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Angular momentum loss by a radiating toroidal dipole
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If a system of charges and currents besides the usual electric and magnetic~time-dependent! multipole
moments does possess also time varying toroidal moments and distributions, there will be, in general, an
additional angular momentum loss by the system through the radiation emitted by the toroidal sources. The
classical electrodynamics formula for the rate of angular momentum loss by a time-dependent toroidal dipole
is derived and discussed in connection with a forced precession of the toroidal dipole arround a given axis.
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I. INTRODUCTION

The toroidal dipole was originally introduced by Zeldo
ich @1# ~under the name of ‘‘anapole’’! as a specific electro
magnetic moment of a dipole type, different, however, fro
the usual electric and magnetic dipoles, for systems in wh
parity is not conserved. In work summarized in the revi
articles @2,3#, by clarifying and generalizing Zeldovich’
idea, an entire class of toroidal multipoles was shown to
needed in order to achieve a correct and complete multip
characterization of the most general type of source in b
classical and quantum electrodynamics. Nowadays toro
moments are investigated in various contexts and rese
areas ranging from classical electrodynamics to elemen
particle, nuclear, atomic, molecular, and solid state phys
References to previous work may be mainly found in
already mentioned reviews@2,3#. Among such investigations
here we particularly note the following: work done in co
nection with parity nonconservation in atomic phenome
@4#, the calculation done by Ginzburgh and Tsytovich for t
Cherenkov radiation emitted by a classical pointlike toroi
dipole @5#, electromagnetic properties of toroidal solenoi
@6,7#, toroidal electromagnetic structure of Majorana ferm
ons, induced toroidal moments and toroidal polarizabilit
@8,9#, first experimental evidence of a nuclear spin-depend
contribution to atomic parity nonconservation claimed
agree with that predicted to arise from a nuclear toroi
dipole moment@10#, detailed calculations of the intrinsic to
roidal dipoles of hydrogenic atoms and positronium@11# ~see
also @12#!, intrinsic toroidal moments of certain molecule
arising even in the framework of the usual parity conserv
electromagnetic interaction, on account of the particular
ternal structure of the molecule@13,14#, recent work in con-
densed matter physics by Dubovik and collaborators@15#,
etc.

The toroidal dipole moment is defined@2# through the
formula

T~ t !5
1

10cE @r ~rj !22r2j #dr , ~1!
571063-651X/98/57~5!/6030~8!/$15.00
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wherej ~r ,t) denotes the current density of the source. It i
vector having the same transformation properties asj ~r ,t);
i.e., it is a polar vector odd under time reversal. The con
bution of the toroidal dipole moment to the interaction e
ergy with the external electromagnetic fieldAext is @1–3#

HToroidal dipole~ t !52T~ t !•@¹3¹3Aext~r ,t !# r50

52T~ t !•@¹3Hext~r ,t !# r50

52T~ t !•F4p

c
Jext~r ,t !1

1

c
Ḋext~r ,t !G

r50

~2!

and is responsible for everything regarding the manifes
tions and properties of the toroidal dipoles.

The purpose of this paper is to bring clarifications to t
classical aspects of the theory. The main results are th
stated in the abstract. This work contains also some p
essentially methodological in nature, devoted again to cl
fication purposes; some speculative remarks are also put
ward.

The paper is organized as follows: In Sec. II we show
the framework of the classical electrodynamics how the
tion of toroidal dipole moment arises quite naturally wh
investigating the behavior of a system of charges moving
an external magnetic field configurationHext chosen such
that¹3Hext is constant in space and time. When computi
the average force and moment of forces acting on the sys
one finds that while the former is expressed through
usual average magnetic dipole moment, the latter turns ou
be given just by the average of the less familiar toroid
dipole ~both the force and moment of forces are, of cour
vector products of the corresponding dipoles with¹3Hext).
In Sec. III we compute the angular momentum loss~through
radiation of electromagnetic waves! of a time-dependent to
roidal dipole and find a formula analogous with the know
one for the case of the electric dipole, with the~expected!
difference, however, that in the toroidal case the vector pr
6030 © 1998 The American Physical Society
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57 6031ANGULAR MOMENTUM LOSS BY A RADIATING . . .
uct of the second and third time derivatives of the toroi
dipole will enter rather than the first and second derivativ
as for the electric dipole. The obtained formula is particul
ized and discussed in connection with the toroidal dipo
rotating around a fixed axis. Section IV is devoted to conc
sions and the discussion of the results, as well as to s
speculative remarks put forward when commenting on h
far the analogy with the Larmor precession in constant m
netic fields can be pushed for toroidal dipoles immersed
constant current density. While in general there is no ana
of the Larmor theorem in the toroidal case, there seem to
a lot of situations when a precession frequency similar
Larmor’s one can be introduced, and even, perhaps, fruitf
exploited.

