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Self-consistent distribution of a high brightness beam in a continuous focusing channel
and application to halo-free beam transport
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The self-consistent particle distribution of a high brightness beam in a uniform channel with arbitrary
focusing potential is derived. It is shown that the self-potential of a space-charge dominated beam always tends
to the same distribution as an external focusing potential with opposite sign regardless of the applied focusing
field. Subsequent approximation formulas to the space charge potential of the beam have been derived, which
demonstrates the effect of shielding of the external field. The developed approach is checked via known
solution as a Gaussian beam distribution matched with a nonlinear focusing channel. The performed study
provides a theoretical basis for choosing parameters of the space charge dominated beam transport with
suppressed emittance growth. Numerical results demonstrating prevention of halo formation for a bright,
nonuniform beam, with a phase space density value of 1(& &h mrad are given.
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|. INTRODUCTION wherec is the velocity of light, P=(P,,P y.P) is a canoni-
Emittance conservation of a high brightness particle bea ;::rlltglorgentum ?(fxpa)rtllgliicaﬁg?, oteAnii)a:So?t\r/\iclfgLL? som
is an important issue for existing and future high intensity Id, 5’6 _ex )18 P h tential of thg
accelerator projects. If the beam is matched with the unlforn‘Le andty Q(X’Y) IS a space charge potential of the
focusing channel, its distribution function as well as beam eam. In a moving coordinate system where part|cles are
emittance and beam brightness are conserved. Findingfatic, the vector potential of the beam equals 2é0,0.
matched conditions for the beam requires solutions of théiccording to the Lorentz transformation, components
self-consistent problem for the beam distribution function inof the vector potential are converted into the laboratory sys-
phase space. Self-consistent particle distribution creates a pt¢m of coordinates as followsA,=A,=0, A,=pU,/c
tential in which particle motion maintains this distribution. [3]. Transverse components of mechanical momenfim
A nonuniform space charge dominated beam is mis—p— q,& are equal to that of canonical momentupy
matched with a linear focusing channel, which results in=p,, p,=P,. To make a simplification of the Hamiltonian
beam emittance growth and halo formation. Recently it wag2.1), let us take into account that kinetic energy of the beam
found that nonuniform beam distribution is conserved in ais much larger than the self-potential-energy of the beam.

highly nonlinear focusing field1]. A nonlinear field distri-  Consider, for simplicity, a uniformly populated beam with
bution can be created in a multipole alternating gradienspace charge potential

channel[2]. The effective potential of such a structure is a

complicated function of radius and azimuth angle. Finding | r\2 m | [r)2
matching conditions for a beam in such a structure is re- Up=— —( ) = (—)

quired to provide beam transport without emittance growth 4meofiC qa lB1\R

and halo formation. In this paper, the general approach to me |

determine a matched beam distribution in a continuous chan- = — — , (2.2
nel with an arbitrary applied focusing potential is developed. 9 1Bl _g

Results of the study are applied to a practical solution of the

important problem of intense beam transport without halovhere R is a beam radius andl.=4me,mci/q

formation. =3.13x 10°(A/Z) A is the characteristic value of beam cur-
rent. Substitution of Eq(2.2) into the expression for the

longitudinal component of the canonical momentum gives
Il. SINGLE-PARTICLE HAMILTONIAN

Let us consider a high brightness beam of particles with b
chargeq, rest massn, and beam currerit propagating in a P;=p, A, =mcBy+ap ?=mcﬂy( 1- |c37)'
z-uniform focusing channel with longitudinal velociy; The 2.3
single-particle Hamiltonian in a focusing channel is given by

We consider beam transport with the beam current a value
much lower than the Alfve currentl < gyl .. Therefore, in
Eq. (2.3 P,>qA,, and P,—qA,)’~P2—2P,qA,. After
+qQUext qUp, (2.1)  expanding small terms/1+x~1+x/2 in the Hamiltonian

