the former is expressed through the
electromagnetic interaction, on account of the particular inusual average magnetic dipole moment, the latter turns out to
ternal structure of the moleculd3,14, recent work in con- be given just by the average of the less familiar toroidal
densed matter physics by Dubovik and collabora{d5s],  dipole (both the force and moment of forces are, of course,

etc. vector products of the corresponding dipoles Witk H®).
The toroidal dipole moment is defind@] through the In Sec. Ill we compute the angular momentum I@ssough
formula radiation of electromagnetic wavesf a time-dependent to-

1 roidal dipole and find a formula analogous with the known
= N 52 one for the case of the electric dipole, with ttexpected
T 10cf [r(rj)=2rf]dr, @D difference, however, that in the toroidal case the vector prod-
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uct of the second and third time derivatives of the toroidal 1
dipole will enter rather than the first and second derivatives, =1 e[(r-v)r—2r3v] (10
as for the electric dipole. The obtained formula is particular-

ized and discussed in connection with the toroidal dipoles(v

=f=the velocity of the charge, the dot means differentia-

rotating around a fixed axis. Section IV is devoted to concluyign, with respect to time and the sum extends over all

sions and the discussion of the results, as well as to so

speculative rema_rks put forward when gom_menting on ho"Yty, dropped out So, it is seen from Eq(8) that the toroidal
far the analogy with the Larmor precession in constant magginqle momenfEq. (10)] arises quite naturally in connection

; the notion of this first eleméipole)

oo . there seem to bt the less familiar class of toroidal multipoles could even
a lot of situations when a precession frequency similar t

arges, summation indices over charges being, for simplic-

thave been introduced by means of such arguments, more

Larmor's one can be introduced, and even, perhaps, fruitfullye|aieq to particular physical problems rather than to formal

exploited.

1. AVERAGE FORCE AND MOMENT OF FORCES

ACTING ON A SYSTEM OF CHARGES IN AN EXTERNAL

FIELD CONFIGURATION WITH VxH®!
HOMOGENEOUS AND TIME INDEPENDENT

Let us consider a classical system of charges in an exte

nal field configuration described by the vector potential

1 447
— 2 .
AieXI(r)—l—o(Xin_Zr 5”)?“ ,

)

multipole expansions.

The derivation of Eqs(7) and(8) is straightforward and
goes along the same lines as in connection with the analo-
gous but simpler problem of the movement in a constant
magnetic field, found in textbooksee, e.g.[16]). We first
treat the more general case in whigtstantaneousather
;Lhan time averaged expressions of the total force and mo-
ment of forces are looked for, since it is quite instructive to
look for the interplay between various multipole characteris-
tics of the system in controlling the instantaneous valuds of
andK and see directly what multipoles will drop out in the
final expressions when time averages are taken. Starting with
'éhe Lorentz force expression one has

j is a constant vector; summation over repeated indice
(i,j=1,2,3) will be understood throughout this paper. In

. ) . e
other words, we are dealing with a system of charges moving F= E EVX Hext (17

in a (time-independentmagnetic field

2
HeXtZVXAEXt=?| Xr

(4)

e
K= EerXHEXt. (12)

with | playing the role of a constant external current density:ntroducing forH®* the form of Eq.(4) and using relations

like
4qr
VXH®=—], (5) d
¢ r(v-1)= e [r(r-D]=v(r-1), (13)
The gauge in Eq(3) is such that
after simple manipulations one finds
FA=0. (6)

What are the average forde and the average moment of
forcesK acting on the system in the presence of the constant
external current densitl, i.e., in the external field specified

2 T
F=—mXI+—
C C2

2. ne1, A
§Q = Q= |, (14

by Eq. (3) or (4)? The answer is the followingthe bars 4 4w .,
below denote time averages K=—TxI+ @Q x1; (15
E= Z_Wrﬁx I (77 mandT have been already defined by E¢8) and(10),
c
_ dm— Q=2 er? (16)
= TTX I (8)
is the squared radius of the charge distribution,
m denotes the system’s magnetic dipole moment
1 Q=2 er’r (17
m= EE erxv, 9

while T is the system’s toroidal dipole moment

is the squared radius of the electric dipole moment distribu-
tion, while
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Qij:E €