II. AVERAGE FORCE AND MOMENT OF FORCES
ACTING ON A SYSTEM OF CHARGES IN AN EXTERNAL

FIELD CONFIGURATION WITH ¹3Hext

HOMOGENEOUS AND TIME INDEPENDENT

Let us consider a classical system of charges in an ex
nal field configuration described by the vector potential

Ai
ext~r !5

1

10
~xixj22r2d i j !

4p

c
I j ; ~3!

I j is a constant vector; summation over repeated ind
( i , j 51,2,3) will be understood throughout this paper.
other words, we are dealing with a system of charges mov
in a ~time-independent! magnetic field

Hext5¹3Aext5
2p

c
I3r ~4!

with I playing the role of a constant external current dens

¹3Hext5
4p

c
I . ~5!

The gauge in Eq.~3! is such that

] iAi
ext50. ~6!

What are the average forceF and the average moment o
forcesK acting on the system in the presence of the cons
external current densityI , i.e., in the external field specifie
by Eq. ~3! or ~4!? The answer is the following~the bars
below denote time averages!:

F̄5
2p

c
m̄3I , ~7!

K̄5
4p

c
T̄3I ; ~8!

m denotes the system’s magnetic dipole moment

m5
1

2c( er3v, ~9!

while T is the system’s toroidal dipole moment
l
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T5
1

10c( e@~r•v!r22r2v# ~10!

(v5 ṙ5the velocity of the charge, the dot means different
tion with respect to time and the sum extends over
charges, summation indices over charges being, for simp
ity, dropped out!. So, it is seen from Eq.~8! that the toroidal
dipole moment@Eq. ~10!# arises quite naturally in connectio
with the particular external magnetic field configuration@Eq.
~4!# considered here; the notion of this first element~dipole!
of the less familiar class of toroidal multipoles could ev
have been introduced by means of such arguments, m
related to particular physical problems rather than to form
multipole expansions.

The derivation of Eqs.~7! and ~8! is straightforward and
goes along the same lines as in connection with the an
gous but simpler problem of the movement in a const
magnetic field, found in textbooks~see, e.g.,@16#!. We first
treat the more general case in whichinstantaneousrather
than time averaged expressions of the total force and
ment of forces are looked for, since it is quite instructive
look for the interplay between various multipole character
tics of the system in controlling the instantaneous values oF
andK and see directly what multipoles will drop out in th
final expressions when time averages are taken. Starting
the Lorentz force expression one has

F5(
e

c
v3Hext, ~11!

K5(
e

c
r3v3Hext. ~12!

Introducing forHext the form of Eq.~4! and using relations
like

r ~v•I !5
d

dt
@r ~r•I !#2v„r–I …, ~13!

after simple manipulations one finds

F5
2p

c
m3I1

p

c2F2

3
Q̇n51I2 Q̇̂l 52i I G , ~14!

K5
4p

c
T3I1

4p

5c2
Q̇n513I ; ~15!

m andT have been already defined by Eqs.~9! and ~10!,

Qn515( er2 ~16!

is the squared radius of the charge distribution,

Qn515( er2r ~17!

is the squared radius of the electric dipole moment distri
tion, while
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6032 57E. E. RADESCU AND D. H. VLAD
Qi j 5( eS xixj2
r 2

3
d i j D ~18!

is the electric quadrupole moment and the following notat
for the tensor contraction has been used:

Qi j I j[~Q̂l 52i I ! i . ~19!

Recall that dots on multipoles in Eqs.~14! and ~15! denote
time derivatives. For convenience we also recall here
corresponding expressions forF andK in the ‘‘normal’’ sim-
pler case of movement in a constant external magnetic fi
Hext:

F5
1

c
Q̇3Hext, ~20!

K5m3Hext1
1

2cF Q̇̂l 52iHext2
2

3
Q̇n51HextG ; ~21!

F̄50, K̄5m̄3Hext. ~22!