K=cym?c?+(Py—qA)*+(Py—gA)*+(P,—qA,)?
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function and using the new Hamiltonidh=K — mczy, the TABLE I. Ratio of space charge density of the beam at the axis
general form of the single-particle Hamiltonian in a uniform to average value of density=p,/p for different particle distribu-
focusing channel is tions.
p 24 p Particle
;m ’ +qUext+q 2.9 distribution k
. . ry= 1
In Ref. [3], the Hamiltonian(2.4) was used to treat self- p(r)=po )
consistent beam dynamics in the linear focusing fielg, p(r)=po[1g(i) } 4
=G r?/2, whereG is a focusing gradient. Below the ap- 3R 3
proach is generalized for the case of an arbitrary applied - 1_1 r\2P 15
potential for the focusing fieltl .. PN=pi =315 '
r2
ll. PARTICLE DISTRIBUTION FUNCTION P(r):poexr(—ZQ) 2

The general approach to find a self-consistent distribution
function for a time-independent process is to represent it as a
function of Hamiltonianf = f(H) [3]. Substitution of the dis-
tribution function into Poisson’s equation provides a nonlin-
ear equation for unknown space charge potential of the beam

p(x,y)=qf7mfﬁxf(x,y,px,py)dpx dpy

Uy, which appears in both the left and right sides of the o exd — Uext ¥ ?Uy
equation: ~Po q Ho '
AUb——— f f ( +qUext+q )dpx dpy . po=2mmfyHyyQ. (3.9

@D In Eq. (3.6) pg is the value of the space charge particle den-
After solving Eq.(3.1) for the charge potential of the beam sity in the center of the beam. The valueggfis unknown at
Uy, one can find the self-consistent particle distribution,this point due to the unknown space charge potential of the
which will be maintained in the focusing channel. A conve-beamUy. Let us introduce an average value of space charge

nient way is to use an exponential function: density of the beam:
S L N DO B el L A" o
R TR, T T 2mH, 1T R I P= BonR?" 37

The distribution function(3.2) contains two unknown In general, the particle density at the apisdiffers from the
constantsf, and H,, which can be expressed through the average value of space charge denpitys a factor ok:
beam parameters. Let us rewrite distribution functi®r) as

follows: po=Kp, (3.9

P; P Ueaty 2Uy . .
f:foex;]( 25-2-3—q ex‘—) (3.3  where parametek has typical values presented in Table I.
Po  Po Ho Taking into account the adopted relationst®8), the value

of fy is expressed as follows:
where po=2/( px2 =24 p2> is the double rmgroot-mean- 0 P

squarg beam size in phase space. Beam rafies2/(x 2 is

the double value of the rms beam size in conf|gurat|on space. f.= 2l (3.9
. . 0 2 m2 3.2 '
The rms value of beam emittaneeis a product of beam mepaMC e
radiusR andpg:
4 Rpo IV. SELF-CONSISTENT SPACE CHARGE POTENTIAL
€= (x2)(p3)= Y (3.4 OF THE BEAM

To find the self-consistent particle distribution, one has to
therefore po=mc e/R. From Eqs(3.2), (3.3), and(3.4), the  solve Poisson’s equation for an unknown space charge po-

value ofH, is given by tential of the beam. Let us introduce dimensionless variables:
P mc
- U U r
°~amy 4y (R) ‘ 63 Ve =20 V=0 el g
Hg Hg a

The space charge density of the beam is expressed via the
distribution function after integration over particle momen-wherea is the radius of the channel. Poisson’s equation in
tum: cylindrical polar coordinates is
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LWy Vo LTV g Vet Voy 2 Do=8lr?b 2| 51 4.9
TR AT 0eXP— (Ve Vb y ™), 0=8Ky’b| = : (4.9
| /a\2 It is possible to simplify with an approximation to Pois-
$y=16ky B (—) (4.2  son’s equatior4.7). For monotonous space charge distribu-
C

tions, the values of coefficients,,, andB,,,, in space charge
can be expressed as a Fourier- potential expansiori4.3) vanish quickly with increasing of
indexesn and m. Roots of the Bessel function are slow
functions of numbersn,m: vy;=2.408; v;=3.83, vy
Vb=Vo+\7b. =5.13, v5,=5.52. The ratio of the beam radius to the aper-
ture of the channel has a typical valueRfa~0.5. Conse-