XiXj— =5 6 (18 DEPENDENT TOROIDAL DIPOLE THROUGH

r2 ) lll. LOSS OF ANGULAR MOMENTUM OF A TIME-
ij
3 RADIATION OF ELECTROMAGNETIC WAVES

is the electric quadrupole moment and the following notation  In this section we shall derive the toroidal analog of the
for the tensor contraction has been used: following well-known classical electrodynamics formula ex-
pressing the rate of the loss of angular momentum of a time-
2 dependent electric dipolé(t) through radiation:

Qijl;=(Qi=2lh; - (19 P pole(t) g

) ) dMm 2 . .

Recall that dots on multipoles in Eg&l4) and (15) denote T —axd. (24)

time derivatives. For convenience we also recall here the 3¢

corresponding expressions ferandK in the “normal” sim-

pler case of movement in a constant external magnetic fiel

Hext:

ahe derivation of Eq{(24) above may be recalled, for in-
stance, from the work of Landau and Lifchit6], where it
appears as problem No. 2 following paragraph 72, Chapter
IX. Anticipating the result, if instead of the electric dipole
F:E'QxHext (20) d(t) (which is a multipole characteristic referring to the
c ’ charge density distribution within the systeone has a tor-
oidal dipoleT(t) (related, this time, to the current dengjty
11, 2 then the analogous formula reads:
K=mXx Hext+_ QI:ZHHext_ _Qn=1Hext : (21)
2c 3 dM 2

B B TG XT. (25
F=0, =mxH® (22
(Three dots means third derivative with respect to tjrivée
In the formulas above shall obtain Eq.(25) following closely the arguments pre-
sented i 16] in deriving Eq.(24). The results of this section
may be viewed as a completion of the known ones regarding
Q= er (23)  the usual electricand magneticdipoles, extending them to
the third dipole-type characteristic, the toroidal dipole.
Now, we start sketching the derivation of E§5). With

is the electric dipole moment. - the definition of the toroidal dipole moment
The average forcE and moment of forceK displayed in 1
Egs. (7) and (8) follow now immediately from the corre- _ _f NP
sponding instantaneous values expressed by @ds.and T® 10c [rq-r)=2rfj]dr (26)

(15), by remembering that the average value of any time

derivative of a quantity varying within finite limits vanishes. one sees that for a pointlike toroidal dipolgt) situated in
Equation(8) tells us that if a system of charges possessehe origin the corresponding current density is

a nonvanishing average toroidal dipole moment, it will ex- i

perience an average moment of forces when immersed in a J(r)=VxVxT(1)8%r) (27)

constant current density and the latter will tend to rotate the&hiS formula verifies identically the previous relatjorThe

system and align it on the current lines. . .
The above considerations represent a formal proof of thig'(ald.S of the source given by Eq27) may be C(_)mputed
Straightforwardly from the retarded vector potential

assertion within classical electrodynamics; the assertion it-
self was, of course, known in the literature since the begin- L, ,
ning of the toroidal moments domain, but it was merely _ :EJ Ji(r't=[r=r'lic)
" 2 : : Ai(r,t) dr’, (28)

based on the specific contribution of the toroidal dipole to c [r—r’|
the Hamiltoniar{Eq. (2)] and analogy with the usual electric
and magnetic dipole interactions. .

We end this section with the remark that although in our E=—-CA H=VXA. (29
case(movement in an external constant current densitgre
is no direct analog with the Larmor theorem for systems ofone finds, outside the origin,
charges exposed to a constant magnetic field, something can
still be said when the system is such that its toroidal dipole 1. ] 1
moment vector for some reasons lies along the system’s total ~ Ai(r,t)=— —Ti(to) = ——Ti(to) — 5 Ti(to)
angular momentum vector. This is actually the case for some re r-c r
guantum systemgelementary particles, nuclei, atoms, gtc. 1 3 3
and then an analog for the Larmor precession and Larmor Fnin| —Ti(te) + —Ti(te) + = T:(to)
frequency for toroidal dipole moments immersed in a con- Nre2! r2c '’ 3!
stant current density can indeed be formulated. But we defer
this discussion to the concluding Sec. IV. to=t—r/c, nj=x;/r. (30)
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To calculate the rate of angular momentum loss through raH besides the toroidal dipole there is also the usual electric

diation one starts with the known formu6] dipole d(t), the above formula goes in{@]
am li R3 E E H H)]dQ, 1.*
T RTﬁ [(NXE)(nE)+(nXH)(n-H)] = jd- T (40)
(3D