In the formulas above

Q5( er ~23!

is the electric dipole moment.
The average forceF̄ and moment of forcesK̄ displayed in

Eqs. ~7! and ~8! follow now immediately from the corre
sponding instantaneous values expressed by Eqs.~14! and
~15!, by remembering that the average value of any ti
derivative of a quantity varying within finite limits vanishe

Equation~8! tells us that if a system of charges posses
a nonvanishing average toroidal dipole moment, it will e
perience an average moment of forces when immersed
constant current density and the latter will tend to rotate
system and align it on the current lines.

The above considerations represent a formal proof of
assertion within classical electrodynamics; the assertion
self was, of course, known in the literature since the beg
ning of the toroidal moments domain, but it was mere
based on the specific contribution of the toroidal dipole
the Hamiltonian@Eq. ~2!# and analogy with the usual electr
and magnetic dipole interactions.

We end this section with the remark that although in o
case~movement in an external constant current density! there
is no direct analog with the Larmor theorem for systems
charges exposed to a constant magnetic field, something
still be said when the system is such that its toroidal dip
moment vector for some reasons lies along the system’s
angular momentum vector. This is actually the case for so
quantum systems~elementary particles, nuclei, atoms, et!
and then an analog for the Larmor precession and Lar
frequency for toroidal dipole moments immersed in a co
stant current density can indeed be formulated. But we d
this discussion to the concluding Sec. IV.
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III. LOSS OF ANGULAR MOMENTUM OF A TIME-
DEPENDENT TOROIDAL DIPOLE THROUGH

RADIATION OF ELECTROMAGNETIC WAVES

In this section we shall derive the toroidal analog of t
following well-known classical electrodynamics formula e
pressing the rate of the loss of angular momentum of a tim
dependent electric dipoled(t) through radiation:

dM

dt
52

2

3c3
ḋ3d̈. ~24!

The derivation of Eq.~24! above may be recalled, for in
stance, from the work of Landau and Lifchitz@16#, where it
appears as problem No. 2 following paragraph 72, Cha
IX. Anticipating the result, if instead of the electric dipo
d(t) ~which is a multipole characteristic referring to th
charge density distribution within the system! one has a tor-
oidal dipoleT(t) ~related, this time, to the current density!,
then the analogous formula reads:

dM

dt
52

2

3c5
T̈3 Ṫ̈. ~25!

~Three dots means third derivative with respect to time.! We
shall obtain Eq.~25! following closely the arguments pre
sented in@16# in deriving Eq.~24!. The results of this section
may be viewed as a completion of the known ones regard
the usual electric~and magnetic! dipoles, extending them to
the third dipole-type characteristic, the toroidal dipole.

Now, we start sketching the derivation of Eq.~25!. With
the definition of the toroidal dipole moment

T~ t !5
1

10cE @r ~ j•r !22r 2j #dr ~26!

one sees that for a pointlike toroidal dipoleT(t) situated in
the origin the corresponding current density is

j ~r ,t !5¹3¹3T~ t !d3~r ! ~27!

~this formula verifies identically the previous relation!. The
fields of the source given by Eq.~27! may be computed
straightforwardly from the retarded vector potential

Ai~r ,t !5
1

cE j i~r 8,t2ur2r 8u/c!

ur2r 8u
dr 8, ~28!

E52
1

c
Ȧ, H5¹3A. ~29!

One finds, outside the origin,

Ai~r ,t !52
1

rc2
T̈i~ t0!2

1

r 2c
Ṫi~ t0!2

1

r 3
Ti~ t0!

1ninjF 1

rc2
T̈j~ t0!1

3

r 2c
Ṫj~ t0!1

3

r 3
Tj~ t0!G

t0[t2r /c, ni5xi /r . ~30!
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57 6033ANGULAR MOMENTUM LOSS BY A RADIATING . . .
To calculate the rate of angular momentum loss through
diation one starts with the known formula@16#

dM

dt
5 lim

R0→`

R0
3

4pE @~n3E!~n•E!1~n3H!~n•H!#dV,

~31!

where the integration has to be done over a spherical sur
of large radiusR0 and the limitR0→` must subsequently b
taken with due care concerning various contributions fr
the electric and magnetic fieldsE, H, as given by Eqs.~30!.
We recall that Eq.~31! follows from the fact that the tota
angular momentum lost by the system per unit time is eq
to the flux of angular momentum of the radiation fie
through a spherical surface of radiusR0:

2
dMa

dt
5E eabcxbscdnddS, dS5R0

2dV, ~32!