The unknown potentiaV,,
Bessel series,

e quently, the following factor in Eq(4.7) can be approxi-
V=2 > In(vnmé) (AnmCOSNe+B,ysin ne), mated as a constant, close to unity:
n=0 m=1
4.3 vam¥” __ Vam (R|? 1
+ =1+ —| =1+ =—<1.
1<I>0 8bkal§’5bk1

whereJ,(x) is a Bessel function ang,, is the mth root of 4.10
the equationd,(x) =0. Expansiorn(4.3) satisfies the Dirichlet '
boundary condition at the conductive surface of a round pipghe above factor can be taken out of the sum in @d?):
Vp(a) =V,. Constant/ is defined below such that the total
potential of the structure vanishes at the axis: Vomy? )

1+ To) In(vnmé) (Apmcosne+ B, Sin ne)

_ 2, 2,
Vp(0,0) N Vo

To find an approximate solution of Poisson’s equation, letWith Eq. (4.11), the approximation to Poisson’s equation is
us take the first term in the near-axis expansion of exponergiven by

tial function: -,
Vo+ (1+8)Vp=y(1—Vey). (4.12
\Y \Y
ex;{ ~Vex— Tb) ~1=Ve— —2 4.5 The external potential in general can be represented as an
Y Y expansion on multipole components:
The left side of Poisson’s equation is %

5 5 © U= E
1 &Vb d Vb 190 Vb 2 n=2
EOE TR T i o)

X(ApmCOShe+ B, Sin ne),

r\" — -
5) (U, comne+Ugsinng).  (4.13

Expression(4.13 vanishes on axis, therefore the unknown
constant in the space charge potential expression is given by
Egs.(4.4) and (4.12 as

(4.6 )
v Y
therefore, Poisson’s equation with exponential expansion Vo=—Vu(0p)=— 5. (4.14
(4.5 becomes
L. Finally, the self-consistent space charge dominated beam po-
V2P tential near axis is
Vot 2 2 | 1+ =g —| In(vhnmé) (Anrcosng
n=0 m=1 0 - ’)/2
+BansSin n¢) = 72(1—Vey). 7 Vo= Vot Vo= — g Ven (413
We introduce dimensionless value of beam brightness: The same relationship is valid for the electric fiel
2 =—gradu:
b= 2 IR 4.8
=5 2T 4.8 2

E,= (4.16

- 1T5 Eext-
Parameteb is the figure of merit for a space charge domi-

nated beam, obeying the Kapchinsky-Vladimirgk§v) en- From Eqg.(4.15 it follows that the space charge domi-
velope equation in an ideal uniform focusing channel. Spac@ated beam always compensates for the focusing field in the
charge dominated beam transport is performeabifl, oth-  beam core regardless of the applied external focusing poten-
erwise the emittance dominated regime is fulfilled for tial. This fact is well known for channels with linear focusing
<1. Therefore, in the case of high brightness beam transportield [3], but now it is shown also for an arbitrary focusing
parameterb, in Poisson’s equatiof¥.2) is much larger than field. In the above derivations, there were no assumptions
unity: about the specific features of the focusing field. The particle
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distribution of the bright matched beam always tends to such
a shape that the space charge beam potential is opposite to
the external focusing potential. This phenomenon is known
from plasma physics as Debye shielding for nonneutral plas-
mas. For high brightness beams, the Debye length is much
smaller than the beam radi{#] and hence, as demonstrated
by Eqg.(4.15, space charge dominated beam always compen-
sate for the focusing field. Therefore our analysis gives us
the possibility of matching a bright nonuniform particle
beam with the channel through the selection of multipole
focusing field components. In Sec. VI, this approach will be
used to provide halo-free beam transport of a nonuniform Vv
bright beam. ext

The second approximation to the self-consistent potential £ 1. self-consistent potential of a high brightness baaas
Vi can be obtained by taking one more term in the expansiog function of applied focusing potentidf, for §=0.2, y=1: (a
of the exponential function: linear approximatiorfEq. (4.15], (b) second order approximation

Eqg. (4.2 numerical solution of Eq(4.23.