From Eq.(25) one sees that just as in the case of the usual
where the integration has to be done over a spherical surfacgectric dipole, for a linear oscillating toroidal dipol®
of large radiusR, and the limitR,—  must subsequently be =T coswt with a constant amplitudd,, there will be no
taken with due care concerning various contributions fromoss of angular momentum through radiation of electromag-
the electric and magnetic fields H, as given by Eqs(30).  netic vawes. By comparing Eq®5) and(24), one notes also
We recall that Eq(31) follows from the fact that the total that higher time derivatives enter the formula tivl/dt in
angular momentum lost by the system per unit time is equakhe toroidal case, reflecting the situation that albeit a dipole
to the flux of angular momentum of the radiation field characteristic, the toroidal dipole moment comes along with

through a spherical surface of radiRs: the usual electric and magnetic quadrupole moments in the
M multipole expansion.
_ a_ _ 2 If the toroidal dipole performs #orcedprecession around
dt f €abdpTedladS  dS=Red, (39, given axis(specified by the unit vectas) with a constant

_ _ _ angular velocityw, one will have
o ,p IS the three-dimensional Maxwell stress tensor

L T=wXT, |T|=To=const, w=we. (41)

- r_ _ 1 2 2 . . .
"ab_47-,[ EaEp—HaHp+20ap(E"+H], (33 We speak of dorced precession since unlike the case of a
magnetic dipoleautomaticallyprecessing in a constant exter-

andn is a unit vector in the direction d®,. Calculatingg, H nal magnetic field, in general there is no Larmor theorem

with the aid of the vector potenti&B0) and keeping track of analog for a toroidal dipole in a constant current density,

the relevant contributions to the limRy— o, one finds unless for some other reasdnstays along the angular mo-
mentum vectorfForcedprecession means that one rotates the
dMm 1 . A toroidal dipole “by hand,” i.e., on account of some other
ar - 5 mcS (n-T)(nxT)dQ, (349 external factors. Anyway, if Eq(41) is verified, a simple

calculation shows that the angular momentum loss will be

which after averaging over using given by the formula

4w M __ 207 XT)2 w= 20° XT)2 42
J ninjdﬂ=?5ij (35) H_ %(w ) CW= %(e ) - €. ( )
leads to the already stated result displayed in (2§). I the toroidal dipole rotates in a planew T)?= »?T2 and

In getting Eq.(34) one makes use of the fact that in our Eq. (42) particularizes to
casen-H=0, while

dM  20°T?
1. 1., 1. 1. 3. 3. q T e © 43
Ei_rc_?’Ti+ @TﬁETi—ninj rc—sTj'f‘@Tj'f'aTj - -
In the case of a nonuniforrforced precession arround a
(36 fixed axis specified by the unit vect& going with a time-
and therefore dependent angular velocity(t),
2 . 2 , =w(t)exT, (44
n-E=———=(n-T)——(n-T), (37)
rec r=c the rate of angular momentum loss will be
1 1 1 dM 2
nXE=nX —T+ > T+ TT (39 —=— —(exT 4w’ +30ww’— vw?e. (45
rcd  r%? dt 3c®
(The argument of in these equations ig=t—r/c.) We have displayed this result in order to stress the difference

At this point we find it worth recalling that the total in- with respect to the corresponding known expression for the
tensity of the radiation emitted by a time-dependent toroidaklectric dipole case, when the angular momentum loss is
dipole T(t) is [2] given by

dM 2
= ¥|T|2 (39) v T F(e>< d)?we (46)
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irrespective of whether the precession arround the fixed axithe current density distribution inside the soyrcamit
e is uniform (w=const) or nof w= w(t)]. As seen from the electric-type radiation, like the usual electric multipolesit
equations above, in the toroidal dipole case the angular mawith a different frequency and phase conid;3]. To avoid
mentum loss depends, in general, on the derivatives, confusion, we recall agaifsee Refs[2,3,8]) that while there
while for the electric dipole there is no analogous sensitivity.2re three types of sourcéslectric, magnetic, toroidlthere
We note further that there is a certain particular nonuniforn@re, of course, only two types of radiatiéthe usual electric