sab is the three-dimensional Maxwell stress tensor

sab5
1

4p
@2EaEb2HaHb1 1

2 dab~E21H2!#, ~33!

andn is a unit vector in the direction ofR0. CalculatingE, H
with the aid of the vector potential~30! and keeping track of
the relevant contributions to the limitR0→`, one finds

dM

dt
52

1

2pc5E ~n–T̈!~n3Ṫ̈!dV, ~34!

which after averaging overn using

E ninjdV5
4p

3
d i j ~35!

leads to the already stated result displayed in Eq.~25!.
In getting Eq.~34! one makes use of the fact that in o

casen•H50, while

Ei5
1

rc3
Ṫ̈i1

1

r 2c2
T̈i1

1

r 3c
Ṫi2ninjF 1

rc3
Ṫ̈ j1

3

r 2c2
T̈j1

3

r 3c
Ṫj G
~36!

and therefore

n•E52
2

r 2c2
~n•T̈!2

2

r 3c
~n•Ṫ!, ~37!

n3E5n3F 1

rc3
Ṫ̈1

1

r 2c2
T̈1

1

r 3c
ṪG . ~38!

~The argument ofT in these equations ist05t2r /c.!
At this point we find it worth recalling that the total in

tensity of the radiation emitted by a time-dependent toroi
dipole T(t) is @2#

I 5
2

3c5
u Ṫ̈u2. ~39!
a-

ce

al

l

If besides the toroidal dipole there is also the usual elec
dipole d(t), the above formula goes into@2#

I 5
2

3c3Ud̈2
1

c
Ṫ̈U2

. ~40!

From Eq.~25! one sees that just as in the case of the us
electric dipole, for a linear oscillating toroidal dipoleT
5T0cosvt with a constant amplitudeT0, there will be no
loss of angular momentum through radiation of electrom
netic vawes. By comparing Eqs.~25! and~24!, one notes also
that higher time derivatives enter the formula fordM /dt in
the toroidal case, reflecting the situation that albeit a dip
characteristic, the toroidal dipole moment comes along w
the usual electric and magnetic quadrupole moments in
multipole expansion.

If the toroidal dipole performs aforcedprecession around
a given axis~specified by the unit vectore! with a constant
angular velocityv, one will have

Ṫ5v3T, uTu5T05const, v5ve. ~41!

We speak of aforced precession since unlike the case of
magnetic dipoleautomaticallyprecessing in a constant exte
nal magnetic field, in general there is no Larmor theor
analog for a toroidal dipole in a constant current dens
unless for some other reasonT stays along the angular mo
mentum vector.Forcedprecession means that one rotates
toroidal dipole ‘‘by hand,’’ i.e., on account of some oth
external factors. Anyway, if Eq.~41! is verified, a simple
calculation shows that the angular momentum loss will
given by the formula

dM

dt
52

2v2

3c5
~v3T!2

•v52
2v5

3c5
~e3T!2

•e. ~42!

If the toroidal dipole rotates in a plane, (v3T)25v2T2 and
Eq. ~42! particularizes to

dM

dt
52

2v5T2

3c5
e. ~43!

In the case of a nonuniform~forced! precession arround a
fixedaxis specified by the unit vectore, going with a time-
dependent angular velocityv(t),

Ṫ5v~ t !e3T, ~44!

the rate of angular momentum loss will be

dM

dt
52

2

3c5
~e3T!2~v513vv̇22v̈v2!e. ~45!

We have displayed this result in order to stress the differe
with respect to the corresponding known expression for
electric dipole case, when the angular momentum loss
given by

dM

dt
52

2

3c3
~e3d!2v3e ~46!
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6034 57E. E. RADESCU AND D. H. VLAD
irrespective of whether the precession arround the fixed
e is uniform (v5const) or not@v5v(t)#. As seen from the
equations above, in the toroidal dipole case the angular
mentum loss depends, in general, on the derivativesv̇,v̈,
while for the electric dipole there is no analogous sensitiv
We note further that there is a certain particular nonunifo
precession, namely, that given by

v̄~ t !5v0S t

T0
11D 21/2

~47!

with v0 ,T0 constants, for which the last two terms in th
right-hand side~rhs! of Eq. ~45! cancel sincev̄(t) as given
by Eq.~47! is the general solution of the differential equatio

3v̇25v̈v. ~48!