(Vo 7~ 2Vp)2 [Eq. (4.20], (c) numerical solution of Eq(4.23

A

w

~

o

-V
b
N
Sh~bhuuLuwihiihun
L A
: cri\\

L
—~—
(8]
w
LN
(o
(@

expl—Vex— v~ ZVb)% 1-Ve—v ZVb+ 2 . ) .
Using the value of constariy, Poisson’s equation for a
(4.17) high brightness beam is as follows:

Repeating similar derivations leading to E¢.12), the sec-

ond approximation to the space charge potential is defined b o \Y
PP P gep y 14— V= exp( Vg —2) . (4.23
72 \7 2 Y Y
_— 0 b
Vot (14 8)Vp=y*(1—Vey) + > Vet 7 + 7

Higher order approximations to the space charge potential
V), can be obtained from E¢4.23 by holding more terms in
the expansion of the exponential function or via numerical
solution of EqQ.(4.23. In the extreme case of a very high
brightness beam, Eq4.23 gives the same result as linear
F4.15) and second ordg@.20 equations:

(4.18

Substituting the axial conditiorV,(0,0) =0, V,(0,0)=
—V, into Eq. (4.18), the value of the constaMy=— %/ 8
appears to be the same as in the first approximation. Th
guadratic equation for unknown space charge potential is

V2+ V292 (Vexi— 1= 8) + ¥* Ve Vexi— 2) =0. Vy
b ext ext\ Vext (4.19) 1=ex _Vext_ ;2_ , Vb: _ '}’Zvext- (4_24)
The solution of Eq(4.19 is a second approximation to the
space charge potential: In this case the space charge potential of the beam com-
pletely compensates for focusing field.
Vp=Y2(1+ 86— Vex) — Y? V(14 6— Ver)>— Ve Vex— 2). In Fig. 1 results of different approximations to the self-

(4.20 consistent space charge potential of the beam for the value of
6=0.2 are presented. Both first and second approximations
For small values oWe,<1, expression4.20 transforms  are close to the exact numerical solution of E423 up to
to a linear relationship between space charge potential ang, <3 The second order approximation is valid until the
external focusing potentid#.15. In the limit of a very high  determinant in Eq(4.20) is positive:
brightness beams—0, the second approximatiot4.20
gives the same result,= — y*Voq, as the linear approxi-

9¢
mation (4.15. This means that the linear approximation sk
(4.195 becomes more valid with increasing beam brightness. M 1
In general, Poisson’s equation fér<1 can be written as 6 E c
follows: st )
o p( yo Y Vo) w2 B P
— Vp=eXp —Vex— —3— —3 /- . E 7 —=
2 Vb ext” D27 02 St P a
The expression under the exponential function vanishes on !
axis, therefore, the unknown constavg in the adopted 00 I 2 3 4 5 6 7 8 9 10
model always equals the value @.14) due to the resulting v
equation ext
FIG. 2. Results of the numerical solution of E@.23 for a
- — V=1 (4.22 self-consistent potential of a high brightness beé&mn:5=0.3; (b)

Y ' 5=0.2; (c) 5=0.1.
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function of the phase space density of the beam. It provides

0.3} 7 . . . BT
c / \ an easy way to find a self-consistent particle distribution in
02F \\ the channel with a given focusing potential.
.7 | a
§ orf T
?, 0 V. COMPARISON WITH KNOWN SOLUTIONS
Lt
0.1 a b Let us check the developed approach with Gaussian beam
o :\ ) matched with nonlinear chann¢l]. Consider an inverse
0.2 - | C problem and define the required external field to maintain a
- \ -~ high brightness beam with a Gaussian particle distribution:
-0.3 —N
0 05 1 15 2 25 3
Xy PRy
Po

FIG. 3. (a) Space charge fiel¢ 2E, [Eq. (5.4)], (b) total field )
Ew [EQ. (5.3], and(c) required focusing field,, [Eq. (5.5] for ~ According to the general approach suggestefilinthe so-
150 keV, 100 mA, 0.&cm mrad proton beam with a Gaussian !Ution of Vlasov's equation for a Gaussian distribution func-

distribution function. tion (5.1) provides an expression for the total field of the
structure:
_ (s 5)? 4.29
=26 1mc € [x?+y?
. . . . U(X!y):___4 )! (52)
In Fig. 2 results of numerical solution of Poisson’s equa- Y R 2

tion (4.23 for different values of beam brightness are pre-
sented. As seen, with increasing beam brightness, an exact
numerical solution of Poisson’s equation becomes close to E - _ Wu_ 1 ﬁ 6_2 53
the linear relationship between space charge potential and ot oy g R r. 53

external potential.