precession, namely, that given by El'and magnetic Ml waves
—1/ IV. DISCUSSION
o(t)=wg T_o +1 (47) As is well known, Larmor’s theorem essentially says that

a system of charges, all of them with the sashm ratio and
with wo,To constants, for which the last two terms in the experiencing finite movements in, e.g., a centrally symmetric
right-hand sidgrhs) of Eq. (45) cancel since;(t) as given electric field and in a weak constant magnetic figlgr, in

by Eq.(47) is the general solution of the differential equation the_nonrelativistic case, behaves just as the same system will
do in the absence of the magnetic field, but in a coordinate

system rotating uniformly with the angular velocityarmor

3vl=wo. (48  frequency

Therefore in this case one has oH

dM 25

T ;(exd) w’e (49 This mainly happens because under the mentioned condi-

¢ tions the system’s total angular momentum

which formally coincides with the expression corresponding
to the uniform_case Ed43), but with the obvious difference,
however, thato is now time dependent, as given by E47). M= 2 rxp (54)

Moreover, it is, perhaps, worth noting that there are par-
ticular nonuniform precessions for which there is no loss aiS proportional with the system’s magnetic dipole moment
all of angular momentum through radiation and this happen&d. (9)
on account of more profound arguments rather than because

of purely kinematical reasons. Indeed, if the nonuniform pre- e

cession is such tha#(t) verifies the nonlinear second-order m=——M. (55)
differential equation 2mc
) _ Thus, after time averaging, one easpyovesthat bothM
ww—3w’—w*=0, (500 andm satisfy
then the whole rhs of Eq(45 vanishes altogether and _
dM/dt=0. Equation(50) can be immediately integrated by d—m=ﬂ><n7 (56)
rewriting it in the form dt

. i.e., the vectom undergoes a precession arroungr, with
d| o the period 2r/Q) (Jm| and the angle betweem and H®
dt — (51 remain constanjs
In turn, when one deals with movements in a magnetic
wherefrom the general solution comes out as field configuration withV x H* constant rather thal®*, in
general one cannot straightforwardly get for the average to-
roidal moment of the system a time evolution equation like
Eqg. (56), although now the averaged toroidal moment ex-
presses, according to E@8), the average momentum of
forces acting on the system in the same way as did the mag-
with the two integration constants,,r denoting the initial netic moment in the constant magnetic field cg=e. (22)].
angular velocity and a certain time scale, respectively. Th@his occurs because one lacks, in general, the proportionality
fact that a rotating toroidal dipole in certain unusual circum-between the toroidal dipole momefitand the mechanical
stances may not lose angular momentum through radiatioangular momentunM analogous to Eq(55) for the mag-
distinguishes it neatly from the electric dipole and may havenetic moment. That is why in the previous section, when
some consequences. using a precessionlike formula fdr of the type of Eq(56),
In this section we have insisted on the comparison withwe spoke of a “forced” precession. Although the analogy
the known situation for the case of the electric dipole since itwith Larmor’s precession, in general, cannot be pushed any
is a general fact that toroidal multipoléalthough related to  further, this does not mean that there are no interesting par-

w3

t —-1/2
w(t)=wo<1— ;—wgtz) (52)
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ticular cases when one can. Among them we note that ofve have omitted the bars denoting time averages when mak-
elementary quantum objects. Due to angular momentunmg an appeal to Eq8) of Sec. Il because of the irrelevance
guantization, the toroidal moment, if the object possessesf this point in the discussion presented in this section. Now,
one as an intrinsic electromagnetic characteristic, must lie owhile the usual Larmor frequend¥g. (53)] is related to the
the spin direction. For elementary particles, nuclei and ateonstant magnetic field through a proportionality factor
oms, small electroweak parity violating interactions give risee/2mc basically expressed in terms of essentially fundamen-
to very small intrinsic toroidal moments, mostly still unde- tal constants, the new frequen€y; of Eq. (61) above loses
tected, with the possible exception of that for the nucleusnuch of the generality of Larmor’s precession. However, we
13%Cs of Ref.[10]; for moleculeg(chiral [13] or even hetero- would like to stress here that a certain amount of generality
nuclear polar diatomif14]) toroidal moments can appear on is still contained in Eq(61) in the following sense and in the
account of the usual parity conserving electromagnetic interfollowing cases.