Therefore in this case one has

dM

dt
52

2

3c5
~e3d!2v̄5e ~49!

which formally coincides with the expression correspond
to the uniform case Eq.~43!, but with the obvious difference
however, thatv̄ is now time dependent, as given by Eq.~47!.

Moreover, it is, perhaps, worth noting that there are p
ticular nonuniform precessions for which there is no loss
all of angular momentum through radiation and this happ
on account of more profound arguments rather than bec
of purely kinematical reasons. Indeed, if the nonuniform p
cession is such thatv(t) verifies the nonlinear second-ord
differential equation

v̈v23v̇22v450, ~50!

then the whole rhs of Eq.~45! vanishes altogether an
dM /dt50. Equation~50! can be immediately integrated b
rewriting it in the form

d

dtS v̇

v3D 51, ~51!

wherefrom the general solution comes out as

v~ t !5v0S 12
t

t
2v0

2t2D 21/2

~52!

with the two integration constantsv0 ,t denoting the initial
angular velocity and a certain time scale, respectively. T
fact that a rotating toroidal dipole in certain unusual circu
stances may not lose angular momentum through radia
distinguishes it neatly from the electric dipole and may ha
some consequences.

In this section we have insisted on the comparison w
the known situation for the case of the electric dipole sinc
is a general fact that toroidal multipoles~although related to
is
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the current density distribution inside the source! emit
electric-type radiation, like the usual electric multipoles~but
with a different frequency and phase content! @2,3#. To avoid
confusion, we recall again~see Refs.@2,3,8#! that while there
are three types of sources~electric, magnetic, toroidal!, there
are, of course, only two types of radiation~the usual electric
El and magnetic Ml waves!.

IV. DISCUSSION

As is well known, Larmor’s theorem essentially says th
a system of charges, all of them with the samee/m ratio and
experiencing finite movements in, e.g., a centrally symme
electric field and in a weak constant magnetic fieldHext, in
the nonrelativistic case, behaves just as the same system
do in the absence of the magnetic field, but in a coordin
system rotating uniformly with the angular velocity~Larmor
frequency!

V5
eH

2mc
. ~53!

This mainly happens because under the mentioned co
tions the system’s total angular momentum

M5( r3p ~54!

is proportional with the system’s magnetic dipole mome
Eq. ~9!

m5
e

2mc
M . ~55!

Thus, after time averaging, one easilyproves that bothM̄
andm̄ satisfy

dm̄

dt
5V3m̄ ~56!

i.e., the vectorm undergoes a precession arroundHext, with
the period 2p/V (um̄u and the angle betweenm̄ and Hext

remain constants!.
In turn, when one deals with movements in a magne

field configuration with¹3Hext constant rather thanHext, in
general one cannot straightforwardly get for the average
roidal moment of the system a time evolution equation l
Eq. ~56!, although now the averaged toroidal moment e
presses, according to Eq.~8!, the average momentum o
forces acting on the system in the same way as did the m
netic moment in the constant magnetic field case@Eq. ~22!#.
This occurs because one lacks, in general, the proportion
between the toroidal dipole momentT and the mechanica
angular momentumM analogous to Eq.~55! for the mag-
netic moment. That is why in the previous section, wh
using a precessionlike formula forT of the type of Eq.~56!,
we spoke of a ‘‘forced’’ precession. Although the analo
with Larmor’s precession, in general, cannot be pushed
further, this does not mean that there are no interesting
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57 6035ANGULAR MOMENTUM LOSS BY A RADIATING . . .
ticular cases when one can. Among them we note tha
elementary quantum objects. Due to angular momen
quantization, the toroidal moment, if the object posses
one as an intrinsic electromagnetic characteristic, must lie
the spin direction. For elementary particles, nuclei and
oms, small electroweak parity violating interactions give r
to very small intrinsic toroidal moments, mostly still und
tected, with the possible exception of that for the nucle
133Cs of Ref.@10#; for molecules~chiral @13# or even hetero-
nuclear polar diatomic@14#! toroidal moments can appear o
account of the usual parity conserving electromagnetic in
action because of the structural intricacy of the system
are more orders of magnitude larger than those previo
mentioned, albeit still small enough. Despite the smallnes
the effect we find it useful to dwell below on the possibili
of introducing a new Larmor-type frequency analogous
the usual Larmor frequency Eq.~53!, but associated this time
with constant current densities, or, more generally, with c
stant¹3Hext, instead of constant magnetic fields. So, whe
ever the physical system under consideration is such tha
toroidal dipole momentT is proportional to its angular mo
mentumM ,

T5lM , ~57!

because of the relationship between the time variation oM
and the total moment of forcesK acting on the system

dM

dt
5K , ~58!

it follows @on account of Eq.~8! obtained in Sec. II# that in
the presence of a magnetic field of constant curl@Eq. ~5!#

¹3Hext[
4p

c
I ~59!