The space charge distribution of a matched beam can bEhe space charge field of the Gaussian beam is attained from
derived from Poisson’s equation via a known space chargBoisson’s equation:
potential of the beam

U, |
ar  2mweyBC I

€p r2
pr—EOAUb=m Y?AU gyt (4.26 Ep=— 1—exp<—2§2”. (5.4
The space charge density of high brightness beam is definethe external focusing field required to maintain a beam with
by the external focusing potential functith,,,and is a weak a Gaussian distribution is
— _

r.2
7 ary R iy 1_exp(_2¥)”' >

Figure 3 illustrates the relationships between the space charge field of the bedaB4Edhe total field, Eq(5.3), and the
focusing field of the structure, E¢.5), for a Gaussian beam with paramelber 35. As can be seen, the external field and the
space charge field of the beam are close to each other with opposite sign, as describe4hl6Eq.

Now let us apply the results of Sec. IV and define a self-consistent particle distribution via a known focusig.5eld
Application of formula(4.26 gives

Ep mc (e I R
Eexi= Etot—

€p I’z

- 10 2 ,
Po= 15 5) ¥ 1 ar (Eed= 5o g2 & R?

The expression in square brackets in E§.6) is always close to unity near the axis<R. But for small values ofé
<10 2, the expression in square brackets is close to unity far away from the axig srii

1

2
lce’BY ” (5.6)

T AR exd —2(rIRY)]

(1+6)

1
(1+9)

|.€2By ”_ 1+ 8lexd —2(r?/R?)]

L AR — 20 7R |~ 1+o oo 67

r<R
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FIG. 4. (a) Space charge fieldp) total field and(c) required 15 B —
focusing field for 150 keV, 100 mA, O7icm mrad proton beam _ Ik
with KV distribution function. E o'f) E [} {
>;,0.5§ } \
The rest of the expressiofb.6) describes the beam with a _,iﬁ g
Gaussian distribution 2 BT
2 5215105005 1 1.5 2 25
ol ) X {(cm)
r
P~ BcaR? e"p( _23)’ 6.8 2=180 cm
2.5 E
. . e . 2 E
which coincides with initial suggestiofb.1). 15 B ] Vi
The performed example demonstrates the validity of the . ! E G~
developed approach to determine a self-consistent partic@ "'f, E V3 [/
distribution. Formula(4.26) gives the correct expression for >.o5 E I s A \
the space charge distribution of a matched beam with a hig -/ '
value of beam brightnes®y>50, within the beam size TE ——
Similar results are found for a beam with KV distribution. '2'5'2'1’5'”’;‘5&2‘15) 115225
Figure 4 illustrates the relationships between the spac
charge field of the beam, the total field, and the focusing fielc 7 =324 cm
of the structure for a KV beam with parameter 35. Let us
note that Eqs(4.15), (4.16), and(4.26 are always valid for 25 ¢
the KV beam. ZF y
15 B
N
o T
VI. BEAM TRANSPORT IN A FOCUSING CHANNEL ‘;,027 E 1[5 f \
WITHOUT HALO FORMATION JE Eh i A
156 1
The above analysis results in a solution to an importan -2 {
problem: providing conditions for halo-free nonuniform 25252“;5,4,5005”"5“225
beam transport in an alternating-gradient focusing channe - x (cm)

Nonlinear space charge forces of a high intensity beam pro-
duce strong emittance growth and halo formation in a linear