action because of the structural intricacy of the system and Since Zeldovich’'s pioneering papédd] in which the

are more orders of magnitude larger than those previousl{yanapole” (i.e., essentially the toroidal dipole we are deal-
mentioned, albeit still small enough. Despite the smallness ahg with) was introduced, it was known that a typical scale
the effect we find it useful to dwell below on the possibility for the toroidal moment of any particle should be

of introducing a new Larmor-type frequency analogous to

the usual Larmor frequency E¢p3), but associated this time

with constant current densities, or, more generally, with con- F a3

stantVx H®, instead of constant magnetic fields. So, when- To= 77~ 0-36X10 e cn? (63)
ever the physical system under consideration is such that its

toroidal dipole momenT is proportional to its angular mo-

mentumM since the new type of electromagnetic interaction envisaged

by Zeldovich(parity violating but preserving invariance un-
der time reversalshould have been, in a way, “half” elec-
T=\M, (57)  tromagnetic and “half” weak, wherefrom the appearance of
the electron’s charge and Fermi constanGg in Eq. (63
because of the relationship between the time variatiokl of was just what one had to expect. The utility of the universal
and the total moment of forcdé acting on the system scale sefessentially by Eq.(61) was recently reemphasized
in Ref.[12]. Nowadays, on the basis of the Glashow-Salam-
Weinberg theory one not only knows that indeed each el-
d_M —K (58) ementary particle must have such an intrinsic toroidal dipole,
dt ’ but, moreover, one has at hand the necessary means to cal-
culate it. Estimates have indeed been obtained in various
it follows [on account of Eq(8) obtained in Sec. llthatin  cases, which do confirm the scale provided®yEq. (63)],
the presence of a magnetic field of constant ¢gd. (5)] which we shall callquite improperly, perhaps, but useful to
spare wordsa “toroidon,” by analogy with the word “mag-
neton.” A superficial argument in favor of such a name is
VX HeX= 4_7T| (59) that 74 fixes the value ofx in the proportionality relation
c (57) if one sets the angular momentuwh= 7, with the result

(in the static casé is just a constant conduction current
density; otherwise] may include a displacement current
density too, i.e., an external electric field with a linear time AN=— (64)
dependengeone will have

in the same way as the gyromagnetic relation &%) sets
dT 4 the value of the Bohr's magnetom,=e7i/2mc when the
—=\K=—\TXI. (60) L -
dt c angular momentum quantum uditis used. All proportions
preserved regarding the “toroidon(unlike the magneton, it
In other terms, the toroidal dipole momefmitwill precess only serves as a scale to measure toroidal moments of actual
around the direction of the toté&tonstank current density  physical systemsone cannot refrain from mentioning that it
with an angular velocity2 given by nonetheless has an advantage over the magneton since it
does not contain the mass of the parti¢ihich leads to
Bohr's magnetons, nuclear magnetons,)dtat is expressed

o =4L)\I 61) entirely in terms of the system-independent fundamental
™ ¢ constantse, G ,#,c. Note also that while for magnetons the
Planck constant appears in the numerator, for the “toroi-
In getting the precession formula don” # appears in the denominator; however, this occur-

rence could be only formal in nature and devoid of any
physical relevance, sinegg is still a phenomenological con-
dT stant, so that room may be left for other alternatives.

dt The precession frequency for the “toroidon” is given by
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eGe  modm 7 In this respect we note the strange coincidence foun.d in