~in the static caseI is just a constant conduction curre
density; otherwise,I may include a displacement curre
density too, i.e., an external electric field with a linear tim
dependence! one will have

dT

dt
5lK5

4p

c
lT3I . ~60!

In other terms, the toroidal dipole momentT will precess
around the direction of the total~constant! current densityI
with an angular velocityVT given by

VT5
4pl

c
I . ~61!

In getting the precession formula

dT

dt
5T3VT ~62!
of
m
s
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t-
e

s

r-
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its

we have omitted the bars denoting time averages when m
ing an appeal to Eq.~8! of Sec. II because of the irrelevanc
of this point in the discussion presented in this section. No
while the usual Larmor frequency@Eq. ~53!# is related to the
constant magnetic field through a proportionality fac
e/2mc basically expressed in terms of essentially fundam
tal constants, the new frequencyVT of Eq. ~61! above loses
much of the generality of Larmor’s precession. However,
would like to stress here that a certain amount of genera
is still contained in Eq.~61! in the following sense and in the
following cases.

Since Zeldovich’s pioneering paper@1# in which the
‘‘anapole’’ ~i.e., essentially the toroidal dipole we are dea
ing with! was introduced, it was known that a typical sca
for the toroidal moment of any particle should be

t0[
eGF

4p\c
'0.36310233e cm2 ~63!

since the new type of electromagnetic interaction envisa
by Zeldovich~parity violating but preserving invariance un
der time reversal! should have been, in a way, ‘‘half’’ elec
tromagnetic and ‘‘half’’ weak, wherefrom the appearance
the electron’s chargee and Fermi constantGF in Eq. ~63!
was just what one had to expect. The utility of the univer
scale set~essentially! by Eq.~61! was recently reemphasize
in Ref. @12#. Nowadays, on the basis of the Glashow-Sala
Weinberg theory one not only knows that indeed each
ementary particle must have such an intrinsic toroidal dipo
but, moreover, one has at hand the necessary means to
culate it. Estimates have indeed been obtained in vari
cases, which do confirm the scale provided byt0 @Eq. ~63!#,
which we shall call~quite improperly, perhaps, but useful t
spare words! a ‘‘toroidon,’’ by analogy with the word ‘‘mag-
neton.’’ A superficial argument in favor of such a name
that t0 fixes the value ofl in the proportionality relation
~57! if one sets the angular momentumM5\, with the result

l5
t0

\
, ~64!

in the same way as the gyromagnetic relation Eq.~55! sets
the value of the Bohr’s magnetonm05e\/2mc when the
angular momentum quantum unit\ is used. All proportions
preserved regarding the ‘‘toroidon’’~unlike the magneton, it
only serves as a scale to measure toroidal moments of a
physical systems!, one cannot refrain from mentioning that
nonetheless has an advantage over the magneton sin
does not contain the mass of the particle~which leads to
Bohr’s magnetons, nuclear magnetons, etc.! but is expressed
entirely in terms of the system-independent fundamen
constantse,GF ,\,c. Note also that while for magnetons th
Planck constant\ appears in the numerator, for the ‘‘toro
don’’ \ appears in the denominator; however, this occ
rence could be only formal in nature and devoid of a
physical relevance, sinceGF is still a phenomenological con
stant, so that room may be left for other alternatives.

The precession frequency for the ‘‘toroidon’’ is given b
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Vt0
5

eGF

\2c2
I5

t0

\

4p

c
I5

t0

\
¹3Hext. ~65!

To substantiate the usefulness of the ‘‘toroidon’’ notion a
unity to measure the toroidal moments of elementary p
ticles, nuclei, atoms, etc., we mention some typical num
cal estimates obtained so far in the literature. We take th
from the review given in Ref.@12# to which we send the
reader for some details on the methods used in their der
tion and corresponding references. Denoting byt ~with ad-
equate labels! the various toroidal moments of interest, o
has in terms oft0

telectron;t0 , tnucleon;0.2t0 ,

tnucleus;0.2A2/3t0 , tdeuterium~2Sstate!;644t0 ,

tcesium atom~ground state!;8400t0 . ~66!