6025
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FIG. 5. Emittance growth and halo formation of the 150 keV,

focusing channel due to mismatch of the beam profile withl00 mA, 0.06r cm mrad proton beam with parabolic distribution

the focusing fieldsee Fig. 5. In Ref.[2] it was shown that
incorporation of a duodecapole component in a pure quadrudradient ofG,=50 kv/cn?.
pole channel results in suppression of emittance growth. A
special case is a four-vane quadrupole structure, where the
shape of the electrodes is modified to create a multipole field
distribution as shown in Fig. 5]

Let us consider a uniform four vanes structure with po-
tential

G

Ucr,e,t)= 5

r2cos 2p+

function (6.195 in a four vanes quadrupole structure with a field

Gs ,
?r COS Gp | Sin wqt,

(6.

where G, is a quadrupole gradientGg is a duodecapole
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, abcd
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> 0.5 -RM ~ 4,
HERNNZ
E N 7
-15E
) I P YOS P PO TS PO PP
-2-1.5-1-050051 152
Ucoswt X (cm)

FIG. 7. Lines of equal values of the functio(i:=%r2
FIG. 6. Proposed four vane quadrupole structure with a duode= zr8cos 4o+ (¢2/2)r1° for {=—0.03: (a) C=0.05, (b) C=0.25,

capole field componerib]. (c) C=0.5, and(d) C=0.85.

component, andwy,=2mc/\ is an operational frequency. |ntegrating the space charge density over radius and azimuth
The electrical field of the structure is given by angle O<sr<R, 0<¢<27 gives the total number of trans-

- - ported particles per unit length:
E(r,e,t)=[—i,(G,r cos 20+ Ggr°cos Gp)

N | Po R (27w
+i (Gl sin 2p+ Ggr ®sin 6p) Jsin wgt. Nzﬁza fo fo (1+10Zr*cos 4p+250%r®)r dr d¢

(6.2

TPo
=

Particle trajectories in the fiel®.2) can be represented as R2+57%R19). (6.9

a combination of a slow variation of particle position with
fast oscillations of small amplitude. If phase advance of the-, Eq.(6.89), the space charge particle density at the beam
particle oscillation per period of field variation is much .o ter and parametérare as follows:

smaller than 2, the oscillating field6.1) can be replaced by '

an effective scalar potential of the struct(ifd 1 I
q EXP) PO™(1+5,7R®) BeaR?’ ©9
U 1= 7o —2, (6.3
ex 4my wé . 1 (6 1@
which describes the averaged motion of particle. For the con- (1+5¢°R%) '

sidered structure, the effective potential is Comparison of Eq(6.9 with Eq. (6.7) gives the required

mac2 Mg 1 2 value of the focusing gradient to provide beam confinement:
Ue(r, @)= ——— |5 r?+ {récos 4o+ — 9|,
q A 2 2 mC2 62 21 1/2
(6.4) Go=\87 — | = + (6.1
2 RN (R? T 1 By(1+5%R%)) =

whereuq is a smooth transverse oscillation frequency gnd , ) o ,
is a ratio of field components: In Fig. 8 an example of particle distributid6.6) with the

ratio of field componentg= —0.03 is presented. To gener-
qG\? Gs
:—1 = ~ - (6.5) a b
“ emmey G :

The effective potentia(6.4) is axially nonsymmetric and a 05
highly nonlinear function of radius. Equipotential lines %
Uex(r,¢)=C are circles near the axis and are transformed to2,
a 45° skewed square far from the aksge Fig. 7. 0.5
Application of Eq.(4.26 gives an expression for the self-
consistent space charge distribution of the beam in the struc

0

_ ¥{cm)

e

I
ture: 1 05 o0 05 1 7 05 0 05 1
X (cm) X (cm)

_ 4 2.8
Po=pol1+100r7cos 4p+250°r), (6.6 FIG. 8. Self-consistent particle distributionp,=pg(1

+10¢r4cos 4p+25.2r8) of the matched beam in a quadrupole
Po= 6.7 channel with a duodecapole component with parameger
0 (1+6) q N2 ' = —0.03: (a) without truncation,b) with truncation.