Q,=—lI :%_I = sz Hext (650  Ref. [11] between the values of the ground-state toroidal

hec ¢ dipole moment for positronium and the part of the toroidal

. e dipole moment of the ground state in hydrogen induced by
To.substantlate the usefulr_1ess of the “toroidon” notion as g spin-independent part of the parity nonconserving inter-
unity to measure the toroidal moments of elementary paryciion which also hints to a certain kind of mass insensitiv-

ticles, nuclei, atoms, etc., we mention some typical numeris,,
cal estimates obtained so far in the literature. We take them” \y/a recall that in the case of Majorana particles the toroi-

from the review given in Ref[12] to which we send the 45 moments and distributions are the only intrinsic electro-
reader for some details on the methods used in their derivasagnetic characteristics Id#] and for spin 1/2, the toroidal
tion and corresponding references. Denotingrbwith ad-  ginole moment could still be nonvanishing even for zero
equa_lte labejsthe various toroidal moments of interest, one a5 particle§17]. Thus the results of the present paper
has in terms ofrg might be perhaps of some relevance for neutrinos and in
some astrophysical considerations.

As shown in Refs[13,14), toroidal moments much larger
than the “toroidon” scale could arise in chiral molecules and
even in heteronuclear diatom{polarn molecules. This time

Trhucleus~ 0.2A%77,, Tdeuterium2Sstate ~ 64470, the effect is not QUe _to parity violation at the fundamental
level (in the Hamiltoniam but comes out as a result of the
usual electromagnetic forces in electronic systems possess-

Tcesium atoniground stats™ 8400 . (66) ing certain types of complexity such that, e.g., a pseudoscalar
can be formed with the parameters available in the problem.
To avoid confusion, we note the difference in the definition 1 '€ @ppearing toroidal momen(eovylof pure electromag-
of the toroidal dipole momerf as it appears in Eq1) of ~ hetic origin are of the order~(4m) “aeg (« is the fine
our paper and the one in RéfL2], for instance, where one Structure constans, is the Bohr radiusand are, of course,

uses the “anapole” moment defined as many orders of magnitude larger thap Two ways of de-
tecting them have been sugested in R&8]. The immersion

in a current density would be realized either by slow electron

scatteringwhen an asymmetry is to be expected in the scat-
a=- (”/C)j r23(rdr. 67 tering of ge(lectrons fr0n¥| a samyple of polariged molecyles
in conducting solutions of chiral radicals by an applied volt-
age. As noted in Ref13] the effects are still very small, but
apparently not entirely hopeless. Anyway, the results derived
in our paper may be of some help in such studies, as well as
in the different context of toroidal moments in condensed
matter physics, where new investigations have been recently

Telectror™ T0» Tnucleor™ 0-270,

In the static casé.e., when there is no time dependence in
the charge 4) and curren{j) densitie$, they are equivalent
(up to a factor of 47),

1 undertaken(toroidal excitation of nuclear magnetic reso-
T:Ea’ (68) nance, toroidal moments in aggregate magnetic fluids, etc.
[15]).

Note: For clarity purposes some comments about the form
because in the static ca$8=0 and the piece(xj) under of the vector potential given in E43) may be in order. As
the integral sign in the definition of can be brought to?j shown in the last of Ref{8] (since we deal with sources
using nonvanishing at infinity Eq. (6) is still not fixing uniquely

the gauge. We could have worked as well, for instance, with
the new vector potential

J
d3r —— (X% X{j m) = 0. 69
f &xm( XX ] m) (69)

3
Al =A— X (70)

The anapole definitiofa, above presents, in our view, two ' IXi
drawbacks: One is serious, because in the nonstationary case .
(when the continuity relatiorp/at+Vj=0 holdg a does With x taken, for instance, as
not posess a clear-cut multipole content and effects from
various types of multipoles may get mixed; the other less A7 nr 5
serious but still inconvenient drawback is that of introducing X= _|||_Jr2__(nr)2
unnatural factors of # with respect to the other usual elec- 2 3
tric and magnetic multipoles.

It is worth noting that unlike magnetons, the “toroidons”
of the electron, nucleons, and nuclei are more or less of the n= '_ Av=0 (72
same order of magnitude, despite the large differences in [1]’ X5
mass(which did set the scale, e.g., for Bohr's and nuclear
magnetons when

: (71)




4 n;
A==l 7= ()2, 73

4
VXHWEVXVXA“ZTTL (74
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Now the vector potentiad” and the constant current density
are collinear. The results found in Sec. Il of this paper were
obtained operating only with the magnetic field and the
gauge freedom still existing in Eq3) has, of course, no
influence on them, as it must.
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