To avoid confusion, we note the difference in the definiti
of the toroidal dipole momentT as it appears in Eq.~1! of
our paper and the one in Ref.@12#, for instance, where one
uses the ‘‘anapole’’ moment defined as

a52~p/c!E r 2J~r !d3r . ~67!

In the static case~i.e., when there is no time dependence
the charge (r) and current~j ! densities!, they are equivalen
~up to a factor of 4p),

T5
1

4p
a, ~68!

because in the static case¹j50 and the piecex(xj ) under
the integral sign in the definition ofT can be brought tor 2j
using

E d3r
]

]xm
~xixkxl j m!50. ~69!

The anapole definition~a, above! presents, in our view, two
drawbacks: One is serious, because in the nonstationary
~when the continuity relation]r/]t1¹j50 holds! a does
not posess a clear-cut multipole content and effects fr
various types of multipoles may get mixed; the other le
serious but still inconvenient drawback is that of introduci
unnatural factors of 4p with respect to the other usual ele
tric and magnetic multipoles.

It is worth noting that unlike magnetons, the ‘‘toroidons
of the electron, nucleons, and nuclei are more or less of
same order of magnitude, despite the large difference
mass~which did set the scale, e.g., for Bohr’s and nucle
magnetons!.
a
r-
i-
m

a-

ase

m
s

e
in
r

In this respect we note the strange coincidence found
Ref. @11# between the values of the ground-state toroi
dipole moment for positronium and the part of the toroid
dipole moment of the ground state in hydrogen induced
the spin-independent part of the parity nonconserving in
action, which also hints to a certain kind of mass insensi
ity.

We recall that in the case of Majorana particles the tor
dal moments and distributions are the only intrinsic elect
magnetic characteristics left@8# and for spin 1/2, the toroida
dipole moment could still be nonvanishing even for ze
mass particles@17#. Thus the results of the present pap
might be perhaps of some relevance for neutrinos and
some astrophysical considerations.

As shown in Refs.@13,14#, toroidal moments much large
than the ‘‘toroidon’’ scale could arise in chiral molecules a
even in heteronuclear diatomic~polar! molecules. This time
the effect is not due to parity violation at the fundamen
level ~in the Hamiltonian! but comes out as a result of th
usual electromagnetic forces in electronic systems poss
ing certain types of complexity such that, e.g., a pseudosc
can be formed with the parameters available in the probl
The appearing toroidal moments~now of pure electromag-
netic origin! are of the ordert;(4p)21aea0

2 (a is the fine
structure constant,a0 is the Bohr radius! and are, of course
many orders of magnitude larger thant0. Two ways of de-
tecting them have been sugested in Ref.@13#. The immersion
in a current density would be realized either by slow elect
scattering~when an asymmetry is to be expected in the sc
tering of electrons from a sample of polarized molecules!, or
in conducting solutions of chiral radicals by an applied vo
age. As noted in Ref.@13# the effects are still very small, bu
apparently not entirely hopeless. Anyway, the results deri
in our paper may be of some help in such studies, as we
in the different context of toroidal moments in condens
matter physics, where new investigations have been rece
undertaken~toroidal excitation of nuclear magnetic res
nance, toroidal moments in aggregate magnetic fluids,
@15#!.

Note:For clarity purposes some comments about the fo
of the vector potential given in Eq.~3! may be in order. As
shown in the last of Ref.@8# ~since we deal with source
nonvanishing at infinity! Eq. ~6! is still not fixing uniquely
the gauge. We could have worked as well, for instance, w
the new vector potential

Ai85Ai
ext2

]x

]xi
~70!

with x taken, for instance, as

x5
4p

c
uI u

nr

20F r 22
5

3
~nr !2G , ~71!

n5
I

uI u
, Dx50, ~72!

when



ty
ere
he

57 6037ANGULAR MOMENTUM LOSS BY A RADIATING . . .
Ai852
4p

c
uI u

ni

4
@r 22~nr !2#, ~73!

¹3Hext5¹3¹3A85
4p

c
I . ~74!
t.

-
rk
Now the vector potentialA8 and the constant current densi
are collinear. The results found in Sec. II of this paper w
obtained operating only with the magnetic field and t
gauge freedom still existing in Eq.~3! has, of course, no
influence on them, as it must.
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