292 mc eouf
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ate the particle distribution, the area R;»<X<Ryaxs z=0 R
— Rnax<Y<Rnax, Where R,,=1.3cm, was covered by a s xlo-
grid with small stepsAx=0.01R,,,x, Ay=0.01R,,.. Inside 5E : 0.6
A . . EN T i E
every elementary mesh of the grid, the fraction of modeling 15 E 04 E
particlesAN(x,y)/Ng was defined: z 02 E 1l ! g 02 f
: g ok = 0f
AN(X, =05 E - £
oTy) =[1+10(x*—6x2y2+y%) e [ S 02
No A4S E 0.4
2 E F
AX Ay 2.5 iluilonluuleshodindunling -0.6 rOY9) ISTY| SYTY1 FYTVL IUTYA [VUN1 FOTUL ITTY PYUTE IOPY)
+252(x2+yH)* ———,  (6.12 2.5-2-151:05005 115225 25-2-15-1-050 05115225
4Rmax x (cm) x (cm)
where the relationship*cos 4p=x*—6x?y?+y* was used. =50 cm
ParameteN, in Eq. (6.12 defines the density of modeling xi0”
particles through the number of particles at beam centel 2; 06 F
AN(0,0): 15 - - ] 04
1 E o
aR2, Fost T, | | go2f
_ 5% A , . ok
No=AN(0,0) Ax Ay’ (6.13 %'O'f al ’:_O‘Z :
15 T o4k
The defined number of particles in every elementary mest -2 EA==——1= 06 E
AN(x,y) were uniformly distributed inside the mesh area.  234aysaugssiayys el
Self-consistent particle distributio(6.6) has a fourfold X (cm) x (cm)
symmetry[see Fig. 8)]. Every 45° variation of azimuth
angleg results in a change of the particle distribution from a z=100 cm
decreasing to an increasing function of radius and vice versa x10”
Equipotential lines of the self-potential of a high brightness ~ #7 g= 06 E
beam are close to that of an external focusing potential, ,sE 04 F
which are shown in Fig. 7. To treat the matched beam, itis _ /¢ ] T | 9 02 g
necessary to bound the beam along equipotential lines. Irg 0*(5) g, Ex 0 3
this case, the space charge forces at the beam boundariesw » o5 E i i =
i E 1l ; | %D 02 f
be kept close to that of an unbounded beam, remaining per -/ E 2 dk
pendicular to the equipotential lines. Therefore, the beam '1:5 L [ 1] TR
boundaries have to be 45° skewed squaee Fig. &)], as 2.5 Buludualiiluduobinlunloling 06 F L
suggested in Ref2]. -2.5-2-1.5-1-05005 115225 -2.5-2-15-105005115225
x (cm) x (cm)

In Fig. 9, the results of a particle-in-cell simulation of
matched beam transport in a quadrupole channel with a duo- FIG. 9. Emittance conservation of the 150 keV, 100 mA,
decapole field component are presented. The beam distribe-06= cm mrad proton beam with a matched distribution function
tion function was a product of the matched beam profile in(6.14 in a four vane quadrupole structure with field gradi€nt
real space6.6) and Gaussian distribution function in mo- =48 kv/cn? and duodecapole componed= —1.3 kV/cn?.
mentum;

The realistic beam distribution is a monotonically de-

3 4 ” g R? p§+ p§ creasing function of radius, which differs from distribution

f=Tfo(1+100r"cos 4p+250r")exy =27~ 27 |- (6.6). A good approximation to the realistic beam is a para-
(6.14  bolic distribution in phase spa¢é,2]:

The beam was truncated along a 45° skewed square in X2+ y? p>2(+p§
real space, as shown in Fig(b3. The value of the dimen- f=fo( 1- SRE T a2 |
sionless beam brightness was chosen tdbd (7. Particle Po
trajectories were integrated in the field, which was a combi-
nation of the time-dependent potenti@.1) and the space The parabolic distributioi6.15 has a projection in configu-
charge potential of the beam utilizing the leap-frog methodration space close to a truncated Gaussian distribution:
The space charge potential of the beam was calculated at

(6.19

every integration step employing a double fast Fourier trans- 3] r2\2
formation [1]. The value of the field gradientG, Pv=5_aR? 1- ﬁ) . (6.16
=48 kV/cn? was defined by Eq6.11) and the value of the mcp

duodecapole component wag= — 1.3 kV/cnP, which cor-

responds to parametér=—0.03. As shown in Fig. 9, the Required values of quadrupole gradient and duodecapole
distribution is conserved, which proves that it is matchedcomponents to provide matching of such a beam with the
with the focusing channel. channel are found analogously to REZ]:
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FIG. 10. Emittance conservation of the 150 keV, 100 mA, 25 &
0.067 cm mrad proton beam with a truncated parabolic distribution 2 i 1
function (6.15 in a four vane quadrupole structure with field gra- 1-7
dient G,=50 kV/cn? and duodecapole componentGg T o0s
=—1.9 kV/enP. Y ) (
>.05E
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FIG. 11. Adiabatic matching to avoid halo formation of 150
keV, 100 mA, 0.06r cm mrad proton beam in a four vane quadru-

pole structure with field gradier®,= 50 kV/cn? and adiabatic de-

cline of the duodecapole component froBg=

In Fig. 10, the results of the beam transport simulation,q,q for the distance =100 cm.
with a parabolic distribution in a quadrupole channel with
field componentsG,=52 kV/cn?, Gg=—1.9 kV/cn? are
presented. To make the beam distribution as close to a
matched beam distribution as possible, the beam boundaries
were truncated along equipotential lines in the same manner
as was done for the distributiai6.6). Space charge field of includes term~r*
the beam

_3mc2I<

AN

—1.9kV/cn? to
2 r4 6
iR T 619

, Which is not present in an effective po-
tential (6.4). Therefore, the beam with a parabolic distribu-
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tion z>L, the channel was a pure quadrupole and the beam

was transported 224 cm more to check the results of the

/\-\ p transformation. As can be seen, the beam profile in real space

\ \/ is modified from a square to a circular shape and follows the
\ / adiabatic change of the effective potential. rms beam emit-

tance growth in a nonlinear transformer is 15%, which is

substantially smaller than the 50% emittance growth in a

/ _,\/ \/\/ pure quadrupole chan_nésjee Fig. 12 The _final beam emit-
tance and beam profile are matched without serious phase

space portrait distortion and halo formation. After transfor-

f mation, the beam can be transported in a conventional struc-

0 50 '10(3' 50 200 250 '300“ ture with a linear focusing field.

€ (m cm mrad)

z (Cm) VII. CONCLUSIONS

FIG. 12. Beam emittance growth in a four vanes structure with  The self-consistent space charge potential of a high
a pure quadrupole fieltup) and in a quadrupole field with an adia- prightness beam is derived in the case of an arbitrary poten-
batic decline of the duodecapole compongtton). tial for a continuous focusing channel. It is shown that a

matched beam always tends to compensate for the applied

tion function cannot be exactly matched with the channelpotential. This is a manifestation of Debye shielding for non-
which expresses itself as a small emittance distortion imeutral plasmas. A simple formula is given that demonstrates
phase space. Nevertheless, such a beam is much bettee shielding effect of an arbitrary focusing potential by a
matched with the channel than a round beam with the samself-consistent beam field. A four-vane quadrupole structure
distribution function in a pure quadrupole chanfmmpare  with a multipole component of the 6th ordétuodecapole
with Fig. 5. componentis analyzed to prevent space charge dominated

An extra possibility to employ a nonlinear focusing chan-beam emittance growth. In such a structure, the matched
nel is connected with the adiabatic transformation of channdbeam profile has to be close to square instead of the conven-
parameter$2]. In Fig. 11, the results of the beam dynamicstional circle beam cross section. Adiabatic change of a non-
simulation in an adiabatic nonlinear matcher are presentedinear focusing field along the beam structure results in
The value of the quadrupole gradie@b=>52 kV/cn? was  gradual transformation of an initially nonuniform beam dis-
kept constant along the channel. The duodecapole compdribution into a distribution matched with the linear focusing
nent Gg was adiabatically changed from the value channel. The given analysis provides matched conditions for
—1.9 kV/cnP, as required by matched conditions, to zero fornonuniform high brightness beam transport without serious
the distance. =100 cm. After the nonlinear matching sec- emittance growth and halo formation.
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